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Abstract. This paper addresses the frame problem for programming
theories that support both sharing and encapsulation through speci-
fication variables. The concept of dynamic frames is introduced. It is
shown how a programming theory with dynamic frames supports both
features, without the use of alias control or any other kind of restriction.
In contrast, other approaches introduce a number of restrictions to the
programs to ensure soundness.
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1 Introduction

When specifying a piece of computation, we should also specify its frame, i.e.
the part of the state that it operates upon. Without framing, our specification
language is not very useful. For example, suppose that we want to specify that a
computation C increments program variable x by 1. In a relational setting like
[9], the specification would be

x′ = x + 1 (1)

where the primed identifier x′ represents the final value of program variable
x and the plain identifier x its initial value. The specification (1) says how C
changes x but it says nothing about the effect of C on other program variables.
A client which uses more program variables will have trouble using C.

In a non-modular setting like [9], we know all the program variables. We can
use this knowledge to add framing requirements to (1). For example, if x, y, z
are all the program variables, then the specification becomes

x′ = x + 1 ∧ y′ = y ∧ z′ = z (2)

Modular programming makes it impossible to write such assertions: we do not
know all the variables of the program at the time that we specify a computa-
tion. In modular programming theories, it is standard to separate the framing
specification from the functional specification like that:

ensures x′ = x + 1 modifies x (3)
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The above specification says that the value of x is increased by 1 and that
the computation only modifies the program variable x. Its translation into a
relational specification depends on the client. For example, if a client introduces
variables y, z then (3) is translated to (2) for that client.

Now, let us add encapsulation to the picture: we want modules to support
private program variables. We also want them to support public specification
variables. Specification variables are abstract representations of the encapsulated
state that are visible to the client. Their exact relation with the private program
variables is known only to the implementer of the module.

One standard example of using specification variables is the specification and
implementation of a module that formalizes sets of integers. The module provides
an operation that inserts elements into the set and an operation that queries
whether an element is in the set. The specification of the module uses a public
specification variable S to represent the value of the set. This is the specification
of the module as the client sees it:

module ASpec
spec var S ⊆ Z

insert(x ∈ Z) ensures S′ = S ∪ {x}
find(x ∈ Z) ensures S′ = S ∧ return′ = (x ∈ S)

end module

The client knows nothing about the internal representation of S and how it
relates to its private variables.

The implementer’s job is to refine the module ASpec using concrete program
variables and concrete programs. A possibility is to use a private array L to hold
all the elements of S. The exact representation of S is given in terms of the
private program variable L. The refinement looks like this1:

module AImpl
prog var L ∈ Z

∗

spec var S = {x ∈ Z · ∃i ∈ N · x = L i}

insert(x ∈ Z) ensures L′ = [x]�L
find(x ∈ Z) ensures L′ = L ∧ return′ = (∃i ∈ N · L i = x)

end module

Framing specifications in this new setting cannot mention the private pro-
gram variables, which are unknown to the client. They must instead mention
public specification variables, like S. For example, the framing specification of
the method insert should be

modifies S (4)
1 Of course, this is not yet an implementation, because the operations are not imple-

mented. Further refinements will give an implementation, but this is not the point
of this example.
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which means that the computation is allowed to change S and all specification
and program variables on which S depends. In our example, this means that the
computation changes S and L. As in the case without specification variables, if
a client introduces specification or program variables y, z, the specification (4)
is translated to:

y′ = y ∧ z′ = z (5)

since S is not known to depend on y, z. Thus the reasoning on the level of
specifications expects that a computation that satisfies (4) preserves y, z.

Unfortunately, in the presence of pointers, the translation may be unsound.
This is because, the representation of y may actually share heap locations
with the representation of S. For example, y could be given by the following
representation:

prog var p ∈ pointerTo (Z∗)
y = (contentOf p)0

and the pointer p might happen to point to the private array L of module AImpl .
When that happens, changes to L may change the value of y, contrary to what
is predicted by the theory. In our example, our implementation of insert will
change the value of y, unless the parameter x is equal to the initial value of y.
This situation is called abstract aliasing [18].

To avoid the problem, existing solutions [18, 20, 16] impose a series of program-
ming restrictions, which guarantee absence of abstract aliasing: if two variables are
not known to be dependent then they can be assumed independent. Unfortunately,
these solutions come at a price. One problem is formal complication: the theories ei-
ther introduce new formalisms (universes in [20], packing and unpacking in [16] or a
big collection of ad hoc rules [18]). Another problem is inflexibility: the restrictions
imposed rule out several useful implementation patterns. These patterns have to
do with objects that cross encapsulation boundaries and with sharing.

The contribution of this paper is a formal theory that supports specification
variables and pointers without any programming restriction. The basic idea is
to make the specification language strong enough to express the property “at
the present state the values of x and y are independent”, i.e. absence of abstract
aliasing. Because this property is expressible as a state predicate, it can be
asserted and assumed by the user of the theory at any point where it is needed.
This means that it is not necessary for the programming theory to ensure that it
is always true and thus to impose any restriction whatsoever. Furthermore, our
approach is very simple in that it does not introduce any new formal concept:
dynamic frames are a special case of specification variables and they are handled
in exactly the same way by the user of the theory.

2 Theory of Dynamic Frames

2.1 Notation

Here we introduce some of the notation to be used in the rest of the paper.
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Equality. The operator = has the same semantics as = but lowest precedence.
It is used to reduce the number of parentheses in expressions.

Sets and Set Notation. The set of booleans {�, ⊥} is denoted B. Set compre-
hension is denoted {x ∈ D · P} where D is a set and P is a boolean expression
with free occurrences of variable x.

If i, j are integers, then the sets {i, ..j} and {i, .., j} are defined as follows:

{i, ..j} = {x ∈ Z · i ≤ x < j}
{i, .., j} = {x ∈ Z · i ≤ x ≤ j}

Functions. Functions are introduced using syntax λx ∈ D · B where D is the
domain and B is the body of the function. Operator Dom extracts the domain
of a function. Function application is denoted by juxtaposition. The domain
restriction operator � and the one-point update 
→ | operator are defined by:

f � D = λx ∈ D ∩ Dom f · f x
y 
→ z | f = λx ∈ {y} ∪ Dom f · if x = y then z else f x

Lists. A list L is a function whose domain is {0, ..i} for some natural number i
called the length of L and denoted #L. We can use syntax [x; y; ...] to construct
lists. The concatenation of lists L and M is denoted L�M . Notation L[i; ..j]
extracts the part of the list between indices i (incl.) and j (excl.). The predicate
disjoint takes a list of sets L and asserts that the sets in L are mutually disjoint.
Formally:

disjoint L = ∀i ∈ {0, ..#L} · ∀j ∈ {0, ..#L} · i = j ∨ L i ∩ L j = ∅

Open Expressions. In this paper, some identifiers stand for expressions that
may contain free variables. We may say e.g. that E is an expression on variables
x, y, .... We call such identifiers “open expressions”. Although use of open expres-
sions is practiced in some influential formal theories, like for example [10, 1, 9],
some people are not comfortable with them. Readers who do not like open ex-
pressions, may consider the occurrence of an expression E on variables x, y, ...
as a purely syntactical abbreviation of E x y ... where E is a function.

Let E, t be expressions and x a variable. Then E(t/x) denotes expression E
with all free occurrences of x substituted by t.

2.2 Basic Definitions

State and Variables. There is an infinite set of locations Loc. Any subset of Loc is
called a region. A state σ is a finite mapping from locations to values. A location
in Dom σ is used or allocated in σ. The set of all states is denoted Σ.

A specification variable is an expression that depends on the state (i.e. with
free occurrences of variable σ ∈ Σ). Two important specification variables are
the set of all allocated locations Used and the set of all unallocated locations
Unused, defined as follows:

Used = Dom σ Unused = Loc \ Used
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For any specification variable v, the expression v′ is defined by:

v′ = v(σ′/σ)

The expression v′ is called the final value of v.
A program variable x is a special case of specification variable whose value is

the content of the state at a constant location addr x , called the address of x:

x = σ(addr x)

Imperative Specifications. An imperative specification is a boolean expression on
the state-valued variables σ ∈ Σ and σ′ ∈ Σ. The state σ is called the pre-state
and the state σ′ is called the post-state. Programming constructs are defined as
imperative specifications. The program ok leaves the state unchanged:

ok = σ′ = σ

If x is a program variable and E is an expression on σ, then the program x := E,
called concrete assignment, is defined by:

x := E = σ′ = addr x 
→ E | σ

If l is a location-valued expression on σ and E is an expression on σ, then the
program ∗l := E, called pointer assignment, is defined by:

∗l := E = σ′ = l 
→ E | σ

If P and Q are imperative specifications, then the specification P ;Q, called the
sequential composition of P and Q is defined by:

P ;Q = ∃σ′′ · P (σ′′/σ′) ∧ Q(σ′′/σ)

If P is an imperative specification, then the specification var x · P , called local
program variable introduction, is defined by:

var x · P = ∃addr x ∈ Unused · P

In P , occurrences of the identifier x are abbreviations of expression σ(addr x).
More programming constructs can be introduced; here we present only those
used in this paper.

Modules. A module is a collection of name declarations and axioms. We introduce
a module using syntax module N , where N is the name of the module and we
conclude its definition using syntax end module . Keywords spec var and
prog var declare specification variables and program variables respectively.
Syntax import M is used to import all names and axioms of module M into
the module in which it appears. A module M refines (or implements) a module
N if its axioms imply the axioms of N .
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2.3 Dynamic Frames and Framing Specifications

A dynamic frame f is a specification variable whose value is a set of allocated
locations, i.e. f ⊆ Used. For any dynamic frame f , we define three new imper-
ative specifications. The preservation Ξf is satisfied by every computation that
does not touch region f . The modification Δf is satisfied by every computation
that only touches region f or at most allocates new memory. Finally, the swing-
ing pivots requirement Λf does not allow f to increase in any way other than
allocation of new memory. The formal definitions are:

Ξf = σ′ � f = σ � f Δf = Ξ(Used \ f) Λf = f ′ ⊆ f ∪ Unused

Let f be a dynamic frame. Let v be a specification variable. The state condi-
tion f frames v is defined as follows:

f frames v = ∀σ′ · Ξ f ⇒ v′ = v

In a state σ in which this condition is true, we say that f frames v or that f is
a frame for v. When that happens, v depends only on locations in f , i.e. leaving
those locations untouched preserves the value of v. There can be more than one
variable to the right of frames :

f frames (x, y, ...) = f frames x ∧ f frames y ∧ ...

Framing properties are usually introduced as axioms in a module. The imple-
menter of the module is then obliged to provide a definition for the specification
variables and their frames such that the framing property is always true. For
example, in the following definitions, Module CImpl refines Module C.

module C
spec var x ∈ Z , f ⊆ Used
f frames x
end module

module CImpl
prog var y ∈ Z , z ∈ Z

spec var x = y + z , f = {addr y , addr z}
end module

Independence of two variables (absence of abstract aliasing) is expressible as
disjointness of dynamic frames. In particular, if f is the frame of x and g is the
frame of y and the f, g are disjoint, then the specification variables x and y are
independent. If we want to change only variable x, then we frame on f , which
guarantees preservation of y (and all other known and unknown specification
variables that are independent of x):

f frames x ∧ g frames y ∧ disjoint [f ; g] ∧ Δf ⇒ y′ = y

Disjointness of frames is an important property and therefore one we want
to preserve. To do that, dynamic frames need to be framed too. We usually
axiomatize a dynamic frame to frame itself, i.e. f frames (f, x, ...). Given self-
framing dynamic frames, a way to preserve disjointness is the conjunction of
framing on f with the swinging pivots requirement on f . Suppose that g is a
self-framing frame disjoint from f . Then Δf ∧ Λf preserves the disjointness:

disjoint [f ; g] ∧ Δf ∧ Λf ⇒ disjoint [f ′; g′] (6)
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Intuitively, the reason is that Δf preserves g while Λf ensures that f only grows
with previously unallocated locations, i.e. with locations that are not in g. The
formal proof is found in [14]. Notice that the implementer of Δf ∧ Λf does
not even have to know g, which makes the property (6) very useful for modular
reasoning.

The combination of Δ and Λ is very useful. It is a good idea to give it its own
notation. Suppose that:

f frames (f, x, y, z, ...)

is given as an axiom. Then, we define abstract assignment to specification vari-
able x (and similarly for the other specification variables y, z, ...) as follows:

x := E = Δf ∧ Λf ∧ x′ = E ∧ y′ = y ∧ z′ = z ∧ ...

2.4 Objects

Basics. The theory of dynamic frames has already been exposed and it is or-
thogonal to object oriented programming. However, the examples that we use
are based on object orientation so we need some formal support for objects. This
section is by no means a complete formalization of object orientation.

There is a set O. The elements of O are called object references. The special
value null denotes the null reference. It is not included in O.

A specification attribute is an expression with free occurrences of the identifiers
σ ∈ Σ and self ∈ O. A program attribute x is a special case of specification
attribute such that

x = σ(addr x)

for some location addr x that depends on self but not on σ. The location addr x
is called the address of x. The keyword spec attr introduces specification at-
tributes. The keyword prog attr introduces program attributes. The defini-
tions for concrete assignment and abstract assignment are valid for program and
specification attributes as well

The following abbreviation is introduced to facilitate the access of attributes
of object references other than self :

p.E = E(p/self )

for object reference p and any expression E that depends on self . The notation
(.) can be generalized to apply many times: (for any k ∈ N)

[E]0 = self [E]k+1 = [E]k.E

We use three specification attributes, the initialization constraint init , the
invariant inv and the representation region rep. These specification attributes
obey the following axioms for all object references and states:

init ∈ B inv ∈ B init ⇒ inv inv ⇒ rep ⊆ Used (7)
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For our convenience we specify that the representation region of the null reference
is empty:

null.rep = ∅

If o is an object reference, l is an identifier and x, y, ... are values, then
o.l(x; y; ...) is an imperative specification called method invocation of l on o with
parameters x; y; ....

Class Specifications. A class is a set of object references. The specification of
class C is a collection of axioms that begins with class C and ends with keyword
end class . In each axiom, the identifier self is implicitly universally quantified
over C, and the identifiers σ, σ′ are implicitly universally quantified over Σ.
Within the specification of C, the identifier self represents the current object
reference. There are usually two kinds of axioms in a class specification: the
attribute specifications and the method specifications.

Attribute Specifications. The attribute specifications axiomatize the specifica-
tion and program attributes of a class. In a class implementation, the attribute
specifications have the form a = E, where a is a specification attribute and E is
an expression.

Framing properties are attribute specifications. Frequently we assert that
the representation region frames itself, the invariant and other specification at-
tributes, i.e.:

inv ⇒ rep frames (rep , inv , ...)

There are cases, like IteratorSpec of Sect. 3.3, where we do not use such framing.

Method Specifications. Method specifications have the form:

∀x · ∀y · ... self .l(x; y; ...) ⇒ S (8)

where l is an identifier, x, y, ... are data-valued identifiers and S is an imperative
specification, called the body of method l. The expression (8) is abbreviated by

method l(x; y; ...) · S

In a class implementation, S must be a program.

Object Creation. To create a new object of class C, we allocate fresh memory for
its representation region and we ensure that its initialization condition is met.
This is all done by the specification x := new C defined as follows:

x := new C
= Δ{addr x} ∧ x′ ∈ C ∧ (x.init)′ ∧ (x.rep)′ ⊆ Unused \ {addr x}

where x is a program variable.
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3 Examples

In this section, we present some examples of specification and implementation
in our theory. Proofs of correctness are omitted for lack of space; the reader is
instead referred to [13] and [14]. Also, for the sake of brevity, we have omitted all
queries from the class specifications, because they add nothing to the examples.

3.1 Lists

This example concerns the specification and implementation of a class List that
formalizes lists of integers. The specification comes in a module named ListSpec.
It introduces the class List and a specification attribute L whose value is the
represented list. The frame rep frames itself, the invariant and L. The initial
value of L is the empty list.

module ListSpec
class List
spec attr L
inv ⇒ L ∈ Z

∗ ∧ rep frames (rep, inv , L)
init ⇒ L = []

The method insert inserts an item at the beginning of the list:

method insert(x) · inv ∧ x ∈ Z ⇒ (L := [x]�L)

The method cut takes two parameters, an address l and an integer pos . It
breaks the list in two (at the point where pos is pointing). The first part of the
old list is returned as a result (the address l serves as returning address). The
second part is the new value of the current list. The specification of cut allows
this method to be implemented by pointer operations: in particular, it allows
the representation region of the returned list to contain memory that used to
belong to the representation region of self . The final representation regions of
the two lists are disjoint:

method cut(l; pos)·
inv ∧ l ∈ Loc \ rep ∧ pos ∈ {0, .., #L}

⇒ Δ({l} ∪ rep) ∧ L′ = L[pos ; ..#L] ∧ inv ′ ∧ Λrep
∧ σ′l ∈ List ∧ (σl.L)′ = L[0; ..pos ] ∧ (σl.inv)′

∧ (σl.rep)′ ⊆ rep ∪ Unused ∧ disjoint [rep ; σl.rep ; {l}]

Finally, the method paste concatenates a list to the beginning of the cur-
rent list. The initial representation regions of the two lists must be disjoint.
The specification says that the representation region of the parameter may be
“swallowed” by the representation region of the current list object. This allows
implementation with pointer operations:
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method paste(p)·
inv ∧ p ∈ List ∧ p.inv ∧ rep ∩ p.rep = ∅

⇒ Δ(rep ∪ p.rep) ∧ L′ = p.L�L ∧ inv ′

∧ rep′ ⊆ rep ∪ Unused ∪ p.rep
end class

end module

To implement ListSpec, we define a new module ListImpl . We use a standard
linked list implementation. The nodes are object references with program at-
tributes val and next , where val stores a list item and next refers to the next
node in list (or is equal to null if there is no next node). The list object has a
reference head to the first node.

module ListImpl
class Node
prog attr val , next
init = next = null ∧ val ∈ Z

rep = {addr val , addr next}
end class

class List
prog attr head

The specification attributes and the methods for linked lists are implemented
as follows:

spec attr len = min{i ∈ N · head .[next ]i = null}
spec attr L = λi ∈ {0, ..len} · head .[next ]i.val
rep = {addr head} ∪

⋃
i ∈ {0, ..len} · head .[next ]i.rep

inv = (∀i ∈ {0, ..len} · head .[next ]i.val ∈ Z)
∧ disjoint ( [{addr head}]

� λi ∈ {0, ..len} · head .[next ]i.rep )
init = head = null

method insert(x) · var n·
n := new Node ; n.val := x ; n.next := head ; head := n

method cut(l; pos)·
∗l := new List

; if pos = 0 then ok
else (var q · σl.head := head ; q := head .[next ]pos−1

; head := q.next ; q.next := null )
method paste(p)·
if p.head = null then ok
else (var q·

q := p.head .[next ]p.len−1 ; q.next := head ; head := p.head )
end class

end module
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3.2 Sets

This example presents the specification SetSpec of a class Set that formalizes
sets of integers. The class supports an insertion method insert and a method
paste that performs the union of the current set to its parameter. Like its List
counterpart, the method paste allows the current set object to “swallow” part
of the representation region of the parameter:

module SetSpec
class Set
spec attr S
inv ⇒ S ⊆ Z ∧ rep frames (S, rep, inv)
init ⇒ S = ∅

method insert(x) · inv ∧ x ∈ Z ⇒ (S := S ∪ {x})
method paste(p)·

inv ∧ p ∈ Set ∧ p.inv ∧ rep ∩ p.rep = ∅
⇒ Δ(rep ∪ p.rep) ∧ S′ = p.S ∪ S ∧ inv ′

∧ rep′ ⊆ rep ∪ Unused ∪ p.rep
end class

end module

We can implement the class by using an internal list object:

module SetImpl
import ListSpec

class Set
spec attr S
prog attr contents
inv = contents ∈ List ∧ contents.inv

∧ addr contents �∈ contents.rep
init = inv ∧ contents.init
rep = {addr contents} ∪ contents.rep
S = {x ∈ Z · ∃i ∈ {0, ..#(contents.L)} · contents.L i = x}

method insert(x) · contents.insert(x)
method paste(p) · contents.paste(p.contents)

end class
end module

3.3 Iterators

This example shows how the theory handles sharing and friend classes. We spec-
ify iterators in a module IteratorSpec which imports the ListSpec module. An
iterator has a list attached to it, given by the value of the program attribute attl .
It also points to an item in the list, or perhaps to the end of the list. The index
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of the pointed item is given by the value of the specification attribute pos . The
representation region of an iterator is disjoint from that of the attached list.

module IteratorSpec
import ListSpec

class Iterator
prog attr attl
spec attr pos

inv
⇒ (attl = null ∨ (attl ∈ List ∧ attl.inv))

∧ disjoint [rep; attl.rep] ∧ rep frames (attl , rep)
∧ (rep ∪ attl.rep) frames inv

inv ∧ attl �= null
⇒ pos ∈ {0, .., attl.(#L)} ∧ (rep ∪ attl .rep) frames pos

init ⇒ attl = null

The class of iterators supports methods for attachment and traversal:

method attach(l)·
inv ∧ l ∈ List ∧ l.inv

⇒ Δrep ∧ inv ′ ∧ pos ′ = 0 ∧ attl ′ = l ∧ Λrep
method next()·

inv ∧ pos < attl .(#L)
⇒ Δrep ∧ inv ′ ∧ pos ′ = pos + 1 ∧ attl ′ = attl ∧ Λrep

end class
end module

The implementation of iterators imports ListImpl . This means that the im-
plementer of the Iterator class has access to the implementation of the List
class. This makes Iterator a friend of List . Compare that to the implementation
of the Set class which imports ListSpec and therefore does not have access to
the implementation of List : the class Set is not a friend of List . Iterators are
implemented as pointers to list nodes:

module IteratorImpl
import ListImpl

class Iterator
prog attr attl , currentNode
spec attr pos

inv = (attl = null ∨ (attl ∈ List ∧ attl.inv))
∧ (attl �= null ⇒ pos ∈ {0, .., attl.(#L)}) ∧ rep ⊆ Used
∧ disjoint [rep ; attl.rep]

pos = min{i ∈ N · attl.head .[next ]i = currentNode}
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rep = {addr attl , addr currentNode}
init = attl = currentNode = null

method attach(l) · attl := l ; currentNode := l.head
method next() · currentNode := currentNode.next

end class
end module

4 Discussion

The theory of Dynamic Frames is part of the more general theory of object ori-
ented refinement that appears in [14]. It is an application of the design principles
of decoupling and unification as advertised in [11, 12]: it decouples the feature
of alias control from other formal constructs, like the class, the module or even
the object and it unifies frame specifications with functional specifications.

The two important merits of the theory are simplicity and generality. It is
formally simple because it solves the problem without introducing any new con-
cept, formalism or axiomatization (dynamic frames are a special case of specifi-
cation variables). It is general because, unlike competing theories, to guarantee
its soundness we do not need to enforce any programming restrictions.

One objection to the theory of Dynamic Frames is that specifications in it
may become too verbose. This is always a danger when designing a more flexible
system: the extra generality provides more options to the user; thus more things
to say. However, there are good ways to deal with this problem. For example,
common specification cases may be given their own notation and reasoning laws.
Such specifications include the swinging pivots requirement and the abstract
assignment. Further notational and reasoning conveniences are found in [14].

4.1 Related Work

Older Approaches. Leino and Nelson’s work [18] is a big collection of rules that
deal with some of the most frequent cases of the problem. The approach has
considerable complexity and it does not address all cases uniformly. Its most
drastic restriction is that it forces each method to obey the swinging pivots
requirement. This, even in its less restrictive version [5], rules out the implemen-
tation for paste in Sect. 3.1. In a variant [19], the authors use data groups [15]
instead of variables in frame specifications. However, absence of abstract aliasing
is still not expressible in the specification language and thus the swinging pivots
requirement together with other restrictions similar to those in [18] are enforced.

The Universes type system [20] is a much simpler and more uniform approach
to the problem, also adopted by the JML language [21, 6]. It too imposes restric-
tions that have to do with objects travelling through encapsulation boundaries.
Our implementation for List is possible in [20], although somewhat awkwardly,
by declaring the node objects “peers” to their containing list object. Our im-
plementation of the paste method for Set is impossible, because for the peer
solution to work, Set and List should be declared in the same module.
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Boogie. A less restrictive variant of Universes is the Boogie methodology [2,
16, 4, 17] used in Spec# [3]. Its most important improvement over Universes is
that it allows objects to cross encapsulation boundaries. However, the Boogie
methodology has the same visibility restriction concerning “peer” objects as
the Universes type system: a class of shareable objects must be aware of all its
sharing clients. This causes a modularity problem: the creation of a new sharing
client of a class C means that the specification of C must be revised. Moreover, if
C happens to be a library class whose specification and implementation cannot
be modified, the creation of new sharing clients is not even possible [16].

The Dynamic Frames theory imposes no such restriction and therefore it is
more flexible than Boogie. The Iterator example of Sect. 3.3 shows an example
of sharing. In this particular example, the class Iterator happens to be a friend
of the class List . This is a coincidence. An example of sharing without friendship
appears in the treatment of the Observer pattern in [14].

Separation Logic. The development of separation logic [7, 23] attacks the framing
problem from a different more low-level perspective. The idea is to extend the
condition language of Hoare logic with a separating conjunction operator 	, with
the following intuitive semantics: condition P 	 Q is true if and only if P and Q
hold for disjoint parts of the heap. Framing is handled by the following frame
rule:

{P}C{Q}
{P 	 R}C{Q 	 R}

where R is a condition that has none of the variables modified by C. The idea
is that the implementer of a program C proves the local property P{C}Q and
the client uses the frame rule to prove the wider property {P 	R}C{Q	R} that
the client needs. Separation logic handles well many intricate low-level examples
with pointers, even with pointer arithmetic, but until recently it has not been
considered in the presence of information hiding.

O’Hearn et al.’s work [8] is a first attempt to deal with information hiding
in separation logic. The solution does not scale to dynamic modularity, i.e. it
deals only with single instances of a hidden data structure [22]. Thus, it is not
suitable for the dynamic modularity of object orientation in which the solution
must usually be applied to arbitrarily many objects.

Parkinson and Bierman [22] provide a much more complete treatment based
on their introduction of abstract predicates (very similar to our notion of invari-
ant). However, this work is heavily based on the Frame Rule, which insists on
complete heap-separation of the client predicate R from the implementer’s pred-
icates P, Q. This is inappropriate in the case of sharing, like the example of Sect.
3.3. A client of the IteratorSpec module may hold two iterators attached to the
same list object. The representation of their pos specification attribute depends
on their representation regions as well as the representation region of the shared
list object. Thus, the representations of these two specification attributes are
not heap-separated. The dynamic frames theory can show that invoking next on
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one of them preserves the value of the other. It is unclear how to do that using
the frame rule of separation logic.

5 Conclusion

This paper has introduced Dynamic Frames, a simple and flexible solution to
the frame problem for programming theories that support both specification
variables and pointers. The solution is simple in that it uses the already existing
and well-understood formalism of specification variables. It is more flexible than
other approaches because it does not introduce any methodological restrictions
for the programmer. Dynamic Frames is part of the object oriented theory of
[14]. The reader is referred to [14] for further notational and methodological
conventions, metatheorems and examples.
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