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1. INTRODUCTION

A software behavorial specification is a precise description of the intended behavior of
some computing system or its components. Behavioral specifications take a variety of
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forms, and different specification notations play distinct roles in describing and con-
straining behavior. For example, type declarations or preconditions indicate the values
that a component is designed to process. Assertions impose constraints on variable
values as a system passes through different execution states. Postconditions specify
the functionality of a component by describing how its output values relate to its input
values. State machines provide a high-level view of system states and transitions be-
tween those states. Sequence charts summarize how a component interacts with other
components or its environment. Use cases capture how users of different roles may
interact with the system.

Numerous aspects of modern software and the processes by which it is constructed
and validated are leading to an increased use of specifications.

—Modern software typically makes extensive use of reuseable component frameworks,
including graphical user interface (GUI) libraries (e.g., Swing [Walrath et al. 2004],
SWT1), frameworks for Web services and business applications (e.g., Apache Struts2

and CSLA.Net [Lhotka 2008]), etc. Specifications on the interfaces of these frame-
works are useful for declaring software contracts [Liskov and Guttag 1986; Meyer
1992] that precisely document the functionality provided by framework services, as
well as the specific calling conventions that clients of the framework are obligated
to follow to ensure correct operation of the provided services. Such specifications are
also important for maintenance, since code alone cannot reveal what contract the
code was intended to fulfill.

—The scale of software systems is increasing rapidly, and it is not uncommon for
systems to have well over a million lines of code. In such large-scale systems, func-
tionality must be decomposed and development tasks distributed to many teams.
In some cases, teams may be located in different organizations and different geo-
graphical areas. Development processes may vary, and both language and cultural
differences may introduce ambiguities and hinder communications. Imprecision in
interfaces and team coding assignments can prevent the system from being correctly
assembled from its components and can lead to signficant cost overruns. Use cases
and sequence charts [Alhir 1998] can highlight key interactions of sytem compo-
nents and achieve consensus during design. Interface specifications [Guttag et al.
1993; Jones 1990; Meyer 1997; Wing 1987, 1990] play a key role in cleanly partition-
ing the software system, recording the intended behavior of software components,
achieving an appropriate division of labor among teams, increasing precision in com-
munication between teams, and assuring that desired system functionality can be
achieved by composing individually validated components.

—The sheer scale of software systems is leading to their extended use, since they
are more costly to replace. At the same time, the pace of technology innovation
is quickening. Unfortunately, this often leads to technology refresh problems—it
is often difficult to refresh the software to accomodate advances in execution plat-
forms, implementation languages, frameworks, or libraries. Specifications can pro-
vide implementation-independent descriptions of system behavior. In effect, they
can serve as abstractions that make development less dependent on implementation
details—facilitating change of hardware components and implementation strategies.

—Safety-critical systems including avionics, medical devices, automotive control sys-
tems, nuclear power plants, as well as systems associated with critical infrastruc-
ture, increasingly rely on software to provide their functionality. Verification and

1SWT: The Standard Widget Toolkit http://eclipse.org/swt/.
2Apache Struts–a free open-source framework for creating Java Web applications. http://struts.
apache.org.
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validation is a key component of the development and certification of such systems.
Especially useful in these contexts, but in non-critical contexts as well, specifications
provide a canonical declaration of a systems intended functionality against which
an implementation can be verified. Specifications can also guide test case construc-
tion. When debugging, one can use specifications to isolate faults and assign blame
[Findler and Felleisen 2002; Liskov and Guttag 1986; Meyer 1992].

The benefits of specifications are amplified when they are written in a formal spec-
ification language—a mathematically precise notation for recording intended proper-
ties of software. In this survey, we will consider specification languages with both a
formal syntax and semantics. Formalizing the syntax of the specification language
enables specifications to be processed by software development tools and checked for
well formedness. Formalizing the semantics helps make specifications unambiguous,
less dependent on cultural norms3, and thus less likely to be misunderstood. More
importantly, formalizing the semantics (e.g., using mathematical logic) enables tools to
provide automated reasoning about specifications and their relationship to associated
code.

Formal specifications can be leveraged by tools throughout the entire software life
cycle. At design time, using automated deduction and SAT-based techniques, specifica-
tions can be checked automatically for consistency and queried to determine if desired
system behaviors are implied by the specifications [Jackson 2006]. As coding begins,
static analysis tools can check implementations against specifications, for example, a
method body can be checked to determine if it correctly implements its contract, that
it satisfies the preconditions of any methods that it calls, and that all assertions in
the method body hold [Flanagan et al. 2002; Barnett et al. 2005]. Specifications can
also serve as a starting place for transformational development in which specifications
are systematically refined into code [Abadi and Lamport 1988; Abrial 1996; Hehner
1993; Jones 1990; Morgan 1994; Morgan and Vickers 1994; Morris 1980; Partsch and
Steinbrüggen 1983]. Formal specifications need not specify full correctness to be useful;
light-weight annotations including those that restrict ranges of numeric variables and
that specify the non-nullness of reference variables can be easily incorporated during
development to guide tools that seek to find bugs used deductive techniques [Flana-
gan et al. 2002; Barnett et al. 2005] or abstract interpretation [Blanchet et al. 2002].
During testing, executable representations of assertions can be checked, test cases can
be generated automatically from formal specifications [Cartwright 1981; Chang and
Richardson 1999; Boyapati et al. 2002], or implementations can be exercised directly
from specifications, as in model-based testing techniques [Jacky et al. 2008]. Formal
specifications can be compiled to code-based oracles that determine when a particular
test passes or fails [Hierons et al. 2009]. Even after systems have been deployed, code
generated from specifications can provide runtime monitoring of a system’s execution
and aid in the implementation of fault-recovery mechanism [Bartetzko et al. 2001;
Barnett and Schulte 2003; Cheon and Leavens 2002]. Finally, in critical systems, tools
based on combinations of automatic and interactive theorem proving can be used for
verification—proving that an implementation is free of bugs and that it satisfies its
formal specification in every possible execution [Barnes 1997; Cohen et al. 2009].

Formal specification can be used for many artifacts of a software development project,
such as requirements, software architecture, and code. Our focus in this survey is
on specification languages that can be used to record detailed design (i.e., coding)
decisions about program modules. Wing [1987, 1990] and Lamport [1989] called such
specifications interface specifications, since they document both the interface between

3For example, a pint means 473ml in the U.S., but 586ml in the U.K.

ACM Computing Surveys, Vol. 44, No. 3, Article 16, Publication date: June 2012.



16:4 J. Hatcliff et al.

such modules and their behavior. However, the term interface specification tends to be
confused with very weak specifications that document just the syntactic interface of
various modules, such as the names and types of methods [Object Management Group
1992]. Thus, we use the term behavioral interface specification [Cheon and Leavens
1994] to emphasize the behavioral component of such specifications, such as pre- and
postconditions. In this survey, we focus on behavioral interface specification languages.
We give an overview of specification languages for other artifacts in the next section.

The main challenge in designing a behavioral interface specification language is to
balance various design goals, including expressiveness, versatility, and ease of use. For
instance, support for unbounded quantifiers increases the expressiveness of specifica-
tions but prevents some formulas from being checked efficiently at runtime and, thus,
makes them less useful for testing. Support for higher-order logic increases expressive-
ness but limits the applicability of automatic program verifiers. Denoting specifications
in terms of expressions of the programming language makes specifications easier to
read and write for programmers but complicates verification and sometimes limits
expressiveness.

During the last decade, behavioral interface specification languages have been an
area of active research, driven by the development of tools that seek to improve the
quality of program code. The development of these tools and their application to non-
trivial programs has lead to important insights.

—The community has developed techniques for specifying properties of programs writ-
ten in modern programming languages—in particular, imperative object-oriented
languages.

—There is now a better understanding of the trade-offs in designing a behavioral
interface specification language—in particular, the trade-off between expressiveness,
annotation overhead, and support for automatic reasoning.

—There is a general agreement on a set of well-understood core concepts, as well as on
current research challenges.

In this survey, we give an overview of the state of the art in designing and using behav-
ioral interface specification languages. We focus mainly on languages and notations for
expressing properties that enable or help one verify that (part of) a program satisfies
certain properties. Such properties can range from the absence of certain program-
ming faults to the satisfaction of all specified properties. We discuss many examples of
such properties. To facilitate comparisons and because not all specification languages
support the same features, we present examples in several specification languages,
including JML [Leavens et al. 2009], SPARK [Barnes 1997], Separation logic [O’Hearn
et al. 2001], and Spec# [Barnett et al. 2005]. Translations of each example into several
specification languages are available online at http://www.eecs.ucf.edu/∼leavens/spec-
lang-survey/examples/index.html.

We intend this survey to be interesting for readers who want to (1) learn ways to
specify or describe software properties, e.g., for use by verification or static analysis
tools or (2) design a formal specification language for documenting detailed designs.

In particular, we hope that this survey will be useful to researchers participating in
the Verified Software Initiative (VSI) [Hoare 2005; Hoare et al. 2007].

1.1. Classification of Specifications

Specifications can be classified according to the kinds of properties they express and
the kinds of artifacts they describe. In this section, we list some of the most important
kinds of properties and artifacts, and provide references for those kinds that are not
covered in this article.

ACM Computing Surveys, Vol. 44, No. 3, Article 16, Publication date: June 2012.
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1.1.1. Kinds of Properties. Specification languages have focused on expressing the fol-
lowing three kinds of properties.

—Functional behavior properties describe the (data) values associated with system
operations or state changes. Such properties typically describe the relationships
between inputs and outputs and, thus, typically do not involve more than two states,
usually the pre- and post-states of a procedure. For instance, a functional behavior
specification of a sorting routine might include that the output is a permutation of
the input and that the output is sorted. Functional behavior properties also include
consistency criteria of data structures (such as object invariants).

—Temporal properties describe properties of a system’s sequences of states, along with
the relationship between system events and state transitions. For instance, a tempo-
ral specification of a server might include that every request is handled eventually.
Temporal properties can be expressed in temporal logic [Emerson 1990; Manna and
Pnueli 1992], or event-based specification languages, such as Statemate [Harel et al.
1990], Petri nets [Peterson 1977, 1981], and process algebras [Hennessy and Mil-
ner 1985; Milne and Milner 1979; Milner 1990; Milner et al. 1992]. Specification
languages that handle various forms of temporal logic include the Bandera Speci-
fication Language [Corbett et al. 2000], Promela [Holzmann 1997], and SLIC (the
SLAM model checker’s specification language) [Ball and Rajamani 2001].

—Resource properties describe constraints on how much of some resource, such as time
or space, may be used by an operation or may be used between a pair of events.
Timing constraints are especially important for the modeling and analysis of real-
time systems. Termination is a special case of a timing property [Hehner 1989].
Resource properties can be expressed in specification languages such as timed au-
tomata [Alur et al. 1990], TPTL [Alur and Henzinger 1994], metric temporal logic
[Ouaknine and Worrell 2005], HighSpec [Dong et al. 2006], CS-OZ-DC [Olderog
2008], UPPAAL [Larsen et al. 1997], Esterel [Berry 2000], Lustre [Halbwachs et al.
1992; Pilaud et al. 1987], and the duration calculus [Hansen 2008]. Timing prop-
erties for events in code can be specified in the PSpec language [Perl and Weihl
1993] and Real-time Euclid [Kligerman and Stoyenko 1992; Stoyenko 1992]. Furia
et al. [2010] survey specification languages that build on temporal logic for real-time
system specification.

An orthogonal way of classifying properties distinguishes between safety and live-
ness properties [Manna and Pnueli 1992]. A safety property says that nothing bad
happens, for example, that the system does not crash. A liveness property says that
something good eventually happens, for example, that a system eventually responds
to a request. Functional behavior properties and resource properties are typically
safety properties, whereas specifications of temporal properties often include liveness
properties.

1.1.2. Kinds of Artifacts. Specifications are used to describe many artifacts in the soft-
ware development process. A very broad characterization of these artifacts and their
relation to known specification languages is as follows.

—Requirements-level specifications describe the behavior of a system’s software as a
whole [Jackson 1995; Heitmeyer et al. 2007; van Lamsweerde 2000].
Requirements specification languages include SCR [Heitmeyer et al. 1998], RSML
and its variants [Heimdahl et al. 2003; Leveson et al. 1999], FSP [Kramer and Magee
2006; Magee and Kramer 2005], CSP [Brookes et al. 1984; Hoare 1985; Roscoe 1994],
and parts of the UML [Arlow and Neustadt 2005; Rumbaugh et al. 1999], such as
Statecharts [Harel 1987].
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—Analysis-level specifications describe domain models and express concepts in a do-
main.
Analysis specification languages that describe functional behavior include Alloy
[Jackson 2006], Z [Hayes 1993; Spivey 1989], TLA [Lamport 1994], ASML [Börger
and Stärk 2003; Gurevich 1991], and algebraic equational specification languages
[Bidoit et al. 1991; Goguen et al. 1978; Wirsing 1990], such as LSL [Guttag and Horn-
ing 1986] and CASL [CoFI (The Common Framework Initiative) 2004; Mossakowski
et al. 2008]. Some refinement-oriented languages, such as B [Abrial 1996], have the
capability to state specifications at this level and also lower levels.

—Architectural specifications describe the intended connections (control and data flows)
between components of a program [Aldrich et al. 2002; Garlan et al. 2000].

—Code interface specifications describe contracts between the implementation of a
program part and its clients. These specifications can be expressed both as types
and as more general assertions. Type systems are convenient ways to state invariant
properties that are true in all states. Types can concisely state a finite set of invariant
properties, such as non-nullness and numerical range restrictions [Nielson 1996]
and can also encode general predicates with the aid of dependent type constructors
[Backhouse et al. 1989; Constable et al. 1986; Schmidt 1994; Martin-Löf 1985].
Languages for functional properties rely heavily on one or two-state assertions, in-
cluding pre- and postconditions, as well as invariants. This style of specification
language is typified by Eiffel [Eiffel 2005] and includes languages such as Gypsy
[Ambler et al. 1977], Anna [Luckham and von Henke 1985; Luckham 1990], SPARK
[Barnes 1997; Chapman 2000], VDM [Andrews 1996; Fitzgerald and Larsen 1998;
Fitzgerald 2008; Jones 1990], VDM++ [Fitzgerald et al. 2005; Mitra 1994], Larch
interface specification languages [Guttag et al. 1993; Guttag et al. 1985; Wing 1987],
the RESOLVE family [Ogden et al. 1994; Edwards et al. 1994], Spec# [Barnett et al.
2005; Barnett et al. 2006], and JML [Burdy et al. 2005; Leavens et al. 2006; Leavens
2006]. The Object Constraint Language of the UML [Warmer and Kleppe 1999; OMG
2006] also fits in this style.

In this survey, we focus on code interface specification languages for functional be-
havior properties. However, some of these properties are also relevant for proving
temporal or resource properties. For instance, proving termination of a list traversal
might depend on an invariant that the list is acyclic.

1.2. Specification Languages and Verification Technology

Specification languages are often specialized to support some particular automated
verification technique. An example is Promela’s support for the SPIN model checker
[Holzmann 1991]. However, there are interesting synergies between several verification
techniques, such as static and dynamic checking [Ernst 2003; Flanagan 2006], and
some specification languages, such as JML [Burdy et al. 2005], have been designed to
support multiple tools.

Verification technology is also closely tied to semantics. A verification logic is a formal
reasoning system that allows proofs that establish that code satisfies a specification
[Apt 1981; Apt and 0lderog 1991; Bjørner and Henson 2008; Cousot 1990; Emerson
1990; Francez 1992; Hoare 1969; Kozen and Tiuryn 1990; Manna and Pnueli 1992].
While it is, in principle, possible to directly use program semantics to specify and verify
programs, it is often more convenient to encapsulate reusable proof principles for a
given programming language in a verification logic. Then one uses the verification
logic to prove correctness. That such proofs are sound (or valid) is proved using the
programming language’s semantics [Apt 1981; Apt and Olderog 1997; Loeckx and
Sieber 1987; Winskel 1993]. On the other hand, model checking [Clarke et al. 1986;

ACM Computing Surveys, Vol. 44, No. 3, Article 16, Publication date: June 2012.



Behavioral Interface Specification Languages 16:7

Holzmann 1997] uses state space exploration techniques to verify programs, which is
directly based on the semantics of finite state machines.

In this survey, we make special efforts to highlight the interplay between specifica-
tion language design and automated verification techniques. Designing a specification
language to fit a particular verification technique can be an excellent way to make that
verification technique widely available and easily usable. Conversely, one important
aim of verification technology is to support clear and precise communication with hu-
man readers; thus, new specification language features provide interesting challenges
to those interested in verification technology.

1.3. Outline

In the remainder of this survey, we give an overview of the main specification tech-
niques for the functional behavior of sequential programs. (We largely omit consider-
ation of concurrent and parallel programs due to lack of space.) In the next section,
we discuss specification of inputoutput behavior of subprograms, including contracts
for procedures. Section 3 discusses constructs for specifications of modules, including
packages and abstract data types. Section 4 describes the specification of data struc-
ture shapes and how to specify procedures that manipulate data structures. Section 5
describes how specification languages treat subtyping and dynamic dispatch as found
in object-oriented programming. Finally, Section 6 offers some conclusions.

2. INPUT/OUTPUT BEHAVIOR

The most basic notions of behavioral specifications capture a program’s (or subpro-
gram’s) input/output behavior. For example, an input/output specification of a sorting
algorithm might capture the fact that the algorithm takes as input an arbitrary ar-
ray of integers and returns a permutation of the input array with the elements ar-
ranged according to some total order. Input/output specifications may also constrain
the intermediate states that a program passes through in the process of transforming
inputs into outputs. One common form of constraint specification is an assertion—a
predicate embedded in the code that must hold on the current program state when
execution reaches the point at which the assertion is written. For example, in a sort-
ing algorithm, an assertion might be used to state that the array being sorted must
be nonempty before the sorting process begins. Another common form of constraint is
an invariant—a predicate that must hold each time program execution reaches one
of a predefined set of program points. For example, in an insertion-sort program, one
might have an invariant stating that, whenever program execution reaches a new
iteration of the outer loop, all elements to the left of the loop index are in sorted
order.

This section gives an overview of basic forms of code-level input/output specifications.
Although many of the forms of specification that we discuss are relevant in a variety
of programming language paradigms, we focus our initial discussion of specification
concepts in simple imperative languages. A program P in such a language consists of
commands, such as variable assignment, conditionals, and loops, organized into sub-
programs, such as procedures and modules. We will discuss more advanced language
features in later sections.

The SPARK language [Barnes 1997] is a nice example of a simple imperative lan-
guage with code-level specifications and associated checking tools. The SPARK pro-
gramming language is a subset of Ada designed for programming high-assurance ap-
plications, and it omits features, such as heap-based data and exceptions, that often
cause difficulty when reasoning about programs. The SPARK specification language
includes a variety of annotations and first-order logic expressions that are embedded
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in Ada comments within the SPARK code. We use SPARK in this section to illustrate
many of the concepts associated with input/output specifications.

2.1. Inline Assertions

2.1.1. Overview. Consider a situation in which client code uses a library function to
generate a random number. Let us assume that the client developer reads the infor-
mal documentation associated with the library and concludes that the generator will
always return nonnegative values. The developer can use an assertion to specify this
assumption/expectation about the behavior of the library function at the point where
the random function is used.

R := Lib.Random ();
--# assert R >= 0;

Assertions are typically written as side-effect-free boolean expressions in the pro-
gramming language in which they are embedded. In some cases, assertions are embed-
ded in program comments (as with the preceding SPARK assertion, which is embedded
in an Ada inline comment delimited by --) and are recognized and processed by ver-
ification tools that understand the special comment syntax (# appended to the Ada
comment delimiter --# indicates a SPARK specification). In other cases (such as with
Java assertions), assertions are written as executable code that may be executed during
testing and removed by a preprocessor once testing is completed.

An assertion documents an expectation. By expressing assumptions and important
aspects of the intended functionality of the code, assertions can thus aid in code main-
tenance. Typically, assertions are also viewed as executable specifications. When an
assertion is executed, its evaluation has no effect if the assertion holds for the cur-
rent state. If the assertion does not hold, program execution is halted and the system
generates an error message.

2.1.2. Tool Foundations. Because the assertion concept is easy to learn and easy to use,
it one of the most familiar, widely used forms of program specification (for example,
McConnell’s Code Complete [McConnell 1993]—one of the most widely read practical
guides to writing commercial software—emphasizes using assertions in defensive pro-
gramming). The evolution of assertions and associated checking tools has a rich history.
Floyd made very early use of the assertion concept as a program specification mech-
anism [Floyd 1967]. Hoare’s seminal paper on axiomatic semantics [Hoare 1969] also
makes fundamental use of assertions. Two pioneering languages that were designed
for verifying programs, Gypsy [Ambler et al. 1977] and Euclid [Lampson et al. 1981],
used assert statements (and other specifications) as built-in language features. Due
to their increasing use in current programming practice, modern languages like Eiffel,
Java, and Spec# also include assertions as built-in language features. However, inline
assertions can be included in almost any language by defining an assert construct
as a procedure or macro. For more details on the history of assertions and assertion
checking, we refer the reader to the work of Jones [2003] who surveys the early use of
assertions in formal reasoning about programs to and Clarke and Rosenblum [2006]
who provide a detailed historical perspective on the development and use of runtime
assertion checking.

Assertions may be checked statically using automated deduction techniques or at
runtime, as the program is executed. For example, ESC/Java [Flanagan et al. 2002]—
one of the first tools to provide checking of specifications for realistic Java programs—
attempts to prove that each inline assertion will hold in all executions using decision
procedures and weakest precondition calculations as the underlying reasoning tech-
nology. Similar technology is used for checking assertions in the Spec# verification
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framework for C# [Barnett et al. 2005]. Symbolic execution, which combines decision
procedures with strongest postcondition calculations, is another popular approach for
assertion checking used in tools such as Java PathFinder [Khurshid et al. 2003] and
Kiasan [Deng et al. 2006] for Java, Cute [Sen et al. 2005] for C, and XRT [Grieskamp
et al. 2005] for Spec#. These tools aim for completely automated checking of assertions
and, thus, provide checking on only bounded portions of a program’s statespace or report
false alarms—situations were assertions that are actually valid are reported as failing
due to approximations made during checking. Other frameworks, such as SPARK and
the C verifier VCC [Cohen et al. 2009], aim to provide complete verification by generat-
ing verification conditions from assertions, discharging as many verification conditions
as possible with no user intervention using decision procedures, and then requiring
users to employ interactive theorem provers to discharge the remaining verification
conditions.

In static checking of assertions, it is useful to distinguish between assertions that
one expects a program checker to verify and assertions that cannot be verified in the
given context but provide logical facts that are needed for the rest of a static verifica-
tion. Following the refinement calculus [Back 1980; Morgan 1990], some specification
languages offer a way to make this distinction, using assert statements for the former
and assume statements for the latter. The distinction between assert and assume only
manifests itself in the behavior of the program verifier. When encountering assert B,
the verifier checks that the boolean expression B holds. If it does not, the verifier re-
ports an error and execution along that verification path is halted. If B holds, then the
verifier continues exploring the current execution with the set of logical facts known by
the verifier enriched to include B. When encountering assume B, the verifier continues,
after adding B to the set of known logical facts.

For example, the following assert statements (written in the syntax of VCC [Cohen
et al. 2009]) express the intention for the code to compute the minimum of two numbers
and instruct the program verifier to prove that the code (which uses arithmetic tricks
to avoid branches) is correct.

m = a - ((a - b) & -(a > b));
_(assert m <= a && m <= b)
_(assert m == a || m == b)

In this case, if the verifier cannot prove one of the assertion conditions using its current
fact set, an error is reported. In contrast, consider this example using the library
function Lib.Random, and assume that the source code is not available for the function.
Without a formal specification of the function, it is not possible to prove the assertion
R >= 0 that occurs after the call, because there no information about the possible
return values of the function. In a specification language that supports the verify-
versus-assume distinction, one would instead use an assume statement (here, shown in
Spec# [Barnett et al. 2005]).

R = Lib.Random ();
assume R >= 0;

The verifier does not try to prove R >=0 but, instead, simply continues to explore the
current execution path with the fact R >=0 added to its fact set.

Inline assertions can also be checked at runtime by compiling a representation of
each assertion into executable code. The resulting assertion-instrumented code can
be effective in finding unexpected behavior during the development and testing of a
program [McConnell 1993]. The compiled representation of assertions does introduce
computational overhead into runtime execution, and when static checking of asser-
tions is combined with runtime checking, overhead can be reduced by omitting code
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generation for assertions that have been proven statically to always hold (code gener-
ation for assume statements checks would be maintained if strict conformance to their
semantics is desired, since they are not proven statically). In addition, when the quality
of a program is high enough to deploy it, and soundness of assume/asserts need not
be strictly enforced, then code generation for assertions can be disabled to trade the
additional checking time for improved performance on the program’s main tasks.

2.1.3. Partial Expressions. Syntactically, it is possible to write an assertion whose eval-
uation is not well defined. For example, the assertion x/y = 5 is not defined in states
where y = 0. There are five general approaches to dealing with this problem.

One approach is to give expressions a nonstandard interpretation that treats all
functions and operators as total when they appear in an assertion context. For exam-
ple, x/0 would then denote some unspecified function of x, maintaining the property
that an expression is always a function of its subexpressions. Because the particu-
lar value returned by x is unspecified, it is possible to prove the assertion only if it
is immaterial what the value of x is. This approach has been taken, for example, in
the Larch Shared Language and in ESC/Java. It was also adopted in the JML run-
time assertion checker, which went to great lengths to convert evaluation failures for
boolean-valued expressions into false or true in an attempt to make undefinedness pro-
duce assertion violations [Cheon and Leavens 2005]. However, while this approach has
supporters [Gries and Schneider 1995], it has been criticized, for example, because it
has some possibly undesirable consequences in typed logics [Jones 1995], and because
it requires expressions to be interpreted differently when they appear in an assertion
context as opposed to a program context [Chalin 2005].

Another approach is to treat any undefined subformula of an assertion as the value
false [Parnas 1993]. For example, x/y = 5 is then treated as false whenever y = 0. A
problem with this approach is that x/y = 5 might then yield the same result as x/y �=
5; indeed, x/y = x/y is not always true.

The two preceding approaches admit undefined expressions. That is, they do not
assign any blame for having written an assertion that is not always defined. The next
two approaches will cause an error to be reported for undefined evaluations.

The third approach to dealing with undefined expressions in assertions is to generate
an error at the time the assertion needs to be checked. This approach is taken, for ex-
ample, in Eiffel. Although simple, a consequence of the approach is that undefinedness
errors in assertions may go undetected for a long time. In addition, the undefinedness
check is repeated many times during runtime checking.

The fourth approach is to demand that assertions be well defined in all possible con-
texts. This can be enforced in a static program verifier by generating a well-definedness
check for every assertion given in the program. A consequence of this approach is that
assertions must be written to be self guarding or protective [Leavens and Wing 1997;
Rudich et al. 2008]. For example, an assertion that mentions x/y = 5 must also ex-
plicitly check for y �= 0, as in y �= 0 ⇒ x/y = 5. This approach is compatible with
programming languages that have short-circuit operators [Chalin 2007]. For example,
in Java, using the || operator one can write y == 0 || x/y == 5.

The fifth approach is to abandon ordinary first-order logic and, instead, to consider a
logic that deals with partial expressions directly. One such logic is the Logic of Partial
Functions [Barringer et al. 1984]. Advantages of this logic are argued by Jones [Jones
2006] in a paper that also gives a broader history and evaluation of different ap-
proaches found in the rich literature on the subject of partial expressions. Woodcock
et al. [2009] have combined the approaches to partial expressions in various logics into
a unifying theory, which lets them be compared and (under certain restrictions) be used
interchangeably.
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function Find_Index_Pos (X : in Integer) return Index_Range

--# global in S;

--# pre for some M in Index_Range => (S(M) = X);

--# return Z => (S(Z) = X) and

--# (for all M in Index_Range

--# range Index_Range ’First .. Z-1

--# => (S(M) /= X));

is

Result_Pos : Index_Range;

begin

for I in Index_Range loop

if S(I) = X then

Result_Pos := I;

exit;

end if;

end loop;

return Result_Pos;

end Find_Index_Pos;

Fig. 1. SPARK illustration of structured assertions.

2.2. The Pre/Post- Technique

2.2.1. Overview. While assertions can be placed at arbitrary points in the code, they
can also be used in a structured manner to enable more systematic reasoning about
program behavior. Pre/postconditions are one example of structured use of assertions.
A precondition is an assertion that must hold whenever the procedure is called (after
parameter passing). A postcondition is an assertion that must hold immediately after
the procedure completes its execution.

The SPARK procedure4 Find_Index_Pos of Figure 1 illustrates the use of pre/post-
conditions to express that the procedure searches a global array S for the value of input
parameter X. First, note that the assertions representing pre/postconditions are not
stated in the procedure body using the assert keyword, as in the previous example.
Instead, to highlight the distinguished role of the pre/postcondition assertions, they
are written using the keywords pre and return and placed in a special collection of
annotations in the header of the procedure.

The precondition states that the value of X must be in the array when the procedure
is invoked. The use of existential quantification in the precondition (i.e., there is some
position M in the array that holds the value X) illustrates that the language of assertion
expressions may, in some cases, be richer than the language of program expressions.

In the postcondition, the construct return Z names the return value Z and imposes
two constraints: (1) the value at index position Z is equal to X, and (2) Z is the first
position in the array to have a value of X.

Together, the pre- and postconditions of a procedure can be viewed as summarizing
the procedure’s input/output behavior in the sense that the associated assertions de-
scribe properties of states flowing into and out of the procedure. Summaries can vary
in their precision. For example, dropping the constraint (2) in the postcondition just
listed still yields a valid summary of the associated implementation, but it is a less
precise summary, because it does not capture the fact that the index value returned
corresponds to the first occurrence of X.

It is also fruitful to view a pre/postcondition pair as defining a contract κ between a
procedures P and its clients (other procedure that call P). From the point of view of a
client of P, the client must abide by the contract by calling P in a state that satisfies

4Our discussion ignores the SPARK/Ada distinction between functions and procedures.
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κ ’s precondition. When doing so, it can rely on P to satisfy the contract by completing
in a state that satisfies κ ’s postcondition. From the point of view of the implementation
of P, the implementation can assume that it will always be called with parameters and
an associated global variable state that satisfies κ ’s precondition. Working under this
assumption, P must fulfill its contract by ensuring that κ ’s postcondition will always
be satisfied. The term “Design by Contract” was coined by Meyer [1992] to describe
a program methodology that emphasizes the contract metaphor by encouraging early
definition of program module contracts with coding following at a later stage, guided
by previously constructed contracts.

2.2.2. Semantic Foundations. The use of pre/postconditions in program specification can
be traced back to Floyd/Hoare logic [Floyd 1967; Hoare 1969] which characterizes the
behavior of a program statement C using triples of the form

{P} C {Q},
where both P (the precondition) and Q (the postcondition) are boolean formula over
variable values.

A state σ for a program is a mapping from the program’s variables to values. We call
a boolean formula over variable values a state predicate and say that a state σ satisfies
a state predicate P when the values of variables, as given by σ , satisfy the constraints
given by P (i.e., when P(σ ) = true). There are two common ways to define the semantics
of Hoare triples, which differ only in their treatment of non-termination.

Total correctness. A Hoare triple is valid if and only if every execution of the program
C starting in a state satisfying precondition P will terminate in a state satisfying
postcondition Q .

Partial correctness. A Hoare triple is valid if and only if every execution of the
program C starting in a state satisfying precondition P will run forever or terminate
in a state satisfying postcondition Q .

Differences in precision of summaries, such as those discussed for the example of
Figure 1, can also be captured within this logical view. A formula Q is weaker than
P if P ⇒ Q (P entails Q). When P ⇒ Q , we say that Q abstracts P (equivalently,
P refines Q). Intuitively, this means that Q is less restrictive and more approximate
than P, and P represents a more precise summary of states. State predicates can be
viewed as abstractions that summarize state information, and they can be arranged in
a natural approximation lattice based on the entailment relation as an ordering.

This preorder of approximation on state predicates can be used to define a preorder on
pre/postconditions pairs (procedure contracts), as illustrated in the following diagram.

less precise {P} · {Q}
refined by ↓ ⇓ ⇑ abstracted by ↑

more precise {P ′} · {Q ′}
Let κ represent the contract {P} · {Q} and κ ′ represent the contract {P ′} · {Q ′}. κ ′ is said
to be a refinement of κ (alternatively, κ is an abstraction of κ ′) if P ⇒ P ′ and Q ′ ⇒ Q
[Back 1980]. From the point of view of clients, if κ ′ is a refinement of κ and if C and C ′
satisfy κ and κ ′, respectively, then C ′ can be used in any context where C is used. This
is because C ′ imposes stronger conditions on its output while being more permissive
on inputs then C [Chen and Cheng 2000; Naumann 2001; Olderog 1983]. Any context
that can supply inputs satisfying C ’s precondition P can also supply inputs satisfying
C ′’s precondition P ′, since P ⇒ P ′. Similarly, any context that can accept outputs
satisfying C ’s postcondition Q can also accept outputs satisfying C ′’s postcondition
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package BoundPackage

is

Array_Size : constant := 10;

type Index is range 1 .. Array_Size;

type IntArray is array(Index) of Integer;

procedure UpperBound(A : in IntArray; Result : out Integer );

--# derives Result from A;

--# pre (for all I in Index => (A(I) >= 0));

--# post (for all I in Index => (A(I) <= Result ));

procedure LeastUpperBound(A : in IntArray; Result : out Integer );

--# derives Result from A;

--# pre true;

--# post (for all I in Index => (A(I) <= Result )) and

--# (for some J in Index => (A(J) = Result ));

end BoundPackage;

Fig. 2. A SPARK example illustrating contract refinement.

Q , since Q ′ ⇒ Q . This substitutability is also used to reason about object-oriented
programs with dynamic method binding, as we explain in Section 5.

Figure 2 shows SPARK package (a module) specification with two procedures. The
contract for LeastUpperBound refines the contract for UpperBound because (1) it has
a weaker precondition (it doesn’t impose any constraints on the prestate whereas
UpperBound requires all array elements to be >= 0), and (2) it has a stronger post-
condition (it not only requires Result to be an upper bound of the array elements, it
also requires that Result is equal to one of the array elements). Therefore, it is sound
to replace any call to UpperBound by a call to LeastUpperBound instead. Every caller
that lives up to the precondition of UpperBound also satisfies the weaker precondition
assumed by LeastUpperBound, and LeastUpperBound guarantees a postcondition that
implies the postcondition assumed by a caller of UpperBound.

2.2.3. Tool Foundations. Early tools using Floyd/Hoare logic required a high degree
of manual intervention to construct appropriate pre/postconditions. However, modern
tools achieve significant amounts of automation using techniques such as weakest
precondition calculation. A weakest precondition operator wp(C, Q) takes a command
C and postcondition Q and automatically constructs a precondition P that makes
{P} C {Q} valid. More precisely, P is constructed to be the weakest formula that can
establish Q as a postcondition for C [Dijkstra 1976]. Recalling the preceding discussion
of weakest, the precondition returned by wp(C, Q) is the most general (or best) one in
the sense that it imposes the fewest restrictions on inputs to C that can guarantee
Q to hold. A wp-calculus contains rules for computing wp for each command of the
programming language.

2.2.4. Relational Postconditions and Two-state Predicates. It is common that a postcondition
describes not only what holds in the post-state of a procedure but also how the post-
state relates to the pre-state of the procedure. A simple example is an increment
procedure whose postcondition says that a variable x is 1 more in the post-state than
in the pre-state. There are two general approaches to dealing with such relational
postconditions.

One approach is to introduce a new notation for the pre-values (or post-values, or
both) used in postconditions. Figure 3 illustrates this approach with an increment
procedure written in SPARK, where x~ denotes the pre-value of the global integer
variable x. The notation old x is used for pre-values in Eiffel (which influenced JML
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procedure Inc()

--# global in out x;

--# post x = x~ + 1;

is

begin

x := x + 1;

end Inc;

Fig. 3. SPARK example of a relational postcondition.

and Spec# to do the same), and x0 is used in Morgan’s specification statements [Morgan
1990]. Transition systems (e.g., TLA [Lamport 1994]) and relational program logics
(e.g., [Hehner 1993; Hoare and He 1998]) often use the notation x’ to denote the post-
value of variable x and x to denote the pre-value.

The other approach to specifying relational postconditions is to make use of logical
variables—variables that are used only in specifications and cannot be assigned by
programs. For example, in some specification language with logical variables in which
pre and post are keywords for pre/postconditions, the specification

pre x = X; post x = X + 1;

says that if program variable x has initial value X (where X is a universally quantified
logical variable whose scope is this procedure specification), then it will have the final
value X + 1. Logical variables are sometimes natural to include in specifications, es-
pecially if they denote some value for which there is no unique or convenient pre-state
expression; for example, X might be introduced in a precondition like x < X && X < y
or hash(X) = y. They are also easily handled when verifying the procedure implemen-
tation, where there is no difference between logical variables and other variables that
happen not to be assigned.

The meaning of a logical variable at a call site is more delicate. First, there is a
proof obligation, typically imposed at call sites, that there must exist a value for each
logical variable mentioned in the precondition. Second, the specification says that the
postcondition holds for all values of the logical variables allowed by the precondition.
Logical variables have been used in logics like Hoare logic [Hoare 1969] and separation
logic [Reynolds 2002] and in specification notations like Z [Spivey 1989].

2.2.5. Framing. An important piece of a procedure specification is the piece that indi-
cates which parts of the program state the procedure is allowed to modify. This piece is
called the frame of the procedure, and it is what, for example, allows callers to deter-
mine which parts of the caller state are not modified by the call [Borgida et al. 1995].
There are three general approaches to specifying framing.

One approach is to explicitly write in the postcondition what is not modified, implic-
itly saying that all other variables may change. This can be done with logical variables
or old expressions (see Section 2.2.4) by explicitly stating for each unchanged variable
that the value of the variable in the post-state is equal to the pre-state value of the
variable. This approach is problematic when some variables are not in scope (and,
hence, cannot be explicitly mentioned) in the specification. This has led to some intri-
cate theorems of Hoare logic-style frame rules [Hoare 1971; Reynolds 1981; O’Hearn
et al. 2001; Banerjee et al. 2008] and issues like fully abstract semantics [Meyer and
Sieber 1988]. We will say more about such information-hiding concerns in Section 3.

Another approach to framing is to include a specification construct that indicates
what may be modified, implicitly saying that other variables are not modified. For ex-
ample, in a program with two variables x and y, using the modifies construct of Liskov
and Guttag [1986] one can write modifies x to specify that x may be modified and that
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y is unchanged. Forms of modifies clauses have been used in many specification lan-
guages, including the Larch family, JML (which uses the keyword assignable), Spec#,
and Z (which uses the symbol �).

An extension of this approach is the variation used in SPARK. Each SPARK proce-
dure may reference or update the state associated with its parameters, as well as that
of global variables. To capture framing, Figure 1 illustrate that each SPARK proce-
dure contract must explicitly list the global variables accessed (both reads and writes)
during procedure execution in a globals construct. Moreover, for each parameter and
global variable, mode annotations in, out, and in out must be used to indicate if each
parameter/global in read only, written only, or both read and written.5 For example, the
global variable x of the Inc procedure in Figure 3 is read-write, whereas S of procedure
in Figure 1 is read only. Together, the mode annotations on parameters and globals can
be viewed as giving a complete specification of the inputs and outputs of a procedure.

SPARK framing specifications are more precise than those based on a modifies
clause, because SPARK’s mode annotations enable one to describe more precisely how
a variable is accessed. Specifying in/out modes is more relevant in languages like Ada
where parameters can be passed by reference.

The third approach to framing is to let the precondition, in concert with the program
semantics, limit what a procedure can modify. This approach is taken in separation
logic and Implicit Dynamic Frames [Smans et al. 2009], where (reading and) writing
to memory requires knowing that the memory contains that location, which ultimately
comes down to the procedure precondition having to specify this. By analyzing what
memory locations the precondition depends on, a caller can figure out an upper bound
on the effect of the call. For example, the separation logic precondition

x 
→ X ∧ 0 ≤ X

says that x points to a memory location that holds a nonnegative number. The precon-
dition implicitly tells callers that other memory locations are unchanged. We discuss
framing and separation logic in more detail in Section 4.

2.3. Iteration and Recursion

Reasoning about loops and recursion is often challenging, because one must write spec-
ifications that capture the effect of repeated computations where the number of repe-
titions is not known in advance. In these cases, reasoning usually proceeds according
to some induction principle, and thus one aims to specify a property that is preserved
by each repetition of the computation. Another challenge for loops and recursion is to
specify termination arguments.

2.3.1. Loop Invariants. When reasoning about loops, properties that are preserved by
each repetition of the computation are called loop invariants. A loop invariant is a state
predicate that always holds (i.e., is invariant) each time execution reaches the top of
the loop. The role of loop invariants in specifying functional properties of loops can be
seen in the Hoare logic rule for while loops [Hoare 1969].

{P ∧ b} C {P}
{P} while b do C {P ∧ ¬b}

Consider a situation in which we want to prove that a given loop concludes with a
set of variables satisfying Q . We must then find a sufficiently strong predicate P that
can be shown to be an invariant of the loop. Proving P to be a loop invariant is done
by showing two properties. First, one shows that P holds when the program reaches

5VDM contains similar annotations [Jones 1990].
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the loop. This proves that P holds the first time the top of the loop is reached. This
corresponds to the base case of an inductive argument. Second, one shows that P is
maintained by the loop body. This checks that P holds at the end of the loop body, which
implies it holds when loop execution branches back to the top of the loop. It corresponds
to an induction step.

If, at the top of the loop, the loop guard holds, then a new iteration is started. Hence,
when proving the loop body to maintain P, the loop guard b can be assumed, as shown
in the triple above the line in the preceding Hoare logic rule above. If the loop guard
does not hold, the loop terminates, and thus, the loop invariant is strong enough to
prove the desired Q if P ∧ ¬b implies Q .

Due to basic undecidability results, an algorithm for calculating weakest precon-
ditions for while loops that can be discharged by automated theorem provers is in-
feasible [Cousot 1990]. Useful automated approaches that find or over-approximate
invariants for loops exist for restricted classes of data values (using techniques such
as abstract interpretation [Cousot and Cousot 1977]), but many program verifica-
tion tools require loop invariants to be explicitly stated or even take the unsophis-
ticated approach of sacrificing soundness by verifying only a bounded number of loop
iterations.

Flexible Loop Exits. We have shown the treatment of loops for common while loops,
where the one and only exit point is the loop guard that is evaluated at the top of the
loop. Standard approaches extend to loops with more flexible exit points, like repeat-
until loops and loops with exit (as in Ada, or break as in Java) statements. The program
logic for such loops still applies the loop invariant at the top of the loop, but instead of
using the condition P ∧ ¬b on loop exit, it is as if the exiting loop iteration starts in
a state satisfying P and then, after executing the intervening statements, exits at the
appropriate control point. More formally, to treat such loops, it can be convenient to
use an underlying semantics that allows jumps [Cristian 1984; Manasse and Nelson
1984; Leino et al. 1999; Huisman and Jacobs 2000].

The example in Figure 4 shows a JML specification of a loop containing a break
statement. Method ValuePresent returns true when the integer X is contained in the
array S, which is stored in a field of the enclosing class. Since no precondition is
explicitly stated for this method, the precondition defaults to true. The postcondition
requires that the return value is true if and only if there is an index M for array S such
that the value in S at position M is equal to the input parameter X. Note that the second
loop invariant does not hold when the loop is exited via the break statement. This is
sound because the loop invariants are not assumed to hold when leaving the loop via
this exit point.

Some specification languages, like SPARK, treat any inline assertions found in the
loop body as a loop invariant, and this results in a proof obligation structure that differs
from the preceding Hoare rule for while loops.. For example, consider the SPARK
version of Value_Present in Figure 5 with an assertion specifying an invariant at the
end of the loop. The SPARK proof obligations for Value_Present would be to show that
(a) under the assumption that the precondition holds, if the loop is entered (which it
will be, because all ranges in SPARK must be nonempty), then the assertion holds
when encountered; (b) assuming the assertion holds, entering the loop again will again
lead to the assertion being satisfied and (c) assuming the assertion holds, exiting the
loop will lead to the postcondition being satisfied. Thus, the specification goal is simply
to cut the control paths through the loop with at least one assertion that will allow
these proof obligations to be discharged. From another point of view, the semantics for
the simple Value_Present loop is equivalent to first back-propagating the assertions
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/*@ ensures \result ==

@ (\ exists int M; 0 <= M && M < S.length; S[M] == X);

@*/

boolean ValuePresent(int X) {

boolean Result = false;

//@ maintaining 0 <= I && I <= S.length;

//@ maintaining !Result;

//@ maintaining (\ forall int M; 0 <= M && M < I; S[M] != X);

for(int I = 0; I < S.length; I++)

{

if(S[I] == X) {

Result = true;

break;

}

}

return Result;

}

Fig. 4. A JML example of flexible loop exits. In JML, the special comment symbols //@ and /*@ ... @*/
indicate assertions. The loop invariants follow the keyword maintaining. Backslashes are used to prefix
expression keywords in JML to avoid interference with program identifiers. Assertions occur before the
program element they specify; for instance, the postcondition occurs before the method, and the loop invariant
occure before the loop. In postconditions, \result stands for the value returned by the method.

function Value_Present (X : Integer) return Boolean

--# global in S;

--# return for some M in Index_Range => (S(M) = X);

is

Result : Boolean;

begin

Result := False;

for I in Index_Range loop

if S(I) = X then

Result := True;

exit;

end if;

--# assert I in Index_Range and

--# not Result and

--# (for all M in Index_Range range Index_Range ’First .. I

--# => (S(M) /= X));

end loop;

return Result;

end Value_Present;

Fig. 5. The SPARK version of the example in Figure 4.

(using weakest preconditions) to the top of the loop and then applying the conventional
Hoare while rule.

Loop Framing. An important issue in reasoning about loops that is often neglected
in cursory treatments is loop framing, that is, specifying what the loop modifies. For
example, when reasoning about the loop in function Value_Present (Figure 5), it is
important to know that S is not changed, whereas the loop body does have an effect on
I and Result.

A simple approach that goes a long way is for the semantic reasoning engine to
compute the syntactic loop targets by syntactically scanning the body of the loop and
noting which variables appear in l-value positions. All variables that are not syntactic
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loop targets are then known not to be modified by the loop, and so the reasoning rule
can take that into consideration. For example, if the syntactic loop targets of C does
not include a variable x, then the preceding Hoare logic rule can be altered to

{P ∧ b} C {P}
x is not among the syntactic loop targets of C
{P ∧ x = X} while b do C {P ∧ ¬b ∧ x = X}

where X is a logical constant.
Like procedure framing (see Sections 2.2.5 and 4), loop framing becomes more in-

volved when it is necessary to know that the global memory or heap is modified only
at certain locations. A solution that works well in practice is to enforce the enclosing
procedure’s frame condition also as an invariant of the loop. This was done in ES-
C/Modula-3, which called it Loop Modification Inference [Detlefs et al. 1998], and is
used in the verifiers for, for example, Spec# and Dafny [Leino 2010]. Another approach,
which can be used by itself or to complement loop modification inference, is to allow ex-
plicit modifies clauses on loops. This latter approach has the advantage of the modifies
clause being more restrictive than the procedure’s. Such a loop modifies clause could
also be more permissive to allow the loop to make modifications that are later undone
(before the procedure returns). This approach was taken in the Krakatoa tool [Marché
and Paulin-Mohring 2005]; JML has adopted this by use of its refining statement,
which can give arbitrary specifications (including frames) to statements [Shaner et al.
2007; Leavens et al. 2009].

Finally, another aid in loop framing is the ability to refer to the value of variables
before the loop. For example, if the specification language makes it possible to refer to
the value of a variable in a loop at the time the loop was reached e.g., like preloop(x)
then an invariant such as x = preloop(x) says that the loop does not change x. A
slightly more flexible solution is to allow a program to label statements and to refer
to the value of a variable from the previous encounter with that label (e.g., the JML
notation \old(x,L), which refers to the value of variable x at label L [Heym 1995;
Leavens et al. 2009]).

Ghost variables can also be used to specify loop framing. A ghost variable is a
specification-only variable that is updated by explicit (specification-only) assignment
statements.6 For example, by introducing a ghost variable oldx and using the state-
ment oldx := x just before the loop, the invariant x = oldx specifies that the loop does
not change x.

Effectively, preloop, \old, and ghost variables make loop invariants into multi-state
predicates, which of course also makes it possible to write more general invariants, like
x <= preloop(x) + c.

Alternatives to Reasoning with Loop Invariants. Although most common, not all pro-
gram logics make direct use of a loop invariant. For example, in Dynamic Logic [Kozen
and Tiuryn 1990], which is used by the KeY system [Beckert et al. 2007], the user
needs to perform an inductive proof on the execution of the given loops. This avoids the
meta argument that justifies using a loop invariant in something like the Hoare logic
rule, instead, giving the user the flexibility and burden of setting up the induction.

6There is some inconsistency in the literature about the use of the terms ghost variables, auxiliary variables,
and logical variables. Susan Owicki’s thesis [Owicki 1975] uses “auxiliary variables” for what we have called
“ghost variables.” Reynolds originally coined the term “Ghost variable” for variables that only appear in
the assertions and are never mentioned in the program [Reynolds 1981]. In this survey we call this kind of
variable a “logical variable.” Reynold’s used logical variables for variables of boolean type following Pascal.
There is also literature that uses “auxiliary variable” to mean a variable not mentioned in the program [Apt
1981].
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As we have shown, loop invariants specify the state at the top of the loop, which
can be viewed as describing the work or state that has been achieved so far by the
loop. There is some evidence that this does not always lead to the most straightforward
conditions; it can be more straightforward, instead, to focus on the work that has yet
to be done [Hehner 2005]. For example, such a loop specification has a postcondition
z’ = z + x*y, which expresses that what must be achieved is a new state in which z’s
value (written z’) is increased by the current value of x*y.

2.3.2. Termination. Repeated computations give rise to potential non-termination. Loop
invariants and pre/post specification allow one to prove the partial correctness of loops
and procedures. To enable proofs of termination and, thus, total correctness, specifica-
tions need to express termination arguments for loops and recursive procedures.

Loop Termination. A common approach to proving that a loop does not iterate forever
is to give a function, called a bound function or variant function, from the loop-head
state to a value in a well-founded order and to show that successive values in any
execution strictly decrease. Another approach is for the semantics to model the number
of completed loop iterations (or some other measure of the passing of time) in a ghost
variable and to prove the loop invariant that this variable is bounded [Hehner 1998].

For example, to specify a variant function for the loop in method ValuePresent
(Figure 4), one might add the following clause.

//@ decreasing S.length - I;

The expression in such a decreasing clause is of an integer type. To guarantee that the
variant function yields a value in a well-founded order, one technique is to prove that
the expression is nonnegative. This is implied by the first loop invariant (see Figure 4).
Each loop iteration decreases the value of the variant function by incrementing I.

Sometimes the variant function relies on the finite size of the heap and, in particular,
on the finite number of objects in some chain of pointers. For example, if the specification
language makes use of a hierarchical ownership system [Clarke et al. 1998; Leino and
Müller 2004], then the ownership relation induced by that hierarchy forms such chains.
Provided the ownership relation does not change, a specification language can allow
variant functions to mention objects ordered by this well-founded order.

Recursive Procedures. Recursive procedures can encode loops and vice versa, and
thus, recursive procedures have the same issues of partial correctness and termination.
Loop invariants correspond to preconditions for recursive procedures since they must
be true at each entry to the procedure, which corresponds to each entry to a loop.
Termination is also handled similarly.

For example, JML offers the method specification clause

measured_by E;

which, applied to a method M, requires all calls in the implementation of M to go to
methods whose value of E at the time of the call is strictly less than the value of E on
entry to M. As with loops, the type of E must be some well-founded order.

Some verification tools prove termination only for some procedures. For example,
Spec# proves the absence of infinite recursion only for pure methods, which are side-
effect-free methods that can be used in assertions [Cok 2004; Leavens et al. 2005].
Because of how these pure methods are axiomatized, the soundness of the verification
system depends on the lack of infinite pure-method recursion [Darvas and Müller 2006;
Darvas and Leino 2007].
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2.4. Exceptional Behavior

An exception is a way of returning from a procedure that is different than the normal re-
turn. The caller of a procedure that terminates exceptionally may handle the exception
or propagate it to its caller. Exceptions pose interesting challenges for specification and
verification. They introduce alternative control flow which increases the complexity of
specifications and verification. Moreover, reasoning about exception handlers requires
precise knowledge about the program state in which the exception was thrown, for
instance, which invariants may be assumed to hold.

There are three basic approaches to dealing with exceptions. Many specification and
verification techniques use different approaches depending on some categorization of
the kinds of exceptions [Goodenough 1975; Leino and Schulte 2004].

(1) Ignore. One might choose to ignore certain kinds of exceptions entirely. For in-
stance, when reasoning about partial correctness, one might want to ignore certain
exceptions, such as stack overflow exceptions. This approach is reflected in the se-
mantics as follows. The Hoare triple {P} C {Q} is valid if and only if for any store σ
that satisfies P, executing C on σ yields a store σ ′ that satisfies Q or C throws an
ignored exception [Poetzsch-Heffter 1997].

(2) Prevent. One might choose to prevent certain kinds of exceptions from ever being
thrown. For instance, array-out-of-bounds exceptions are typically program errors,
which should be prevented rather than permitted and then handled. This approach
is reflected in a program logic by additional proof obligations for all instructions
that potentially throw an exception that is supposed to be prevented. Programmers
need to write sufficiently strong preconditions and/or code to discharge these proof
obligations.

(3) Document. One might choose to permit certain kinds of exceptions; specifications
should then document under which conditions the exception may be thrown and
what may be assumed about the program state when it is thrown. For instance,
certain kinds of exceptions, such as I/O exceptions, are used instead of special
return values to signal an unsuccessful operation and should, thus, be documented
in the specification [Flanagan et al. 2002].

It is a design decision for a specification language or program verifier which
of the three approaches to apply to which kinds of exceptions. JML documents
exceptions that are instances of class Exception (e.g., NullPointerException and
FileNotFoundException) and ignores all others (e.g., VirtualMachineError). Spec# ig-
nores many kinds of exceptions whose prevention would be too cumbersome to specify
(e.g., StackOverflowException); it prevents those exceptions that are typically pro-
gram errors (e.g., NullReferenceException), and documents those that are part of the
application logic (e.g., FileNotFoundException) [Leino and Schulte 2004]. Due to its fo-
cus on critical systems, SPARK’s goal is to prevent exceptions entirely, partly through
language design (for instance, absence of recursion, which makes it easier to avoid
stack-overflow exceptions) and partly through proof obligations.

Choosing to ignore a possible exception leads to unsound checking, since the verifier
would not analyze certain execution paths that can occur at runtime. Nevertheless,
this is sometimes the practical approach to take, considering, for example, that any
instruction in the .NET virtual machine can cause a VirtualMachineError exception.

Documenting exceptional behavior consists of describing (1) under which condi-
tions the exception may be thrown and (2) what may be assumed about the pro-
gram state when it is thrown. We illustrate these concerns with the JML example in
Figure 6.
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import java.util.EmptyStackException;

public class Stack <T> {

Node <T> top;

/*@ assignable top , top.prev;

@ signals (Exception) false;

@*/

void push(T val) {

top = new Node <T>(val , top);

}

/*@ normal_behavior

@ requires top != null;

@ assignable top;

@ also

@ exceptional_behavior

@ requires top == null;

@ assignable \nothing;

@ signals (EmptyStackException) true;

@*/

T pop() throws EmptyStackException {

if (top == null) throw new EmptyStackException ();

T val = top.val;

top = top.next;

return val;

}

}

class Node <T> {

T val;

Node <T> next , prev;

//@ assignable val , next , n.prev;

Node(T v, Node <T> n) {

val = v;

next = n;

if (n!=null) n.prev = this;

}

}

Fig. 6. A JML specification of the exceptional behavior for Stack.

The signals clause in the specification of method push is an exceptional postcon-
dition. It expresses that if the method throws an exception of type Exception, then
false has to hold in the post-state of the method. Since this exceptional postcondition
cannot be satisfied, the method must not throw such an exception. It may, however,
throw an ignored exception; for instance, the creation of a new Node object may cause
an OutOfMemoryError, which is not precluded by the signals clause. The specification
of method pop contains an exceptional specification case consisting of an exceptional
precondition, assignable clause, and postcondition. It expresses that pop may throw an
exception only if top is null in the pre-state of the call. In this case, the method must not
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modify the heap. The exceptional postcondition holds trivially. The Penelope specifica-
tion language for Ada also has convenient syntax for expressing when a procedure may
or must throw exceptions [Guaspari et al. 1992; Marceau 1994]. Spec# also supports
exceptional pre- and postconditions. Modifies clauses in Spec# specify the locations that
are potentially modified in the normal or exceptional execution; normal or exceptional
postconditions can be used to strengthen the frame axiom for the respective case.

Languages with exceptions provide exception-handling constructs, such as catch and
finally blocks, in Java and C#. In the presence of side effects, it is often unclear what
an exception handler may assume about the state of the program, for instance, which
invariants may be assumed to hold [Jacobs et al. 2007]. For documented exceptions, the
exceptional frame axiom and postcondition provide this information, but for ignored
exceptions, one may only assume properties that hold throughout the code that poten-
tially throws an exception and properties the exception handler can test at runtime.
So, very often, there is no safe way to recover from an ignored exception.

3. MODULES

As programs become larger, coping with their growing complexity necessitates the
use of structuring techniques that aggregate subprograms and states with related
functionality. For this purpose, programming languages include structuring constructs
such as modules (e.g., in Modula-3), packages (e.g., in Ada), classes (e.g., in Java and
C++), and aspects (e.g., in AspectJ). In our discussions, we will adopt the term module
as a generic term for such constructs.

A crucial feature of modules is that they support information hiding. Essentially,
this means that the module’s declarations are partitioned into a public module inter-
face, which is visible to all clients of the module, and a private module body, which
contains the module implementation and is hidden from clients. The public module in-
terface’s behavior can be specified using a behavioral interface specification language.
Some programming languages offer the ability to provide more than one interface to a
module; for example, the protected mode in C++ defines an interface to a class that is
visible only to those subclass clients that extend the class. Modula-3 lets the program-
mer define any number of interfaces to a module. A specification language may allow
specification of each of these different interfaces if the specifications are distinguished
by different visibility levels [Leavens and Müller 2007].

Information hiding is best enforced with a combination of programming language
elements and specifications. The programming language’s modules control visibility,
while the specfication language gives the ability to describe behavior that is sufficient
for client programming without exposing implementation details. Together, these give
the provider of a module the freedom to revise implementation details as long as the
implementation continues to meet its specification [Liskov and Guttag 1986; Parnas
1972].

The challenge in writing behavioral specifications for modules—and, indeed, a chal-
lenge in the design of module interface specification languages—lies in letting interface
specifications say what clients need to know while avoiding exposure of implementation
details. To answer this challenge, a specification language can provide data abstraction
facilities that allow a module’s behavior to be specified while hiding implementation
details from all clients. In this section, we discuss how data can be abstracted and how
one can specify invariants of module implementations. We will disscuss the related
issue of how framing is done in the next section.

3.1. Data Abstraction

Data abstraction allows one to specify the behavior of a module independently of its
implementation. For instance, a hash map can be specified abstractly as a partial
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function from keys to values rather than in terms of its concrete representation, say, an
array of linked lists of tuples of keys and values. Abstract specifications have numerous
advantages over implementation-dependent specifications.

—Data abstraction can be used to specify interfaces that have no implementation, only
partial implementations, or many different implementations. This expressiveness is
especially needed for object-oriented programming to handle abstract classes and
subtyping.

—Abstract specifications are not affected by changes of implementation details. In
particular, clients that rely only on abstract specifications need not be re-verified
when the implementation of a module changes.

—Abstract specifications tend to be simpler to write, read, and understand than
implementation-dependent specifications because they hide certain complications
such as pointers, caches, etc. In the preceding hash map example, it is much simpler
to specify a look-up in terms of a partial function than to describe it in terms of arrays
of lists.

—Abstract specifications are often expressed in terms of mathematical notions, such as
sets, sequences, relations, etc. Many theorem provers are equipped with various lem-
mas and tactics for these notions, which increases automation during the verification
step.

—Expressing behavior in terms of mathematical notions, such as sets and functions,
allows one to formally connect the specification of a module to a high-level design
specification written in languages such, as VDM, Z, or B. This approach has been
pioneered by the Larch project, which developed interface specification languages
that make use of mathematical vocabulary expressed in the Larch Shared Language
LSL [Guttag et al. 1993].

In all approaches to data abstraction, the idea is to present a higher-level, more
abstract, view of what the module implements. For instance, one higher-level view of
the stack module is as a mathematical sequence. The specifications of the module’s
procedures can thus be given in terms of that abstract view, and the abstract view
must be connected with the actual implementation.

In specification languages that are built on a specific mathematical vocabulary, such
as VDM and the Larch family of interface specification languages, the abstract view
is typically a value of a mathematical space, such as a sequence. In a specification
language without a defined mathematical vocabulary, such as JML, the abstract view
is defined within the semantics of the programming language. JML provides a library of
modeling classes that provide a JML representation of familiar mathematical concepts.
For instance, the modeling class JMLObjectSequence represents sequences of objects.

We explain four approaches to data abstraction: ghost variables, model variables,
logic functions, and pure methods.

3.1.1. Ghost Variables. One simple approach to data abstraction is to introduce ghost
variables for the abstract view in the module interface. Figure 7 shows a simple Counter
class with JML specifications. The ghost variable value is used to specify the behavior
of increment and decrement without exposing implementation details. Changing the
internal representation of the counter, for instance, to store the value explicitly, does
not affect the public specifications.

Similar to the use of ghost variables in loops (see Section 2.3.1), we can specify
the connection between the ghost variables and the implementation’s variables by a
module invariant. Here, the invariant expresses that the counter value is the difference
between the number of increments and the number of decrements. Note that this
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public class Counter {

private int increments;

private int decrements;

//@ public ghost int value;

//@ private invariant value == increments - decrements;

//@ public ensures value == \old(value) + 1;

public void increment () {

increments ++;

//@ set value = value + 1;

}

//@ public ensures value == \old(value) - 1;

public void decrement () {

decrements ++;

//@ set value = value - 1;

}

//@ public ensures \result == value;

public int get() {

return increments - decrements;

}

}

Fig. 7. A JML specification of a class Counter using a ghost variable. Data abstraction for assignable clauses
is discussed in Section 4.

invariant is not visible to clients since it refers to implementation details, namely the
hidden variables increments and decrements.

To maintain this invariant, the procedure implementations in the module must
update the ghost variable value accordingly. In JML, this is achieved by set statements,
as illustrated in the methods increment and decrement.

The approach of using ghost variables for data abstraction has a relatively small
impact on the complexity of the specification language. The biggest complication comes
from the use of module invariants, where one sometimes needs to wrestle with in-
termediate states where the invariants do not hold (like the states between the two
statements of increment in Figure 7). We discuss invariants further in Section 3.2.

3.1.2. Model Variables. A disadvantage of ghost variables is that they need to be updated
explicitly, which may be cumbersome. Model variables [Cheon et al. 2005; Leino 1995],
also known as abstract variables (in the refinement calculus), address this problem. A
model variable has the appearance of a variable, but its value is defined as a function of
more concrete variables, called its representation. Like ghost variables, model variables
typically hold values of a mathematical domain, such as sets or sequences. Figure 8
shows the Counter example from Figure 7, this time specified using a model variable.

To a client that is aware only of the abstract view of a module, there is no interest-
ing difference between model variables and ghost variables. However, unlike a ghost
variable whose value changes only as performed by ghost-variable assignments, the
value of a model variable changes immediately when there is a change in the value of
a variable used in its representation. Therefore, the module body is simpler because
the connection between the model variable and its representation is declared once and
for all. In JML, this connection is expressed using a represents clause that describes
how the value of the model variable can be derived from values of concrete variables.
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public class Counter {

private int increments;

private int decrements;

//@ public model int value;

//@ private represents value = increments - decrements;

//@ public ensures value == \old(value) + 1;

public void increment () {

Old: increments ++;

Here: ;

}

//@ public ensures value == \old(value) - 1;

public void decrement () {

Old: decrements ++;

Here: ;

}

// get method as before

}

Fig. 8. A JML specification of class Counter using a model variable. The statement labels Old and Here are
used in Section 3.1.3 and can be ignored on first reading.

Like the invariant in the previous version of the example, the represents clause is not
visible to clients.

Though simple for a user, the treatment of model variables has some complications.
One complication is that the given representation function may be a partial expres-
sion. As for other partial expressions (see Section 2.1.3), one has to decide when the
expression has to be defined and how to enforce that decision.

Another complication is how to deal with the far-reaching changes of model variables.
When an ordinary program variable is changed, it has a potential effect on all model
variables whose representation transitively depends on the variable; that is, it has a
potential effect on the entire upward closure of the variable [Leino and Nelson 2002].
This becomes especially troublesome when model variables are fields of dynamically
allocated objects and the dependencies can go through an unbounded number of objects.
A solution to this complication is to let model variables occasionally go out of sync with
their representation function [Leino and Müller 2006]; the semantics of model variables
then reverts to the simpler semantics of ghost variables but with the convenience that
the model variables are automatically updated outside the regions where they are
allowed to go out of sync. This solution also suggests a policy for when representation
functions need to be well defined.

3.1.3. Logic Functions. Both ghost variables and model variables typically store values
of the program execution. However, it is sometime useful to abstract concrete data
structures to values of a mathematical domain. This can be achieved by expressing
data abstraction via mathematical functions and predicates, which (following Filliâtre
and Marché [2004]) we shall refer to as logic functions. A logic function is defined using
the expression language of the specification logic, which will typically differ from the
programming language. The main difference from model variables, aside from syntax,
is that logic functions are not defined using the programming language but are always
defined in mathematical terms. This difference has two important consequences. First,
it is clear that evaluating logic functions does not change the program state. However,
the definition may depend on the program state, so changing the program state may
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affect the value of the logic function. Second, the reasoning logic uses the logic function
definitions directly. For example, if the logic function is defined recursively, it is up to
the reasoning logic to decide how to unfold or inductively reason about the definition.

JML does not support logic functions, but the JML dialect used in the Krakatoa tool,
KML, does [Marché 2009]. For our Counter example, we can replace the model variable
value and its represents clause with the following logic function, which is declared
outside class Counter.

/*@ logic int value{L}( Counter c) =
@ \at(c.increments ,L) - \at(c.decrements ,L);
@*/

where L is a label that is used to refer to a particular state and \at is used to refer
to the state at a given label. The specification of Counter can refer to the abstract
state of the counter by applying the above logic function, that is, by replacing value by
value{Here}(this) and \old(value) by value{Old}(this) in Figure 8. Besides logic
functions and their definitions, KML allows one to state axioms and lemmas which are
passed directly to the theorem prover.

Traditionally, logic functions are found in all nonexecutable specification notations,
like Z [Spivey 1989] and TLA [Lamport 1994]. They are also supported in many speci-
fication languages that are more closely integrated into programming languages, like
in Larch [Guttag et al. 1993], ACSL [Baudin et al. 2009] and the Caduceus tool for C
[Filliâtre and Marché 2004], the Krakatoa tool for Java [Marché et al. 2004; Marché
2009], VeriCool [Smans et al. 2008], and Dafny [Leino 2010]. Their use in separa-
tion logic, where they go under the name abstract predicates [Parkinson and Bier-
man 2005], is particularly interesting. There, the definitions can make use of the
separating-conjunction operator, which means the abstract predicates can describe
well-formedness conditions at the same time on the heap structure (see Section 4.2).

An issue with logic functions is making sure their definitions are logically consistent.
This can be done using techniques like those we have already described for well-
definedness of expressions (Section 2.1.3) and termination of recursive procedures
(Section 2.3.2).

3.1.4. Pure Methods. While logic functions are easy to encode in program logics, they
sometimes add additional specification overhead. Often classes already contain meth-
ods that express the desired abstraction, such as the get method in our example. Using
such pure methods [Leavens et al. 2005, 2006] in specifications is the fourth and last
approach to data abstraction that we consider. By declaring the method as pure, one
indicates the intention that the method’s implementation has no observable side effects
on the program state, which lets assertions call the pure method. For instance, the get
method in class Counter can be declared pure (see Figure 9) and then be used to specify
increment and decrement.

To reason about the pure method in an assertion, one uses not the implementation
of the pure method but, instead, its pre/postcondition specification. In our example,
the postcondition of get is private because it refers to hidden implementation details.
Nevertheless, this postcondition allows one to prove that increment and decrement
satisfy their specifications. The implementation of a pure method which is verified to
really be pure and to satisfy its specification computes a value that can be used in the
dynamic checking of assertions.

Using an already existing language feature has definite appeal over introducing logic
functions. In the limit, one may attempt to use pure methods as the means for users
to build up algebraic theories (e.g., a theory of permutations or a theory of multisets)
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public class Counter {

private int increments;

private int decrements;

//@ public ensures get() == \old(get ()) + 1;

public void increment () {

increments ++;

}

//@ public ensures get() == \old(get ()) - 1;

public void decrement () {

decrements ++;

}

//@ private ensures \result == increments - decrements;

/*@ pure @*/ public int get() {

return increments - decrements;

}

}

Fig. 9. A JML specification of class Counter using the pure method get.

that can be used in assertions (like the modeling classes in JML [Leavens et al. 2009]).
However, the handling of pure methods has proved to be surprisingly difficult.

One problem, which is shared with logic functions, is verifying that the pure method
is well defined and does not lead to an unsound axiomatization [Darvas and Müller
2006; Darvas and Leino 2007].

Another problem is checking that the method really is pure, that is, free of side
effects. This is not as simple as a syntactic check for assignment statements, because
one wants to allow the method body to, for example, allocate new objects (perhaps an
iterator object or a string builder) and modify their state. Hence, the desired check is
that of observational purity, which says that the method may have some side effects,
but it appears pure to any observer [Barnett et al. 2004; Naumann 2007; Cok and
Leavens 2008; Salcianu and Rinard 2005].

A third problem is that pure methods are not necessarily deterministic. More pre-
cisely, calling a pure method twice may yield two different results, because the side
effects supposedly not visible to observers cause the second call to start in a slightly
different state. This means that pure methods cannot be represented as mathematical
functions of their arguments and of an unchanging heap. One solution is to make the
definition of observational purity strict enough to avoid this situation; another is to
allow slightly different results and to prevent callers from assuming anything more
than some sort of equivalence between the results [Leino and Müller 2008].

3.1.5. Summary of Data Abstraction Techniques. All four data abstraction techniques just
described allow one to express specifications without revealing implementation details.
The main differences between the techniques lie in how the abstract state of a module
gets updated and in whether the abstraction is expressed in the programming language
or in the underlying logic.

With ghost variables, all updates of the abstract state have to be performed explicitly
by the program. So for a program verifier, ghost variables behave exactly like ordinary
program variables, which makes them easy to reason about and trivial to support in
specification languages and verification tools. However, the explicit updates sometimes
lead to a large specification overhead, especially for recursive data structures. In con-
trast, model variables, logic functions, and pure methods automatically reflect changes
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in the concrete representation without any explicit updates. A downside of these im-
plicit changes is that framing—that is, deciding which abstract values are affected by
an update of a concrete variable—becomes challenging and requires other verification
techniques, which we discuss in Section 4.

Logic functions are defined as mathematical functions in the program logic, which
gives them a precise semantics and avoids the problems of checking purity and deter-
minism. However, logic functions require programmers to be familiar with two differ-
ent formalisms: the programming language and the mathematical notation in which
the logic functions are defined. In contrast, the values assigned to ghost variables,
the representations of model variables, and the specifications and implementations of
pure methods are typically expressed in the programming language. While this leads
to the complications just discussed, it simplifies runtime assertion checking and fa-
cilitates reuse. For instance, modules typically provide various methods for observing
the state of the module, and these methods can also be used in specifications as pure
methods. Finally, model variables can be seen as parameter-less pure methods. The
absence of parameters greatly simplifies framing, see Section 4.

3.2. Module Invariants

Data abstraction offers a way to talk about the module’s state in the module interface
and to connect that abstract view with the module body’s state. But proving the cor-
rectness of a module body also relies on knowing that its concrete data structures are
in a good state [Hoare 1972], for instance, that certain variables hold non-null value or
that an index lies within the bounds of an array. Such properties about data structures
are, in general, captured by module invariants.

Module invariants might be categorized as being private or public. A private module
invariant is visible only to the module body, and hence it can depend only on variables
(e.g., fields) declared in the module body. A public module invariant can mention public
variables and other entities declared in the module interface but cannot depend on
private variables. Such public invariants let clients of the module know about properties
that are ensured by the module, for example, that the stack size lies within some bound.
Making certain invariants private preserves information hiding and avoids the re-
verification of clients when implementation details and the corresponding invariants
change [Leavens and Müller 2007].

When module invariants mention more than one variable, it becomes necessary to
allow some program points where an invariant is temporarily violated. A question is
then, when does a module invariant hold? A simple answer is that a module invari-
ant holds whenever control is outside the module. The simple answer suffices in the
idyllic sequential setting where a module invariant constrains the state of only one
module and where the entry and exit points of the module can be determined statically.
A module invariant is then checked at the end of the module initialization and at each
module exit point; in return, the module invariant can be assumed to hold at each
module entry point.

However, these assumptions do not apply to realistic programs. First, it is common
to use invariants to relate the state of several modules. For instance, such multimodule
invariants relate the objects in a data structure (e.g., the subject and its observers in
the Observer pattern [Gamma et al. 1995]) or constrain the components of an aggre-
gate structure (e.g., the array used to implement a list). A special case of multimodule
invariants occurs with inheritance in object-oriented programs, where subclass invari-
ants often constrain the values of fields that are inherited from superclasses, that is,
declared in a different module. Second, the entry and exit points of a module are often
not statically known, for instance, in the presence of procedure pointers or dynamically
dispatched methods. A complication, then, is the possibility of callbacks, that is, when
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a module calls a procedure while the module invariant is temporarily violated, the
procedure might call back and reenter the module under the false assumption that the
module invariant holds. With procedure pointers and dynamic binding, such callbacks
cannot, in general, be detected with complete precision by a modular static analysis. In
the following, we summarize solutions to these two issues and glance at alternatives
to module invariants.

3.2.1. Multimodule Invariants. When invariants constrain the state of multiple modules,
then the update of a single variable potentially violates numerous module invariants.
For instance, an update of a subject module might temporarily violate the invariants
of all its observers until the observers are notified and their invariants get reestab-
lished. The key issue in reasoning about multimodule invariants is how to enforce
statically and modularly that all invariants that are potentially violated by an update
get reestablished. There are three major solutions.

(1) Encapsulation. A variable is encapsulated in a structure (such as a module or
an object) if it can be assigned to only by procedures of that structure. When an
invariant is restricted to constrain only encapsulated variables, then one can impose
proof obligations on the procedures of the structure to enforce that the invariant is
preserved [Müller et al. 2006]. A typical example is aggregate structures, where the
subcomponents of the aggregate are modified only through the aggregate component.

(2) Visibility. Even when invariants depend on variables that are not encapsulated,
one can determine the necessary checks statically and modularly if an invariant is vis-
ible at all variable assignments that possibly violate the invariant [Müller et al. 2006].
This visibility requirement is found in recursive data structures (e.g., the invariant
that relates two nodes of a doubly linked list) and when several cooperating modules
are declared in a larger context (such as a package or assembly), for instance, a list
and its iterator.

(3) Monotonicity. Invariants may depend on variables of arbitrary modules if the
variables evolve monotonically and the invariant is preserved by the monotonic up-
dates. For instance, if a counter variable is only incremented, then an invariant stating
that the counter is positive is never violated after it has once been established. The
two most common forms of monotonicity are initialization (a variable goes from the
uninitialized state to the initialized state but never back) [Fähndrich and Xia 2007]
and immutability (a variable is not updated at all after its initialization) [Leino et al.
2008]. More general forms of monotonicity are explored in type states [Fähndrich and
Leino 2003; Pilkiewicz and Pottier 2009], object relations [Leino and Schulte 2007;
Cohen et al. 2010], and concurrency [Jones 1983; Cohen et al. 2010].

3.2.2. Callbacks. A common semantics for module invariants is to require module in-
variants to hold in all visible states, that is, in the pre- and post-states of all procedures
[Drossopoulou et al. 2008; Meyer 1997]. To avoid that a callback enters a module under
the false assumption that the module invariant holds, techniques based on a visible
state semantics enforce that each module invariant is reestablished before calling a
procedure that potentially calls back. Since it is typically not known statically which
procedures call back, invariants need to be reestablished before each call, which is often
inconvenient and may be impossible if the call itself is necessary for reestablishing the
invariant.

An alternative to the visible state semantics is to specify explicitly in each procedure’s
precondition which invariants it requires to hold [Leino and Müller 2004]. It is then
possible to make calls while an invariant is violated, as long as the called procedure
does not require that invariant to hold. If it does not, the procedure might still call back
but not under the false assumption that the invariant holds. This approach, which is
implemented in Spec#, is more flexible than visible state semantics but requires good
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default specifications and abstraction mechanisms to keep the specification overhead
low.

3.2.3. Alternatives. Specification and verification techniques that handle the invariants
occurring in modern (especially object-oriented) programs in a sound and modular way
are nontrivial. An alternative to module invariants is to specify the required constraints
explicitly in pre- and postconditions. The data abstraction mechanisms described in
Section 3.1 can be used to preserve information hiding and to express constraints on
multiple modules. This approach solves the callback problem trivially because there
are no implicit assumptions when certain conditions hold. Dealing with multimodule
invariants is reduced to framing model variables, logic functions, or pure methods,
which we discuss in Section 4. Replacing invariants by logic functions (abstract pred-
icates) is common in separation logic [Parkinson and Bierman 2005]. ESC/Modula-3
[Leino and Nelson 2002] explored this specification pattern using a model variable
valid to express that an object is in a good state.

4. OBJECTS AND THE HEAP

In order to specify the behavior of objects and other heap data structures, a specification
technique must be able to describe (a) the topology of the data structures and (b) the
effects that methods have on them. We illustrate these two facets using a Java class
Node with fields a and b of type Node.

A specification of the topology of a data structure typically answers the following
questions.

—What is the shape of the implemented data structure? For example, instances of
Node could represent a doubly-linked list (with a and b pointing to the predecessor
and successor node, respectively) or a binary tree (with a and b pointing to the left
and right child node, respectively). Information about the shape is typically needed
to prove functional correctness of a data structure, for instance, deletion of a node
works differently for lists and trees.

—Does the data structure contain cycles? For example, our nodes could form a cyclic
or an acyclic list. Information about cyclicity is, for instance, needed to program and
prove termination or deadlock-freedom of list traversals.

—Which objects of a data structure are potentially shared? For example, for a tree
structure, we want to express that the left and right subtrees are disjoint. Similarly,
we might want to express that two instances of a class List do not share any nodes.
Information about sharing is needed to reason about the effects of modifications,
for instance, to prove that modifying the nodes of one list does not affect any other
list.

A specification of the effects of the methods of a data structure may include the
following.

—Write effects. Which parts of the heap are potentially modified by a method? This
information is needed to determine which properties of the heap are affected by a
method.

—Read effects. Which parts of the heap are potentially read by a method? This in-
formation is needed to reason about dependencies, both for knowing when a pure
method’s value may change (see Section 3.1.4) and for reasoning about interference
in a concurrent program.

—Allocation and deallocation effects. Which objects are allocated or deallocated by a
method? Information about allocation is, for instance, needed to prove that the result

ACM Computing Surveys, Vol. 44, No. 3, Article 16, Publication date: June 2012.



Behavioral Interface Specification Languages 16:31

of a method is different from all existing objects. Deallocation information is needed
to verify programs with explicit memory management.

—Locking information. Which locks are acquired or released by a method? This infor-
mation is needed to prove the absence of data races and deadlocks.

In order to be useful for program verification, specification techniques for topologies
and effects must address three major challenges.

(1) Abstraction. Heap properties have to be expressed in an implementation-
independent way. Abstraction is important for preserving information hiding and to
support subtyping [Leavens and Müller 2007; Leino 1998]. For instance, a write ef-
fect specification that simply lists the (concrete) fields modified by a method breaks
information hiding by revealing field names does not work for interfaces and abstract
classes, which might not have fields and is too restrictive for subclasses, which might
have to modify additional fields.

(2) Reasoning. The formal framework in which heap properties are expressed should
allow efficient, ideally automatic reasoning. For instance, topology properties are often
expressed using reachability predicates, which are notoriously difficult to handle for
automatic theorem provers, such as SMT solvers.

(3) Framing. One of the most important reasoning steps that any specification of
heap operations must support is framing, that is, proving that certain heap properties
are not affected by a heap operation [Gorelick 1975]. The following invariance rule
illustrates framing.

{P} C {Q}
{P ∧ R} C {Q∧ R} if the write effect of C is disjoint from FV(R)

This rule suffices if R is a predicate that only involves simple variables and FV(R)
denotes the free variables of R. The rule says that an assertion about some state that
is unmodified by C can be preserved. However, with complex heap data structures,
the side condition becomes more troublesome: the disjointness of the effects of C and
the assertion R becomes more difficult to specify. We need to be able to specify that the
footprint of C—the locations that C changes—is disjoint from the footprint of R—the
locations that R depends upon.

In the following, we present three major approaches to the specification of heap
properties. The first approach uses explicit footprints, that is, sets of objects (or loca-
tions) that are used in predicates and effect specifications. The second approach uses
implicit footprints which are derived from predicates in specialized logics. The third
approach uses predefined footprints that are derived from predefined heap topologies.
We illustrate the three approaches with an example of an unbounded stack that is
implemented using a linked list. We present its implementation in Figure 10. This im-
plementation uses the Node class from Figure 6 to represent the stack as a doubly-linked
list.

4.1. Explicit Footprints

The basic idea of this approach is to represent the footprint of data structures and pred-
icates directly in the logic as sets of objects or sets of locations. We will call these sets
regions in the following. A specification typically contains (a) a specification of regions
which can be expressed as ghost variables or as functions of the heap, (b) predicates
that describe the topology of a data structure and other well-formedness conditions,
and (c) read and write effects for the operations of the data structure, expressed in
terms of the specified regions.

The explicit footprints approach was pioneered in Dynamic Frames [Kassios 2006],
which uses heap-dependent logic functions (see Section 3.1.3) to describe regions. In the
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public class UnboundedStack <T> {

private Node <T> top;

public void push(T val) {

top = new Node <T>(val ,top);

}

public T pop() {

T val = top.val;

top = top.next;

return val;

}

public boolean isEmpty () {

return top==null;

}

}

Fig. 10. A Java implementation of an unbounded stack. Class Node is shown in Figure 6.

function Valid (): bool

reads {this} + footprint;

{

this in footprint && !(null in footprint) &&

(next == null ==> content == [val]) &&

(next != null ==> next in footprint && next.footprint < footprint &&

!(this in next.footprint) && next.prev == this &&

content == [val] + next.content && next.Valid ())

}

Fig. 11. A logic function defining a list Node’s footprint in Dafny.

following example, we describe how dynamic frames, as found in the Dafny language
[Leino 2010] express aspects (a)-(c).

(a) We specify the footprint of the doubly-linked list of Node objects using a (ghost)
field:

ghost var footprint: set <Node <T>>;

which has to be updated explicitly in the code whenever the footprint of the list changes,
for instance, when a node is added. (b) The contents of footprint, as well as other
well-formedness conditions, are specified by the boolean function shown in Figure 11,
where + is overloaded to denote set union and sequence concatenation, in denotes
set membership, < is overloaded to denote the strict subset operator, {_} constructs a
singleton set, and [ ] constructs a singleton sequence.

The function Valid expresses that footprint contains at least the current node this
and its successors. It also specifies the topology. Here next.prev == this ensures that
each node is correctly linked to its successor. Since the footprint of the successor must
be a subset of the footprint of the current node but not contain the current node, we
can conclude that the list is acyclic. The ghost field content ranges over sequences of
T; it is used to specify the functional behavior of the list. (c) The region footprint is
used to specify the read effect of Valid.

Figure 12 shows the Dafny version of class UnboundedStack. Like Node, it de-
clares a field to store the footprint. Function IsUnboundedStack specifies the
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class UnboundedStack <T> {

var top: Node <T>;

ghost var footprint: set <object >;

ghost var content: seq <T>;

function IsUnboundedStack (): bool

reads {this} + footprint;

{

this in footprint &&

(top == null ==> content == []) &&

(top != null ==> top in footprint &&

top.footprint <= footprint &&

top.prev == null && content == top.content &&

top.Valid ())

}

function IsEmpty (): bool

reads {this};

{ content == [] }

method InitUnboundedStack ()

modifies {this};

ensures IsUnboundedStack () && IsEmpty ();

{ top := null; footprint := {this}; content := []; }

method Push(val: T)

requires IsUnboundedStack ();

modifies footprint;

ensures IsUnboundedStack () && content == [val] + old(content );

{

var tmp := new Node <T>; call tmp.InitNode(val ,top);

top := tmp; footprint := footprint + {tmp};

content := [val] + content;

}

method Pop() returns (result: T)

requires IsUnboundedStack () && !IsEmpty ();

modifies footprint;

ensures IsUnboundedStack () && content == old(content )[1..];

{

result := top.val;

assert top.Valid ();

footprint := footprint - top.footprint; top := top.next;

if (top != null) {

footprint := footprint + top.footprint; top.prev := null;

}

content := content [1..];

} }

Fig. 12. A Dafny version of UnboundedStack. Dafny does not have constructors; therefore, method
InitUnboundedStack is used to initialize a new instance. We implemented IsEmpty as a function instead
of a method to be able to use it in specifications.

well-formedness conditions for stacks, especially that the footprint of a stack con-
tains the footprint of its nodes and that the nodes are well formed. Methods Push
and Pop illustrate how regions are used to specify write effects using a modifies
clause.
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The explicit footprint technique addresses the three challenges just described as
follows.

(1) Abstraction. Effects are specified in terms of regions which do not reveal im-
plementation details, such as names of fields. The content of a region is typically
underspecified, which allows subclasses to extend inherited regions. For instance, func-
tion IsUnboundedStack only requires that at least the stack and the footprint of its first
node be in the footprint, but subclasses might add more objects if needed.

To specify footprints implementation-independently, one can apply any of the data ab-
straction techniques outlined in Section 3.1. As initially presented by Kassios, dynamic
frames use logic functions to describe regions. VeriCool [Smans et al. 2008b] uses pure
methods for this purpose. When using an automatic theorem prover to reason about
footprints, recursively defined pure methods or logic functions can be a hampering issue
due to the possibility that the prover will instantiate function definitions indefinitely.
The problem can be curbed instead by using ghost variables, as in Dafny [Leino 2010]
and region logic [Banerjee et al. 2008].

Data groups [Leino 1998; Leino et al. 2002] can also be used to specify footprints
within a single object. They are very similar to model variables (see Section 3.1.2). A
data group represents a region. Typically, a data group is declared in a module interface
(like a model variable); the contents of the data group are declared in the module body
(like the representation of the model variable).

(2) Reasoning. The original work on dynamic frames [Kassios 2006] uses higher-
order logic, which is difficult to automate. However, subsequent work (for instance on
VeriCool, Dafny, and region logic), developed dynamic frames in a first-order setting.
Zee et al. [2008], have used explicit footprints successfully to verify the functional cor-
rectness of linked data structures in Jahob. Banerjee et al. [2008] report on promising
experiments with an encoding of region logic in the intermediate verification language
Boogie [Leino and Rümmer 2010]. However, the VCC project [Cohen et al. 2009] ex-
perienced performance problems with dynamic frames, which made them switch to a
flexible ownership system instead.

(3) Framing. With explicit footprints, framing is done by proving that the read effect
of a predicate and the write effect of a method are disjoint. For instance, for well-formed
stacks s1 and s2, the following code verifies in Dafny (where !! denotes disjointness of
sets).

assume s1.footprint !! s2.footprint;
assume s1.IsEmpty ();
call s2.Push(o);
assert s1.IsEmpty ();

The call to Push preserves s1.IsEmpty() because the read effect of s1.IsEmpty() is
{s1}. Since s1 is well formed, we know that s1 is in s1.footprint and thus disjoint
from s2.footprint, which is the write effect of the call to s2.Push.

4.2. Implicit Footprints

Next we consider specialized logics, which allow for elegant implicit representa-
tions of the footprints. The two main representatives of this approach are separation
logic [O’Hearn et al. 2001, 2004; Reynolds 2000, 2002] and implicit dynamic frames
[Smans et al. 2008a; Leino and Müller 2009]. In this section, we focus on separation
logic, which extends the assertion language of Hoare logic with a new connective: the
separating conjunction P ∗ Q. Each assertion in separation logic defines a portion of
the heap. P ∗ Q means that the current portion of the heap can be split into two disjoint
portions such that one satisfies P and the other Q.
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The key to separation logic is local reasoning, that is, a specification needs to describe
all the state that the code uses (even if it just reads from it). The triple {P} C{Q} means
that all the state the code C needs to execute is described by P. That is, P describes
precisely the footprint of the code C. This interpretation of triples leads to the following
key rule of separation logic.

{P} C {Q}
{P ∗ R} C {Q∗ R}

This rule allows any proof to be extended by disjoint state and to know that this disjoint
state is unmodified. This is valid as P must describe all the heap that C uses, and hence,
it cannot change any additional state.

Note that some versions of separation logic require side conditions about local vari-
able modification, as ∗ only separates heaps. Separation logic can be extended such
that ∗ is used to also separate variables, so that these side conditions are not re-
quired [Parkinson et al. 2006].

In the rest of this section, we use a separation logic for Java based on Parkinson’s
work [Parkinson 2005; Parkinson and Bierman 2005]. This separation logic has a
primitive assertion for describing the value of a field in the heap, x. f 
→ v. It means
the heap contains at least field f of the object x, which has value v. Using ∗ we can
describe the portion of the heap containing several disjoint objects.

Separation logic uses predicates (logic functions, see Section 3.1.3) to specify data
structures. We define a predicate Node to specify the state associated with a Node
object.

Node(x, v, n, p) = x.val 
→ v ∗ x.next 
→ n ∗ x.prev 
→ p

This simply states that we have three fields for node x: val, next, and prev—the first
pointing to v, the second to n, and the third to p. The predicate Node(x, v, n, p) implicitly
defines a footprint consisting of x.val, x.next, and x.prev.

Using this predicate, we can define a recursive predicate List for a doubly-linked
list.

List(x, nil(), p) = x = null
List(x, cons(v, vs), p) = ∃n. Node(x, v, n, p) ∗ List(n, vs, x)

The first argument to this predicate indicates the head of the linked list, the second
specifies the contents of the list as a sequence, and the final specifies the value of the
previous pointer coming from the doubly-linked list. The definition is split into two
cases: (a) empty nil(), the head is simply null; and (b) nonempty cons(v, vs), the list is
composed of a node with value v and the rest of the list with contents vs. Importantly,
for the second case, the node and the rest of the list are disjoint. This means the list
cannot be cyclic. The implicit footprint defined by List(x, cons(v, vs), p) contains the
val, next, and prev fields of all nodes reachable from x via next references.

Finally, we package the list into a predicate that represents the Stack class.

Stack(s, vs) = ∃l, p. s.top 
→ l ∗ List(l, vs, p)

This has a single field top that points to the start of the list. Its implicit footprint
contains s.top as well as all locations in the footprint of the underlying list.

We use this predicate to specify the operations on the stack in Figure 13, in the syntax
of jStar specification files (each Java method signature is followed by two formula—
the first, the precondition and the second, the post). Note that this specification does
not contain explicit read or write effects (modifies clauses). They are implicit in the
method preconditions. By mentioning the Stack predicate in the precondition of a
method, the method gains the permission to read and write all locations in the footprint
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class UnboundedStack {

UnboundedStack () :

{}

{ Stack(this , nil()) };

void push(Object val) :

{ Stack(this , vs) }

{ Stack(this , cons(val ,vs)) };

Object pop() :

{ Stack(this , cons(v,vs)) }

{ Stack(this , vs) ∗ v == return };

boolean isEmpty () :

{ Stack(this , vs) }

{ Stack(this , vs)

∗ (return ==false() ∗ vs == cons(_,_)

|| return ==true() ∗ vs == nil() ) };

}

Fig. 13. A separation logic specification for class UnboundedStack. The variables v and vs are logical vari-
ables, as described in Section 2.2.4. The represents anonymous existentials, each occurence can have a
different value.

of the predicate; the method cannot access any memory outside of this footprint. To
compensate for the absence of explicit write effect specifications, method isEmpty needs
a postcondition that states that the method will preserve the stack.

Returning to the three challenge properties for specifying topologies and effects, we
have the following.

(1) Abstraction. Separation logic and implicit dynamic frames achieve abstraction
through logic functions. The specification of the stack does not reveal implementation
details, as they are packaged up in the definition of the predicate. The second param-
eter to the stack predicate represents the interesting data stored in the stack. The
definitions of the predicates relate this value to the actual memory layout of the data.
If this predicate is scoped so that the client does not know the definition, then the
definition is abstract, and hence, the client cannot depend on any internal structure of
the stack [Parkinson and Bierman 2005]. We could give exactly the same specification
if the stack were implemented using a singly or doubly-linked list, or an array that is
dynamically resized when full.

(2) Reasoning. There have been many hand proofs of separation logic programs.
There is now a series of tools that can reason using separation logic, including Smallfoot
[Berdine et al. 2005], SpaceInvader [Distefano et al. 2006], SLAyer7, jStar [Distefano
and Parkinson 2008], and VeriFast [Jacobs and Piessens 2008]. Automatic reasoning
about separation logic formulae is an active area of research but still lags behind
classical logic.

Implicit dynamic frames can be encoded in first-order logic and are, thus, well suited
to automatic verification with SMT solvers, as illustrated by VeriCool [Smans et al.
2008b] and Chalice [Leino et al. 2009].

(3) Framing. Framing with implicit footprints is practically trivial. In the specifica-
tion, we have not had to specify modifies clauses or footprints. They are implicit in the
definition of the predicate. The predicates describe the shape of the stack. The code

7http://research.microsoft.com/en-us/um/cambridge/projects/slayer/.

ACM Computing Surveys, Vol. 44, No. 3, Article 16, Publication date: June 2012.



Behavioral Interface Specification Languages 16:37

cannot access any memory outside of this shape. As ∗ expresses disjointness, we simply
have to describe the precondition of the method as a separate area of the heap, and
then whatever heap is not in the area needed by the precondition will be preserved by
the call. Consider the following.

assume Stack(s1 , xs) * Stack(s2 , ys);
s2.push(o);
assert Stack(s1 , xs) * Stack(s2 , cons(o,ys));

Here, the call to push only needs to find the stack predicate for s2. It is automatic that
all the state disjoint from that predicate, that is, other predicates composed with ∗, will
be preserved.

4.3. Predefined Footprints

Whereas the first two approaches describe the heap properties found in a program, the
third approach is to enable efficient reasoning for programs with restricted topologies.
We will discuss ownership [Clarke et al. 1998] as a representative for this approach.

Most ownership systems enforce a tree topology: every object in the heap has at most
one owner object, and the owner relation is acyclic. Topological properties beyond this
tree structure have to be expressed using object invariants and predicate logic. Read
and write effects typically use ownership as an abstraction mechanism: the right to
read or write an object includes the right to read or write all the objects it (transitively)
owns.

We illustrate this approach using Spec#. Spec# expresses ownership via attributes on
field declarations. For instance, the [Peer] attribute in the following field declarations
in class Node express that a Node object has the same owner as its successor and its
predecessor.

[Peer] Node <T> next;
[Peer] Node <T> prev;

Additional topological properties, such as the fact that the nodes form a list and that
the list is acyclic, have to be expressed via object invariants.

invariant next != null ==> next.prev == this;
invariant prev != null ==> prev.next == this;
invariant 0 < len;
invariant len == (next == null ? 1 : next.len + 1);

The integer field len is needed to specify acyclicity of the list formed by the nodes.
Class UnboundedStack is shown in Figure 14. Its top field is declared with the [Rep]
attribute, which expresses that the stack owns its first node and, since all nodes in
the list are peers, all nodes. Therefore, different stacks are guaranteed to have disjoint
node structures. When a field declaration has no ownership attribute, its owner is not
specified and can be arbitrary. This is the case for the objects stored on a stack.

Spec# uses modifies clauses to specify write effects. Essentially, the modifies clause
of method Push expresses that the method may modify all fields of this (denoted by
the wildcard, *), as well as the fields of all objects (transitively) owned by this. This
interpretation allows the method to change the underlying node structure without
mentioning these implementation details in the modifies clause.

Read effects are expressed using the Reads attribute. The default for a pure method
is that it may read the state of its receiver and all objects owned by the receiver. This
default applies, for instance, to method IsEmpty in our example. Again, ownership is
used to abstract from the internal representation of the stack.
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public class UnboundedStack <T> {

[Rep] private Node <T> top;

invariant top != null ==> top.prev == null;

sealed model int height {

satisfies height == (top == null ? 0 : top.len);

}

public void Push(T val)

modifies this .*;

ensures height == old(height) + 1;

{

Node <T> tmp = new Node <T>(val);

expose(this) {

if (top == null) { tmp.len = 1; }

else { top.Prepend(tmp); }

top = tmp;

}

}

[return: NoDefaultContract] public T Pop()

requires height > 0;

modifies this .*;

ensures height == old(height) - 1;

{

assert top != null; // follows from precondition

Node <T> r = top;

expose(this) {

top = top.next;

if (top != null) {

expose(top) {

expose(r) { r.next = null; r.len = 1; }

top.prev = null;

}

}

}

return r.val;

}

[Pure] public bool IsEmpty ()

ensures result == (height == 0);

{ return top == null; }

}

Fig. 14. A Spec# version of UnboundedStack. The satisfies clause in the declaration of the model field
height provides the representation of height. An expose(o) block indicates program points at which o’s
object invariant may be broken. The attribute [return: NoDefaultContract] on method Pop disables a
default postcondition that requires the result’s invariant to hold, a property would require an ownership
relation between the stack and its elements. Method IsEmpty is declared pure such that it can be called in
specifications.
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The three challenges are addressed as follows.
(1) Abstraction. The effect specifications of UnboundedStack do not reveal implemen-

tation details. The wildcard allows one to abstract over field names, whereas ownership
is used to abstract over the owned objects, which form the internal representation of
the stack.

(2) Reasoning. Ownership has been used to verify invariants [Drossopoulou et al.
2008; Leino and Müller 2004; Müller et al. 2006] and write effects [Müller et al. 2003].
All the existing ownership-based verification techniques enforce that all modifications
of an object must be initiated by its owner. This strong encapsulation property gives
owners full control over modifications of their internal representation and, thus, allows
them to maintain invariants. Ownership has been shown to be useful also in reasoning
about model fields [Leino and Müller 2006] and in enforcing object immutability [Leino
et al. 2008].

The ownership topology and encapsulation can be enforced by type systems [Lu et al.
2007; Müller 2002], for instance, through Universe Types [Dietl and Müller 2005] as
is the case in JML, or through logic-based reasoning like in Spec# [Leino and Müller
2004]. In the latter case, ownership annotations are encoded as object invariants and
then verified in a program logic.

(3) Framing. Since ownership enforces a tree structure on the heap, we know that the
ownership trees rooted in two distinct objects o1 and o2 are disjoint if neither o1 owns
o2 nor vice versa. The disjointness of ownership trees can then be used to prove that
read and write effects of methods do not overlap. For instance, in the following code
snippet, we can prove that the call to s2.Push does not affect the result of s1.IsEmpty
because the write effect of the former is the ownership tree rooted in s2 and the read
effect of the latter in the tree rooted in s1. Since s1 and s2 are distinct objects with the
same owner, these trees are known to be disjoint.

assume s1 != s2 && Owner.Same(s1, s2);
assume s1.IsEmpty ();
s2.Push(o);
assert s1.IsEmpty ();

4.4. Summary of Heap Specification Techniques

All three techniques previously described allow one to specify the topologies of many
common object structures and the effects of their operations. They have been used as
the basis of several program verifiers. However, the three techniques strike a different
balance between expressiveness and automation.

Techniques based on explicit footprints are very expressive, since they allow spec-
ifications to relate different regions in arbitrary ways, for instance, to express the
disjointness or inclusion of regions or to characterize their intersection. Therefore,
these techniques can easily specify overlapping regions (sharing) or cyclic structures.
However, this flexibility complicates reasoning. When regions are stored explicitly in
ghost variables, programs need to update these ghost variables explicitly to maintain
invariants. Especially for recursive data structures, writing these updates can be cum-
bersome. Alternatively, when regions are computed by pure methods or logic functions,
one needs to reason explicitly about the effects of heap modifications on the results of
these functions, that is, on the contents of the regions.

Techniques based on implicit footprints are almost as expressive as techniques with
explicit footprints, but any sharing or cycles must be made explicitely, which can com-
plicate the reasoning. Verifiers based on separation logic have mostly applied symbolic
execution and not yet achieved the same level of automation as verifiers based on
verification condition generation. Recent work on implicit dynamic frames in Chalice
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[Leino and Müller 2009] showed how to reason automatically about implicit footprints
using verification conditions and automatic theorem provers. Investigating whether
this approach is also applicable to separation logic is ongoing research.

Finally, techniques based on predefined footprints are very convenient to use for data
structures whose topology is supported by the technique, but they provide no support
for other structures. For instance, specification techniques based on ownership handle
hierarchic aggregate structures with very little specification overhead but fail to specify
non-hierarchical topologies, such as the Observer pattern. The predefined topologies
allow program verifiers to apply specialized verification strategies and, thus, increase
automation. For instance, a verifier can exploit the hierarchy of ownership topologies
to show the termination of traversals of such structures.

5. SUBTYPING AND INHERITANCE

Object-oriented programming (OOP) presents many challenging problems for specifi-
cation and verification. We have already discussed issues related to abstract data type
specification and heap manipulation, both of which are prominent features of OOP. The
other essential characteristic of OOP is the use of subtyping and dynamic dispatch.

In type systems, subtype polymorphism allows variables and expressions to denote
values of several different but related types at runtime; for example, a variable coll
of static type Collection might denote an object of some Collection subtype, such
as Stack, Set, or Bag. Subtyping in this sense is a purely type-theoretic property that
requires that each instance of a subtype can be manipulated as if it were an instance of
its supertypes without type errors. For example, if the type system allows a method call
such as coll.add(e), then since coll denotes an object of some subtype of Collection,
the call must not produce a runtime type error. Cardelli [1988] published an influential
study of the conditions for type checking OOP. Cardelli’s subtyping rules prevent type
errors and can be extended to languages with more features, such as multiple dispatch
[Castagna 1995]. This use of subtype polymorphism is at the core of most object-
oriented design patterns [Gamma et al. 1995].

Dynamic dispatch is a semantic feature of OOP languages that allows a method
call, such as coll.add(e), to have different effects depending on the runtime type of
the receiver object, coll. The programming language dynamically determines what
implementation to run for such a call based on the runtime type of the receiver. The
selected implementation may be provided by coll’s static type, Collection, or instead
of being inherited in this way, it may be overridden by a method in a subtype of
Collection. So in general, the executed implementation might be one of any number
of different implementations, some of which might not have been imagined when the
call was written.

However, it is not only the implementation to be executed that is not known statically
(in general): without some methodological convention, such as behavioral subtyping,
even the specification of the method that will be executed will not be known stat-
ically. An example is the code shown in Figure 15, which assumes that the size of
the Collection coll is zero and that the object e is a legal element of the collection;
it then calls coll’s add method, which is dynamically dispatched. Because the spec-
ification of the code executed may vary among subtypes, this kind of code presents
a problem for static verification. One approach to solving this problem is to verify
what a method call does for each possible subtype of the receiver’s type [von Oheimb
2001]. However, such a case analysis would be difficult to maintain, as each time a
new subtype were added to the program, the case analysis code would have to be
extended.

A more modular approach is to follow the analogy of object-oriented type systems
and impose restrictions on the behavior of subtypes: this methodology is known as
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//@ assignable coll .*;

public void testAdd(Collection coll , Object e) {

//@ assume coll.size() == 0 && coll.legalElement(e);

boolean b = coll.add(e);

//@ assert coll.contains(e);

//@ assert b ==> coll.size() == 1;

}

Fig. 15. A test of Collection’s add method.

public interface Collection {

//@ model instance JMLDataGroup state;

/*@ pure @*/ int size ();

/*@ pure @*/ boolean legalElement(Object o);

/*@ pure @*/ boolean contains(Object o);

/*@ public behavior

@ requires legalElement(o);

@ assignable state;

@ ensures contains(o);

@ ensures \result ==> size() == \old(size ()+1);

@ ensures !\ result ==> size() == \old(size ()); @*/

boolean add(Object o);

}

Fig. 16. A JML specification for Collection.

behavioral subtyping [America 1987; Dhara and Leavens 1996; Leavens 2006; Liskov
1988; Liskov and Wing 1994; Meyer 1997]. Using behavioral subtyping, one can use
the specification of a supertype’s objects to soundly reason about the behavior of all
possible subtype objects.8 For example, behavioral subtyping would allow one to use
the specification of Collection to draw conclusions about the call to add in Figure 15.
Behavioral subtyping validates such conclusions because the contract for Collection’s
add method, given in Figure 16, says that the element is contained in the collection
after the call, and when the result of the call is true, then the collection’s size has been
increased by 1. Put the other way around, with behavioral subtyping, subtype objects
must behave according to the instance specification of each of their supertypes when
they are manipulated using that supertype’s interface [Liskov 1988]. For example, the
add method of a Collection subtype must obey the contract given in Figure 16. Just
as a type system with subtyping guarantees that no runtime type errors occur when
calling methods using dynamic dispatch, verifying behavioral subtyping ensures that
no surprising behavior occurs when calling methods using dynamic dispatch [Leavens
and Weihl 1995].

8An alternative to behavioral subtyping is class refinement [Back et al. 2000], which requires that, in addi-
tion to behavioral subtyping, all constructors (and class/static methods) of a class refine the corresponding
constructors of their supertypes. This suffices for sound reasoning, but is stronger than needed if the client
code that one reasons about only manipulates existing objects and does not call constructors.
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A simple way of enforcing behavioral subtyping is to impose the following four rules
for every supertype C and subtype D [America 1987; Liskov and Wing 1994].

(1) For each instance method D.m that overrides a method C.m, the precondition of
C.m must imply the precondition of D.m. That is, overriding methods may weaken
preconditions.

(2) For each instance method D.m that overrides a method C.m, the set of locations
that D.m may modify must be a subset of the set of modifiable locations for C.m.
That is, overriding methods may strengthen frame conditions.

(3) For each instance method D.m that overrides a method C.m, the postcondition
of D.m must imply the postcondition of C.m. That is, overriding methods may
strengthen postconditions.

(4) The invariant for D objects must imply the invariant for C objects. That is, subtypes
may strengthen invariants.

Rules (1)–(3) allow one to reason about a call to o.m using the specification for m
in o’s static type C. By rule (1), establishing the precondition of C.m before the call
guarantees that the precondition of the method selected at runtime, D.m, also holds.
By rule (2), D.mcan only modify locations that C.m’s specification allows to be changed;
thus, one can safely conclude that if C.m’s specification guarantees that the value of
some location x is left unchanged, then D.m does as well. By rule (3), one may assume
C.m’s postcondition after the call, because D.m establishes a postcondition that is at
least as strong.

Rule (4) is necessary for handling inheritance. A method implementation C.m may
assume C ’s invariant. By rule (4), this assumption is still justified when m is inherited
by a subtype D. However, there can be problems if a method implementation C.m is
called on a D object, since C.m will not know how to establish the potentially stronger
invariant of D objects. A drastic solution to this problem is to outlaw invariants that
mention variables that are declared in a superclass [Müller et al. 2006]. Another way
around this problem is to require C.m to be overridden in cases where it can modify the
object’s state in ways that threaten the invariant of D [Ruby and Leavens 2000]. Yet
another solution is to re-verify all inherited and non-overridden methods [Parkinson
and Bierman 2008] in subclass D. Finally, the Spec# methodology solves this problem
by tying each invariant to a class and carefully restricting when fields can be modified
and when each class’s invariant must be reestablished [Barnett et al. 2004; Leino and
Müller 2004; Leino and Wallenburg 2008]. Rule (4) also applies to other consistency
criteria of objects, such as history constraints [Liskov and Wing 1994].

One way to summarize these rules is to say that all overriding subtype methods must
satisfy the specification of each method that they override, which is necessary for sound
modular reasoning using a supertype’s method specification [Dhara and Leavens 1996;
Leavens and Weihl 1995].

However, the programming language and the verification logic guarantee additional
properties for dynamically dispatched calls, which can be used to weaken these rules
and still maintain soundness [Chen and Cheng 2000]. Weaker rules are beneficial, since
they allow more types to be behavioral subtypes and give developers more freedom in
design and implementation of subtypes.

The programming language guarantees that an overriding method in class D will be
called only when the receiver’s class is D (or a subtype of D). In specification frameworks
where the invariant of the receiver has to hold in the pre- and post-state of a call, this
implies that one may assume the D-invariant of the receiver to hold (which, according
to rule (4) may be stronger than the C-invariant). These type and invariant guarantees
allow for weaker versions of rules (1)–(3). For each instance method D.m that overrides
a method C.m, the following hold.
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(D1) The precondition of C.m must imply the precondition of D.m, provided that the
receiver is of type D and the D-invariant of the receiver holds.

(D2) The frame of D.m must be a subset of the frame condition of C.m, provided that
the receiver is of type D and the D-invariant of the receiver holds in the pre- and
post-state.

(D3) The postcondition of D.m must imply the postcondition of C.m, provided that the
receiver is of type D and the D-invariant of the receiver holds in the pre- and
post-state.

For instance, rule (D3) allows D.m to have a weaker postcondition than C.m if this
weaker postcondition, together with the D-invariant, implies the postcondition of C.m.

The knowledge that the receiver is of class D is not only useful for assuming D’s
invariant, but for all specification elements that may be refined in subclasses, such
as model fields [Leino 1995; Leino and Müller 2006; Müller 2002] and pure methods
[Darvas and Müller 2005]. For instance, the possible values of a model field may be
restricted in subclasses. Thus, more precise type information for the receiver provides
more information about the values of its model fields.

Verification logics guarantee that methods are called only in states in which their
preconditions hold. This enables a weaker version of the frame and postcondition rules,
which only require that a supertype’s frame and postcondition are obeyed when that
supertype’s precondition is also held in the call’s pre-state [Dhara and Leavens 1996;
Chen and Cheng 2000].

(D2′) The frame of D.m must be a subset of the frame condition of C.m, provided that
the receiver is of type D, the D-invariant of the receiver holds in the pre- and
post-state, and C.m’s precondition holds in the pre-state .

(D3′) The postcondition of D.m must imply the postcondition of C.m, provided that
the receiver is of type D, the D-invariant of the receiver holds in the pre- and
post-state, and C.m’s precondition holds in the pre-state.

To simplify the application of the rules for behavioral subtyping, many specification
languages use specification inheritance [Dhara and Leavens 1996; Leavens 2006]. Sub-
types inherit the specifications of their supertypes and can refine the inherited speci-
fications by adding declarations. A simple way to define the effective specification of a
class is to combine the inherited and the declared specification as follows:9 the effective
precondition of a method D.m is the disjunction of the precondition declared for D.m
and the preconditions of the methods it overrides. Taking the disjunction guarantees
that the effective precondition is weaker than the preconditions of all overridden meth-
ods and, thus, that rule (1) is satisfied. The effective frame of D.m is the intersection of
the frame declared for D.m and the frame of the methods it overrides. Using this inter-
section guarantees that the effective frame is a subset of the frames of the methods it
overrides and, thus, that rule (2) is satisfied. The effective postcondition of D.m is the
conjunction of the postcondition declared for D.m and the postconditions of the meth-
ods it overrides.10 Taking the conjunction guarantees that the effective postcondition
is stronger than the postconditions of all overridden methods and, thus, that rule (3) is
satisfied. Finally, the effective invariant of a class D is the conjunction of the invariant
declared for D and the invariants of D’s supertypes. Taking the conjunction guarantees

9This simple form of specification inheritance is based on the behavioral subtyping rules (1)–(4) [Liskov and
Wing 1994]. Eiffel [Meyer 1997] also has a simple form of specification inheritance with similar rules but
has no frame conditions.
10This rule for forming the effective postcondition is stronger than necessary to satisfy condition (D3′) [Dhara
and Leavens 1996] and, indeed, JML uses a more relaxed rule [Leavens 2006].
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public class ArrayList implements Collection {

private /*@ spec_public @*/ Object [] elements =

new Object [3]; //@ in state;

//@ maps elements [*] \into state;

private /*@ spec_public @*/ int siz = 0; //@ in state;

//@ invariant elements != null && elements.length > 0;

//@ invariant 0 <= siz && siz <= elements.length;

//@ also

//@ ensures \result == siz;

public /*@ pure @*/ int size() { return siz; }

//@ also

//@ ensures \result;

/*@ pure @*/ public boolean legalElement(Object o) {

return true;

}

/*@ also

@ ensures \result == (\ exists int i; 0 <= i && i < siz;

@ elements[i] == o); @*/

public /*@ pure @*/ boolean contains(Object o) {

for (int i = 0; i < siz; i++) {

if (elements[i] == o) { return true; }

}

return false;

}

//@ also

//@ requires true;

//@ assignable elements , elements[siz], siz;

//@ ensures \result;

public boolean add(Object o) {

if (siz == elements.length) {

Object [] tmp = new Object[siz *2];

System.arraycopy(elements ,0,tmp ,0,siz);

elements = tmp;

}

elements[siz++] = o;

return true;

}

}

Fig. 17. A JML specification for ArrayList, which is a behavioral subtype of Collection. JML uses the also
keyword to highlight the fact that a method specification in a subtype will be combined with an inherited
specification.

that the effective invariant is stronger than the invariants of D’s supertypes and, thus,
that rule (4) is satisfied.

An example illustrating these rules is shown in Figure 17. This subtype of Collection
is a behavioral subtype because it obeys the specification of Collection. We illustrate
how specification inheritance works using method add. The method satisfies rule (1)
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by providing the requires clause true; thus, the effective precondition is the disjunc-
tion of Collection’s precondition with true (which is equivalent to true), and thus
weaker than Collection’s precondition. The method satisfies rule (2) because the ef-
fective frame is the intersection of the frames given by Collection’s add method and
ArrayList’s (in fact, according to the data group declarations in Arraylist, ArrayList’s
is a subset of the assignable locations listed in Collection). Method add satisfies rule (3)
by providing the ensures clause \result; thus, the effective postcondition is equiv-
alent to contains(o) && size() == \old(size()+1) && \result, which is stronger
than Collection’s postcondition. Finally, ArrayList satisfies rule (4) by contributing
additional conjuncts to the effective invariant.

Specification inheritance enforces behavioral subtyping [Dhara and Leavens 1996;
Leavens and Naumann 2006]. However, the preceding rules have been criticized as
disguising specification errors, because failure to comply with the rules of behavioral
subtyping has silently turned into unsatisfiable specifications. Assume that an over-
ridden supertype method has the declared precondition p > 0 and that the overriding
subtype method requires p <= 0. With specification inheritance, however, the effec-
tive precondition of the overriding method is equivalent to true. Findler and Felleisen
[2001] argue that this should be considered a specification error which should be re-
ported, since the disjunction of these preconditions will silently accept calls that violate
either the supertype’s precondition or the subtype’s. (In JML and other languages that
use specification inheritance, the subtype’s method would have to accept all these calls
and satisfy both specifications [Leavens 2006].)

Despite this criticism, most existing specification languages enforce behavioral sub-
typing through specification inheritance. JML [Leavens 2006; Leavens et al. 2009]
defines effective preconditions and invariants as previously described. For postcondi-
tions, JML exploits behavioral subtyping rule (D3′): in the effective postcondition, the
postcondition of a method C.m only has to hold if the corresponding precondition held
before the call. That is, the effective postcondition is a conjunction of implications of
the form

∧
c(old(prec) ⇒ postc), rather than a conjunction of postconditions

∧
c postc.

The rule for frame properties similarly depends on which precondition holds. This is
the meaning behind the JML also keyword.

Eiffel’s rules are very similar to JML’s, but in the effective postcondition of a method
D.m, the declared postcondition of D.m has to hold, even if the corresponding precondi-
tion did not hold before the call [Eiffel 2005]. The resulting effective postcondition has
the form

∧
c(old(prec) ⇒ postc)∧ postD, which is stronger than necessary for soundness.

Spec# [Barnett et al. 2005] uses a stricter rule for preconditions. Overriding methods
must not change the inherited precondition. When a method implements signatures
from more than one supertype (interface), the preconditions in these supertypes must
be identical. The effective postcondition of a method is simply the conjunction of all
inherited and declared postconditions. Thus, with Spec#’s precondition rule, a distinc-
tion among different precondition cases is not useful. Finally, in Spec#, an overriding
method must not declare additional modifies clauses. A larger modifies clause would
be unsound with Spec#’s precondition rule, and a smaller modifies clause, that is,
strengthening of the frame properties, can be achieved through additional postcondi-
tions.

Even though behavioral subtyping is an important design principle for the safe use
of subtyping and inheritance, there are implementations where a subclass restricts
or changes the behavior of its superclass. To support such implementations, it has
been proposed to distinguish between static and dynamic method specifications [Chin
et al. 2008; Parkinson and Bierman 2008; Poetzsch-Heffter and Müller 1999]. A static
specification describes the behavior of a particular method implementation, whereas
a dynamic specification describes the common behavior of all implementations of a

ACM Computing Surveys, Vol. 44, No. 3, Article 16, Publication date: June 2012.



16:46 J. Hatcliff et al.

method, including overriding methods in subclasses. In other words, static specifi-
cations are not inherited by subtypes and are not subject to behavioral subtyping.
Hence, static specifications are used to reason about statically bound calls where the
implementation to be executed is known statically—for instance, Java’s super calls or
calls to final methods; dynamic specifications are used to reason about dynamically
dispatched calls.

6. CONCLUSIONS

Specifying the behavior of complex programs requires highly expressive notations.
For instance, the functional specification of a compiler includes a specification of the
syntax of the source and target language, of the semantics of both languages, and
of the translation function [Leroy 2006]. Mathematical logics, such as higher-order
logic, provide the required expressiveness but are difficult to automate. Proofs in these
frameworks are largely interactive, and verifying programs beyond toy examples still
takes heroic efforts by highly specialized experts.

It is one of the main objectives of specification language designers to find idioms
that strike a good trade-off between expressiveness, usability by programmers, and
automated verification. In this article, we surveyed behavioral interface specification
languages for sequential programs and presented some specification language features
that are good compromises between these competing goals.

(1) They are sufficiently expressive to specify the functional correctness of program
components and complex data structures (see, for instance, the composite pat-
tern specifications presented at the 2008 ACM Specification and Verification of
Component-Based Systems Workshop).

(2) They are based on relatively simple concepts, which can be taught to undergraduate
students and applied by programmers (see, for instance, an industrial JML case
study [Cataño and Huisman 2002]).

(3) They have been used successfully in automatic program verifiers, such as ESC/Java,
Spec#, Jahob, or jStar (see, for instance, the automatic verification of linked-list
structures in Jahob [Zee et al. 2008]).

Despite these successes, there are a number of research challenges that need to be
addressed in order to achieve the objectives of the Verified Software Initiative [Hoare
2003]. The following are some of the key challenges.

(1) Extending the well-established specification techniques for sequential programs to
concurrency. Even though the foundations for reasoning about concurrent programs are
available (for instance, temporal logic to express liveness properties [Lamport 1994],
rely-guarantee reasoning to specify shared-variable concurrency [Xu et al. 1997], or per-
missions to specify thread synchronization [Boyland 2003]), the development of spec-
ification languages that can express functional behavior of programs using advanced
concurrency primitives is in an early stage and not ready to be applied to mainstream
programs [Jacobs et al. 2008; O’Hearn 2007; Leino and Müller 2009; Rodrı́guez et al.
2005], with the notable exception of VCC [Cohen et al. 2010], which is being applied to
Microsoft’s Hyper-V virtualization platform, a large concurrent C-program.

(2) Linking detailed design specifications to requirement specifications, analysis-level
specifications, and software architecture. Behavioral interface specifications languages
can express properties of software components, but expressing the interaction between
components is still a challenge. For instance, although there are techniques for spec-
ifying the Observer pattern [Banerjee et al. 2008], reasoning about the correctness of
an event-driven system seems to be beyond the state-of-the-art technigues. Another
such example is data-driven architectures, where the program is essentially an inter-
preter of some data, such as business rules, which encode the actual application logic.
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Verifying such applications will require a formal connection between architectural
properties and detailed design specifications.

(3) Increasing the automation of verification. Today’s automatic verifiers are still
limited to fairly simple properties, such as the absence of exceptions. Even though
steady progress is being made [Zee et al. 2008; Leino 2010], the verification of the
functional correctness of whole applications still requires significant user interaction.
This challenge will partly be addressed by the theorem-proving community, but it will
also be necessary to improve programming, specification, and verification methodology
in order to produce verification conditions that are more easily accessible to automatic
theorem provers, such as SMT solvers [Barrett and Tinelli 2007; de Moura and Bjørner
2008].

Addressing these and other challenges in ways that are useful for the Verified Soft-
ware Initiative will require close collaboration of experts in programming and spec-
ification language design, verification methodology, and theorem proving. It is, thus,
important to foster collaborations among these communities through joint projects, tool
integration, as well as challenges and competitions.
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LEINO, K. R. M. AND MÜLLER, P. 2004. Object invariants in dynamic contexts. In Proceedings of the European
Conference on Object-Oriented Programming (ECOOP), M. Odersky, Ed. Lecture Notes in Computer
Science, vol. 3086. Springer-Verlag, Berlin, 491–516.
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