Deductive verification

—_

. Partial and total correctness calculus (Hoare logics).

2. Weak-preconditions and Verification condition generators.

3. Tools for the specification , verification and certification programs: Dafny
4

. Correction of imperative and object orient programs with Dafny

Origines

Hoare logics are the base of deductive verification of programs(1969, An Awxio-
matic base for Computer Programming)

Tony Hoare

Inventor also of the quick Sort and has a Turing award from 1980.

Robert Floyd

Some ideas from the 1967 paper Assigning Meaning to Programs.

Automatic program verification

Consider the following program to compute Z}fil m:

z <+ 0;

Yy 1

while y! =101 do
T4 T+,
y—y+L

e How can we prove that when the program stops we have x = Zi,?il m?.

We could execute the program using an operational semantics.
e But if we change the while,condition toy!=c, for any c 7

e To execute for several values of c| is not an option

Verification using deductive systems

e Given a program and specification, we want to verify that the program
satisfies the specification .

o We considere Hoare logics based on pre and post conditions:

A formula is an assertion that if the pre-condition holds be-
fore the execution of the program, the post-condition must hold
after the program execution.



Example

x < 0;
Yy L
Require: {z =0Ay =1}
while y! = 101 do
T x+y;
y<—y+1

Ensure: {z = Z:LO:OO n

Simple imperative language - While
Syntactic categories

e Num integers, n
e Bool truth values, true and false
e Var variables, x

e Aexp arithmetic expressions,

Bexp Boolean expressions, B

Com statements/commands, C

BNFs
For n in Num and « in Var
E = n|z|E+FE|E-FE|EXE
B true [false | E=FE|E<FE|'B|B A B
C skip |z« E | C; C|if B then C else C' | while Bdo C

Semantics

Expressions denote integers or Booleans.

To evaluate an expression it is needed to know the values of the variables that
occur in it

A state s is a function rom variables to values.

The set of states is a set of functions

State = Var — Z



The commands are evaluated in a state and can modify the state.
The semantics of a program is the state in which it stops.

The semantics (or meaning) of each command and expression can be defined by
a transition system - operational semanticspten ou por fungoes em dominios —
semantica denotacional —or by domain functions — denotational semantics.

Partial and total correctness

We aim to verify that the program has a given property and not necessarily to
determine the meaning of it.

In particular, we will consider properties of partial correctness given by logical
formulae (¢, ) :

If the program C' is run in a state that satisfies p, then the state
resulting from C'’s execution will satisfy

partial correctness+ termination—=total correctness

Given the undecidability of the halting problem, the properties of partial cor-
rectness are specially important in formal software verification.

Assertions—Hoare Triples

The properties of partial correctness of programs are assertions as:
{p}C{v}

where C' is a command and ¢ and 1 are predicates of a first order logic.
The predicate ¢ is a precondition and v is a postcondition.
An assertion is valid if:

e if ¢ is true in the initial state

e If the execution of C' terminates in the state s’

e then 1) is true in the state s’

Pre and post conditions



o Program state
initial final
state state

inputs :\’\}‘ Method, function, :'ﬂ‘.
e etc. (C) | | 1outputs

\ 7
! 7

Pre-condition (¢) \—Pes-t-eeﬁdiﬁon (W)

Examples

{x =1}x + x+ 1{z = 2} the assertion is true

{x =1}y + x{y = 1} the assertion is true

{z =1}y + x{y =2} the assertion is false

{r=20 ANy=wolrxixeyiyer{z=y Ay=m}

The variables x¢ and yg are called logic variables as they occur only in the
conditions.

{true}C{¢} if C stops ¢ holds

{@}C{true} is always true for any C' and ¢.

Example

z <+ 0;
y< L
Require: {x =0Ay =1}
while y! =101 do
Tz +y;
y<+—y+1;
Ensure: {z =" n}

n=0

e We want to infere that z = Z;Sgl m given that before the while we had
y=0and z=1.

e [t is easy to see that in the end of the loop y = 101,but we want the value
of z!

e We have to know an invariante do ciclo loop invariant:
e In the beginning of each iteration we have

r=1+2+3+---+(y—1)



Conditions language

In an assertion, {¢}C{¥}, ¢, 9 are formulae @, 1, ... of a first-order language
for arithmetics:

e constants 0 and 1 (decimal integers can be seen as abbreviations)
e functional symbols —,4, — and X (to form terms)
e Predicate symbols <, = (to build predicates)

e logic symbols: operators A, V, etc. and quantifiers (that bound only logical
variables) V, 3.

Sao interpretadas nos naturais numa estrutura N’ = (N, -) e os estados s, cor-
respondem a atribuicoes de valores as variaveis.

Se N |5 ¢, dizemos que s satifaz ¢, i.e., s = p.
Por exemplo, se s(z) = —2, s(y) =5, s(z) = —1,
s | -(xz+y < z) verifica-se

sy —a X z < znao se verifica

Partial correctness

A (Hoare) triple {@}C{} is satisfied for partial correctness if for all states tha
satisfy ¢, the state that results from running C satisfy v, if C' stops,

Fpar {0}C{¥}.
Note that

while true do
z + 0;

satisfies all assertions

Total correctness

A triple {p}C{v} is satisfied for total correctness if for all states that satisfy
p, is ensured that C stops and the in the resulting state vis satisfied,

Ftot {p}C{Y}
In this case

while true do
x < 0;

does not hold for any assertion.



Deduction system for partial correctness/Hoare Logic

e A deduction system is a set of axioms and a set of inference rules.
e A derivation (or proof) is a finite sequence of rule applications and axioms.

o If an assertion {p}C{t} is derived from the partial correctness calculus
we say that

Fpar {9}C{Y}

is walid.

e The calculus issound if:
Fpar {@}C{9} implies F=par {9}C{Y}.

Deduction system for partial correctness/Hoare Logic

[skipy |
{} skip{w}
[assp |
{plE/x]}z — E{p}
[comp,, ]

{¢} C1{n} {n} Co {v}
{¢} C1; Co {2}

where p[E/x] is the formula that is obtained substituting x by F.

[ifp ]
fo A BYCi{Y}  {p A =B} Co {9}

{¢}if BthenC] else Cy {9}

[while, ]
{v A B} C{y}
{¢} while Bdo C {¢) A =B}
where 9 is the invariant

[cons), ]



Fe' oy et C{y} Fo =9
{¥'yC{y’}
Exemp. 2.1. Show that tper {true}z < z;2 < z + y;u < 2{u =z + y}

compy AEFty=otulz cstulz=aty) {z=a+y}u+ z{u=2+y)}

{z+y=z+ylz« a2{z+y=2z+y} {zty=z+ylz+z+yu+ z{u=z+y}
{z+y=z+tylz+z;z+ 2z+y;u+ z{u=za+y}

{true}z «+— x5z «— z+y;u « z{u =z + y}

compp

consp

Exerc. 2.1. Deduce the following assertions
o {x=1lx+x+1{zx =2}
o {z=1}y+x{y=1}
e fz=wxoNy=yolr < x;x vy r{z =y Ay =10}
o
Exerc. 2.2. Show that
Fplz=r+yxglr<r-yqeqgt+i{z=r+(yxq}
o
Exerc. 2.3. Show that

Fp {true}z <~z +1; if 2 — 1 = 0theny + lelsey + z{y =z + 1}

tableaux fot partial correctness

Let C = C1;C%;...;C, and we want F, {¢}C{¢}. We can consider several
problems of the form F, {¢;}Ci{@;+1}. For that we annotate the commands
that compose C' with formulae ¢; and consider a proof tableaux :

{po}

Cy;

{1} justification
Ca;

{pn-1} justification
Ch;
{en}

Then we need to show
Fp {9i}Cit1; {piv1},
starting with ,,. But how to obtain ¢;?



Weakest preconditions (wp)

For each command C' and postcondition ¢ a formula wp(C, ) is the weakest
precondition that being true in state s, ensures that in the state s’ obtained
after the execution of C' and if C stops, the postcondition v holds.

o =p {wp(C,9)}C{Y}
o =, {p}C{+} implies p — wp(C, 1) (called verification condition)

tableaux for partial correctness

e a formula ¢; obtained from C;;11 and ;1 is the weakest precondition
of C¢+1

e given the postcondition ¢;41, we can write
wp(Cit1, Pit1) = @i

e From wp()and using the consequence rule (cons,) we can automatically
generate the verification conditions ,

e that can be proved automatically or assisted by a solver.

o In general if {¢}C{t} the verification condition is:

@ = wp(C, 1)
Weakest preconditions - ass,
Assignment
{v[E/x]}
rx+— F
{v} assy

A verification condition for {p}z < E{¢}, is
¢ = Y[E/x]
and wp(z « E,¢) = ¢[E/z].
Exemp. 2.2. Compute
1. wp(x + 0,2 =0) is 0=0.

2. wp(x+—2x+1,x>0)is z+1>0.



Weakest preconditions - cons),

Consequence

The rule cons, can be applied when ¢’ — ¢ and we have {¢} C {¢}. In this
case the tableauzr can have two formulas in a row: ¢’ and below .

{¢'}

{¢} cons,

Exerc. 2.4. Show with a tableaux -, {y =5}x < y+ 1{z =6}. ©

Weakest preconditions if,

Conditional
We want ¢ such that wp(if BthenCy else Cy, ) = .

{(B—=¢1) A (mB = ¢2)}
if B then

{e1}

Cy

{¥} ifp
else

{2}

Co

{v}
{} ifp

We can compute {¢1}C1{¢} e {¢2}Ca{¢}, and then p = (B — ¢1) A (B —
(pg), i.e.,

wp(if BthenC) else Cy,¢) = (B — ¢1) A (0B — ¢2)

and the verification conditions generated by ¢; and a.



Exemp. 2.3. Show with atableaux

F, {true}
a+x+1;

ifa —1 = 0then
y<1

else

Y<—a
{ly=xz+1}

{true}

{x=0—-1=1) A (H(z=0)—>z+1=2+1)} consy
{e+1-1=0—=1=z+1) A (~(z+1-1=0)—2x+1=a+1)}cons,
a+z+1

{a-1=0—-1=z+1) A (-(a—1=0)—a=x+1)} assy
ifa—1=0then

{1=z+1} if,

y<+1

{y=2x+1} ass,

else

{a=2+1} if,

Yy a

{y=z+1} assy

‘Weakest preconditions if,

We use the following inference rule:
[ifp ]

{1} O {v} {2} C2 {¥}
{(B—=¢1) A (#B — ¢3)}if BthenC) else Cs {¢}

Exerc. 2.5. Show that this rule can be deduce from the inference system H o

Weakest preconditions - while,

We want F,, {¢}while Bdo C {¢}.

To use while, rule we need a formula 1 such that:

e p—=1
en AN -B—=1e

10



e -, {n}while Bdo C{n A B}

Invariant

One cycle invariant while Bdo C is a formula n such that

Fp {n A B}C{n}.

‘Weakest preconditions - while,

{e}
{n}

while Bdo

{n N B}
C

{n}
{n N =B} while,,

{v} cons,

We have that wp(while Bdo C,v¢) =1, the verification conditions are ¢ — 7,
n A =B — 1 and the verification conditions of {n A B}C{n}.

Weakest preconditions - while,
Exemp. 2.4. Show that
Fp {true}y < 1;2z < O;while 7z = zdo (z + z+ Ly < y X 2){y = z!}

The invariant I is : y = z! and verifies the conditions:

1. Is implied by the precondition of while whichisy =1 A z=0:
y=1AN2z=0—y="2

20y=z2zl N z=x—y=ua!

We start with I inside the cycle until we obtain I’ and show that I A B — I'.

11



weakest preconditions - while,,

Yy 1

z4+0

{y =2} ?
while—z =z do

{ly==2l N mz=12z}

{lyx(z+1)=0E=+D1} cons,
z=z+1
{y x z =21} assp
y=yXxz
{y =21} assy
{y ==a!} ?

because (y =zl AN ~z=2) s y=zl—2yx(z+1)=(z+ 1)L

{true}

{1=01} consy
y <1

{y =0} assy
z+0

{y =21} assy

while -z = xdo

{ly=2zl N mz=2z}

{yx(z+1)=(=+D} cons,
z4—2z+1
{y x z =2z} assy
Y+ yXxz
{y =2} assp
{y=2' AN z=12x} while,,
{y = z!} consy

Exerc. 2.6. Show that

12



Fp {true}

rx;q < 0;
whiley < rdo
reT—

qg+—q+1
{r<ynaz=r+(yxq}

<

The condition = 7 + (y X ¢) is the invariant.

Exerc. 2.7. Show that
{x >0}z« x;y + 0; while 2=0do (y+ y+ ;2 z — 1){x = y}.

<&
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