Partial correctness \mathcal{H}
$\left[{ }^{s k i p_{p}}\right]$

$$
\{\varphi\} \operatorname{skip}\{\varphi\}
$$

$\left[a s s_{p}\right.$]

$$
\{\varphi[E / x]\} x \leftarrow E\{\varphi\}
$$

[comp $_{p}$]

$$
\frac{\{\varphi\} C_{1}\{\eta\} \quad\{\eta\} C_{2}\{\psi\}}{\{\varphi\} C_{1} ; C_{2}\{\psi\}}
$$

$\left[i f_{p}\right]$

$$
\cdot \frac{\{\varphi \wedge B\} C_{1}\{\psi\} \quad\{\varphi \wedge \neg B\} C_{2}\{\psi\}}{\{\varphi\} \text { if } B \text { then } C_{1} \text { else } C_{2}\{\psi\}}
$$

$\left[i f_{p}^{\prime}\right]$

$$
\frac{\left\{\varphi_{1}\right\} C_{1}\{\psi\} \quad\left\{\varphi_{2}\right\} C_{2}\{\psi\}}{\left\{\left(B \rightarrow \varphi_{1}\right) \wedge\left(\neg B \rightarrow \varphi_{2}\right)\right\} \text { if } B \text { then } C_{1} \text { else } C_{2}\{\psi\}}
$$

[while ${ }_{p}$]

$$
\frac{\{\psi \wedge B\} C\{\psi\}}{\{\psi\} \text { while } B \operatorname{do} C\{\psi \wedge \neg B\}}
$$

[cons ${ }_{p}$]

$$
\frac{\vdash \varphi^{\prime} \rightarrow \varphi \quad\{\varphi\} C\{\psi\} \quad \vdash \psi \rightarrow \psi^{\prime}}{\left\{\varphi^{\prime}\right\} C\left\{\psi^{\prime}\right\}}
$$

Soundness and Completeness

Recall that $\models_{\text {par }}\{\varphi\} C\{\psi\}$ means that for all states that satisfy φ, the state that results from the execution of C satisfies ψ, if C terminates.

- Soundness: Each rule must preserve the validity.

$$
\vdash_{p}\{\varphi\} C\{\psi\} \quad \Rightarrow \quad \models_{p}\{\varphi\} C\{\psi\} .
$$

- Completeness: The system should infer all the valid partial correctness assertions.

$$
\models_{p}\{\varphi\} C\{\psi\} \quad \Rightarrow \quad \vdash_{p}\{\varphi\} C\{\psi\} .
$$

Execution State

For the evaluation of an expression we need the values of the variables. A state s is a function that assigns a value to a variable
The set of states is

$$
\text { State }=\operatorname{Var} \rightarrow \mathbb{Z}
$$

and $s \in$ State such that $s: \operatorname{Var} \rightarrow \mathbb{Z}$.
Let $s x$ or $s(x)$ be the value of x in the state s. If $v \in \mathbb{Z}$,

$$
s[v / x](y)= \begin{cases}s(y) & \text { if } y \neq x \\ v & \text { if } y=x\end{cases}
$$

Semantics of expressions

Aexp - Arithmetic expressions
$\mathcal{A}: \mathbf{A e x p} \rightarrow($ State $\rightarrow Z)$

$$
\begin{aligned}
\mathcal{A} \llbracket n \rrbracket s & =n \\
\mathcal{A} \llbracket x \rrbracket s & =s(x) \\
\mathcal{A} \llbracket E_{1}+E_{2} \rrbracket s & =\mathcal{A} \llbracket E_{1} \rrbracket s+\mathcal{A} \llbracket E_{2} \rrbracket s \\
\mathcal{A} \llbracket E_{1}-E_{2} \rrbracket s & =\mathcal{A} \llbracket E_{1} \rrbracket s-\mathcal{A} \llbracket E_{2} \rrbracket s \\
\mathcal{A} \llbracket E_{1} \times E_{2} \rrbracket s & =\mathcal{A} \llbracket E_{1} \rrbracket s . \mathcal{A} \llbracket E_{2} \rrbracket s
\end{aligned}
$$

Bexp - Boolean Expressions

$\mathbf{T}=\{$ true, false $\}$
$\mathcal{B}: \operatorname{Bexp} \rightarrow($ State $\rightarrow \mathbf{T})$

$$
\begin{aligned}
\mathcal{B} \llbracket \text { true } \rrbracket s & =\text { true } \\
\mathcal{B} \llbracket \text { false } \rrbracket s & =\text { false } \\
\mathcal{B} \llbracket E_{1}=E_{2} \rrbracket s & = \begin{cases}\text { true } & \text { if } \mathcal{A} \llbracket E_{1} \rrbracket s=\mathcal{A} \llbracket E_{2} \rrbracket s \\
\text { false } & \text { if } \mathcal{A} \llbracket E_{1} \rrbracket s \neq \mathcal{A} \llbracket E_{2} \rrbracket s\end{cases} \\
\mathcal{B} \llbracket E_{1} \leq E_{2} \rrbracket s & = \begin{cases}\text { true } & \text { if } \mathcal{A} \llbracket E_{1} \rrbracket s \leq \mathcal{A} \llbracket E_{2} \rrbracket s \\
\text { false } & \text { if } \mathcal{A} \llbracket E_{1} \rrbracket s>\mathcal{A} \llbracket E_{2} \rrbracket s\end{cases} \\
\mathcal{B} \llbracket \neg b \rrbracket s & = \begin{cases}\text { true } & \text { if } \mathcal{B} \llbracket b \rrbracket s=\text { false } \\
\text { false } & \text { if } \mathcal{B} \llbracket b \rrbracket s=\text { true }\end{cases} \\
\mathcal{B} \llbracket b_{1} \wedge b_{2} \rrbracket s & = \begin{cases}\text { true } & \text { if } \mathcal{B} \llbracket b_{1} \rrbracket s=\text { true and } \mathcal{B} \llbracket b_{2} \rrbracket s=\text { true } \\
\text { false } & \text { if } \mathcal{B} \llbracket b_{1} \rrbracket s=\text { false or } \mathcal{B} \llbracket b_{2} \rrbracket s=\text { false }\end{cases}
\end{aligned}
$$

Natural semantics (big-step)

Describes the complete execution of a command.
Configurations: $\langle C, s\rangle$ or s, where C is a command and s a state $\Gamma=(\mathbf{C o m} \times$ State) \cup State
Final configurations: $s \in$ State
Transitions: $\langle C, s\rangle \longrightarrow s^{\prime}$
Rules:

$$
\frac{\left\langle C_{1}, s_{1}\right\rangle \longrightarrow s_{1}^{\prime} \ldots\left\langle C_{n}, s_{n}\right\rangle \longrightarrow s_{n}^{\prime}}{\langle C, s\rangle \longrightarrow s^{\prime}}
$$

Hypothese: $\left\langle C_{i}, s_{i}\right\rangle \longrightarrow s_{i}^{\prime}$
Conclusion: $\langle C, s\rangle \longrightarrow s^{\prime}$
If $n=0$ the rule is an Axiom.
Natural semantics for commands While

$$
\begin{aligned}
& \operatorname{att}_{s n} \quad\langle x \leftarrow E, s\rangle \quad \longrightarrow s[\mathcal{A} \llbracket E \rrbracket s / x] \\
& \operatorname{comp}_{s n} \quad \frac{\left\langle C_{1}, s\right\rangle \longrightarrow s^{\prime},\left\langle C_{2}, s^{\prime}\right\rangle \longrightarrow s^{\prime \prime}}{\left\langle C_{1} ; C_{2}, s\right\rangle \longrightarrow s^{\prime \prime}} \\
& \text { if }{ }^{v}{ }_{s n} \quad \frac{\left\langle C_{1}, s\right\rangle \longrightarrow s^{\prime}}{\left\langle\text { if } B \text { then } C_{1} \text { else } C_{2}, s\right\rangle \longrightarrow s^{\prime}} \text { if } \mathcal{B} \llbracket B \rrbracket s=\text { true } \\
& \text { if }{ }^{f}{ }_{s n} \frac{\left\langle C_{2}, s\right\rangle \longrightarrow s^{\prime}}{\left\langle i f B \text { then } C_{1} \text { else } C_{2}, s\right\rangle \longrightarrow s^{\prime}} \text { if } \mathcal{B} \llbracket B \rrbracket s=\text { false } \\
& \text { while }{ }_{\text {sn }} \quad \frac{\langle C, s\rangle \longrightarrow s^{\prime},\left\langle\text { while } B \text { do } C, s^{\prime}\right\rangle \longrightarrow s^{\prime \prime}}{\langle\text { while } B \text { do } C, s\rangle \longrightarrow s^{\prime \prime}} \text { if } \mathcal{B} \llbracket B \rrbracket s=\text { true } \\
& \text { while }{ }^{f}{ }_{s n} \quad\langle\text { while } B \text { do } C, s\rangle \quad \longrightarrow \quad s \text { if } \mathcal{B} \llbracket B \rrbracket s=\text { false }
\end{aligned}
$$

Example

If $s_{0}=[x=5, y=7]$ compute the state after the execution of:

$$
\begin{gathered}
(z \leftarrow x ; x \leftarrow y) ; y \leftarrow z \\
\frac{\left\langle z \leftarrow x, s_{0}\right\rangle \longrightarrow s_{1}\left\langle x \leftarrow y, s_{1}\right\rangle \longrightarrow s_{2}}{\left\langle z \leftarrow x ; x \leftarrow y, s_{0}\right\rangle \longrightarrow s_{2}}\left\langle y \leftarrow z, s_{2}\right\rangle \longrightarrow s_{3} \\
\left\langle(z \leftarrow x ; x \leftarrow y) ; y \leftarrow z, s_{0}\right\rangle \longrightarrow s_{3}
\end{gathered}
$$

where,

$$
\begin{aligned}
& s_{1}=s_{0}[5 / z] \\
& s_{2}=s_{1}[7 / x] \\
& s_{3}=s_{2}[5 / y]
\end{aligned}
$$

Theorem 1 (Soundness). For all $\{\varphi\} C\{\psi\}$,

$$
\vdash_{p}\{\varphi\} C\{\psi\} \text { implies } \models_{p}\{\varphi\} C\{\psi\}
$$

The proof is by induction in the size of the inference tree of $\vdash_{p}\{\varphi\} C\{\psi\}$:

- Show that the property holds for the axioms.
- Show that the property holds for compound trees: for each rule, assume that the property holds for the premises and show that the property holds for the conclusion.

Case $a s s_{p}$. Assume that $\vdash_{p}\{\varphi[E / x]\} x \leftarrow E\{\varphi\}$.
Let

$$
\langle x \leftarrow E, s\rangle \longrightarrow s^{\prime}
$$

and $s \models \varphi[E / x]$ iff $s[\mathcal{A} \llbracket E \rrbracket s / x] \models \varphi$. (Exercise)
We need to prove that $s^{\prime} \models \varphi$.
By $\left[a s s_{s n}\right]$ we have $s^{\prime}=s[\mathcal{A} \llbracket E \rrbracket s / x]$, and thus

$$
s^{\prime} \models \varphi \text { iff } s[\mathcal{A} \llbracket E \rrbracket s / x] \models \varphi
$$

Case comp_{p}. Assume that $\vdash_{p}\{\varphi\} C_{1}\{\eta\}$ and $\vdash_{p}\{\eta\} C_{2}\{\psi\}$. By the ind. hyp. $\neq{ }_{p}\{\varphi\} C_{1}\{\eta\}$ and $\models_{p}\{\eta\} C_{2}\{\psi\}$.
We want

$$
\models_{p}\{\varphi\} C_{1} ; C_{2}\{\psi\}
$$

Let s and $s^{\prime \prime}$ be states, such that $s \models \varphi$ and $\left\langle C_{1} ; C_{2}, s\right\rangle \quad \longrightarrow \quad s^{\prime \prime}$. By [comp ${ }_{s n}$] there exists s^{\prime} such that

$$
\left\langle C_{1}, s\right\rangle \longrightarrow s^{\prime} \text { and }\left\langle C_{2}, s^{\prime}\right\rangle \longrightarrow s^{\prime \prime}
$$

From $\left\langle C_{1}, s\right\rangle \longrightarrow s^{\prime}, s \models \varphi$ and $\models_{p}\{\varphi\} C_{1}\{\eta\}$, we have that $s^{\prime} \models \eta$.
From $\left\langle C_{2}, s^{\prime}\right\rangle \longrightarrow s^{\prime \prime}, s^{\prime} \models \eta$ and $\models_{p}\{\eta\} C_{2}\{\psi\}$, we have $s^{\prime \prime} \models \psi$. As we wanted.

Case $i f_{p}$. Assume that $\vdash_{p}\{B \wedge \varphi\} C_{1}\{\psi\}$ and $\vdash_{p}\{\neg B \wedge \varphi\} C_{2}\{\psi\}$. By the ind. hyp. $\models_{p}\{B \wedge \varphi\} C_{1}\{\psi\}$ and $\models_{p}\{\neg B \wedge \varphi\} C_{2}\{\psi\}$.
To prove that

$$
\models_{p}\{\varphi\} \text { if } B \text { then } C_{1} \text { else } C_{2}\{\psi\}
$$

let s and s^{\prime} be states such that $s \models \varphi$ and

$$
\left\langle\text { if } B \text { then } C_{1} \text { else } C_{2}, s\right\rangle \longrightarrow s^{\prime} .
$$

If $\mathcal{B} \llbracket B \rrbracket s=$ true by $\left[i f_{s n}\right]$, we have that $\left\langle C_{1}, s\right\rangle \longrightarrow s^{\prime}$.
Given that

$$
\models_{p}\{B \wedge \varphi\} C_{1}\{\psi\} .
$$

we conclude that $s^{\prime} \models \psi$.
In the same way, we prove for $\mathcal{B} \llbracket B \rrbracket s=$ false.

$$
\begin{equation*}
\models_{p}\{B \wedge \varphi\} C\{\varphi\} . \tag{1}
\end{equation*}
$$

To prove that

$$
\models_{p}\{\varphi\} \text { while } B \text { do } C\{\neg B \wedge \varphi\},
$$

let s and $s^{\prime \prime}$ be states such that $s \models \varphi$ and

$$
\langle\text { while } B \text { do } C, s\rangle \longrightarrow s^{\prime \prime}
$$

We need to prove $s^{\prime \prime} \models \neg B \wedge \varphi$. We use induction on the derivation tree of the natural semantics

Case while . There two cases, for $\left[\right.$ while $\left._{s n}\right]$.
If $\mathcal{B} \llbracket B \rrbracket s=$ false then $s^{\prime \prime}=s$ and $s^{\prime \prime} \models(\neg B \wedge \varphi)$.
If not, $\mathcal{B} \llbracket b \rrbracket s=$ true and there exists s^{\prime} such that $\langle C, s\rangle \quad \longrightarrow \quad s^{\prime}$ and $\left\langle\right.$ while B do $\left.C, s^{\prime}\right\rangle \longrightarrow s^{\prime \prime}$.
We have $s \models(B \wedge \varphi)$ and by (1) we have $s^{\prime} \models \varphi$.
Applying the ind. hyp. to

$$
\left\langle\text { while } B \text { do } C, s^{\prime}\right\rangle \longrightarrow s^{\prime \prime},
$$

we have

$$
s^{\prime \prime} \models(\neg B \wedge \varphi),
$$

as wanted.

Case cons $_{p}$. Suppose that

$$
\begin{equation*}
\models_{p}\left\{\varphi^{\prime}\right\} C\left\{\psi^{\prime}\right\}, \models \varphi \rightarrow \varphi^{\prime} \text {, and } \models \psi^{\prime} \rightarrow \psi \text {. } \tag{2}
\end{equation*}
$$

To prove

$$
\models_{p}\{\varphi\} C\{\psi\},
$$

let s and s^{\prime} such that $s \models \varphi$ and $\langle C, s\rangle \longrightarrow s^{\prime}$.

As $s \models \varphi$ and $\varphi \rightarrow \varphi^{\prime}$ then $s \models \varphi^{\prime}$ and by (2), $s^{\prime} \models \psi^{\prime}$.
But $s^{\prime} \models \psi^{\prime} \rightarrow \psi$, we have $s^{\prime} \models \psi$, as wanted.

Completeness of axiomatic semantics

Theorem 2 (Incompleteness of Gödel (1931)). There is no deductive system for $\boldsymbol{P A}$ (arithmetics), in such a way that the theorems are the valid formulae of $\boldsymbol{P A}$.

Theorem 3 (Completeness). For all partial correctness assertions $\{\varphi\} C\{\psi\}$,

$$
\models_{p}\{\varphi\} C\{\psi\} \text { implies } \vdash_{p}\{\varphi\} C\{\psi\}
$$

Note that $\models \psi$, iff $\models\{$ true $\} \operatorname{skip}\{\psi\}$. This means that the completeness of \vdash_{p} contradicts the Incompleteness theorem of Gödel.

Theorem 4. There is no deductive system for partial correctness assertions such that the theorems coincide with the valid partial correctness assertions.

Proof Note that

$$
\vDash\{\text { true }\} C\{\text { false }\}
$$

iff the command C does not terminate for all states (diverge).
A deductive system could be used to assert that a command diverge which is impossible by the undecidability of the (Halting Problem).

Relative completeness

Theorem 5. The proof system of partial correctness is relatively complete, i.e. for any partial correctness assertion $\{\varphi\} C\{\psi\}$:

$$
\vdash_{p}\{\varphi\} C\{\psi\} \text { if } \models_{p}\{\varphi\} C\{\psi\}
$$

This reult is due to Stephen Cook (1978).
The fact that $\vdash_{p}\{\varphi\} C\{\psi\}$ depends on some propositions in PA be valid..
See Chap. 7 [Win93]

Cycle for

We can add to the language the command for

$$
\text { for } x \leftarrow E_{1} \text { until } E_{2} \text { do } C
$$

the meaning is:

- The expressions E_{1} and E_{2} are evaluated at the beginning, and let e_{1} and e_{2} be their values;
- If $e_{1}>e_{2}$ do nothing;
- If $e_{1}<=e_{2}$ the command for is equivalent to:

$$
x \leftarrow e_{1} ; C ; x \leftarrow e_{1}+1 ; C \ldots ; x \leftarrow e_{2} ; C
$$

The cycle executes $\left(e_{2}-e_{1}\right)+1$ times.
for
One could have the rule for :

$$
\frac{\{\psi\} C\{\psi[x+1 / x]\}}{\left\{\psi\left[E_{1} / x\right]\right\} \text { for } x \leftarrow E_{1} \text { until } E_{2} \text { do } C\left\{\psi\left[E_{2}+1 / x\right]\right\}}
$$

But it is not enough:

- The command C can modify the value of x;
- The value of E_{1} can be greater then the value of E_{2}.

Lógica de Hoare

[for form $\left.^{\text {-axiom }}\right]$ If $E_{1}>E_{2}$

$$
\left\{\varphi \wedge E_{2}<E_{1}\right\} \text { for } x \leftarrow E_{1} \text { until } E_{2} \operatorname{do} C\{\varphi\}
$$

$\left[\right.$ for $\left._{p}\right]$

$$
\frac{\left\{\psi \wedge E_{1} \leq x \wedge x \leq E_{2}\right\} C\{\psi[x+1 / x]\}}{\left\{\psi\left[E_{1} / x\right] \wedge E_{1} \leq E_{2}\right\} \text { for } x \leftarrow E_{1} \text { until } E_{2} \operatorname{do} C\left\{\psi\left[E_{2}+1 / x\right]\right\}}
$$

where neither x, or any variable that occurs in E_{1} or E_{2} is modified by the command C.

Example

$$
\vdash_{p}\{x=0 \wedge 1 \leq m\} \text { for } n \leftarrow 1 \text { until } m \text { do } x \leftarrow x+n\{x=m \times(m+1) \operatorname{div} 2\}
$$

Consider φ equal to $x=(n-1) \times n \operatorname{div} 2$.

Arrays (aliases)

If we have an array $u[]$ the assignment rule cannot be directly applied:

$$
\left\{\varphi\left[E_{2} / u\left[E_{1}\right]\right]\right\} u\left[E_{1}\right] \leftarrow E_{2}\{\varphi\}
$$

as modifications in $a\left[E_{1}\right]$ can (should) change other references to (aliases) u that can occur in φ or in E_{2}.
For instance, $u[i] \leftarrow 10$ with pre-condition $\{a[j]>100\}$ and $i=j$.
T. Hoare solution was to consider the arrays monolitic, and an assignment

$$
u \leftarrow u\left[E_{1} \triangleright E_{2}\right]
$$

means that u is a new array equal to the previous one where the position E_{1} has value E_{2}.
Thus in the example the values of $u[i]$ and of $u[j]$ both change because the array itself has changed.

Syntax of the language While ${ }^{\text {array }}$

For $n \in \mathbf{N u m}, x \in \operatorname{Var}, u \in$ Array
$\operatorname{ArrayExp} \quad A::=u \mid A[E \triangleright E]$

$$
\begin{aligned}
\operatorname{AExp} \quad E::= & n|x|-E|E+E| E-E \\
& |E \times E| E \div E \\
& \mid A[E] \\
\text { BExp } \quad B::= & \text { true } \mid \text { false }|\neg B| E=E \\
& |B<E| B \leq B|B \wedge B| B \vee B
\end{aligned}
$$

Semantics for expressions of While ${ }^{\text {array }}$

We only need to define the semântica for expressions ArrayExp. An array is a function $\mathbb{Z} \rightarrow \mathbb{Z}$ thus

$$
\begin{aligned}
\text { State }=\text { Var } & \rightarrow \mathbb{Z} \cup \text { Array } \rightarrow(\mathbb{Z} \rightarrow \mathbb{Z}) \\
\mathcal{A} \llbracket u \rrbracket s & =s(u) \\
\mathcal{A} \llbracket A\left[E \triangleright E^{\prime} \rrbracket \rrbracket s\right. & =\mathcal{A} \llbracket A \rrbracket s\left[\mathcal{A} \llbracket E^{\prime} \rrbracket s / \mathcal{A} \llbracket E \rrbracket s \rrbracket\right. \\
\mathcal{A} \llbracket A[E] \rrbracket s & =\mathcal{A} \llbracket A \rrbracket s(\mathcal{A} \llbracket E \rrbracket s)
\end{aligned}
$$

Partial Correctness for Arrays

$\left[\operatorname{array}_{p}(\operatorname{assign})\right]$

$$
\left\{\psi\left[u\left[E_{1} \triangleright E_{2}\right] / u\right]\right\} u\left[E_{1}\right] \leftarrow E_{2}\{\psi\}
$$

where E_{1} is a positive integer.
And

$$
\begin{aligned}
u\left[E_{1} \triangleright E_{2}\right]\left[E_{1}\right] & =E_{2} \\
u\left[E_{1} \triangleright E_{2}\right]\left[E_{3}\right] & =u\left[E_{3}\right] \text { if } E_{3} \neq E_{1} .
\end{aligned}
$$

Example

$$
\begin{aligned}
& \vdash_{p}\{a[x]=x \wedge a[y]=y\} \\
& \quad r \leftarrow a[x] ; \\
& a[x] \leftarrow a[y] ; \\
& \quad a[y] \leftarrow r \\
& \quad\{a[x]=y \wedge a[y]=x\}
\end{aligned}
$$

The tableaux is

$$
\begin{aligned}
& \{a[x]=x \wedge a[y]=y\} \\
& \{a[x \triangleright a[y]][y \triangleright a[x]][x]=y \wedge a[x]=x\} \\
& r \leftarrow a[x] ; \\
& \{a[x \triangleright a[y]][y \triangleright r][x]=y \wedge r=x\} \\
& a[x] \leftarrow a[y] ; \\
& \{a[y \triangleright r][x]=y \wedge r=x\} \\
& \{a[y \triangleright r][x]=y \wedge a[y \triangleright r]=x\} \\
& a[y] \leftarrow r \\
& \{a[x]=y \wedge a[y]=x\}
\end{aligned}
$$

Where $a[x \triangleright a[y]][y \triangleright a[x]][x]=a[y]$.
Note: In implementations this technique is not used as it is very inefficient

Calculus for total correctness

In the language while the only command that can lead to non termination is the command while.

The calculus $\vdash_{t o t}$ coincides with \vdash_{p} except in the rule while $\mathrm{e}_{t o t}$.
To prove that a program terminates we need to associate a strictly decreasing expression called the variant.

For the while we associate a non negative expression and in each iteration we show that its value diminish maintaining non negative:in this way we ensure that in a finite number of times it will be zero.

For the factorial

$$
y \leftarrow 1 ; z \leftarrow 0 ; \text { while } z \neq x \text { do }(z \leftarrow z+1 ; y \leftarrow y \times z)
$$

the variant is $x-z$.

Calculus for total correctness

Hoare logic

The rules $a s s_{t o t}$, comp $_{t o t}, i f_{t o t}$ e cons ${ }_{t o t}$ are same as for \vdash_{p}
[while ${ }_{\text {tot }}$]

$$
\frac{\left\{\eta \wedge B \wedge 0 \leq E \wedge E=e_{0}\right\} C\left\{\eta \wedge 0 \leq E \wedge E<e_{0}\right\}}{\{\eta \wedge 0 \leq E\} \text { while } B \text { do } C\{\eta \wedge \neg B\}}
$$

where e_{0} is a logic variable whose value is the value of E before the execution of the command C.

Tableaux-while ${ }_{\text {tot }}$
$\{\varphi\}$
$\{\eta \wedge 0 \leq E\}$
while B do

$$
\left\{\eta \wedge B \wedge 0 \leq E \wedge E=e_{0}\right\}
$$

C

$$
\left\{\eta \wedge 0 \leq E \wedge E<e_{0}\right\}
$$

$\{\eta \wedge \neg B\}$	while $_{\text {tot }}$
$\{\psi\}$	cons ${ }_{\text {tot }}$

Example

$\{1=0!\wedge 0 \leq x-0\}$
$\mathrm{y} \leftarrow 1$
$\{y=0!\wedge 0 \leq x-0\}$
$\mathrm{z} \leftarrow 0$
$\{y=z!\wedge 0 \leq x-z\} \quad$ ass ${ }_{\text {tot }}$
while $z \neq x d o$
\{
$\left\{y=z!\wedge z \neq x \wedge 0 \leq x-z \wedge x-z=e_{0}\right\} \quad$ cons $_{\text {tot }}$
$\left\{y \times(z+1)=(z+1)!\wedge 0 \leq x-(z+1) \wedge x-(z+1)<e_{0}\right\} \quad$ ass ${ }_{\text {tot }}$
$z \leftarrow z+1$
$\left\{y \times z=z!\wedge 0 \leq x-z \wedge x-z<e_{0}\right\} \quad$ ass ${ }_{\text {tot }}$
$\mathrm{y} \leftarrow \mathrm{y} \times \mathrm{z}$
$\left\{y=z!\wedge 0 \leq x-z \wedge x-z<e_{0}\right\}$
\}
$\{y=z!\wedge z=x\}$
$\{y=x!\}$

How to find a variant?

Variants are harder to find as it is not possible to know, in general, that a program terminates.
Consider this assertion

$$
\vdash_{t o t}
$$

Require: $\{x>0\}$
$c \leftarrow x ;$
while $c \neq 1$ do
if $c \% 2==0$ then
$c \leftarrow c / 2$
else
$c \leftarrow 3 * c+1$
Ensure: \{true\}
Is this triple valid? In this case the assertion would only ensure termination. But we do not know if the program terminates! (Collatz conjecture).

Exerc. 2.1. Show

$$
\begin{array}{r}
\vdash_{\text {tot }}\{y>0\} \\
\text { while } y \leq r \text { do } \\
r \leftarrow r-y ; \\
q \leftarrow q+1 \\
\{\text { true }\}
\end{array}
$$

\diamond

1 Bibliografia

References

[HR04] Michael Huth and Mark Ryan. Logic in Computer Science: Modelling and reasoning about systems. CUP, 2004.
[NN07] H. Nielson and F. Nielson. Semantics with Applications: an appetizer. Springer, 2007.
[Win93] Glynn Winskel. The Formal Semantics of Programming Languages. MIT Press, 1993.

