
SMT Solvers

• SAT can codify operations and relations between integers with bounded
precision

– using representations as bit vectors

– representing addition, etc as Boolean circuits

• As well as other finite datatypes and structures

• But, cannot represent unbounded types (e.g., reals) or infinity data struc-
tures (stacks, lists)

• Bounded arithmetic is not very efficient for large values

• There are efficient procedures for these FOL theories for conjunctions of
atomic formulas

• Use search strategies based on SAT solvers

• Are called SMT (Satisfiability Modulo Theories) solvers.

(Classic) First Order Logic

• Infinity set of variables x1, x2, . . . (V ars

• Logic symbols: Boolean connectives (∧, ∨, =⇒ , ¬, . . .),quantifiers (∀, ∃)
and parentheses ’(’, ’)’.

• Non-logic symbols: alphabet Σ for functional and predicate symbols

• Syntax: for terms and for formulae

t ::= x | a | f(t, . . . , t)

ϕ ::= R(t1, . . . , tn) | t1 = t2 | ¬ϕ | (ϕ ∧ ϕ) | (ϕ ∨ ϕ) | (ϕ → ϕ) | ∀xϕ | ∃xϕ

• A formula is closed if does have free variables.

• Semantics: a Σ structure A with domain A, interpretation of non logic symbols
(·A) and a assignment of domain elements to the free variables, α.

• A formula ϕ is satisfiable if there exists a structure A of Σ and assignment α
such that ϕ is true (A |=α ϕ)

• A formula is valid if for all structures A of Σ, ϕ is true (|= ϕ)
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Satisfability

(i) A |=α t1 = t2 if α(t1) = α(t2)

(ii) A |=α R(t1, . . . , tn) if (α(t1), . . . ,α(tn)) ∈ RA

(iii) A |=α ¬ϕ if A ∕|=α ϕ

(iv) A |=α ϕ ∧ ψ if A |=α ϕ and A |=α ψ

(v) A |=α ϕ ∨ ψ if A |=α ϕ or A |=α ψ

(vi) A |=α ϕ → ψ if A ∕|=α ϕ or A |=α ψ

(vii) A |=α ∀x ϕ if for all a ∈ A if A |=α[a/x] ϕ where:

α[a/x](y) =


α(y) if y ∕= x
a if y = x

(viii) A |=α ∃x ϕ if exists a ∈ A such that A |=α[a/x] ϕ

Decidability

Given formulae ϕ and ψ, we have the following decision problems

Validity problem: Is ϕ valid?

Satisfiability problem: Is ϕ satisfiable?

Consequence problem: Is ψ a consequence of ϕ?

Equivalence problem: Are ψ and ϕ equivalent?

These are, in some sense, variations of the same problem :

|= ϕ ⇐⇒ ¬ϕ is unsatisfiable ψ |= ϕ ⇐⇒ ¬(ψ =⇒ ϕ) is unsatisfiable
ψ ≡ ϕ ⇐⇒ (ψ |= ϕ ∧ ϕ |= ψ) ϕ is satisfiable ⇐⇒ ¬ϕ is not valid

Undecidability of FOL

A solution to a decision problem is a program that takes problem instances as
input and always terminates, producing a correct yes or no output.

A decision problem is decidable if it has a solution. A decision problem is
undecidable if it is not decidable.

Theorem 1 (Church & Turing). • The decision problem of validity in first-
order logic is undecidable: no program exists which, given any ϕ, decides
whether |= ϕ.

• The decision problem of satisfiability in first-order logic is undecidable: no
program exists which, given any ϕ, decides whether ϕ is satisfiable.
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Semi-decidability

However, there is a procedure that halts and says yes if is valid.

A decision problem is semi-decidable if exists a procedure that, given an input,

• halts and answers “yes” ⇐⇒ “yes” is the correct answer,

• halts and answers “no” if “no” is the correct answer,

• or does not halt if “no” is the correct answer

Unlike a decidable problem, the procedure is only guaranteed to halt if the
correct answer is “yes”.

The decision problem of validity in first-order logic is semi-decidable.

FOL Theories

Let Σ be an alphabet of a first-order language.

• A theory T is a set of of closed formulae such that T |= ϕ implies ϕ ∈ T
(closed under derivability).

• A T -structure is a Σ that validates all formulae of T

• A formula ϕ is T -satisfiable if it is satisfiable in a T -structure; in the same
way we define T -valid

• A theory T is finitely (recursively) axiomatizable if there exists a finite
(recursive) set A ⊆ T (axioms) such that ∀ϕ,ϕ ∈ T ⇐⇒ A |= ϕ

• A theory T is complete if for all closed formulae ϕ, T |= ϕ or T |= ¬ϕ.

• A theory T is decidable if for all closed formulae it is possible to decide if
T |= ϕ.

• A axiomatizable and complete theory is decidable.

• Given a Σ structure A,

Th(A) = {ϕ | A |= ϕ}

is complete.

• Semantically defined theories are important as they allow to reason about
mathematical domains (naturals, integers, algebraic structures, etc.), but
they must be axiomatizable.

• A fragment of a theory T is a subset of formulae of T with a syntactic
restriction, e.g.:

– only conjunctions of literals;

– quantifier-free;

– etc.
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Some Theories

1. Equality Theory and Uninterpreted Functions TE

2. Theory of Arithmetic - Peano Axioms TPA

3. Theory of Arithmetic of Presburger (additive fragment) TN

4. Linear Integer Arithmetic TZ (same expressiveness of TN )

5. Real Arithmetic and Linear Rational Arithmetic (TR, TQ)

6. Set Theory of Zermelo-Frankle

7. Geometry Theory (Euclides, non-standard, etc.)

8. Group Theory

9. Theory of Regular Languages (expressions) (Kleene Algebras)

Equality and Uninterpreted Functions TE

∀x.x = x

∀x, y.x = y → y = x

∀x, y, z.x = y ∧ y = z → x = z

∀x̄, ȳ.x1 = y1 ∧ · · ·xn = yn → f(x1, . . . , xn) = f(y1, . . . , yn)

∀x̄, ȳ.x1 = y1 ∧ · · ·xn = yn → P (x1, . . . , xn) → P (y1, . . . , yn)

The last two axioms are congruences: functional and predicates.

TE-validity is undecidable. Quantifier-free fragment is decidable. Fragment with
only functions where the conjunctive fragment is EUF , is decidable.

Arithmetic (natural and integer numbers)

First Incompleteness Theorem Kurt Gödel (1931)

Any effectively generated (i.e., recursively enumerable) theory capable of ex-
pressing elementary arithmetic cannot be both consistent and complete. In
particular,for any consistent, effectively generated formal theory that proves
certain basic arithmetic truths, there is an arithmetical statement that is true,
but not provable in the theory.

A semantic theory Th(M), where M interprets each symbol with its standard
mathematical meaning in the interpretation domain, is always a complete the-
ory. Therefore, the semantic theories of natural numbers and integers cannot
be axiomatizable, not even by an infinite recursive set of axioms.
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Peano Axioms, TPA

Let Σ = {0, 1,+, x,=, <}. The axioms define basic facts of naturals and + and
x (N |= PA):

1. ∀x(x+ 1 ∕= 0)

2. ∀x∀y(x+ 1 = y + 1 → x = y)

3. 0 + 1 = 1

4. ∀x x+ 0 = x

5. ∀x∀y x+ (y + 1) = (x+ y) + 1

6. ∀x x× 0 = 0

7. ∀x∀y x× (y + 1) = (x× y) + x

8. (induction principle) (Q(0) ∧ (∀x(Q(x) → Q(x+ 1)) → ∀xQ(x)

TPA-validity is undecidable (Gödel’s Incompleteness). Even the quantifier-free
fragment of TPA is undecidable. (Matiyasevich, 1970).

Presburger Arithmetic TN

• If we exclude axioms 6 and 7 we obtain Presburger Arithmetics TN which
is complete and decidable.

• This theory has many applications in formal verification and is related
with automata theory.

• Linear integer arithmetic, TZ, (Σ = {. . . ,−1, 1, 0, 1, 2, . . .+,=, <}) reduces
to Presburger theory.

• Suppose
∀w, x.∃y, z.x+ 2y − z − 13 > −3w + 5.

we can introduce new variables vp and vn (in N) for each variable v

∀wp, wn, xp, xn.∃yp, yn, zp, zn.(xp−xn)+2(yp−yn)−(zp−zn)−13 > −3(wp−wn)+5,

change the side of the − to

∀wp, wn, xp, xn.∃yp, yn, zp, zn.xp+2yp+zn+3wp > xn+2yn+zp+13+3wn+5

and code in unary.

• Of course TN reduces to TZ:

• The TN-formula
∀x∃y.x = y + 1

is equisatisfiable to the TZ-formula

∀x.(x > −1 =⇒ ∃y.y > −1 ∧ x = y + 1)
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Real Arithmetic TR

Let Σ = {0, 1,+, x,=,≥}. The Real Arithmetic (or elementary algebra) is :

• with addition an abelian group (R,+, 0), + associative and commutative,
0 identity and all elements have inverse (−).:

• with multiplication a ring (R,+,×, 1, 0): × associative and distributes
over addition, 1 identity.

• and a field: × commutative, 1 ∕= 0, non 0 elements have multiplicative
inverse.

• closed: ≥ total order

1. ∀x, y, z.x ≥ y =⇒ x+ z ≥ y + z

2. ∀x, y.x ≥ 0 ∧ y ≥ 0 =⇒ xy ≥ 0

3. ∀x.∃y.x = y2 ∨ x = −y2

4. for each odd integer n , polynomials of odd degree have at least one
root.

∀x.∃y.yn + x1y
n−1 + · · ·+ xn−1y + xn = 0

Tarski proved that TR was decidable in the 1930s, al-
though the Second World War prevented his publishing the result until 1956.
Collins (1975) proposed a more efficient technique of cylindrical algebraic de-

composition (CAD) AD runs in time proportionate to 22
k|F | , for some constant

k and for |F | the length of F ..

Linear theory of rationals TQ

The full theory of rational numbers (with addition and multiplication) is unde-
cidable, since the property of being a natural number can be encoded in it. For
the linear theory of rationals the alphabet is Σ = {0, 1,+,=,≥} and corresponds
to TR without multiplication.

1. ∀x, y.x ≥ y ∧ y ≥ x =⇒ x = y

2. ∀x, y, z.x ≥ y ∧ y ≥ z =⇒ x ≥ z

3. ∀x, y.x ≥ y ∨ y ≥ x

4. ∀x, y, z.(x+ y) + z = x+ (y + z)
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5. ∀x.x+ 0 = x

6. ∀x.x+ (−x) = 0

7. ∀x, y.x+ y = y + x

8. ∀x, y, z.x ≥ y =⇒ x+ z ≥ y + z

9. for each positive integer n, ∀x.nx = 0 =⇒ x = 0

10. for each positive integer n, ∀x.∃y.x = ny

Models are divisible torsion-free abelian groups. (Axiom 9).

Difference Arithmetic

• Difference logic is a fragment (a sub-theory) of linear arithmetic.

• Atomic formulas have the form x − y ≤ c, for variables x and y and
constant c.

• Conjunctions of difference arithmetic inequalities can be checked very ef-
ficiently for satisfiability by searching for negative cycles in weighted dir-
ected graphs.

• Graph representation: each variable corresponds to a node, and an in-
equality of the form x − y ≤ c corresponds to an edge from y to x with
weight c.

• The quantifier-free satisfiability problem is solvable in O(|V ||E|).

Theory of Lists, TL

The alphabet is ΣL = {cons, head, tail, atom,=}.

TE
∀x, y. head(cons(x, y)) = x

∀x, y. tail(cons(x, y)) = y

∀y. ¬atom(y) =⇒ cons(head(y), tail(y)) = y

∀x, y¬atom(cons(x, y))

• atom(x) is a predicate that is true if the argument x is a singleton.

• In Lisp head is car (contents of address register) and cdr (contents of
decrement register).

• The axioms of TE ensure that head and tail are functional congruences
and atom a predicate congruence.

• Satisfiabitily of the quantifier-free fragment is decidable.

• Can be extended to other recursive data structures TRDS
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Theory of Arrays, T =
A

The alphabet is ΣA = {read, write,=}. Arrays are functions that can be mod-
ified. The term read(a, i) corresponds to a[i], and write(a, i, v) corresponds to
a[i ← v].

TE
∀a, i, j.i = j → read(a, i) = read(a, j)

∀a, i, j, v.i = j → read(write(a, i, v), j) = v

∀a, i, j, v.¬(i = j) → read(write(a, i, v), j) = read(a, j)

∀a, b.(∀i.read(a, i) = read(b, i)) → a = b (extensionality)

T =
A -validity is undecidable. Quantifier-free fragment is decidable. Without the

last axiom (extensionality) (TA) even that fragment was not decidable.

Other theories

• Fixed-size bit-vectors

– Model bit-level operations of machine words, including 2n-modular
operations (where n is the word size), shift operations, etc.

– Decision procedures for the theory of fixed-size bit vectors often rely
on appropriate encodings in propositional logic.

• Pointer logic, allows to reasoning variables that refer to some other pro-
gram construct, such as a variable, a procedure or an address. A pointer
corresponds to the unique address of a memory cell. The way the memory
cells are addresses is given by the memory model. It is characterised by
a memory valuation M : A −→ D where A is a set of addresses and D
the set of data words stored in each memory cell; and A memory layout
L : V −→ A that associates to each program variable an address.

Decision procedures

• Are specific to a given theory.

• Determine if a formula is inconsistent, satisfiable, or valid.

• Can work on conjunctions of atomic formulae or decide if a formula is
consequence of other formulae.

• Can use heuristics to improve performance, but have to give the correct
answer and terminate (sound and complete).
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Decidable theories

• As we saw there are many useful decidable theories (or at least fragments):

– Equality with uninterpreted functional symbols EUF

x = y ∧ f(f(f(x))) = f(x) → f(f(f(f(f(y))))) = f(x)

– Updates of functions, registers and tuples

– Linear integer arithmetics and rational (LIA,LRA, linear program-
ming, Simplex, etc.)

x ≤ y ∧ x ≤ 1− y ∧ 2x ≥ 1 → 4x = 2

– Difference logic
x− y < c

– Bit vectores: modular aritmetics

– Lists and other RDS.

– Pointer Logics

• Combinations of decidable theories are also decidable, in general

Complexity of decidability

Decidable theories Complexities

for quantifier-free, conjunctive fragments of theories
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Combining theories

Let
x+ 2 = y =⇒ f(read(write(a, x, 3), y − 2) = f(y − x+ 1)

What theories are involved here?

• equality and uninterpreted functions, TE

• arrays, T =
A

• arithmetic, TZ

Combining theories

Let T1 and T2 two theories with alphabets Σ1 and Σ2; andaxioms A1 and A2.

The combined theory T1 ∪ T2 such that Σ1 ∩ Σ2 = {=} is given by:

• alphabet Σ1 ∪ Σ2

• axioms: A1 ∪A2

Nelson & Oppen, 1979

Satisfiability of the quantifier-free fragment of T1 ∪ T2 is decidable if

• satisfiability of the quantifier-free fragment of T1 is decidable

• satisfiability of the quantifier-free fragment of T2 is decidable

• and certain technical requirements are met

SMT Solvers

• Extend SAT solvers to FOL

• Use decision procedures alone or combined to decide conjunctions of atomic
formulae

• SMT use the propositional backbone of the formulae

– Use search strategies of modern SAT solvers

– Terms are substituted by propositional variables

– Find a solution with a SAT solver

– If found, consider the interpretation of the variables and evaluates
the FOL formula with the appropriate solver.
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SMT Solvers

Let prop(ϕ) be a function that maps ϕ ∈ T (in CNF and quantifier-free) into a
propositional formula (substituting atomic formulae by propositional variables)
and unprop the inverse function. Given an assignment ρ for prop(ϕ) let

ϕ(ρ) = {unprop(pi) | ρ(pi) = ⊤} ∪ {¬unprop(pi) | ρ(pi) = ⊥}

SMT−So lve r (ϕ) {
A := prop(ϕ)
loop

(r, ρ) := SAT(A)
i f r= unsat then return unsat
(θ, r):=DPT (ϕ(ρ))
i f r=sat then return sa t
C :=


B∈θ ¬prop(B)

A := A ∧ C
}

where θ ⊆ ϕ(ρ) corresponds to unsatisfiable formulae. Then we add to A the
propositional equivalent of θ (C) to ensure that the assignment ρ is not used
again in SAT . DPT is the decision procedure for T .

SMT-solvers basic architecture

Efficient SMT Solvers

• In the last two decades, SMT procedures have undergone dramatic pro-
gress. There has been enormous improvements in efficiency and express-
iveness of SMT procedures for the more commonly occurring theories.

• The annual competition for SMT procedures plays an important rule in
driving progress in this area.
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• A key ingredient is SMT-LIB, an online resource that proposes, as a stand-
ard, a unified notation and a collection of benchmarks for performance
evaluation and comparison of tools.

• Some SMT solvers: Z3, CVC4, Alt-Ergo, Yices 2, MathSAT, Boolector,
etc.

• Usually, SMT solvers accept input either in a proprietary format or in
SMT-LIB format.

SMT Solvers- Links

• SMT-LIB: The Satisfiability Modulo Theories Library

http://smtlib.cs.uiowa.edu

• SMT-COMP: The Satisfiability Modulo Theories Competition

https://github.com/SMT-COMP

http://www.smtcomp.org

• Decision procedures - an algorithmic point of view

https://www.decision-procedures.org/

• SAT Association http://satassociation.org/sat-smt-school.html

• SAT/SMT Examples https://sat-smt.codes

SMT LIB

• Catalog of theory declarations - semi-formal specification of theories of
interest

– A theory defines a vocabulary of sorts and functions. The meaning
of the theory symbols are specified in the theory declaration.

• Catalog of logic declarations - semi-formal specification of fragments of
(combinations of) theories

– A logic consists of one or more theories, together with some restric-
tions on the kinds of expressions that may be used within that logic.

• Library of benchmarks

• Utility tools (parsers, converters, ...)

• Useful links (documentation, solvers, ...)

• SMT-LIB language expresses logical statements in a many-sorted first-
order logic.
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pySMT

• The pySMT library allows a Python program to communicate with several
SMT solvers based on a common language.

• This makes it possible to code a problem independently of the SMT solver,
and run the same problem with several SMT solvers.

Theorem Provers

ϕ valid ⇐⇒ ¬ϕ unsatisfiable

If a solver cannot find a solution perhaps other can.
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