#### Deductive verification

- 1. Partial and total correctness calculus (Hoare logics).
- 2. Weak-preconditions and Verification condition generators.
- 3. Tools for the specification, verification and certification programs: Dafny
- 4. Correction of imperative and object orient programs with Dafny

## **Origines**

Hoare logics are the base of deductive verification of programs (1969, An Axiomatic base for Computer Programming)

## Tony Hoare

Inventor also of the quick Sort and has a Turing award from 1980.

#### Robert Floyd

Some ideas from the 1967 paper Assigning Meaning to Programs.

#### Automatic program verification

Consider the following program to compute  $\sum_{m=1}^{100} m$ :

```
\begin{array}{l} x \leftarrow 0; \\ y \leftarrow 1; \\ \textbf{while} \ y! = 101 \ \textbf{do} \\ x \leftarrow x + y; \\ y \leftarrow y + 1; \end{array}
```

- How can we prove that when the program stops we have  $x = \sum_{m=1}^{100} m$ ?.
- We could execute the program using an operational semantics.
- But if we change the while, condition toy!=c, for any c?
- To execute for several values of c | is not an option

#### Verification using deductive systems

- Given a program and specification, we want to verify that the program satisfies the specification .
- We considere Hoare logics based on pre and post conditions:

A formula is an assertion that if the pre-condition holds before the execution of the program, the post-condition must hold after the program execution.

# Example

```
\begin{array}{l} x \leftarrow 0; \\ y \leftarrow 1; \\ \textbf{Require: } \{x = 0 \land y = 1\} \\ \textbf{while } y! = 101 \textbf{ do} \\ x \leftarrow x + y; \\ y \leftarrow y + 1; \\ \textbf{Ensure: } \{x = \sum_{n=0}^{100} n\} \end{array}
```

### Simple imperative language - While

# Syntactic categories

- Num integers, n
- Bool truth values, true and false
- Var variables, x
- **Aexp** arithmetic expressions, E
- Bexp Boolean expressions, B
- Com statements/commands, C

#### **BNFs**

For n in **Num** and x in **Var** 

```
\begin{array}{lll} E & ::= & n \mid x \mid E+E \mid E-E \mid E \times E \\ B & ::= & \mathsf{true} \mid \mathsf{false} \mid E=E \mid E < E \mid !B \mid B \ \land \ B \\ C & ::= & \mathsf{skip} \mid x \leftarrow E \mid C \ ; \ C \mid \mathsf{if} \ B \ \mathsf{then} \ C \ \mathsf{else} \ C \mid \mathsf{while} \ B \ \mathsf{do} \ C \end{array}
```

## Semantics

Expressions denote integers or Booleans.

To evaluate an expression it is needed to know the values of the variables that occur in it

A state s is a function rom variables to values.

The set of states is a set of functions

$$\mathbf{State} = \mathbf{Var} \to \mathbb{Z}$$

.

The commands are evaluated in a state and can modify the state.

The semantics of a program is the state in which it stops.

The semantics (or meaning) of each command and expression can be defined by a transition system - operational semanticspten ou por funções em domínios - semântica denotacional -or by domain functions - denotational semantics.

#### Partial and total correctness

We aim to verify that the program has a given property and not necessarily to determine the meaning of it.

In particular, we will consider properties of partial correctness given by logical formulae  $(\varphi, \psi)$ :

If the program C is run in a state that satisfies  $\varphi$ , then the state resulting from C's execution will satisfy  $\psi$ 

## partial correctness+ termination=total correctness

Given the undecidability of the halting problem, the properties of partial correctness are specially important in formal software verification.

## Assertions-Hoare Triples

The properties of partial correctness of programs are assertions as:

$$\{\varphi\} C \{\psi\}$$

where C is a command and  $\varphi$  and  $\psi$  are predicates of a first order logic.

The predicate  $\varphi$  is a precondition and  $\psi$  is a postcondition.

An assertion is valid if:

- if  $\varphi$  is true in the initial state
- If the execution of C terminates in the state s'
- then  $\psi$  is true in the state s'

# Pre and post conditions



## Examples

```
\{x=1\}x \leftarrow x + 1\{x=2\} the assertion is true
```

$$\{x=1\}$$
y  $\leftarrow$  x $\{y=1\}$  the assertion is true

$$\{x=1\}$$
y  $\leftarrow$  x $\{y=2\}$  the assertion is false

$$\{x=x_0 \ \land \ y=y_0\}\mathtt{r} \leftarrow \mathtt{x} \ ; \mathtt{x} \leftarrow \mathtt{y} \ ; \mathtt{y} \leftarrow \mathtt{r} \{x=y_0 \ \land \ y=x_0\}$$

The variables  $x_0$  and  $y_0$  are called logic variables as they occur only in the conditions.

 $\{\mathsf{true}\}C\{\psi\}\ \ \mathrm{if}\ C\ \mathrm{stops}\ \psi\ \mathrm{holds}$ 

 $\{\varphi\}C\{\text{true}\}\$ is always true for any C and  $\varphi$ .

#### Example

```
\begin{array}{l} x \leftarrow 0; \\ y \leftarrow 1; \\ \textbf{Require: } \{x = 0 \land y = 1\} \\ \textbf{while } y! = 101 \textbf{ do} \\ x \leftarrow x + y; \\ y \leftarrow y + 1; \\ \textbf{Ensure: } \{x = \sum_{n=0}^{100} n\} \end{array}
```

- We want to infere that  $x = \sum_{m=1}^{100} m$  given that before the while we had y = 0 and x = 1.
- It is easy to see that in the end of the loop y = 101, but we want the value of x!
- We have to know an *invariante do ciclo* loop invariant:
- In the beginning of each iteration we have

$$x = 1 + 2 + 3 + \dots + (y - 1)$$

## Conditions language

In an assertion,  $\{\varphi\}C\{\psi\}$ ,  $\varphi$ ,  $\psi$  are formulae  $\varphi$ ,  $\psi$ , . . . of a first-order language for arithmetics:

- constants 0 and 1 (decimal integers can be seen as abbreviations)
- functional symbols -,+,- and  $\times$  (to form terms)
- Predicate symbols <, = (to build predicates)
- logic symbols: operators  $\land$ ,  $\lor$ , etc. and quantifiers (that bound only logical variables)  $\forall$ ,  $\exists$ .

São interpretadas nos naturais numa estrutura  $\mathcal{N}=(\mathbb{N},\cdot)$  e os estados s, correspondem a atribuições de valores às variáveis.

Se  $\mathcal{N} \models_s \varphi$ , dizemos que s satifaz  $\varphi$ , i.e.,  $s \models \varphi$ .

Por exemplo, se s(x) = -2, s(y) = 5, s(z) = -1,

 $s \models \neg(x + y < z)$  verifica-se

 $s \models y - x \times z < z$  não se verifica

#### Partial correctness

A (Hoare) triple  $\{\varphi\}C\{\psi\}$  is satisfied for partial correctness if for all states tha satisfy  $\varphi$ , the state that results from running C satisfy  $\psi$ , if C stops,

$$\models_{par} \{\varphi\}C\{\psi\}.$$

Note that

while true do

$$x \leftarrow 0;$$

satisfies all assertions

#### Total correctness

A triple  $\{\varphi\}C\{\psi\}$  is satisfied for total correctness if for all states that satisfy  $\varphi$ , is ensured that C stops and the in the resulting state  $\psi$ is satisfied,

$$\models_{tot} \{\varphi\}C\{\psi\}$$

In this case

while true do

$$x \leftarrow 0$$
:

does not hold for any assertion.

## Deduction system for partial correctness/Hoare Logic

- A deduction system is a set of axioms and a set of inference rules.
- A derivation (or proof) is a finite sequence of rule applications and axioms.
- If an assertion  $\{\varphi\}C\{\psi\}$  is derived from the partial correctness calculus we say that

$$\vdash_{par} \{\varphi\}C\{\psi\}$$

is valid.

 $\bullet$  The calculus is sound if:

$$\vdash_{par} \{\varphi\}C\{\psi\} \text{ implies } \models_{par} \{\varphi\}C\{\psi\}.$$

## Deduction system for partial correctness/Hoare Logic

 $[skip_p]$ 

$$\{\varphi\}\, \mathrm{skip}\, \{\varphi\}$$

 $[ass_p]$ 

$$\left\{ \varphi[E/x]\right\} x\leftarrow E\left\{ \varphi\right\}$$

 $[comp_p]$ 

$$\frac{\{\varphi\}\,C_1\,\{\eta\}\qquad\{\eta\}\,C_2\,\{\psi\}}{\{\varphi\}\,C_1;C_2\,\{\psi\}}$$

where  $\varphi[E/x]$  is the formula that is obtained substituting x by E.

 $[if_p]$ 

$$\frac{\left\{\varphi \, \wedge \, B\right\}C_1\left\{\psi\right\} \qquad \left\{\varphi \, \wedge \, \neg B\right\}C_2\left\{\psi\right\}}{\left\{\varphi\right\} \text{ if } B \text{ then } C_1 \text{ else } C_2\left\{\psi\right\}}$$

 $[while_p]$ 

$$\frac{\left\{\psi \, \wedge \, B\right\}C\left\{\psi\right\}}{\left\{\psi\right\}\, \mathtt{while}\, B\, \mathtt{do}\, C\left\{\psi \, \wedge \, \neg B\right\}}$$

where  $\psi$  is the invariant

 $[cons_p]$ 

$$\frac{\vdash \varphi' \to \varphi \quad \{\varphi\} C \{\psi\} \quad \vdash \psi \to \psi'}{\{\varphi'\} C \{\psi'\}}$$

**Exemp. 2.1.** Show that  $\vdash_{par} \{\mathsf{true}\}z \leftarrow x; z \leftarrow z + y; u \leftarrow z\{u = x + y\}$ 

$$\frac{\{z+y=x+y\}z\leftarrow z+y\{z=x+y\}}{\{z+y=x+y\}z\leftarrow z+y\{z=x+y\}} \frac{\{z=x+y\}u\leftarrow z\{u=x+y\}}{\{z+y=x+y\}z\leftarrow z+y;u\leftarrow z\{u=x+y\}} \frac{\{z+y=x+y\}z\leftarrow z+y;u\leftarrow z\{u=x+y\}}{\{true\}z\leftarrow x;z\leftarrow z+y;u\leftarrow z\{u=x+y\}} \frac{conp_p}{cons_p}$$

Exerc. 2.1. Deduce the following assertions

- $\{x = 1\}$ x  $\leftarrow$  x + 1 $\{x = 2\}$
- $\{x=1\}$ y  $\leftarrow$  x $\{y=1\}$
- $\{x = x_0 \land y = y_0\}$ r  $\leftarrow$  x; x  $\leftarrow$  y; y  $\leftarrow$  r $\{x = y_0 \land y = x_0\}$

 $\Diamond$ 

Exerc. 2.2. Show that

$$\vdash_{p} \{x = r + (y \times q)\}r \leftarrow r - y; q \leftarrow q + 1 \{x = r + (y \times q)\}$$

 $\Diamond$ 

Exerc. 2.3. Show that

$$\vdash_p \{\mathsf{true}\}z \leftarrow x+1; \ \mathsf{if} \ z-1 = 0 \, \mathsf{then} \, y \leftarrow 1 \, \mathsf{else} \, y \leftarrow z \{y = x+1\}$$

 $\Diamond$ 

#### tableaux fot partial correctness

Let  $C=C_1;C_2;\ldots;C_n$  and we want  $\vdash_p \{\varphi\}C\{\psi\}$ . We can consider several problems of the form  $\vdash_p \{\varphi_i\}C_i\{\varphi_{i+1}\}$ . For that we annotate the commands that compose C with formulae  $\varphi_i$  and consider a proof tableaux:

$$\{\varphi_0\}$$
 $C_1;$ 
 $\{\varphi_1\}$  justification
 $C_2;$ 
 $\vdots$ 
 $\{\varphi_{n-1}\}$  justification
 $C_n;$ 
 $\{\varphi_n\}$ 

Then we need to show

$$\vdash_p \{\varphi_i\}C_{i+1}; \{\varphi_{i+1}\},$$

starting with  $\varphi_n$ . But how to obtain  $\varphi_i$ ?

# Weakest preconditions (wp)

For each command C and postcondition  $\psi$  a formula  $wp(C, \psi)$  is the weakest precondition that being true in state s, ensures that in the state s' obtained after the execution of C and if C stops, the postcondition  $\psi$  holds.

- $\bullet \models_{p} \{wp(C,\psi)\}C\{\psi\}$
- $\models_p \{\varphi\}C\{\psi\}$  implies  $\varphi \to wp(C,\psi)$  (called verification condition)

#### tableaux for partial correctness

- a formula  $\varphi_i$  obtained from  $C_{i+1}$  and  $\varphi_{i+1}$  is the weakest precondition of  $C_{i+1}$
- given the postcondition  $\varphi_{i+1}$ , we can write

$$wp(C_{i+1}, \varphi_{i+1}) = \varphi_i.$$

- From wp() and using the consequence rule  $(cons_p)$  we can automatically generate the verification conditions,
- that can be proved automatically or assisted by a solver.
- In general if  $\{\varphi\}C\{\psi\}$  the verification condition is:

$$\varphi \to wp(C,\psi)$$

## Weakest preconditions - $ass_p$

#### Assignment

$$\{\psi[E/x]\}$$

$$x \leftarrow E$$

$$\{\psi\}$$

$$ass_{p}$$

A verification condition for  $\{\varphi\}x \leftarrow E\{\psi\}$ , is

$$\varphi \to \psi[E/x]$$

and  $wp(x \leftarrow E, \psi) = \psi[E/x]$ .

## Exemp. 2.2. Compute

- 1.  $wp(x \leftarrow 0, x = 0)$  is 0 = 0.
- 2.  $wp(x \leftarrow x + 1, x > 0)$  is x + 1 > 0.

# Weakest preconditions - $cons_p$

## Consequence

The rule  $cons_p$  can be applied when  $\varphi' \to \varphi$  and we have  $\{\varphi\} C \{\psi\}$ . In this case the *tableaux* can have two formulas in a row:  $\varphi'$  and below  $\varphi$ .

$$\{\varphi'\}$$
 $\{\varphi\}$   $cons_p$ 

**Exerc. 2.4.** Show with a tableaux  $\vdash_p \{y=5\}x \leftarrow y+1\{x=6\}$ .  $\diamond$ 

# Weakest preconditions $if_p$

## Conditional

We want  $\varphi$  such that  $wp(\text{if }B \text{ then }C_1 \text{ else }C_2,\psi)=\varphi.$ 

$$\begin{split} &\{(B \to \varphi_1) \ \land \ (\neg B \to \varphi_2)\} \\ &\text{if $B$ then} \\ &\{\varphi_1\} \\ &C_1 \\ &\{\psi\} \qquad \qquad if_p \\ &\text{else} \\ &\{\varphi_2\} \\ &C_2 \\ &\{\psi\} \\ &\{\psi\} \qquad \qquad if_p \end{split}$$

We can compute  $\{\varphi_1\}C_1\{\psi\}$  e  $\{\varphi_2\}C_2\{\psi\}$ , and then  $\varphi \equiv (B \to \varphi_1) \land (\neg B \to \varphi_2)$ , i.e.,

$$wp(\texttt{if }B\texttt{ then }C_1\texttt{ else }C_2,\psi)=(B\to\varphi_1)\ \land\ (\neg B\to\varphi_2)$$

and the verification conditions generated by  $\varphi_1$  and  $\varphi_2$ .

#### Exemp. 2.3. Show with atableaux

$$\vdash_p \{\mathsf{true}\}$$
 
$$a \leftarrow x+1;$$
 
$$\mathsf{if} \ a-1 = 0 \ \mathsf{then}$$
 
$$y \leftarrow 1$$
 
$$\mathsf{else}$$
 
$$y \leftarrow a$$
 
$$\{y = x+1\}$$

$$\begin{cases} \mathsf{true} \rbrace & \{ (x=0 \to 1=1) \, \wedge \, (\neg (x=0) \to x+1=x+1) \} & cons_p \\ \{ (x+1-1=0 \to 1=x+1) \, \wedge \, (\neg (x+1-1=0) \to x+1=x+1) \} & cons_p \\ a \leftarrow x+1 \\ \{ (a-1=0 \to 1=x+1) \, \wedge \, (\neg (a-1=0) \to a=x+1) \} & ass_p \\ \text{if } a-1=0 \text{ then} \\ \{ 1=x+1 \} & if_p' \\ y \leftarrow 1 \\ \{ y=x+1 \} & ass_p \\ \text{else} \\ \{ a=x+1 \} & if_p' \\ y \leftarrow a \\ \{ y=x+1 \} & ass_p \\ \end{cases}$$

# Weakest preconditions $if_p$

We use the following inference rule:

 $[if'_p]$ 

$$\frac{\left\{\varphi_{1}\right\}C_{1}\left\{\psi\right\} \qquad \left\{\varphi_{2}\right\}C_{2}\left\{\psi\right\}}{\left\{\left(B\rightarrow\varphi_{1}\right)\ \land\ \left(\neg B\rightarrow\varphi_{2}\right)\right\} \text{if } B \text{ then } C_{1} \text{ else } C_{2}\left\{\psi\right\}}$$

**Exerc. 2.5.** Show that this rule can be deduce from the inference system  $H \Leftrightarrow$ 

## Weakest preconditions - $while_p$

We want  $\vdash_p \{\varphi\}$  while B do C  $\{\psi\}$ .

To use  $while_p$  rule we need a formula  $\eta$  such that:

- $\varphi \to \eta$
- $\eta \wedge \neg B \rightarrow \psi$  e

$$\bullet \; \vdash_p \{\eta\} \\ \texttt{while} \, B \, \texttt{do} \, C\{\eta \; \wedge \; \neg B\}$$

#### Invariant

One cycle invariant while B do C is a formula  $\eta$  such that

$$\models_p \{ \eta \land B \} C \{ \eta \}.$$

Weakest preconditions -  $while_p$ 

We have that  $wp(\mathtt{while}\, B\, \mathtt{do}\, C, \psi) = \eta$ , the verification conditions are  $\varphi \to \eta$ ,  $\eta \wedge \neg B \to \psi$  and the verification conditions of  $\{\eta \wedge B\}C\{\eta\}$ .

Weakest preconditions -  $while_p$ 

Exemp. 2.4. Show that

$$\vdash_p \{\mathsf{true}\}y \leftarrow 1; z \leftarrow 0; \mathsf{while} \ \neg z = x \ do \ (z \leftarrow z+1; y \leftarrow y \times z)\{y = x!\}$$

The invariant I is : y = z! and verifies the conditions:

1. Is implied by the precondition of while which is  $y=1 \land z=0$ :

$$y = 1 \land z = 0 \rightarrow y = z!$$

 $2. \ y = z! \ \land \ z = x \rightarrow y = x!$ 

We start with I inside the cycle until we obtain I' and show that  $I \wedge B \to I'$ .

# weakest preconditions - $while_p$

$$\begin{array}{c} y \leftarrow 1 \\ z \leftarrow 0 \\ \{y = z!\} \\ \text{ while } \neg z = x \text{ do} \\ \{y = z! \ \land \ \neg z = x\} \\ \{y \times (z+1) = (z+1)!\} \\ z = z+1 \\ \{y \times z = z!\} \\ y = y \times z \\ \{y = z!\} \\ x = x + 1 \\ x =$$

Exerc. 2.6. Show that

$$\begin{array}{c} \vdash_p \{\mathsf{true}\} \\ r \leftarrow x; q \leftarrow 0; \\ \mathsf{while} \, y \leq r \, \mathsf{do} \\ r \leftarrow r - y; \\ q \leftarrow q + 1 \\ \{r < y \ \land \ x = r + (y \times q)\} \end{array}$$

 $\Diamond$ 

The condition  $x = r + (y \times q)$  is the invariant.

Exerc. 2.7. Show that

$$\{x \geq 0\}z \leftarrow x; y \leftarrow 0; \text{ while } \neg z = 0 \text{ do } (y \leftarrow y+1; z \leftarrow z-1)\{x=y\}. \\ \diamond$$