
Program verification

Nelma Moreira

Program verification
Lecture 5

Procedures

• Until now we consider a program as a sequence of commands

• The treatment of subrotines is challenging from the oint of view of veri-
fication: procedures or functions)

• The treatment of procedures and functions includes the following aspects:

– recursive calls (that can lead to non termination in the evaluation of
expressions);

– parameters;

• A program will be a set of procedures annotated with contracts.

• We will not consider here an operational semantics for procedures but
assume that there exists one and the program logic will be adequate.

• We start with procedures without parameters.

ma

Procedures and Recursion

We suppose that procedures have no parameters.

• proc p = Cp defines a procedure p;

• the command Cp is the body of the procedure p (body(p));

• the new command call p invokes the procedure, transfering execution to
the body of p;

• A natural semantics rule could be:

〈body(p), s〉 −→ s′

〈call p, s〉 −→ s′

1



• for non recursive procedures the rule of Hoare logic is

{ϕ}body(p){ψ}
{ϕ}call p{ψ}

Example

Consider the procedure

proc fact =
f ← 1;
i ← 1;
while i ≤ n do

{f = fact(i− 1) and i ≤ n+ 1}
f ← f × i;
i ← i+ 1

By the correction of the body we have:

{n ≥ 0 ∧ n = n0}body(fact){f = fact(n) ∧ n = n0}

Allying the above rule we have:

{n ≥ 0 ∧ n = n0}call fact{f = fact(n) ∧ n = n0}

Adaptation

We can use the adapted consequence rule for sistem H

{ϕ}C{ψ}
{ϕ′}C{ψ′} se ϕ′ → ∀xf .(∀yf .(ϕ[yf/y] → ψ[yf/y, xf/x]) → ψ′[xf/x])

to reuse the above deduction for a stronger precondition

{n ≥ 0 ∧ n = n0}call fact{f = fact(n) ∧ n = n0}
{n = 10}call fact{f = fact(10)}

and we obtain the side condition

n = 10 → ∀nf , ff .((∀n0f .n ≥ 0 ∧ n = n0f → ff = fact(nf ) ∧ nf = n0f )
→ ff = fact(10))

For the system Hg this is not possible because it lacks a consequence rule, but
we may have a specific rule to dela with recursive procedures.

2



Notation˜

In practice specification languages avoid the generality allowed by auxiliary
variables and forbid their use in the procedure specifications.

Given a variable x we denote x̃ its value in the prestate.

For the previous example we have

{n ≥ 0}call fact{f = fact(n) ∧ n = ñ}

The new consequence rule is

{ϕ}C{ψ}
{ϕ′}C{ψ′} se ϕ′ → ∀xf .((ϕ → ⌊ψ[xf/x]⌋) → ψ′[xf/x])

and ⌊ψ[xf/x]⌋ denotes the result of substituting in ψ[xf/x] every variable x̃
by the corresponding x.

The triple can be derived by

{n ≥ 0}call fact{f = fact(n) ∧ n = ñ}
{n = 10}call fact{f = fact(10)}

and we obtain the side condition

n = 10 → ∀nf , ff .((n ≥ 0 → ff = fact(nf ) ∧ nf = n) → ff = fact(10))

To derive the triple with x̃ one needs to modify call rule as follows

{ϕ ∧ x = x1̃ ∧ . . . ∧ xn = xñ}body(p){ψ}
{ϕ′}call p{ψ′}

where x1, . . . , xn are the program variables

Recursive procedures

• In recursive procedures, body(p) can contain commands call p

• The application of the rule for procedures given above can lead to infinite
derivations.

• The following rule was proposed by Hoare

[{ϕ}call p{ψ}]
...

{ϕ}body(p){ψ}
{ϕ}call p{ψ}

3



Assuming {ϕ}call p{ψ} we can derive {ϕ}body(p){ψ}, then {ϕ}call p{ψ}
can be derived without hypotheses (and that is why the hypothesis had
square brackets).

• It is an axiomatic counterpart of fixpoint induction.

Example

Consider the procedure

proc factr =
if n == 0 then

f ← 1
else

n ← n− 1;
call factr;
n ← n+ 1;
f ← n× f

then
{n ≥ 0 ∧ n = n0}call factr{f = fact(n) ∧ n = n0}

can be derived using the adapted consequence rule.

Procedure calls in Hg

In this case the side conditions of the rule for procedures should include an
adaptation condition

{ϕ}body(p){ψ}
{ϕ′}call p{ψ′} if ϕ′ → ∀xf .(∀yf .ϕ[yf/y] → ψ[yf/y, xf/x]) → ψ′[xf/x])

where y are the auxiliary variables of {ϕ}body(p){ψ}, x are the program vari-
ables of body(p), and yf , xf fresh. The idea of the rule is that the body of p
is proved correct with respect to (ϕ,ψ), then this specification should be strong
enough to adapt the procedure to weaker specifications.

[AFPMdS11] Chap. 8.1

References

[AFPMdS11] José Bacelar Almeida, Maria João Frade, Jorge Sousa Pinto, and
Simão Melo de Sousa. Rigorous Software Development: An In-
troduction to Program Verification. Springer, 2011.

4


