
Partial correctness H

[skipp]

{ϕ} skip {ϕ}

[assp]

{ϕ[E/x]}x ← E {ϕ}

[compp]

{ϕ}C1 {η} {η}C2 {ψ}
{ϕ}C1;C2 {ψ}

[ifp]

‘
{ϕ ∧ B}C1 {ψ} {ϕ ∧ ¬B}C2 {ψ}

{ϕ} ifB thenC1 elseC2 {ψ}

[if ′
p]

{ϕ1}C1 {ψ} {ϕ2}C2 {ψ}
{(B → ϕ1) ∧ (¬B → ϕ2)} ifB thenC1 elseC2 {ψ}

[whilep]

{ψ ∧ B}C {ψ}
{ψ} whileB doC {ψ ∧ ¬B}

[consp]

⊢ ϕ′ → ϕ {ϕ}C {ψ} ⊢ ψ → ψ′

{ϕ′}C {ψ′}

Soundness and Completeness

Recall that |=par {ϕ}C{ψ} means that for all states that satisfy ϕ, the state
that results from the execution of C satisfies ψ, if C terminates.

• Soundness: Each rule must preserve the validity.

⊢p {ϕ}C{ψ} ⇒ |=p {ϕ}C{ψ}.

• Completeness: The system should infer all the valid partial correctness
assertions.

|=p {ϕ}C{ψ} ⇒ ⊢p {ϕ}C{ψ}.

1

Execution State

For the evaluation of an expression we need the values of the variables. A state
s is a function that assigns a value to a variable

The set of states is

State = Var → Z

and s ∈ State such that s : Var → Z.
Let s x or s(x) be the value of x in the state s. If v ∈ Z,

s[v/x](y) =

!
s(y) if y ∕= x
v if y = x

Semantics of expressions

Aexp - Arithmetic expressions

A : Aexp → (State → Z)

A[[n]]s = n

A[[x]]s = s(x)

A[[E1 + E2]]s = A[[E1]]s+A[[E2]]s

A[[E1 − E2]]s = A[[E1]]s−A[[E2]]s

A[[E1 × E2]]s = A[[E1]]s.A[[E2]]s

Bexp - Boolean Expressions

T = {true, false}

2

B : Bexp → (State → T)

B[[true]]s = true

B[[false]]s = false

B[[E1 = E2]]s =

!
true if A[[E1]]s = A[[E2]]s
false if A[[E1]]s ∕= A[[E2]]s

B[[E1 ≤ E2]]s =

!
true ifA[[E1]]s ≤ A[[E2]]s
false if A[[E1]]s > A[[E2]]s

B[[¬b]]s =

!
true if B[[b]]s = false
false ifB[[b]]s = true

B[[b1 ∧ b2]]s =

!
true if B[[b1]]s = true and B[[b2]]s = true
false ifB[[b1]]s = false or B[[b2]]s = false

Natural semantics (big-step)

Describes the complete execution of a command.

Configurations: 〈C, s〉 or s, where C is a command and s a state Γ = (Com×
State) ∪ State

Final configurations: s ∈ State

Transitions: 〈C, s〉 −→ s′

Rules:
〈C1, s1〉 −→ s′1 ... 〈Cn, sn〉 −→ s′n

〈C, s〉 −→ s′

Hypothese: 〈Ci, si〉 −→ s′i

Conclusion: 〈C, s〉 −→ s′

If n = 0 the rule is an Axiom.

Natural semantics for commands While

attsn 〈x ← E, s〉 −→ s[A[[E]]s/x]

compsn
〈C1, s〉 −→ s′ , 〈C2, s

′〉 −→ s′′

〈C1;C2, s〉 −→ s′′

if
v
sn

〈C1, s〉 −→ s′

〈if B then C1 else C2, s〉 −→ s′
if B[[B]]s = true

if
f
sn

〈C2, s〉 −→ s′

〈if B then C1 else C2, s〉 −→ s′
if B[[B]]s = false

while
v
sn

〈C, s〉 −→ s′, 〈while B do C, s′〉 −→ s′′

〈while B do C, s〉 −→ s′′
if B[[B]]s = true

while
f
sn 〈while B do C, s〉 −→ s if B[[B]]s = false

3

Example

If s0 = [x = 5, y = 7] compute the state after the execution of:

(z ← x;x ← y); y ← z.

〈z←x,s0〉 −→ s1 〈x←y,s1〉 −→ s2
〈z←x;x←y,s0〉 −→ s2

〈y ← z, s2〉 −→ s3

〈(z ← x;x ← y); y ← z, s0〉 −→ s3

where,

s1 = s0[5/z]

s2 = s1[7/x]

s3 = s2[5/y]

Theorem 1 (Soundness). For all {ϕ}C{ψ},

⊢p {ϕ}C{ψ} implies |=p {ϕ}C{ψ}

The proof is by induction in the size of the inference tree of ⊢p {ϕ}C{ψ}:

• Show that the property holds for the axioms.

• Show that the property holds for compound trees: for each rule, assume
that the property holds for the premises and show that the property holds
for the conclusion.

Case assp. Assume that ⊢p {ϕ[E/x]}x ← E{ϕ}.
Let

〈x ← E, s〉 −→ s′

and s |= ϕ[E/x] iff s[A[[E]]s/x] |= ϕ. (Exercise)

We need to prove that s′ |= ϕ.

By [asssn] we have s′ = s[A[[E]]s/x], and thus

s′ |= ϕ iff s[A[[E]]s/x] |= ϕ

Case compp. Assume that ⊢p {ϕ}C1 {η} and ⊢p {η}C2 {ψ}. By the ind. hyp.
|=p {ϕ}C1{η} and |=p {η}C2{ψ}.
We want

|=p {ϕ}C1;C2{ψ}.
Let s and s′′ be states, such that s |= ϕ and 〈C1;C2, s〉 −→ s′′. By
[compsn] there exists s′ such that

〈C1, s〉 −→ s′ and 〈C2, s
′〉 −→ s′′

4

From 〈C1, s〉 −→ s′, s |= ϕ and |=p {ϕ}C1{η}, we have that s′ |= η.

From 〈C2, s
′〉 −→ s′′, s′ |= η and |=p {η}C2{ψ}, we have s′′ |= ψ. As

we wanted.

Case ifp. Assume that ⊢p {B ∧ ϕ}C1 {ψ} and ⊢p {¬B ∧ ϕ}C2 {ψ}. By the
ind. hyp. |=p {B ∧ ϕ}C1{ψ} and |=p {¬B ∧ ϕ}C2{ψ}.
To prove that

|=p {ϕ} ifB thenC1 elseC2 {ψ}
let s and s′ be states such that s |= ϕ and

〈ifB thenC1 elseC2, s〉 −→ s′.

If B[[B]]s = true by [ifsn], we have that 〈C1, s〉 −→ s′.

Given that
|=p {B ∧ ϕ}C1{ψ}.

we conclude that s′ |= ψ.

In the same way, we prove for B[[B]]s = false.

Caso whilep. Assume that ⊢p {B ∧ ϕ}C {ϕ}. By induction

|=p {B ∧ ϕ}C{ϕ}. (1)

To prove that
|=p {ϕ} whileB doC {¬B ∧ ϕ},

let s and s′′ be states such that s |= ϕ and

〈whileB doC, s〉 −→ s′′.

We need to prove s′′ |= ¬B ∧ ϕ. We use induction on the derivation tree
of the natural semantics

Case whilep. There two cases, for [whilesn].

If B[[B]]s = false then s′′ = s and s′′ |= (¬B ∧ ϕ).

If not, B[[b]]s = true and there exists s′ such that 〈C, s〉 −→ s′ and
〈whileB doC, s′〉 −→ s′′.

We have s |= (B ∧ ϕ) and by (1) we have s′ |= ϕ.

Applying the ind. hyp. to

〈whileB doC, s′〉 −→ s′′,

we have
s′′ |= (¬B ∧ ϕ),

as wanted.

5

Case consp. Suppose that

|=p {ϕ′}C{ψ′}, |= ϕ → ϕ′, and |= ψ′ → ψ. (2)

To prove
|=p {ϕ}C{ψ},

let s and s′ such that s |= ϕ and 〈C, s〉 −→ s′.

As s |= ϕ and ϕ → ϕ′ then s |= ϕ′ and by (2), s′ |= ψ′.

But s′ |= ψ′ → ψ, we have s′ |= ψ, as wanted.

Completeness of axiomatic semantics

Theorem 2 (Incompleteness of Gödel (1931)). There is no deductive system
for PA (arithmetics), in such a way that the theorems are the valid formulae
ofPA.

Theorem 3 (Completeness). For all partial correctness assertions {ϕ}C{ψ},

|=p {ϕ}C{ψ} implies ⊢p {ϕ}C{ψ}

Note that |= ψ, iff |= {true}skip{ψ}. This means that the completeness of ⊢p

contradicts the Incompleteness theorem of Gödel.

Theorem 4. There is no deductive system for partial correctness assertions
such that the theorems coincide with the valid partial correctness assertions.

Proof Note that
|= {true}C{false}

iff the command C does not terminate for all states (diverge).

A deductive system could be used to assert that a command diverge which is
impossible by the undecidability of the (Halting Problem).

Relative completeness

Theorem 5. The proof system of partial correctness is relatively complete, i.e.
for any partial correctness assertion {ϕ}C{ψ}:

⊢p {ϕ}C{ψ} if |=p {ϕ}C{ψ}

This reult is due to Stephen Cook (1978).

The fact that ⊢p {ϕ}C{ψ} depends on some propositions in PA be valid..

See Chap. 7 [Win93]

6

Cycle for

We can add to the language the command for

for x ← E1 until E2 do C

the meaning is:

• The expressions E1 and E2 are evaluated at the beginning, and let e1 and
e2 be their values;

• If e1 > e2 do nothing;

• If e1 <= e2 the command for is equivalent to:

x ← e1;C;x ← e1 + 1;C . . . ;x ← e2;C

The cycle executes (e2 − e1) + 1 times.

for

One could have the rule for :

{ψ}C {ψ[x+ 1/x]}
{ψ[E1/x]} forx ← E1 untilE2 doC {ψ[E2 + 1/x]}

But it is not enough:

• The command C can modify the value of x;

• The value of E1 can be greater then the value of E2.

Lógica de Hoare

[forp-axiom] If E1 > E2

{ϕ ∧ E2 < E1} forx ← E1 untilE2 doC {ϕ}

[forp]

{ψ ∧ E1 ≤ x ∧ x ≤ E2}C {ψ[x+ 1/x]}
{ψ[E1/x] ∧ E1 ≤ E2} forx ← E1 untilE2 doC {ψ[E2 + 1/x]}

where neither x, or any variable that occurs in E1 or E2 is modified by the
command C.

7

Example

⊢p {x = 0 ∧ 1 ≤ m}for n ← 1 until m do x ← x+ n{x = m× (m+ 1) div 2}

Consider ϕ equal to x = (n− 1)× ndiv 2.

Arrays (aliases)

If we have an array u[] the assignment rule cannot be directly applied:

{ϕ[E2/u[E1]]}u[E1] ← E2{ϕ}

as modifications in a[E1]can (should) change other references to (aliases) u that
can occur in ϕ or in E2.

For instance, u[i] ← 10 with pre-condition {a[j] > 100} and i = j.

T. Hoare solution was to consider the arrays monolitic, and an assignment

u ← u[E1 ⊲ E2]

means that u is a new array equal to the previous one where the position E1

has value E2.

Thus in the example the values of u[i] and of u[j] both change because the
array itself has changed.

Syntax of the language Whilearray

For n ∈ Num, x ∈ Var, u ∈ Array

ArrayExp A ::= u | A[E ⊲ E]

AExp E ::= n | x | −E | E + E | E − E

| E × E | E ÷ E

| A[E]

BExp B ::= true | false | ¬B | E = E

| B < E | B ≤ B | B ∧ B | B ∨ B

8

Semantics for expressions of Whilearray

We only need to define the semântica for expressions ArrayExp. An array
is a function Z → Z thus

State = Var → Z ∪Array → (Z → Z)

A[[u]]s = s(u)

A[[A[E ⊲ E′]]]s = A[[A]]s[A[[E′]]s/A[[E]]s]

A[[A[E]]]s = A[[A]]s(A[[E]]s)

Partial Correctness for Arrays

[arrayp(assign)]

{ψ[u[E1 ⊲ E2]/u]}u[E1] ← E2 {ψ}

where E1 is a positive integer.

And
u[E1 ⊲ E2][E1] = E2

u[E1 ⊲ E2][E3] = u[E3] if E3 ∕= E1.

Example

⊢p{a[x] = x ∧ a[y] = y}
r ← a[x];

a[x] ← a[y];

a[y] ← r

{a[x] = y ∧ a[y] = x}
The tableaux is

{a[x] = x ∧ a[y] = y}
{a[x ⊲ a[y]][y ⊲ a[x]][x] = y ∧ a[x] = x}
r ← a[x];

{a[x ⊲ a[y]][y ⊲ r][x] = y ∧ r = x}
a[x] ← a[y];

{a[y ⊲ r][x] = y ∧ r = x}
{a[y ⊲ r][x] = y ∧ a[y ⊲ r] = x}
a[y] ← r

{a[x] = y ∧ a[y] = x}

9

Where a[x ⊲ a[y]][y ⊲ a[x]][x] = a[y].

Note: In implementations this technique is not used as it is very inefficient

Calculus for total correctness

In the language while the only command that can lead to non termination is
the command while.

The calculus ⊢tot coincides with ⊢p except in the rule whiletot.

To prove that a program terminates we need to associate a strictly decreasing
expression called the variant.

For the while we associate a non negative expression and in each iteration we
show that its value diminish maintaining non negative:in this way we ensure
that in a finite number of times it will be zero.

For the factorial

y ← 1; z ← 0; while z ∕= x do (z ← z + 1; y ← y × z)

the variant is x− z.

Calculus for total correctness

Hoare logic

The rules asstot, comptot, iftot e constot are same as for ⊢p

[whiletot]

{η ∧ B ∧ 0 ≤ E ∧ E = e0}C {η ∧ 0 ≤ E ∧ E < e0}
{η ∧ 0 ≤ E} whileB doC {η ∧ ¬B}

where e0 is a logic variable whose value is the value of E before the execution
of the command C.

Tableaux-whiletot

10

{ϕ}
{η ∧ 0 ≤ E}
whileB do

{η ∧ B ∧ 0 ≤ E ∧ E = e0}
C

{η ∧ 0 ≤ E ∧ E < e0}
{η ∧ ¬B} whiletot

{ψ} constot

Example
⊢tot {x ≥ 0}y ← 1; z ← 0; while z ∕= x do (z ← z + 1; y ← y × z){y = x!}

{x ≥ 0}
{1 = 0! ∧ 0 ≤ x− 0}
y ← 1

{y = 0! ∧ 0 ≤ x− 0}
z ← 0

{y = z! ∧ 0 ≤ x− z} asstot

while z ∕= x do

{
{y = z! ∧ z ∕= x ∧ 0 ≤ x− z ∧ x− z = e0} constot

{y × (z + 1) = (z + 1)! ∧ 0 ≤ x− (z + 1) ∧ x− (z + 1) < e0} asstot

z ← z+ 1

{y × z = z! ∧ 0 ≤ x− z ∧ x− z < e0} asstot

y ← y× z

{y = z! ∧ 0 ≤ x− z ∧ x− z < e0}
}
{y = z! ∧ z = x}
{y = x!}

How to find a variant?

Variants are harder to find as it is not possible to know, in general, that a
program terminates.

Consider this assertion

⊢tot

11

Require: {x > 0}
c ← x;
while c ∕= 1 do

if c%2 == 0 then
c ← c/2

else
c ← 3 ∗ c+ 1

Ensure: {true}

Is this triple valid? In this case the assertion would only ensure termination.
But we do not know if the program terminates! (Collatz conjecture).

Exerc. 2.1. Show

⊢tot {y > 0}
while y ≤ r do

r ← r − y;

q ← q + 1

{true}

⋄

1 Bibliografia

References

[HR04] Michael Huth and Mark Ryan. Logic in Computer Science: Modelling
and reasoning about systems. CUP, 2004.

[NN07] H. Nielson and F. Nielson. Semantics with Applications: an appetizer.
Springer, 2007.

[Win93] Glynn Winskel. The Formal Semantics of Programming Languages.
MIT Press, 1993.

12

