
Program verification

Nelma Moreira

Departamento de Ciência de Computadores da FCUP

Decidable first order theories and SMT Solvers
Lecture 10

SMT Solvers

• SAT can codify operations and relations between integers with bounded precision
• using representations as bit vectors
• representing addition, etc as Boolean circuits

• As well as, other finite datatypes and structures

• But, cannot represent unbounded types (e.g., reals) or infinity data structures
(stacks, lists)

• Bounded arithmetic is not very efficient for large values

• There are efficient procedures for these FOL theories for conjunctions of atomic
formulas

• Use search strategies based on SAT solvers

• Are called SMT (Satisfiability Modulo Theories) solvers.

(Classic) First Order Logic

• Infinity set of variables x1, x2, . . . (Vars)
• Logic symbols: Boolean connectives (∧, ∨, =⇒ , ¬, . . .),quantifiers (∀, ∃) and

parentheses ’(’, ’)’.
• Non-logic symbols: (ranked) alphabet Σ for functional (f , g , . . .) and predicate

symbols (R ,P ,Q, . . .)
• Syntax: for terms and for formulae

t ::= x | a | f (t, . . . , t)

ϕ ::= R(t1, . . . , tn) | t1 = t2 | ¬ϕ | (ϕ ∧ ϕ) | (ϕ ∨ ϕ) | (ϕ =⇒ ϕ) | ∀xϕ | ∃xϕ
• A formula is closed if does not have free variables.
• Semantics: a Σ structure A with domain A, interpretation of non logic symbols (·A) and a

assignment of domain elements to the free variables, α : Vars → A. The assigmenet
extends to terms.

• A formula ϕ is satisfiable if there exists a structure A of Σ and assignment α such that ϕ
is true (A |=α ϕ)

• A formula is valid if for all structures A of Σ, ϕ is true (|= ϕ)

Satisfability

(i) A |=α t1 = t2 if α(t1) = α(t2)

(ii) A |=α R(t1, . . . , tn) if (α(t1), . . . ,α(tn)) ∈ RA

(iii) A |=α ¬ϕ if A ∕|=α ϕ

(iv) A |=α ϕ ∧ ψ if A |=α ϕ and A |=α ψ

(v) A |=α ϕ ∨ ψ if A |=α ϕ or A |=α ψ

(vi) A |=α ϕ =⇒ ψ if A ∕|=α ϕ or A |=α ψ

(vii)A |=α ∀x ϕ if for all a ∈ A if A |=α[a/x] ϕ where:

α[a/x](y) =

󰀝
α(y) if y ∕= x
a if y = x

(viii)A |=α ∃x ϕ if exists a ∈ A such that A |=α[a/x] ϕ

Decidability

Given formulae ϕ and ψ, we have the following decision problems

Validity problem: Is ϕ valid? (|= ϕ?)

Satisfiability problem: Is ϕ satisfiable? (exist A,α, A |=α ϕ)

Consequence problem: Is ψ a consequence of ϕ? (ψ |= ϕ? or Γ |= ϕ for Γ a set of
formulae)

Equivalence problem: Are ψ and ϕ equivalent?

These are, in some sense, variations of the same problem :

|= ϕ ⇐⇒ ¬ϕ is unsatisfiable
ψ |= ϕ ⇐⇒ ¬(ψ =⇒ ϕ) is unsatisfiable
ψ ≡ ϕ ⇐⇒ (ψ |= ϕ ∧ ϕ |= ψ)
ϕ is satisfiable ⇐⇒ ¬ϕ is not valid

Undecidability of FOL

A solution to a decision problem is a program that takes problem instances as input
and always terminates, producing a correct yes or no output.

A decision problem is decidable if it has a solution. A decision problem is undecidable
if it is not decidable.

Theorem (Church & Turing)

• The decision problem of validity in first-order logic is undecidable: no program
exists which, given any ϕ, decides whether |= ϕ.

• The decision problem of satisfiability in first-order logic is undecidable: no
program exists which, given any ϕ, decides whether ϕ is satisfiable.

Semi-decidability

However, there is a procedure that halts and says yes if is valid.

A decision problem is semi-decidable if exists a procedure that, given an input,

• halts and answers “yes” ⇐⇒ “yes” is the correct answer,

• halts and answers “no” if “no” is the correct answer,

• or does not halt if “no” is the correct answer

Unlike a decidable problem, the procedure is only guaranteed to halt if the correct
answer is “yes”.

The decision problem of validity in first-order logic is semi-decidable.

FOL Theories

Let Σ be an alphabet of a first-order language.

• A theory T is a set of of closed formulae such that T |= ϕ implies ϕ ∈ T (closed
under derivability).

• A T -structure is a Σ -structure that validates all formulae of T
• A formula ϕ is T -satisfiable if it is satisfiable in a T -structure; in the same way we

define T -valid

• A theory T is finitely (recursively) axiomatizable if there exists a finite
(recursive) set A ⊆ T (axioms) such that ∀ϕ,ϕ ∈ T ⇐⇒ A |= ϕ

• A theory T is complete if for all closed formulae ϕ, T |= ϕ or T |= ¬ϕ.
• A theory T is decidable if for all closed formulae it is possible to decide if T |= ϕ.

• A axiomatizable and complete theory is decidable.

• Given a Σ structure A,
Th(A) = {ϕ | A |= ϕ}

is complete.

• Semantically defined theories are important as they allow to reason about
mathematical domains (naturals, integers, algebraic structures, etc.), but they
must be axiomatizable.

• A fragment of a theory T is a subset of formulae of T with a syntactic restriction,
e.g.:

• only conjunctions of literals;
• quantifier-free;
• etc.

Some Theories

1 Equality Theory and Uninterpreted Functions TE
2 Theory of Arithmetic - Peano Axioms TPA
3 Theory of Arithmetic of Presburger (additive fragment) TN
4 Linear Integer Arithmetic TZ (same expressiveness of TN)

5 Real Arithmetic and Linear Rational Arithmetic (TR, TQ)
6 Set Theory of Zermelo-Frankle

7 Geometry Theory (Euclides, non-standard, etc.)

8 Group Theory

9 Theory of Regular Languages (expressions) (Kleene Algebras)

Equality and Uninterpreted Functions TE

∀x .x = x

∀x , y .x = y → y = x

∀x , y , z .x = y ∧ y = z → x = z

∀x̄ , ȳ .x1 = y1 ∧ · · · xn = yn → f (x1, . . . , xn) = f (y1, . . . , yn)

∀x̄ , ȳ .x1 = y1 ∧ · · · xn = yn → P(x1, . . . , xn) → P(y1, . . . , yn)

The last two axioms are congruences: functional and predicates.

TE -validity is undecidable. Quantifier-free fragment is decidable. Fragment with only
functions where the conjunctive fragment is EUF , is decidable.

Arithmetic (natural and integer numbers)

First Incompleteness Theorem Kurt Gödel (1931)

Any effectively generated (i.e., recursively enumerable) theory capable of expressing
elementary arithmetic cannot be both consistent and complete. In particular,for any
consistent, effectively generated formal theory that proves certain basic arithmetic
truths, there is an arithmetical statement that is true, but not provable in the theory.

A semantic theory Th(M), where M interprets each symbol with its standard
mathematical meaning in the interpretation domain, is always a complete theory.
Therefore, the semantic theories of natural numbers and integers cannot be
axiomatizable, not even by an infinite recursive set of axioms.

Peano Axioms, TPA

Let Σ = {0, 1,+, x ,=, <}. The axioms define basic facts of
naturals and + and x (N |= PA):

1 ∀x(x + 1 ∕= 0)
2 ∀x∀y(x + 1 = y + 1 → x = y)
3 0 + 1 = 1
4 ∀x x + 0 = x
5 ∀x∀y x + (y + 1) = (x + y) + 1

6 ∀x x × 0 = 0

7 ∀x∀y x × (y + 1) = (x × y) + x
8 (induction principle) (Q(0) ∧ (∀x(Q(x) → Q(x + 1)) → ∀xQ(x)

TPA-validity is undecidable (Gödel’s Incompleteness). Even the quantifier-free
fragment of TPA is undecidable. (Matiyasevich, 1970).

Peano Axioms, TPA

Let Σ = {0, 1,+, x ,=, <}. The axioms define basic facts of naturals and + and x
(N |= PA):

1 ∀x(x + 1 ∕= 0)

2 ∀x∀y(x + 1 = y + 1 → x = y)

3 0 + 1 = 1

4 ∀x x + 0 = x

5 ∀x∀y x + (y + 1) = (x + y) + 1

6 ∀x x × 0 = 0

7 ∀x∀y x × (y + 1) = (x × y) + x

8 (induction principle) (Q(0) ∧ (∀x(Q(x) → Q(x + 1)) → ∀xQ(x)

TPA-validity is undecidable (Gödel’s Incompleteness). Even the quantifier-free
fragment of TPA is undecidable. (Matiyasevich, 1970).

Presburger Arithmetic TN

• If we exclude axioms 6 and 7 we obtain Presburger Arithmetics TN which is
complete and decidable.

• This theory has many applications in formal verification and is related with
automata theory.

• Linear integer arithmetic, TZ, (Σ = {. . . ,−1, 1, 0, 1, 2, . . .+,=, <}) reduces to
Presburger theory.

• Suppose
∀w , x .∃y , z .x + 2y − z − 13 > −3w + 5.

we can introduce new variables vp and vn (in N) for each variable v

∀wp,wn, xp, xn.∃yp, yn, zp, zn.(xp−xn)+2(yp−yn)−(zp−zn)−13 > −3(wp−wn)+5,

change the side of the − to

∀wp,wn, xp, xn.∃yp, yn, zp, zn.xp + 2yp + zn + 3wp > xn + 2yn + zp + 13 + 3wn + 5

and code in unary.

Presburger Arithmetic TN
• If we exclude axioms 6 and 7 we obtain Presburger Arithmetics TN which is

complete and decidable.
• This theory has many applications in formal verification and is related with

automata theory.
• Linear integer arithmetic, TZ, (Σ = {. . . ,−1, 1, 0, 1, 2, . . .+,=, <}) reduces to

Presburger theory.
• Suppose

∀w , x .∃y , z .x + 2y − z − 13 > −3w + 5.

we can introduce new variables vp and vn (in N) for each variable v

∀wp,wn, xp, xn.∃yp, yn, zp, zn.(xp−xn)+2(yp−yn)−(zp−zn)−13 > −3(wp−wn)+5,

change the side of the − to

∀wp,wn, xp, xn.∃yp, yn, zp, zn.xp + 2yp + zn + 3wp > xn + 2yn + zp + 13 + 3wn + 5

and code in unary.

• Of course TN reduces to TZ:
• The TN-formula

∀x∃y .x = y + 1

is equisatisfiable to the TZ-formula

∀x .(x > −1 =⇒ ∃y .y > −1 ∧ x = y + 1)

Real Arithmetic TR I

Let Σ = {0, 1,+, x ,=,≥}. The Real Arithmetic (or elementary algebra) is :

• with addition an abelian group (R,+, 0), + associative and commutative, 0
identity and all elements have inverse (−).:

• with multiplication a ring (R,+,×, 1, 0): × associative and distributes over
addition, 1 identity.

• and a field: × commutative, 1 ∕= 0, non 0 elements have multiplicative inverse.

• closed: ≥ total order and

1 ∀x , y , z . x ≥ y =⇒ x + z ≥ y + z
2 ∀x , y . x ≥ 0 ∧ y ≥ 0 =⇒ xy ≥ 0
3 ∀x .∃y . x = y2 ∨ x = −y2

4 for each odd integer n , polynomials of odd degree have at least one root.

∀󰂓x .∃y .yn + x1y
n−1 + · · ·+ xn−1y + xn = 0

Real Arithmetic TR II

Tarski proved in the 1930s that TR is decidable, although the
Second World War prevented his publishing the result until 1956. Collins (1975)
proposed a more efficient technique of cylindrical algebraic decomposition (CAD) CAD

runs in time proportionate to 22
k|F |

, for some constant k and for |F | the length of F ..

Linear theory of rationals TQ
The full theory of rational numbers (with addition and multiplication) is undecidable,
since the property of being a natural number can be encoded in it. For the linear
theory of rationals the alphabet is Σ = {0, 1,+,=,≥} and corresponds to TR without
multiplication.

1 ∀x , y . x ≥ y ∧ y ≥ x =⇒ x = y

2 ∀x , y , z . x ≥ y ∧ y ≥ z =⇒ x ≥ z

3 ∀x , y .x ≥ y ∨ y ≥ x

4 ∀x , y , z .(x + y) + z = x + (y + z)

5 ∀x .x + 0 = x

6 ∀x .x + (−x) = 0

7 ∀x , y .x + y = y + x

8 ∀x , y , z .x ≥ y =⇒ x + z ≥ y + z

9 for each positive integer n, ∀x .nx = 0 =⇒ x = 0

10 for each positive integer n, ∀x .∃y .x = ny

Models are divisible torsion-free abelian groups. (Axiom 9).

Difference Arithmetic

• Difference logic is a fragment (a sub-theory) of linear arithmetic.

• Atomic formulas have the form x − y ≤ c , for variables x and y and constant c .

• Conjunctions of difference arithmetic inequalities can be checked very efficiently
for satisfiability by searching for negative cycles in weighted directed graphs.

• Graph representation: each variable corresponds to a node, and an inequality of
the form x − y ≤ c corresponds to an edge from y to x with weight c .

• The quantifier-free satisfiability problem is solvable in O(|V ||E |).

Theory of Lists, TL
The alphabet is ΣL = {cons, head , tail , atom,=}.

TE
∀x , y . head(cons(x , y)) = x

∀x , y . tail(cons(x , y)) = y

∀y . ¬atom(y) =⇒ cons(head(y), tail(y)) = y

∀x , y¬atom(cons(x , y))
• atom(x) is a predicate that is true if the argument x is a singleton.

• cons is a constructor

• In Lisp head is car (contents of address register) and cdr (contents of decrement
register).

• The axioms of TE ensure that head and tail are functional congruences and atom
a predicate congruence.

• Satisfiabitily of the quantifier-free fragment is decidable.

• Can be extended to other recursive data structures TRDS :binary trees, stacks, etc.

Theory of Arrays, T =
A

The alphabet is ΣA = {read ,write,=}. Arrays are functions that can be modified.
The term read(a, i) corresponds to a[i], and write(a, i , v) corresponds to a[i ← v].

TE
∀a, i , j . i = j → read(a, i) = read(a, j)

∀a, i , j , v . i = j → read(write(a, i , v), j) = v

∀a, i , j , v . ¬(i = j) → read(write(a, i , v), j) = read(a, j)

∀a, b. (∀i . read(a, i) = read(b, i)) → a = b (extensionality)

T =
A -validity is undecidable. Quantifier-free fragment is decidable. Without the last

axiom (extensionality) (TA) even that fragment was not decidable.

Other theories

• Fixed-size bit-vectors
• Model bit-level operations of machine words, including 2n-modular operations (where

n is the word size), shift operations, etc.
• Decision procedures for the theory of fixed-size bit vectors often rely on appropriate

encodings in propositional logic.

• Pointer logic, allows to reasoning about variables that refer to some other
program construct, such as a variable, a procedure or an address. A pointer
corresponds to the unique address of a memory cell. The way the memory cells
are addresses is given by the memory model. It is characterised by

• memory valuation M : A −→ D where A is a set of addresses and D the set of data
words stored in each memory cell; and

• a memory layout L : V −→ A that associates to each program variable an address.

Decision procedures

• Are specific to a given theory.

• Determine if a formula is inconsistent, satisfiable, or valid.

• Can work on conjunctions of atomic formulae or decide if a formula is
consequence of other formulae.

• Can use heuristics to improve performance, but have to give the correct answer
and terminate (sound and complete).

Decidable theories

• As we saw there are many useful decidable theories (or at least fragments):
• Equality with uninterpreted functional symbols EUF

x = y ∧ f (f (f (x))) = f (x) → f (f (f (f (f (y))))) = f (x)

• Updates of functions, registers and tuples
• Linear integer and rational arithmetics and (LIA,LRA, linear programming,

Simplex, etc.)
x ≤ y ∧ x ≤ 1− y ∧ 2x ≥ 1 → 4x = 2

• Difference logic
x − y < c

• Bit vectors: modular aritmetics
• Lists and other RDS.
• Pointer Logics

• In general, combinations of decidable theories are also decidable

Complexity of decidability

Decidable theories

Complexities for quantifier-free, conjunctive fragments of theories

Combining theories

Let
x + 2 = y =⇒ f (read(write(a, x , 3), y − 2) = f (y − x + 1)

What theories are involved here?

• equality and uninterpreted functions, TE
• arrays, T =

A

• arithmetic, TZ

Combining theories

Let T1 and T2 two theories with alphabets Σ1 and Σ2; andaxioms A1 and A2.

The combined theory T1 ∪ T2 such that Σ1 ∩ Σ2 = {=} is given by:

• alphabet Σ1 ∪ Σ2

• axioms: A1 ∪ A2

Nelson & Oppen, 1979

Satisfiability of the quantifier-free fragment of T1 ∪ T2 is decidable if

• satisfiability of the quantifier-free fragment of T1 is decidable

• satisfiability of the quantifier-free fragment of T2 is decidable

• and certain technical requirements are met

SMT Solvers

• Extend SAT solvers to FOL

• Use decision procedures alone or combined to decide conjunctions of atomic
formulae

• SMT use the propositional backbone of the formulae
• Use search strategies of modern SAT solvers
• Terms are substituted by propositional variables
• Find a solution with a SAT solver
• If found, consider the interpretation of the variables and evaluates the FOL formula

with the appropriate solver.

SMT Solvers

Let prop(ϕ) be a function that maps ϕ ∈ T (in CNF and quantifier-free) into a
propositional formula (substituting atomic formulae by propositional variables) and
unprop the inverse function. Given an assignment ρ for prop(ϕ) let

ϕ(ρ) = {unprop(pi) | ρ(pi) = ⊤} ∪ {¬unprop(pi) | ρ(pi) = ⊥}

SMT−So l v e r (ϕ) {
A := prop(ϕ)
loop

(r , ρ) := SAT(A)
i f r= unsat then retu rn unsa t
(θ, r):=DPT (ϕ(ρ))
i f r=sa t then retu rn s a t
C :=

󰁚
B∈θ ¬prop(B)

A := A ∧ C
}

where θ ⊆ ϕ(ρ) corresponds to unsatisfiable formulae. Then we add to A the
propositional equivalent of θ (C) to ensure that the assignment ρ is not used again in
SAT . DPT is the decision procedure for T .

SMT-solvers basic architecture

Efficient SMT Solvers

• In the last two decades, SMT procedures have undergone dramatic progress.
There has been enormous improvements in efficiency and expressiveness of SMT
procedures for the more commonly occurring theories.

• The annual competition for SMT procedures plays an important rule in driving
progress in this area.

• A key ingredient is SMT-LIB, an online resource that proposes, as a standard, a
unified notation and a collection of benchmarks for performance evaluation and
comparison of tools.

• Some SMT solvers: Z3, CVC4, Alt-Ergo, Yices 2, MathSAT, Boolector, etc.

• Usually, SMT solvers accept input either in a proprietary format or in SMT-LIB
format.

SMT Solvers- Links

• SMT-LIB: The Satisfiability Modulo Theories Library

http://smtlib.cs.uiowa.edu

• SMT-COMP: The Satisfiability Modulo Theories Competition

https://github.com/SMT-COMP

http://www.smtcomp.org

• Decision procedures - an algorithmic point of view

https://www.decision-procedures.org/

• SAT Association http://satassociation.org/sat-smt-school.html

• SAT/SMT Examples https://sat-smt.codes

http://smtlib.cs.uiowa.edu
https://github.com/SMT-COMP
http://www.smtcomp.org
https://www.decision-procedures.org/
http://satassociation.org/sat-smt-school.html
https://sat-smt.codes

SMT LIB

• Catalog of theory declarations - semi-formal specification of theories of interest
• A theory defines a vocabulary of sorts and functions. The meaning of the theory

symbols are specified in the theory declaration.

• Catalog of logic declarations - semi-formal specification of fragments of
(combinations of) theories

• A logic consists of one or more theories, together with some restrictions on the kinds
of expressions that may be used within that logic.

• Library of benchmarks

• Utility tools (parsers, converters, ...)

• Useful links (documentation, solvers, ...)

• SMT-LIB language expresses logical statements in a many-sorted first-order logic.

pySMT

• The pySMT library allows a Python program to communicate with several SMT
solvers based on a common language.

• This makes it possible to code a problem independently of the SMT solver, and
run the same problem with several SMT solvers.

Theorem Provers

ϕ valid ⇐⇒ ¬ϕ unsatisfiable

If a solver cannot find a solution perhaps other can.

Decision algorithm DPT : quantifier-free theories

The aim is to solve combinations such as

(x1 = x2 ∨ x1 = x3) ∧ (x1 = x2 ∨ x2 = x − 4) ∧ x1 ∕= x3 ∧ x1 ∕= x4

(x1 + 2x3 < 5) ∨ ¬(x3 ≤ 1) ∧ (x2 ≥ 3)

(i = j ∧ a[j] = 1) ∧ ¬(a[i] = 1)

We consider quantifier-free theories, T , for which there exists a decision algorithm
DPT for the conjunction of atomic formulae.

Example:Equality Logic

• Corresponds to the equality theory TE only with variables (and constants that can
be eliminated) and quantifer-free

ϕ := ϕ ∧ ϕ | (ϕ) | ¬ϕ | t = t

t := x |c

• has the same expressivity and complexity of propositional logic.

Exerc.
Describe an algorithm to eliminate constants from a formula with equalities. ⋄

Decision procedure for theory of equality (conjunctions), DPT

• Seja ϕ a conjunction of equalities and inequalities

• Build a graph G = (N,E=,E ∕=) where

• N are variables of ϕ,

• E=, edges (xi , xj) correspond to equalities xi = xj ∈ ϕ (dashes)

• E ∕=, edges (xi , xj) correspond to inequalities xi ∕= xj ∈ ϕ (filled)

• ϕ is not satisfiable if and only if there exists an edge (v1, v2) ∈ E ∕= such that v2 is
reachable from v1 by edges of E=.

For x2 = x3 ∧ x1 = x3 ∧ x1 ∕= x2, we conclude that is not satisfiable

Using SAT solvers for SMT

There are two approaches for the Boolean combination of atomic formulas

• eager
• translate to an equisatisfiable propositional formula
• that is solved by a SAT solver

• lazy
• incrementally encode the formula in a proposicional formula
• use DPLL SAT solver
• use a solver for the theory (DPT) to refine the formula and guide the SAT solver

• the lazy approach seems to work better

Lazy approach I

Mainly in the case that ϕ contains other connectives besides conjunction is better to
integrate DT in a SAT solver.

• Suppose ϕ in (NNF)

• at(ϕ) set of atomic formulae over Σ in ϕ; ati (ϕ) i-th atomic formula

• To each atomic formula a ∈ at(ϕ) associate e(a) a propositional variable, called
the encoder

• Extend the encoding e to ϕ, and let e(ϕ) be the formula resulting from
substituting each Σ-literal by its encoder.

• For example if ϕ := (x = y ∨ x = z) then e(ϕ) := e(x = y) ∨ e(x = z)

Example

Let
ϕ := x = y ∧ ((y = z ∧ ¬(x = z)) ∨ x = z)

We have

e(ϕ) := e(x = y) ∧ ((e(y = z) ∧ ¬(e(x = z))) ∨ e(x = z)) := B

Using a SAT solver we obtain an assignment for B:

α := {e(x = y) 󰀁→ true, e(y = z) 󰀁→ true, e(x = z) 󰀁→ false}

The procedure DPT checks if the conjunction of literals correspondent to α is
satisfiable, i.e.,

T̂h(α) = (x = y) ∧ (y = z) ∧ x ∕= z

This formula is not satisfiable, thus ¬T̂h(α) is a tautology. We can make the
conjunction e(¬T̂h(α)) ∧ B and call again the SAT solver but α will be blocked as it
will not satisfy e(¬T̂h(α)) (blocking clause).

Let α′ be a new assignment

α′ := {e(x = y) → true, e(y = z) → true, e(x = z) → true}

that corresponds to
T̂h(α′) := (x = y) ∧ (y = z) ∧ x = z

which is satisfiable, proving that the original formula ϕ is satisfiable.

Theory propagation

If one considers a partial assinment such that:

α′ := {e(x = y) → true, e(y = z) → true

Then DPT could infere that x = z holds and inform the SAT solver of
e(x = z) → true and e(x ∕= z) → false which could correspond to BCP.

Lazy encodings

Formally, given a encoding e(ϕ) and an assignment α, for each encoder e(ati) we have

Th(ati ,α) =

󰀫
ati α(e(ati)) = true

¬ati α(e(ati)) = false

and let the set of literals be

Th(α) = {Th(ati ,α) | ati ∈ ϕ}

then T̂h(α) is the conjunction of literals in Th(α).

Let deduction be the procedure DPT with the possible generation of a blocking
clause , t = ¬T̂h(α).

Consider the following three requirements on the formula t that is returned by
Deduction:

1 t is valid in T .

2 The atoms in t are restricted to those appearing in ϕ

3 The encoding of t contradicts α, i.e., e(t) is a blocking clause

Consider the following three requirements on the formula t that is returned by
Deduction:

1 t is valid in T .

2 The atoms in t are restricted to those appearing in ϕ

3 The encoding of t contradicts α, i.e., e(t) is a blocking clause

The first requirement 1. ensures soundness. The second and third requirements 2. e 3.

are sufficient to guaranteeing termination.

Consider the following three requirements on the formula t that is returned by
Deduction:

1 t is valid in T .

2 The atoms in t are restricted to those appearing in ϕ

3 The encoding of t contradicts α, i.e., e(t) is a blocking clause

The first requirement 1. ensures soundness. The second and third requirements 2. e 3.

are sufficient to guaranteeing termination.

Two can be weakened:

• It is enough that t implies ϕ

• In t can occur other atomic formulas

Consider the following three requirements on the formula t that is returned by
Deduction:

1 t is valid in T .

2 The atoms in t are restricted to those appearing in ϕ

3 The encoding of t contradicts α, i.e., e(t) is a blocking clause

The first requirement 1. ensures soundness. The second and third requirements 2. e 3.

are sufficient to guaranteeing termination.

Two can be weakened:

• It is enough that t implies ϕ

• In t can occur other atomic formulas

Beside considering an incremental SAT (that keeps the B from previous calls), it is
more efficient to integrate the procedure deduction in the CDCL algorithm.

CDCL(T): Integration DPT in CDCL-SAT

This algorithm uses a procedure AddClauses, which adds new clauses to the current
set of clauses at run time.

Theory propagation

Suppose that ϕ has an integer variable x1 and the literals x1 < 0 and x1 > 10. If
e(x1 > 10) 󰀁→ true and e(x1 < 0) 󰀁→ true there will be a contradiction but that is only
detected after being obtained a full assignment. However that can be improved, if
the call to deduction is made earlier. That allows to

• Contradictory partial assignments are ruled early

• Implications of literals that are still unassigned can be communicated back to the
SAT solver. We call this technique theory propagation.

• For example, if e(x1 > 10) ← true we can infer that e(x1 < 0) ← false and thus
avoid the conflict altogether.

CDCL(T)

Z3

• Z3 https://github.com/Z3Prover/z3

• Z3 https://z3prover.github.io/papers/programmingz3.html

• https://z3prover.github.io/papers/z3internals.html

• Python : pip install z3-solver

• Tutorial:
https://ericpony.github.io/z3py-tutorial/guide-examples.htm

https://github.com/Z3Prover/z3
https://z3prover.github.io/papers/programmingz3.html
https://z3prover.github.io/papers/z3internals.html
https://ericpony.github.io/z3py-tutorial/guide-examples.htm

Z3 Architecture of a SMT Solver

pyZ3

x = Real(’x’)

y = Real(’y’)

z = Real(’z’)

s = Solver()

s.add(3*x + 2*y - z == 1)

s.add(2*x - 2*y + 4*z == -2)

s.add(-x + 0.5*y - z == 0)

print(s.check())

print(s.model())

pyZ3

• Logical variables are created indicating their Sort: Real, Bool, Int, or any new
declarated type:

S = DeclareSort(’S’)

f = Function(’f’, S, S)

x = Const(’x’, S)

y = Const(’y’, S)

z = Const(’z’, S)

s = Solver()

s.add(Or(x!=y,Or(f(x)==f(y),f(x)!=f(z))))

print(s.check())

print(s.model())

solve(Or(x!=y,Or(f(x)==f(y),f(x)!=f(z)))

• solve() creates a Solver, adds a formula and checks if it is satisfiable returning
a solution (model).

• Const and Function define zero or more variables, respectively

SMT-LIB

• a standard language for SMT is the SMT-LIB (similar to LISP), but we can use
the Python interface

x, y = Ints(’x y’)

s = Solver()

s.add((x % 4) + 3 * (y / 2) > x - y)

print(s.sexpr())

• outputs

(declare-fun y () Int)

(declare-fun x () Int)

(assert (> (+ (mod x 4) (* 3 (div y 2))) (- x y)))

• Quantifiers: ForAll, Exists

solve([y == x + 1, ForAll([y], Implies(y <= 0, x < y))])

The first occurence of y is free, the second is bounded.

Example SMT-LIB 2

(set-logic QF UFLIA)

(declare-fun x () Int)

(declare-fun y () Int)

(declare-fun z () Int)

(assert (distinct x y z))

(assert (> (+ x y) (* 2 z)))

(assert (>= x 0))

(assert (>= y 0))

(assert (>= z 0))

(check-sat)

(get-model)

(get-value (x y z))

Usando % z3 exemplo1.smt2

sat

(

(define-fun x () Int

3)

(define-fun z () Int

1)

(define-fun y () Int

0)

)

((x 3)

(y 0)

(z 1))

pyz3: s.from file("exemplo1.smt2")

Z3 API

• help(class) or help(function)

• describe tactics.

•

Arrays em SMT-LIB/Z3

• To define arrays one use the (sort) Array

A = Array(’A’, IntSort(), IntSort())

x, y = Consts(’x y’,IntSort())

solve(A[x] == x, Store(A, x, y) == A)

• A[x] is defined by Select(A,x) (or A[x])

• Store(A,x,v), corresponds to A[x ← v].

• K(Sort,v) is an array of Sort where all indexes have the value v (constant array,
it is used to show a solution).

• For the verification condition above

solve (Implies(ForAll([x],(Implies(x< y, A[x]==0))),

ForAll([x],(Implies(x<= y, Store(A, y, 0)[x]==0)))))

Arrays can be represented by λ-terms : if f : A× B → C then Lambda [x,y].

f(x, y) has type Array(A,B,C).

a[i] # select array ’a’ at index ’i’

Select(a, i)

Store(a, i, v) # update array ’a’ with ’v’ at index ’i’

= Lambda(j, If(i == j, v, a[j]))

K(D, v) # constant Array(D, R), where R is sort of ’v’.

= Lambda(j, v)

Map(f, a) # map function ’f’ on values of ’a’

= Lambda(j, f(a[j]))

Ext(a, b) # Extensionality

Implies(a[Ext(a, b)] == b[Ext(a, b)], a == b)

Quantifier elimination

• Many of the theories considered have undecidable fragments when quantifiers are
considered.

• Even if those fragments are decidable complexity of the decision procedures is
high.

• For quantified boolean formulas (QBF) quantifier elimination is decidable
(pspace-complete)

• If there are only existential quantifiers (it is a formula in prenex normal form) one
can use Skolemization to obtain a equisatisfiable formula

• Some kinds of alternation of quantifiers can also yield decidable fragments of
some theories.

General quantification- Skolemization and Instantiation

• Formulae in prenex normal form
• and in Skolem normal form. Application of Skolemization
• For instance, ∀y1∀y2∃x .(f (y1, y2)∧ f (x , y2)∧ x < 0) after Skolemization becomes:

∀y1∀y2(f (y1, y2) ∧ f (fx(y1, y2), y2) ∧ fx(y1, y2) < 0)

• The general problem is to have a ground formula G which validity must be proven
with respect to axioms.

• for instance, prove that
f (h(a), b) = f (b, h(a))

is implied by
∀x∀y .f (x , y) = f (y , x)

• Considering the satisfiability problem we need to show that the following formula
is unsatisfiable:

∀x∀y .f (x , y) = f (y , x) ∧ f (h(a), b) ∕= f (b, h(a)).

• It is easy to see that if x is instantiated to h(a) and y to b we get a contradiction.

Instantiation

• Let ∀x .ψ ∧ G be the formula we want to proof unsatisfiable, with G ground.

• One can instantiate x with all ground terms of G of the same type

• But that is in general exponential.

• The solver simplify implemented an heuristic called E -graph algorithm that is
now widely used (and improved):

• for each ∀x .ψ, identify those subterms in ψ that contain references to all the
variables in x . These are the triggers.

• In the example above both f (x , y) and f (y , x) are triggers.

• Try to match each trigger tr (pattern) to an existing ground term gr in G and
take the correspondent substitution. In the example, matching f (x , y) to
f (h(a), b) yields s = {x 󰀁→ h(a), y 󰀁→ b}.

• Assign G := G ∧ ψ[x ← s] and check the satisfiability of G .

Example

Consider
b = c =⇒ f (h(a), g(c)) = f (g(b), h(a))

where f is commutative, i.e.,

∀x∀y .f (x , y) = f (y , x)

Consider the trigger f (x , y) which can match both f (h(a), g(c)), with substitution
{x 󰀁→ h(a), y 󰀁→ g(c)} and f (g(b), h(a)) with substitution {x 󰀁→ g(b), y 󰀁→ h(a)}.
Then one needs to check the satisfiability of

b = c ∧ f (h(a), g(c)) ∕= f (g(b), h(a))∧
f (h(a), g(c)) = f (g(c), h(a)) ∧ f (g(b), h(a)) = f (h(a), g(b))

which is unsatisfiable.

E -matching algorithm

• Frequently, however, the predicates necessary for proving unsatisability are not
based on terms in the existing formula.

• Simplify has a more flexible matching algorithm,

• which exploits its current knowledge on equivalences among various terms, which
is called E-matching.

• Based on the syntactic similarity of a trigger (the pattern) tr and a ground term gr

• but also, it can consider any ground term that is known to be equivalent to gr .

• Uses union-find for equivalence classes

The algorithm uses union-find to represent the classes of equivalence of equality of
terms.

• dom(α) is the domain of the substitution

• find(gr) returns the representative element of the class of gr . If two terms gr1, gr2
are such that find(gr1) = find(gr2) then it means that they are equivalent.

• class(gr) returns the equivalence class of gr .

• The algorithm uses functional congruence with a member of the equivalence class.

• The output of this algorithm is a set of substitutions, each of which brings us
from tr to gr , possibly by using congruence closure.

• If E denotes the equalities, then for each possible substitution α ∈ sub, it holds
that E |= α(tr) = gr , where α(tr) denotes the substitution applied to the trigger
tr .

• For example, for tr = f (x) and gr = f (a), if E = {a = b}, the value of sub at the
end of the algorithm will be {x 󰀁→ a, x 󰀁→ b}.

• If the match fails the empty substitution is returned.

Example

Let (∀x .f (x) = x) ∧ (∀y1.∀y2.g(g(y1, y2), y2) = y2) ∧ g(f (g(a, b)), b) ∕= b .
The triggers are f (x) and g(g(y1, y2), y2). For the first we consider

match(f (x), f (g(a, b)), ∅)

Line 7 is invoked and we consider g(a, b):

match(x , g(a, b), ∅) = {x 󰀁→ g(a, b)}

and f (g(a, b)) = g(a, b) is added to E . For the second trigger g(g(y1, y2), y2), the
candidate ground terms for matching are g(a, b) and g(f (g(a, b)), b)). In the first
case the matching fails

match(y2, b,match(g(y1, y2), a, ∅)) == fail

as class(a) has no term with functional symbol g .

In the second case we have

= match(y2, b,match(g(y1, y2), f (g(a, b)), ∅))
= match(y2, b,match(g(y1, y2), g(a, b), ∅))
= match(y2, b,match(y2, b,match(y1, a, ∅)))
= match(y2, b,match(y2, b, {y1 󰀁→ a}))
= match(y2, b, {y1 󰀁→ a, y2 󰀁→ b})
= {y1 󰀁→ a, y2 󰀁→ b}

Note the switch between f (g(a, b)) and g(a, b): it happens, because these two terms
are in the same equivalence class according to the E -graph.

As E -matching works only with functional congruence. It cannot deal with interpreted
functions (as arithmetic ones).

Nikolai Bjorner and Leonardo de Moura.
Z3 Theorem Prover.
Rise, Microsft, 2015.

Armin Biere, Marjin Heulen, Hans van Maaren, and Tobis Walsh.
Handbook of Satisfiability.
IOS Press, second edition, 2021.

Aaron R. Bradley and Zohar Manna.
The Calculus of Computation: Decision Procedures with Applications to
Verification.
Springer Verlag, 2007.

Daniel Kroening and Ofer Strichman.
Decision Procedures:An Algorithmic Point of View.
Texts in Theoretical Computer Science. An EATCS Series. Springer, 2016.

