
Deductive verification

1. Partial and total correctness calculus (Hoare logics).

2. Weak-preconditions and Verification condition generators.

3. Tools for the specification , verification and certification programs: Dafny

4. Correction of imperative and object orient programs with Dafny

Origines

Hoare logics are the base of deductive verification of programs (1969, An Axio-
matic base for Computer Programming)

Tony Hoare

Inventor also of the Quick Sort and has a Turing award from 1980.

Robert Floyd

Some ideas from the 1967 paper Assigning Meaning to Programs.

Automatic program verification

Consider the following program to compute
∑100

m=1m:

x← 0;
y ← 1;
while y! = 101 do

x← x+ y;
y ← y + 1;

• How can we prove that when the program stops we have x =
∑100

m=1m ?.

• We could execute the program using an operational semantics.

• But if we change the while condition to y!=c, for any c ?

• To execute for several values of c| is not an option

Verification using deductive systems

• Given a program and specification, we want to verify that the program
satisfies the specification .

• We considere Hoare logics based on pre and post conditions:

A formula is an assertion that if the pre-condition holds be-
fore the execution of the program, the post-condition must hold
after the program execution.

1



Example

x← 0;
y ← 1;

Require: {x = 0 ∧ y = 1}
while y! = 101 do

x← x+ y;
y ← y + 1;

Ensure: {x =
∑100

n=0 n}

Simple imperative language - While

Syntactic categories

• Num integers, n

• Bool truth values, true and false

• Var variables, x

• Aexp arithmetic expressions, E

• Bexp Boolean expressions, B

• Com statements/commands, C

BNFs

For n in Num and x in Var

E ::= n | x | E + E | E − E | E × E
B ::= true | false | E = E | E < E |!B | B ∧ B

C ::= skip | x← E | C ; C | if B then C else C | while B do C

Semantics

• Expressions denote Integers or Booleans.

• To evaluate an expression it is needed to know the values of the variables
that occur in it

• A state s is a function from variables to values.

• The set of states is a set of functions

State = Var→ Z

.

2



• Commands are evaluated in a state and can modify the state.

• The semantics of a program is the state in which it stops.

• The semantics (or meaning) of each command and expression can be
defined by a transition system - operational semantics

• or by domain functions – denotational semantics.

Partial and total correctness

We aim to verify that the program has a given property and not necessarily to
determine its meaning. We call this axiomatic semantics.

In particular, we will consider properties of partial correctness given by logical
formulae (ϕ,ψ) :

If the program C is run in a state that satisfies ϕ, then the state
resulting from C’s execution will satisfy ψ

partial correctness+ termination=total correctness

Given the undecidability of the halting problem, the properties of partial cor-
rectness are specially important in formal software verification.

Assertions–Hoare Triples

The properties of partial correctness of programs are assertions as:

{ϕ}C {ψ}

where C is a command and ϕ and ψ are predicates of a first order logic.

The predicate ϕ is a precondition and ψ is a postcondition.

An assertion is valid if:

• if ϕ is true in the initial state

• If the execution of C terminates in the state s′

• then ψ is true in the state s′

Pre and post conditions

3



Examples

{x = 1}x← x + 1{x = 2} the assertion is true

{x = 1}y← x{y = 1} the assertion is true

{x = 1}y← x{y = 2} the assertion is false

{x = x0 ∧ y = y0}r← x ; x← y ; y← r{x = y0 ∧ y = x0}
The variables x0 and y0 are called logic variables as they occur only in the
conditions.

{true}C{ψ} if C stops ψ holds

{ϕ}C{true} is always true for any C and ϕ.

Example

x← 0;
y ← 1;

Require: {x = 0 ∧ y = 1}
while y! = 101 do

x← x+ y;
y ← y + 1;

Ensure: {x =
∑100

n=0 n}

• We want to infere that x =
∑100

m=1m given that before the while we had
y = 0 and x = 1.

• It is easy to see that in the end of the loop y = 101, but we want the value
of x!

• We have to know an loop invariant:

• In the beginning of each iteration we have

x = 1 + 2 + 3 + · · ·+ (y − 1)

4



Condition Language

In an assertion, {ϕ}C{ψ}, ϕ, ψ are formulae ϕ,ψ, . . . of a first-order language
for arithmetics:

• constants 0 and 1 (decimal integers can be seen as abbreviations)

• functional symbols −,+, − and × (to form terms)

• Predicate symbols <, = (to build predicates)

• logical symbols: operators ∧, ∨, etc. and quantifiers (that bound only
logical variables) ∀, ∃.

Semantics of Conditions

Conditions are interpreted in a model for the integers Z = (Z, ·) and the states
s, are assignments of values to variables.

If Z |=s ϕ, we say that s satisfies ϕ, i.e., s |= ϕ.

For instance, if s(x) = −2, s(y) = 5, s(z) = −1,

s |= ¬(x+ y < z) holds

s |= y − x× z < z does not hold

Partial correctness

A (Hoare) triple {ϕ}C{ψ} is satisfied for partial correctness if for all states tha
satisfy ϕ, the state that results from running C satisfy ψ, if C stops,

|=par {ϕ}C{ψ}.

Note that

while true do
x← 0;

satisfies all assertions

Total correctness

A triple {ϕ}C{ψ} is satisfied for total correctness if for all states that satisfy
ϕ, is ensured that C stops and that in resulting state ψ is satisfied,

|=tot {ϕ}C{ψ}

In this case

5



while true do
x← 0;

does not hold for any assertion.

Deductive system for partial correctness/Hoare Logic

• A deduction system is a set of axioms and a set of inference rules.

• A derivation (or proof) is a finite sequence of rule applications and axioms.

• If an assertion {ϕ}C{ψ} is derived from the partial correctness calculus
we say that

`par {ϕ}C{ψ}

is valid.

• The calculus is sound if:

`par {ϕ}C{ψ} implies |=par {ϕ}C{ψ}.

Deduction system for partial correctness/Hoare Logic

[skipp ]

{ϕ} skip {ϕ}

[assp ]

{ϕ[E/x]}x← E {ϕ}

[compp ]

{ϕ}C1 {η} {η}C2 {ψ}
{ϕ}C1;C2 {ψ}

where ϕ[E/x] is the formula that is obtained substituting x by E.

[ifp ]

{ϕ ∧ B}C1 {ψ} {ϕ ∧ ¬B}C2 {ψ}
{ϕ} ifB thenC1 elseC2 {ψ}

[whilep ]

6



{ψ ∧ B}C {ψ}
{ψ} whileB doC {ψ ∧ ¬B}

where ψ is the invariant

[consp ]

` ϕ′ → ϕ {ϕ}C {ψ} ` ψ → ψ′

{ϕ′}C {ψ′}

Exemp. 2.1. Show that `par {true}z ← x; z ← z + y;u← z{u = x+ y}

{x + y = x + y}z ← x{z + y = x + y}

{z + y = x + y}z ← z + y{z = x + y} {z = x + y}u ← z{u = x + y}
compp

{z + y = x + y}z ← z + y;u ← z{u = x + y}
compp

{x + y = x + y}z ← x; z ← z + y;u ← z{u = x + y}
consp

{true}z ← x; z ← z + y;u ← z{u = x + y}

Exerc. 2.1. Deduce the following assertions

• {x = 1}x← x + 1{x = 2}

• {x = 1}y← x{y = 1}

• {x = x0 ∧ y = y0}r← x ; x← y ; y← r{x = y0 ∧ y = x0}

�

Exerc. 2.2. Show that

`p {x = r + (y × q)}r ← r − y; q ← q + 1 {x = r + (y × q)}

�

Exerc. 2.3. Show that

`p {true}z ← x+ 1; if z − 1 = 0 then y ← 1 else y ← z{y = x+ 1}

�

7


