Deductive verification

—_

. Partial and total correctness calculus (Hoare logics).

2. Weak-preconditions and Verification condition generators.

3. Tools for the specification , verification and certification programs: Dafny
4

. Correction of imperative and object orient programs with Dafny

Origines

Hoare logics are the base of deductive verification of programs (1969, An Awxio-
matic base for Computer Programming)

Tony Hoare

Inventor also of the Quick Sort and has a Turing award from 1980.

Robert Floyd

Some ideas from the 1967 paper Assigning Meaning to Programs.

Automatic program verification

Consider the following program to compute Z}fil m:

z <+ 0;

Yy 1

while y! =101 do
T4 T+,
y—y+L

e How can we prove that when the program stops we have x = Zi,?il m 7.

We could execute the program using an operational semantics.
e But if we change the while condition to y!=c, for any c ?

e To execute for several values of c| is not an option

Verification using deductive systems

e Given a program and specification, we want to verify that the program
satisfies the specification .

o We considere Hoare logics based on pre and post conditions:

A formula is an assertion that if the pre-condition holds be-
fore the execution of the program, the post-condition must hold
after the program execution.



Example
x < 0;
y < L
Require: {z =0Ay =1}
while y! = 101 do
Tty
y<—y+1
Ensure: {z = Z:LO:OO n
Simple imperative language - While

Syntactic categories

e Num integers, n
e Bool truth values, true and false

e Var variables, x

Aexp arithmetic expressions, F

Bexp Boolean expressions, B

Com statements/commands, C

BNFs

For n in Num and z in Var

E w= n|z|E+E|E—E|ExE

B = true|false| E=F|E<E|B|B A B

C == skip|z+«+ E|C; C|if BthenC else (C |while BdoC
Semantics

e Expressions denote Integers or Booleans.

e To evaluate an expression it is needed to know the values of the variables
that occur in it

A state s is a function from variables to values.

The set of states is a set of functions

State = Var — Z



Commands are evaluated in a state and can modify the state.

The semantics of a program is the state in which it stops.

The semantics (or meaning) of each command and expression can be
defined by a transition system - operational semantics

or by domain functions — denotational semantics.

Partial and total correctness

We aim to verify that the program has a given property and not necessarily to
determine its meaning. We call this aziomatic semantics.

In particular, we will consider properties of partial correctness given by logical
formulae (¢, ) :

If the program C' is run in a state that satisfies @, then the state
resulting from C'’s execution will satisfy v

partial correctness+ termination=total correctness

Given the undecidability of the halting problem, the properties of partial cor-
rectness are specially important in formal software verification.

Assertions—Hoare Triples

The properties of partial correctness of programs are assertions as:
{v}C{v}

where C' is a command and ¢ and v are predicates of a first order logic.
The predicate ¢ is a precondition and ¥ is a postcondition.
An assertion is valid if:

e if ¢ is true in the initial state

e If the execution of C' terminates in the state s’

e then ® is true in the state s

Pre and post conditions



o Program state
initial final
state state

inputs :\’\}‘ Method, function, :'ﬂ‘.
e etc. (C) | | 1outputs

\ 7
! 7

Pre-condition (¢) \—Pes-t-eeﬁdiﬁon (W)

Examples

{x =1}x + x+ 1{z = 2} the assertion is true

{x =1}y + x{y = 1} the assertion is true

{z =1}y + x{y =2} the assertion is false

{r=20 ANy=wolrxixeyiyer{z=y Ay=m}

The variables x¢ and yg are called logic variables as they occur only in the
conditions.

{true}C{¢} if C stops ¢ holds

{@}C{true} is always true for any C' and ¢.

Example

z <+ 0;
y< L
Require: {x =0Ay =1}
while y! =101 do
Tz +y;
y<+—y+1;
Ensure: {z =" n}

n=0

e We want to infere that z = Z;Sgl m given that before the while we had
y=0and z=1.

e [t is easy to see that in the end of the loop y = 101, but we want the value
of z!

e We have to know an loop invariant:
e In the beginning of each iteration we have

r=1+2+3+---+(y—1)



Condition Language

In an assertion, {¢}C{¥}, ¢, 9 are formulae @, 1, ... of a first-order language
for arithmetics:

e constants 0 and 1 (decimal integers can be seen as abbreviations)
e functional symbols —,4, — and X (to form terms)
e Predicate symbols <, = (to build predicates)

e logical symbols: operators A, V, etc. and quantifiers (that bound only
logical variables) V, 3.

Semantics of Conditions

Conditions are interpreted in a model for the integers Z = (Z,-) and the states
s, are assignments of values to variables.

If Z =5 ¢, we say that s satisfies ¢, i.e., s |= .
For instance, if s(x) = =2, s(y) =5, s(z) = —1,
s = —-(z+y < z) holds
sEy—x %Xz < z does not hold

Partial correctness

A (Hoare) triple {@}C{} is satisfied for partial correctness if for all states tha
satisfy o, the state that results from running C satisfy v, if C stops,

|:pm“ {p}C{y}.
Note that

while true do
x < 0;

satisfies all assertions

Total correctness

A triple {p}C{e} is satisfied for total correctness if for all states that satisfy
p, is ensured that C stops and that in resulting state v is satisfied,

Frot {9}C{9}

In this case



while true do
x < 0;

does not hold for any assertion.

Deductive system for partial correctness/Hoare Logic

e A deduction system is a set of axioms and a set of inference rules.
e A derivation (or proof) is a finite sequence of rule applications and axioms.

o If an assertion {¢}C{#} is derived from the partial correctness calculus
we say that

}_Par {SO}C‘W}

is valid.

e The calculus is sound if:
Fpar {p}C{¢} implies ':par {p}C{v}.

Deduction system for partial correctness/Hoare Logic

[skipy ]
{v} skip{v}
[assp |
{plE/x]}z  E{p}
[comp,, ]

{¢} C1{n} {n} C2 {v}
{p} C1; Co {}

where [E/xz] is the formula that is obtained substituting by E.
[ifp ]

o ABYCi{Y}  {e A =BICo{d)
{¢} if BthenCy else Cy {9}

[while, ]



{v A ByC{y}
{¢}while BdoC'{¢p A —B}

where v is the invariant

[cons), ]

Fo' = {p}C{y} Fop—=9f
{e'yC{v'}

Exemp. 2.1. Show that tpe {true}z < z;2z < z + y;u < 2{u =z + y}

compy AEFty=otulr cstulz=aty) {z=z+y}u—2{u=2+y}

{z+ty=a+ylz—a{z+y=a+y} {z+y=az+ylz < z+y;u+ z{u=2+y}
{e+y=a+ylz a2 z+y;u+ 2{u=a+y}

compp

consp

{true}z «+ x5z +— z+y;u «+ z{u =z + y}

Exerc. 2.1. Deduce the following assertions
o {z=1}x+x+1{z =2}
o {z=1}y+x{y=1}
e {r=xgANy=ylr+x;xy;yr{x =y Ay=ax0}
o
Exerc. 2.2. Show that
Fpflez=r+@xglr<r—yecaqg+tH{z=r+(yxq}
o

Exerc. 2.3. Show that

Fp {true}z <~z +1; if 2 — 1 =0theny < lelsey < z{y =x + 1}



