Program verification

Nelma Moreira

Program verification
Lecture 5

Procedures

Until now we consider a program as a sequence of commands

The treatment of subrotines is challenging from the oint of view of veri-
fication: procedures or functions)

The treatment of procedures and functions includes the following aspects:

— recursive calls (that can lead to non termination in the evaluation of
expressions);
— parameters;

A program will be a set of procedures annotated with contracts.

We will not consider here an operational semantics for procedures but
assume that there exists one and the program logic will be adequate.

We start with procedures without parameters.

Procedures and Recursion

We suppose that procedures have no parameters.

proc p = (), defines a procedure p;
the command C), is the body of the procedure p (body(p));

the new command call p invokes the procedure, transfering execution to
the body of p;

A natural semantics rule could be:

/!

(body(p),s) — s
(call p,s) — &




e for non recursive procedures the rule of Hoare logic is

{¢}body (p){v'}
{¢}call p{}

Example

Consider the procedure

proc FACT =
f+1;
14 1;
while i <n do
{f =fact(i—1)and i <n+1}
< fxi

t+i+1
By the correction of the body we have:
{n > 0An=ngtbody(FACT){f = fact(n) An =ng}
Allying the above rule we have:

{n > 0An=ng}call FACT{f = fact(n) An =ng}

Adaptation

We can use the adapted consequence rule for sistem H

{piC{v}
{#"3C{y}

to reuse the above deduction for a stronger precondition

se @' — YTy (V7. (e[UF /Y] = VW7 /9, %5 /7)) = ' [T7 /7))

{n > 0An=mnp}call FACT{f = fact(n) An=ng}
{n = 10}call FACT{f = fact(10)}

and we obtain the side condition

n= 10— Vny, ff.((Ynor.n > 0An=nor — fy = fact(ng) Any =noy)
— fr = fact(10))

For the system H, this is not possible because it lacks a consequence rule, but
we may have a specific rule to dela with recursive procedures.



Notation~

In practice specification languages avoid the generality allowed by auxiliary
variables and forbid their use in the procedure specifications.

Given a variable x we denote z its value in the prestate.

For the previous example we have

{n > 0}call rFACT{f = fact(n) An =n}

The new consequence rule is

AetCiv}
{eyC{y'}

and [¢[Z7/T]] denotes the result of substituting in ¢[T7/Z] every variable
by the corresponding x.

se ¢’ = Vz7.((¢ — [Y[T7/7]]) = V'[77/3])

The triple can be derived by

{n > 0}call FAcT{f = fact(n) An =n}
{n = 10}call FACT{f = fact(10)}

and we obtain the side condition

n=10 = VYny, fr.(n >0 = fr = fact(ny) Any =n) — f; = fact(10))

To derive the triple with 2" one needs to modify call rule as follows

{oAnz=aN.. . ANxy =2, body(p){v}
{¢'}eall p{y'}

where x1,...,x, are the program variables

Recursive procedures

e In recursive procedures, body(p) can contain commands call p

e The application of the rule for procedures given above can lead to infinite
derivations.

e The following rule was proposed by Hoare

[{p}call p{y}]

{o}body (p) {1}
{p}call p{y}




Assuming {p}call p{1} we can derive {p}body(p){¢}, then {p}call p{¢}
can be derived without hypotheses (and that is why the hypothesis had

square brackets).

e It is an axiomatic counterpart of fixpoint induction.

Example

Consider the procedure
proc FACTR =

if n==0 then
f+1

else
n<+<n-—1;
call FACTR;
n <+ n—+1;
fenxf

then
{n > 0An=ng}call FACTR{f = fact(n) An =ngp}

can be derived using the adapted consequence rule.

Procedure calls in H,

In this case the side conditions of the rule for procedures should include an
adaptation condition

{eBe i) it of - vor. (ool /3] - vlgg/7.77/7]) - ¥'lo7/a)

where 7 are the auxiliary variables of {¢}body(p){¢}, T are the program vari-
ables of body(p), and 7y, Ty fresh. The idea of the rule is that the body of p
is proved correct with respect to (¢, 1), then this specification should be strong
enough to adapt the procedure to weaker specifications.

[AFPMdS11] Chap. 8.1

References

[AFPMdS11] José Bacelar Almeida, Maria Joao Frade, Jorge Sousa Pinto, and
Simao Melo de Sousa. Rigorous Software Development: An In-
troduction to Program Verification. Springer, 2011.



