
Deductive verification

1. Partial and total correctness calculus (Hoare logics).

2. Weak-preconditions and verification condition generators.

3. Tools for the specification, verification and certification programs: Dafny

4. Correction of imperative and object orient programs with Dafny

Origines

Hoare logics are the base of deductive verification of programs (1969, An Axio-
matic base for Computer Programming, Tony Hoare)

Tony Hoare

Inventor also of the Quick Sort and has a Turing award from 1980.

Robert Floyd

Some ideas from the 1967 paper Assigning Meaning to Programs.

Automatic program verification

Consider the following program to compute
∑100

m=1m:

x← 0;
y ← 1;
while y! = 101 do

x← x+ y;
y ← y + 1;

• How can we prove that when the program stops we have x =
∑100

m=1m ?.

• We could execute the program using an operational semantics.

• But if we change the while condition to y!=c, for any c ?

• To execute for several values of c is not an option

Verification using deductive systems

• Given a program and specification, we want to verify that the program
satisfies the specification .

• We considere Hoare logics based on pre and post conditions:

A formula is an specification that if the pre-condition holds
before the execution of the program, the post-condition must
hold after the program execution.

1

Example

x← 0;
y ← 1;

Require: {x = 0 ∧ y = 1}
while y! = 101 do

x← x+ y;
y ← y + 1;

Ensure: {x =
∑100

n=0 n}

Simple imperative language - While

Syntactic categories

• Num integers, n

• Bool truth values, true and false

• Var variables, x

• Aexp arithmetic expressions, E

• Bexp Boolean expressions, B

• Com statements/commands, C

BNFs

For n in Num and x in Var

E ::= n | x | E + E | E − E | E × E
B ::= true | false | E = E | E < E |!B | B ∧ B

C ::= skip | x← E | C ; C | if B then C else C | while B do C

Semantics

• Expressions denote Integers or Booleans.

• To evaluate an expression it is needed to know the values of the variables
that occur in it

• A state s is a function from variables to values.

• The set of states is a set of functions

State = Var→ Z

.

2

• Commands are evaluated in a state and can modify the state.

• The semantics of a program is the state in which it stops.

• The semantics (or meaning) of each command and expression can be
defined by a transition system - operational semantics

• or by domain functions – denotational semantics.

Partial and total correctness

We aim to verify that the program has a given property and not necessarily to
determine its meaning. We call this axiomatic semantics.

In particular, we will consider properties of partial correctness given by logical
formulae (φ,ψ) :

If the program C is run in a state that satisfies φ, then the state
resulting from C’s execution will satisfy ψ

partial correctness+ termination=total correctness

Given the undecidability of the halting problem, the properties of partial cor-
rectness are specially important in formal software verification.

Specifications–Hoare Triples

The properties of partial correctness of programs are specifications as:

{φ}C {ψ}

where C is a command and φ and ψ are predicates of a first order logic.

The predicate φ is a precondition and ψ is a postcondition.

An specification is valid if:

• if φ is true in the initial state

• If the execution of C terminates in the state s′

• then ψ is true in the state s′

Pre and post conditions

3

Examples

{x = 1}x← x+ 1{x = 2} the specification is true

{x = 1}y← x{y = 1} the specification is true

{x = 1}y← x{y = 2} the specification is false

{x = x0 ∧ y = y0}r← x ; x← y ; y← r{x = y0 ∧ y = x0}
the variables x0 and y0 are called logic variables as they occur only in the
conditions.

{true}C{ψ} if C stops ψ holds

{φ}C{true} is always true for any C and φ.

Example

x← 0;
y ← 1;

Require: {x = 0 ∧ y = 1}
while y! = 101 do

x← x+ y;
y ← y + 1;

Ensure: {x =
∑100

n=0 n}

• We want to infere that x =
∑100

m=1m given that before the while we had
y = 0 and x = 1.

• It is easy to see that in the end of the loop y = 101, but we want the value
of x!

• We have to know an loop invariant:

4

• In the beginning of each iteration we have

x = 1 + 2 + 3 + · · ·+ (y − 1)

Condition Language

In an specification, {φ}C{ψ}, φ, ψ are formulae φ,ψ, . . . of a first-order language
for arithmetics:

• constants 0 and 1 (decimal integers can be seen as abbreviations)

• functional symbols −,+, − and × (to form terms)

• Predicate symbols <, = (to build predicates)

• logical symbols: operators ∧, ∨, etc. and quantifiers (that bound only
logical variables) ∀, ∃.

Semantics of Conditions

Conditions are interpreted in a model for the integers Z = (Z, ·) and the states
s, are assignments of values to variables.

If Z |=s φ, we say that s satisfies φ, i.e., s |= φ.

For instance, if s(x) = −2, s(y) = 5, s(z) = −1,
s |= ¬(x+ y < z) holds

s |= y − x× z < z does not hold

Partial correctness

A (Hoare) triple {φ}C{ψ} is satisfied for partial correctness if for all states that
satisfy φ, the state that results from running C satisfy ψ, if C stops,

|=p {φ}C{ψ}.

Note that

while true do
x← 0;

satisfies all specifications

Total correctness

A triple {φ}C{ψ} is satisfied for total correctness if for all states that satisfy
φ, is ensured that C stops and that in resulting state ψ is satisfied,

5

|=t {φ}C{ψ}

In this case

while true do
x← 0;

does not hold for any specification.

Deductive system for partial correctness/Hoare Logic

• A deduction system is a set of axioms and a set of inference rules.

• A derivation (or proof) is a finite sequence of rule applications and axioms.

• If an specification {φ}C{ψ} is derived from the partial correctness calculus
we say that

⊢p {φ}C{ψ}

is valid.

• The calculus is sound if:

⊢p {φ}C{ψ} implies |=p {φ}C{ψ}.

Deduction system for partial correctness/Hoare Logic, H

[skipp]

{φ} skip {φ}

[assp]

{φ[E/x]}x← E {φ}

[compp]

{φ}C1 {η} {η}C2 {ψ}
{φ}C1;C2 {ψ}

where φ[E/x] is the formula that is obtained substituting x by E.

[ifp]

6

{φ ∧ B}C1 {ψ} {φ ∧ ¬B}C2 {ψ}
{φ} ifB thenC1 elseC2 {ψ}

[whilep]

{ψ ∧ B}C {ψ}
{ψ} whileB doC {ψ ∧ ¬B}

where ψ is the invariant

[consp]

⊢ φ′ → φ {φ}C {ψ} ⊢ ψ → ψ′

{φ′}C {ψ′}

Ex. 2.1. Show that ⊢par {true}z ← x; z ← z + y;u← z{u = x+ y}

{x + y = x + y}z ← x{z + y = x + y}

{z + y = x + y}z ← z + y{z = x + y} {z = x + y}u ← z{u = x + y}
compp

{z + y = x + y}z ← z + y;u ← z{u = x + y}
compp

{x + y = x + y}z ← x; z ← z + y;u ← z{u = x + y}
consp

{true}z ← x; z ← z + y;u ← z{u = x + y}

Exerc. 2.1. Deduce the following specifications

• {x = 1}x← x+ 1{x = 2}

• {x = 1}y← x{y = 1}

• {x = x0 ∧ y = y0}r← x ; x← y ; y← r{x = y0 ∧ y = x0}

⋄

Exerc. 2.2. Show that

⊢p {x = r + (y × q)}r ← r − y; q ← q + 1 {x = r + (y × q)}

⋄

Exerc. 2.3. Show that

⊢p {true}z ← x+ 1; if z − 1 = 0 then y ← 1 else y ← z{y = x+ 1}

⋄

7

tableaux for partial correctness

Let C = C1;C2; . . . ;Cn and we want ⊢p {φ}C{ψ}. We can consider several
problems of the form ⊢p {φi}Ci{φi+1}, with φ = φ0 and ψ = φn. For that
we annotate the commands that compose C with formulae φi and consider a
proof tableaux :

{φ0}
C1

{φ1} justification

C2

...

{φn−1} justification

Cn

{φn}

Then we need to show
⊢p {φi}Ci+1{φi+1},

starting with φn. But how to obtain φi?

Weakest preconditions (wp)

For each command C and postcondition ψ a formula wp(C,ψ) is the weakest
precondition that being true in state s, ensures that in the state s′ obtained
after the execution of C and if C stops, the postcondition ψ holds.

• |=p {wp(C,ψ)}C{ψ}

• |=p {φ}C{ψ} implies φ→ wp(C,ψ) (called verification condition)

tableaux for partial correctness

• a formula φi obtained from Ci+1 and φi+1 is the weakest precondition
of Ci+1

• given the postcondition φi+1, we can write

wp(Ci+1, φi+1) = φi.

• From wp() and using the consequence rule (consp) we can automatically
generate the verification conditions,

• that can be proved automatically or assisted by a solver.

• In general if {φ}C{ψ} the verification condition is:

φ→ wp(C,ψ)

8

Weakest preconditions - assp

Assignment

{ψ[E/x]}
x← E

{ψ} assp

A verification condition for {φ}x← E{ψ}, is

φ→ ψ[E/x]

and wp(x← E,ψ) = ψ[E/x].

Ex. 2.2. Compute

1. wp(x← 0, x = 0) is 0 = 0.

2. wp(x← x+ 1, x > 0) is x+ 1 > 0.

Weakest preconditions - consp

Consequence

The rule consp can be applied when φ′ → φ and we have {φ}C {ψ}. In this
case the tableaux can have two formulas in a row: φ′ and below φ.

{φ′}
{φ} consp

Exerc. 2.4. Show with a tableaux ⊢p {y = 5}x← y + 1{x = 6}. ⋄

Weakest preconditions ifp

Conditional

9

We want φ such that wp(ifB thenC1 elseC2, ψ) = φ.

{(B → φ1) ∧ (¬B → φ2)}
ifB then

{φ1}
C1

{ψ} ifp

else

{φ2}
C2

{ψ}
{ψ} ifp

We can compute {φ1}C1{ψ} e {φ2}C2{ψ}, and then φ ≡ (B → φ1) ∧ (¬B →
φ2), i.e.,

wp(ifB thenC1 elseC2, ψ) = (B → φ1) ∧ (¬B → φ2)

and the verification conditions are the ones generated by φ1 and φ2.

Ex. 2.3. Show with a tableaux

⊢p {true}
a← x+ 1;

if a− 1 = 0 then

y ← 1

else

y ← a

{y = x+ 1}

{true}
{(x = 0→ 1 = 1) ∧ (¬(x = 0)→ x+ 1 = x+ 1)} consp
{(x+ 1− 1 = 0→ 1 = x+ 1) ∧ (¬(x+ 1− 1 = 0)→ x+ 1 = x+ 1)} consp
a← x+ 1
{(a− 1 = 0→ 1 = x+ 1) ∧ (¬(a− 1 = 0)→ a = x+ 1)} assp
if a− 1 = 0 then
{1 = x+ 1} if ′p
y ← 1
{y = x+ 1} assp
else

{a = x+ 1} if ′p
y ← a
{y = x+ 1} assp

10

We use the following inference rule:

[if ′p]

{φ1}C1 {ψ} {φ2}C2 {ψ}
{(B → φ1) ∧ (¬B → φ2)} ifB thenC1 elseC2 {ψ}

Exerc. 2.5. Show that this rule can be deduced from the inference system H ⋄

Weakest preconditions - whilep

We want ⊢p {φ}whileB doC {ψ}.
To use whilep rule we need a formula η such that:

• φ→ η

• η ∧ ¬B → ψ e

• ⊢p {η}whileB doC{η ∧ ¬B}

Invariant

One invariant of the cycle whileB doC is a formula η such that

|=p {η ∧ B}C{η}.

Weakest preconditions - whilep

{φ}
{η}
whileB do

{η ∧ B}
C

{η}
{η ∧ ¬B} whilep

{ψ} consp

We have that wp(whileB doC,ψ) = η, the verification conditions are φ → η,
η ∧ ¬B → ψ and the verification conditions of {η ∧ B}C{η}.

Ex. 2.4. Show that

⊢p {true}y ← 1; z ← 0; while ¬z = x do (z ← z + 1; y ← y × z){y = x!}

11

The invariant I is : y = z! and verifies the conditions: Is implied by the
precondition of while which is y = 1 ∧ z = 0:

y ← 1

z ← 0

{y = z!} ?

while¬z = x do

{y = z! ∧ ¬z = x}
{y × (z + 1) = (z + 1)!} consp

z = z + 1

{y × z = z!} assp

y = y × z
{y = z!} assp

{y = x!} ?

because (y = z! ∧ ¬z = x)→ y = z!→ y × (z + 1) = (z + 1)!.

{true}
{1 = 0!} consp

y ← 1

{y = 0!} assp

z ← 0

{y = z!} assp

while¬z = x do

{y = z! ∧ ¬z = x}
{y × (z + 1) = (z + 1)!} consp

z ← z + 1

{y × z = z!} assp

y ← y × z
{y = z!} assp

{y = z! ∧ z = x} whilep

{y = x!} consp

Exerc. 2.6. Show that

12

⊢p {true}
r ← x; q ← 0;

while y ≤ r do
r ← r − y;
q ← q + 1

{r < y ∧ x = r + (y × q)}

⋄

The condition x = r + (y × q) is the invariant.

Exerc. 2.7. Show that

{x ≥ 0}z ← x; y ← 0; while ¬z = 0 do (y ← y + 1; z ← z − 1){x = y}.
⋄

13

