Program verification

Nelma Moreira

Program verification Lecture 5

Procedures

- Until now we consider a program as a sequence of commands
- The treatment of subrotines is challenging from the oint of view of verification: procedures or functions)
- The treatment of procedures and functions includes the following aspects:
 - recursive calls (that can lead to non termination in the evaluation of expressions);
 - parameters;
- A program will be a set of procedures annotated with contracts.
- We will not consider here an operational semantics for procedures but assume that there exists one and the program logic will be adequate.
- We start with procedures without parameters.

 \mathbf{ma}

Procedures and Recursion

We suppose that procedures have no parameters.

- **proc** $p = C_p$ defines a procedure p;
- the command C_p is the body of the procedure p (**body**(p));
- the new command **call** p invokes the procedure, transfering execution to the body of p;
- A natural semantics rule could be:

$$\frac{\langle \mathbf{body}(p), s \rangle \longrightarrow s'}{\langle \mathbf{call} \ p, s \rangle \longrightarrow s'}$$

• for non recursive procedures the rule of Hoare logic is

$$\frac{\{\varphi\}\mathbf{body}(p)\{\psi\}}{\{\varphi\}\mathbf{call}\ p\{\psi\}}$$

Example

Consider the procedure

proc FACT = $\begin{array}{l}
f \leftarrow 1; \\
i \leftarrow 1; \\
\textbf{while } i \leq n \quad \textbf{do} \\
\{f = fact(i-1) \text{ and } i \leq n+1\} \\
f \leftarrow f \times i; \\
i \leftarrow i+1
\end{array}$

By the correction of the body we have:

$$\{n \ge 0 \land n = n_0\} \mathbf{body}(FACT) \{f = fact(n) \land n = n_0\}$$

Allying the above rule we have:

$$\{n \ge 0 \land n = n_0\}$$
 call FACT $\{f = fact(n) \land n = n_0\}$

Adaptation

We can use the adapted consequence rule for sistem \mathcal{H}

$$\frac{\{\varphi\}C\{\psi\}}{\{\varphi'\}C\{\psi'\}} \quad \text{se} \ \ \varphi' \to \forall \overline{x_f}.(\forall \overline{y_f}.(\varphi[\overline{y_f}/\overline{y}] \to \psi[\overline{y_f}/\overline{y}, \overline{x_f}/\overline{x}]) \to \psi'[\overline{x_f}/\overline{x}])$$

to reuse the above deduction for a stronger precondition

$$\frac{\{n \ge 0 \land n = n_0\} \text{call FACT} \{f = fact(n) \land n = n_0\}}{\{n = 10\} \text{call FACT} \{f = fact(10)\}}$$

and we obtain the side condition

$$n = 10 \rightarrow \forall n_f, f_f.((\forall n_{0f}.n \ge 0 \land n = n_{0f} \rightarrow f_f = fact(n_f) \land n_f = n_{0f}) \\ \rightarrow f_f = fact(10))$$

For the system \mathcal{H}_g this is not possible because it lacks a consequence rule, but we may have a specific rule to dela with recursive procedures.

Notation ~

In practice specification languages avoid the generality allowed by auxiliary variables and forbid their use in the procedure specifications.

Given a variable x we denote \tilde{x} its value in the prestate.

For the previous example we have

$$\{n \ge 0\}$$
 call FACT $\{f = fact(n) \land n = n\}$

The new consequence rule is

$$\frac{\{\varphi\}C\{\psi\}}{\{\varphi'\}C\{\psi'\}} \quad \text{se} \quad \varphi' \to \forall \overline{x_f}.((\varphi \to \lfloor \psi[\overline{x_f}/\overline{x}] \rfloor) \to \psi'[\overline{x_f}/\overline{x}])$$

and $\lfloor \psi[\overline{x_f}/\overline{x}] \rfloor$ denotes the result of substituting in $\psi[\overline{x_f}/\overline{x}]$ every variable \tilde{x} by the corresponding x.

The triple can be derived by

$$\{n \ge 0\} \text{call FACT} \{f = fact(n) \land n = n\}$$
$$\{n = 10\} \text{call FACT} \{f = fact(10)\}$$

and we obtain the side condition

$$n = 10 \rightarrow \forall n_f, f_f. ((n \ge 0 \rightarrow f_f = fact(n_f) \land n_f = n) \rightarrow f_f = fact(10))$$

To derive the triple with \tilde{x} one needs to modify call rule as follows

$$\frac{\{\varphi \land x = x_1 \land \dots \land x_n = x_n\} \mathbf{body}(p)\{\psi\}}{\{\varphi'\} \mathbf{call } p\{\psi'\}}$$

where x_1, \ldots, x_n are the program variables

Recursive procedures

- In recursive procedures, body(p) can contain commands call p
- The application of the rule for procedures given above can lead to infinite derivations.
- The following rule was proposed by Hoare

$$[\{\varphi\} \textbf{call } p\{\psi\}]$$

$$\vdots$$

$$\{\varphi\} \textbf{body}(p)\{\psi\}$$

$$\{\varphi\} \textbf{call } p\{\psi\}$$

Assuming $\{\varphi\}$ **call** $p\{\psi\}$ we can derive $\{\varphi\}$ **body** $(p)\{\psi\}$, then $\{\varphi\}$ **call** $p\{\psi\}$ can be derived without hypotheses (and that is why the hypothesis had square brackets).

• It is an axiomatic counterpart of fixpoint induction.

Example

Consider the procedure

then

$$\{n \geq 0 \land n = n_0\} \textbf{call Factr} \{f = fact(n) \land n = n_0\}$$

can be derived using the adapted consequence rule.

Procedure calls in \mathcal{H}_{g}

In this case the side conditions of the rule for procedures should include an adaptation condition

$$\frac{\{\varphi\}\mathbf{body}(p)\{\psi\}}{\{\varphi'\}\mathbf{call}\ p\{\psi'\}} \text{ if } \varphi' \to \forall \overline{x_f}.(\forall \overline{y_f}.\varphi[\overline{y_f}/\overline{y}] \to \psi[\overline{y_f}/\overline{y},\overline{x_f}/\overline{x}]) \to \psi'[\overline{x_f}/\overline{x}])$$

where \overline{y} are the auxiliary variables of $\{\varphi\}\mathbf{body}(p)\{\psi\}$, \overline{x} are the program variables of $\mathbf{body}(p)$, and $\overline{y_f}$, $\overline{x_f}$ fresh. The idea of the rule is that the body of p is proved correct with respect to (φ, ψ) , then this specification should be strong enough to adapt the procedure to weaker specifications.

[AFPMdS11] Chap. 8.1

References

[AFPMdS11] José Bacelar Almeida, Maria João Frade, Jorge Sousa Pinto, and Simão Melo de Sousa. Rigorous Software Development: An Introduction to Program Verification. Springer, 2011.