Bit-Vectors
Chapter 6 S

Decision Procedures
An Algorithmic Point of View

D.Kroening O.Strichman Revision 1.2

© Introduction to Bit-Vector Logic
© Syntax
© Semantics

@ Decision procedures for Bit-Vector Logic
o Flattening Bit-Vector Logic
@ Incremental Flattening

Decision Procedures — Bit-Vectors 2

Bit-Vector Logic: Syntax

formula
atom
rel

term

op

formula V formula | —~formula | atom

term rel term | Boolean-Identifier | term| constant |
= | <

term op term | identifier | ~ term | constant |
atom?term:term |

term|[constant : constant] | ext(term)

-/ << > 1&l 1]®]o

Decision Procedures — Bit-Vectors 5

Bit-Vector Logic: Syntax

formula
atom
rel

term

op

formula V formula | —~formula | atom

term rel term | Boolean-Identifier | term| constant |
= | <

term op term | identifier | ~ term | constant |
atom?term:term |

term|[constant : constant] | ext(term)
-/ << > 1&l 1]®]o

@ ~ x: bit-wise negation of x

e cxt(x): sign- or zero-extension of x
o 1 << d: left shift with distance d

@ x oy: concatenation of = and y

Decision Procedures — Bit-Vectors 5

Semantics

Danger!

(z-y>0) & (z>y)

Valid over R/N, but not over the bit-vectors.
(Many compilers have this sort of bug)

Decision Procedures — Bit-Vectors 6

Width and Encoding

@ The meaning depends on the width and encoding of the
variables.

Decision Procedures — Bit-Vectors 7

Width and Encoding

@ The meaning depends on the width and encoding of the
variables.

@ Typical encodings:

e Binary encoding
-1
(T)v = Zai -2
i=0

e Two's complement
-2
<x>S =—2" . (p—1 + Za’ -2
i=0

e But maybe also fixed-point, floating-point, ...

Decision Procedures — Bit-Vectors 7

Examples

(11001000)y = 200
(11001000)g = —128 4 64 + 8 = —56

(01100100)s = 100

Decision Procedures — Bit-Vectors

Width and Encoding

Notation to clarify width and encoding:

L[32]S

Decision Procedures — Bit-Vectors 9

Width and Encoding

Notation to clarify width and encoding:

L[32]S

N

Width in bits U: unsigned binary
S: signed two's complement

Decision Procedures — Bit-Vectors

Bit-vectors Made Formal

Definition (Bit-Vector)

A bit-vector is a vector of Boolean values with a given length I:

b:{0,...,1—1} — {0,1}

Decision Procedures — Bit-Vectors 10

Bit-vectors Made Formal

Definition (Bit-Vector)

A bit-vector is a vector of Boolean values with a given length I:

b:{0,...,1—1} — {0,1}

The value of bit number i of z is x(i).

bi—1|bi—2 | - by | b1 | b

[bits

We also write x; for (7).

Decision Procedures — Bit-Vectors 10

Lambda-Notation for Bit-Vectors

A\ expressions are functions without a name

Decision Procedures — Bit-Vectors 11

Lambda-Notation for Bit-Vectors

A\ expressions are functions without a name

Examples:

@ The vector of length [that consists of zeros:

Xi€{0,...,1—1}.0

@ A function that inverts (flips all bits in) a bit-vector:

bu-invert(z) == i € {0,...,l —1}.~x;

@ A bit-wise OR:
bv-or(z,y) == Ai € {0,...,1 —1}.(z; V ;)

— we now have semantics for the bit-wise operators.

Decision Procedures — Bit-Vectors 11

Example

(33[10] OZ/[5})[14} = z[9]

Decision Procedures — Bit-Vectors 12

Example

(zo) 0 yps)) [14] = z[9]

@ This is translated as follows:

z[9] = 9

Decision Procedures — Bit-Vectors 12

Example

(zo) 0 yps)) [14] = z[9]

@ This is translated as follows:

Decision Procedures — Bit-Vectors 12

Example

(zo) 0 yps)) [14] = z[9]

@ This is translated as follows:

z[9] = 9
(xoy) = Ni.(i <5)?%y;:xi_5

Decision Procedures — Bit-Vectors 12

Example

(33[10] OZ/[5})[14} = z[9]

@ This is translated as follows:

z[9] = 9
(xoy) = Ni.(i <5)?%y;:xi_5

@ Final result:

()\7(7 < 5)7% : .1'175)(14) <~ X9

Decision Procedures — Bit-Vectors 12

Semantics for Arithmetic Expressions

What is the output of the following program?

unsigned char number = 200; (“\ v@
number = number + 100; iza\;y
printf("Sum: %d\n", number);

Decision Procedures — Bit-Vectors 13

Semantics for Arithmetic Expressions

What is the output of the following program?

unsigned char number = 200; (“\ v@
number = number + 100; ixa\;y
printf("Sum: %d\n", number);

On most architectures, this is 44!

11001000 = 200
4+ 01100100 = 100
= 00101100 =44

Decision Procedures — Bit-Vectors 13

Semantics for Arithmetic Expressions

What is the output of the following program?

unsigned char number = 200; (“\ ¥
number = number + 100; ixa\;y
printf("Sum: %d\n", number);

On most architectures, this is 44!

11001000 = 200
4+ 01100100 = 100
= 00101100 =44

— Bit-vector arithmetic uses modular arithmeticl!

Decision Procedures — Bit-Vectors 13

Semantics for Arithmetic Expressions

Semantics for addition, subtraction:

ag +v by =cy = (a)

ag —v by =cy = {a)

Decision Procedures — Bit-Vectors 14

Semantics for Arithmetic Expressions

Semantics for addition, subtraction:

ag+uby=cy < (a)v+ (b)y = (c)y mod 2"
a —v by =cy <= (a)y — (B)v = (v mod 2
ag+sby=cy < (a)s+ (b)s=(c)s mod 2"
a —sby =cy <= {a)s — (b)s = ()5 mod 2!

Decision Procedures — Bit-Vectors 14

Semantics for Arithmetic Expressions

Semantics for addition, subtraction:

ag+uby=cy < (a)v+ (b)y = (c)y mod 2"
a —v by =cy <= (a)y — (B)v = (v mod 2
ag+sby=cy < (a)s+ (b)s=(c)s mod 2"
a —sby =cy <= {a)s — (b)s = ()5 mod 2!

We can even mix the encodings:

agu +u bys =g == (a)u + (b)s = (c)y mod 2’

Decision Procedures — Bit-Vectors 14

Semantics for Relational Operators

Semantics for <, <, >, and so on:

apu <bpy = (@)v < (v
ags <bpys << (a)s <(b)s

Decision Procedures — Bit-Vectors 15

Semantics for Relational Operators

Semantics for <, <, >, and so on:

apu <bpy =

ans < bmg =
Mixed encodings:

amu < bms <~

ans < b[l]U <~

—~
S}
~—

—~
S}
~—

v < (byu
s < (b)s

(a)u < (b)s
(a)s < (b)u

Note that most compilers don't support comparisons with mixed

encodings.

Decision Procedures — Bit-Vectors

15

Complexity

@ Satisfiability is undecidable for an unbounded width, even
without arithmetic.

Decision Procedures — Bit-Vectors 16

Complexity

@ Satisfiability is undecidable for an unbounded width, even
without arithmetic.

@ It is NP-complete otherwise.

Decision Procedures — Bit-Vectors 16

A Simple Decision Procedure

@ Transform Bit-Vector Logic to Propositional Logic
@ Most commonly used decision procedure
o Also called 'bit-blasting’

Decision Procedures — Bit-Vectors 17

A Simple Decision Procedure

@ Transform Bit-Vector Logic to Propositional Logic
@ Most commonly used decision procedure
o Also called 'bit-blasting’

Bit-Vector Flattening
@ Convert propositional part as before

@ Add a Boolean variable for each bit of each sub-expression
(term)

© Add constraint for each sub-expression

We denote the new Boolean variable for bit i of term ¢ by p(t);.

Decision Procedures — Bit-Vectors 17

Algorithm 6.2.1: BV-FLATTENING

Input: A formula ¢ in bit-vector arithmetic
Output: An equisatisfiable Boolean formula B

1. function BV-FLATTENING

2 B:=e¢(y); > the propositional skeleton of ¢
3 for each ty; € T(p) do

4 for each i € {0,...,l— 1} do

5. set e(t); to a new Boolean variable;

6. for each a € At(p) do

7 B:=BA BV-CONSTRAINT (e, a);

8 for each t; € T(yp) do

9 B:=BA BV-CONSTRAINT(e, t);

0 return B;

—_

Bit-vector Flattening

What constraints do we generate for a given term?

Decision Procedures — Bit-Vectors 18

Bit-vector Flattening

What constraints do we generate for a given term?

@ This is easy for the bit-wise operators.

e Example for afyb:

-1
N\ ((t)i = (a; V b))

1=0

(read = = y over bits as © <= v)

Decision Procedures — Bit-Vectors 18

Bit-vector Flattening

What constraints do we generate for a given term?

@ This is easy for the bit-wise operators.

e Example for afyb:

-1

N\ ((t)i = (a; V b))

1=0

(read = = y over bits as © <= y)

@ We can transform this into CNF using Tseitin's method.

Decision Procedures — Bit-Vectors 18

Flattening Bit-Vector Arithmetic

How to flatten a + b7

Decision Procedures — Bit-Vectors 19

Flattening Bit-Vector Arithmetic

How to flatten a + b7

—— we can build a circuit that adds them!

abi

[L] Full Adder

FA s = (a+b+i)mod2 = a®bdi

|] o = (a+b+i)div2 = a-b+a-i+b-i
(O}

The full adder in CNF:

(avVbV—-o)A(aV-bViV-o)A(aV-bV-iVo)A
(maVbViV=0)A(—aVbVaiVo)A(-aV—bVo)

Decision Procedures — Bit-Vectors 19

Flattening Bit-Vector Arithmetic

Ok, this is good for one bit! How about more?

Decision Procedures — Bit-Vectors 20

Flattening Bit-Vector Arithmetic

Ok, this is good for one bit! How about more?

8-Bit ripple carry adder (RCA)

a7b7 a6b6 a5b5 a5b4 a4b3 a3b2 a2b1 aobg

Al

St S6 Sy S4 S3 S92 S1 S0

@ Also called carry chain adder
@ Adds [variables
@ Adds 6 - clauses

Decision Procedures — Bit-Vectors 20

Multipliers

@ Multipliers result in very hard formulas

o Example:

a-b=cAb-atchez<yNhz>y

CNF: About 11000 variables, unsolvable for current SAT
solvers

@ Similar problems with division, modulo

@ Q: Why is this hard?

Decision Procedures — Bit-Vectors 21

Multipliers

@ Multipliers result in very hard formulas

o Example:

a-b=cAb-atchez<yNhz>y

CNF: About 11000 variables, unsolvable for current SAT
solvers

@ Similar problems with division, modulo

@ Q: Why is this hard?

@ Q: How do we fix this?

Decision Procedures — Bit-Vectors 21

Incremental Flattening

0f = pg, F =10

psi: Boolean part of ¢
F: set of terms that are in the encoding

Decision Procedures — Bit-Vectors 22

Incremental Flattening

0f = pg, F =10

psi: Boolean part of ¢
F: set of terms that are in the encoding

Decision Procedures — Bit-Vectors 22

Incremental Flattening

<)0f = SOSkJI F =

Is

No!
UNSAT

psi: Boolean part of ¢
F: set of terms that are in the encoding

Decision Procedures — Bit-Vectors 22

Incremental Flattening

0f = pg, F =10

|
Is Yes! | com

No!
UNSAT

psi: Boolean part of ¢
F: set of terms that are in the encoding
I: set of terms that are inconsistent with the current assignment

Decision Procedures — Bit-Vectors 22

Incremental Flattening

}
Sof = SOSICI F =
Is Yes! | com
No! I=1
UNSAT SAT

psi: Boolean part of ¢
F: set of terms that are in the encoding
I: set of terms that are inconsistent with the current assignment

Decision Procedures — Bit-Vectors 22

Incremental Flattening

}
Sof = SOSICI F =
Pick F/ C (I \ F)
F:=FUF
@y := @y AN CONSTRAINT(F)
| 120
Is Yes! | com
No! I=90
UNSAT SAT

psi: Boolean part of ¢
F: set of terms that are in the encoding
I: set of terms that are inconsistent with the current assignment

Decision Procedures — Bit-Vectors 22

Incremental Flattening

o ldea: add 'easy’ parts of the formula first

@ Only add hard parts when needed

@ ¢ only gets stronger — use an incremental SAT solver

Decision Procedures — Bit-Vectors 23

Incomplete Assignments

@ Hey: initially, we only have the skeleton!
How do we know what terms are inconsistent with the current
assignment if the variables aren't even in ¢;?

Decision Procedures — Bit-Vectors 24

Incomplete Assignments

@ Hey: initially, we only have the skeleton!
How do we know what terms are inconsistent with the current
assignment if the variables aren't even in ¢;?

@ Solution: guess some values for the missing variables.
If you guess right, it's good.

Decision Procedures — Bit-Vectors 24

Algorithm 6.3.1: INCREMENTAL-BV-FLATTENING
Input: A formula ¢ in bit-vector logic

Output: “Satisfiable” if the formula is satisfiable, and “Unsatisfiable”
otherwise

1. function INCREMENTAL-BV-FLATTENING(p)

2. B:=e(yp); > propositional skeleton of ¢
3. for each t) € T(¢) do
4. for each i € {0,...,l -1} do
5. set e(t); to a new Boolean variable;
6. while (TRUE) do
7. o := SAT-SOLVER(B);
8. if a=“Unsatisfiable” then
9. return “Unsatisfiable”;
10. else
11. Let I C T(p) be the set of terms that are inconsistent with the
satisfying assignment;
12. if 7 =0 then
13. return “Satisfiable”;
14. else
15. Select “easy” F' C I,
16. for each t; € F' do

17. B:=B A BV-CONSTRAINT(e, t);

Incomplete Assignments

@ Hey: initially, we only have the skeleton!
How do we know what terms are inconsistent with the current
assignment if the variables aren't even in ¢;?

@ Solution: guess some values for the missing variables.
If you guess right, it's good.

@ ldeas:

o All zeros
o Sign extension for signed bit-vectors
o Try to propagate constants (¢« = b+ 1)

Decision Procedures — Bit-Vectors 24

	
	Introduction to Bit-Vector Logic
	Syntax
	Semantics
	Decision procedures for Bit-Vector Logic
	Flattening Bit-Vector Logic
	Incremental Flattening

