tableaux for partial correctness

Let $C = C_1; C_2; \ldots; C_n$ and we want $\vdash_p \{\varphi\}C\{\psi\}$. We can consider several problems of the form $\vdash_p \{\varphi_i\}C_i\{\varphi_{i+1}\}$, with $\varphi = \varphi_0$ and $\psi = \varphi_n$. For that we annotate the commands that compose C with formulae φ_i and consider a proof tableaux :

 $\begin{cases} \varphi_0 \\ C_1; \\ \{\varphi_1\} & \text{justification} \\ C_2; \\ \vdots \\ \{\varphi_{n-1}\} & \text{justification} \\ C_n \\ \{\varphi_n\} \end{cases}$

Then we need to show

$$\vdash_p \{\varphi_i\} C_{i+1}\{\varphi_{i+1}\},\$$

starting with φ_n . But how to obtain φ_i ?

Weakest preconditions (wp)

For each command C and postcondition ψ a formula $wp(C, \psi)$ is the weakest precondition that being true in state s, ensures that in the state s' obtained after the execution of C and if C stops, the postcondition ψ holds.

- $\models_p \{wp(C,\psi)\}C\{\psi\}$
- $\models_p \{\varphi\}C\{\psi\}$ implies $\varphi \implies wp(C,\psi)$ (called verification condition)

tableaux for partial correctness

- a formula φ_i obtained from C_{i+1} and φ_{i+1} is the weakest precondition of C_{i+1}
- given the postcondition φ_{i+1} , we can write

$$wp(C_{i+1},\varphi_{i+1}) = \varphi_i.$$

- From wp() and using the consequence rule $(cons_p)$ we can automatically generate the verification conditions,
- that can be proved automatically or assisted by a solver.
- In general if $\{\varphi\}C\{\psi\}$ the verification condition is:

$$\varphi \implies wp(C,\psi)$$

Weakest preconditions - ass_p

Assignment

$$\begin{aligned} \{\psi[E/x]\} \\ x \leftarrow E \\ \{\psi\} \qquad ass_p \end{aligned}$$

A verification condition for $\{\varphi\}x \leftarrow E\{\psi\}$, is

$$\varphi \implies \psi[E/x]$$

and $wp(x \leftarrow E, \psi) = \psi[E/x].$

Ex. 2.1. Compute

1.
$$wp(x \leftarrow 0, x = 0)$$
 is $0 = 0$.
2. $wp(x \leftarrow x + 1, x > 0)$ is $x + 1 > 0$.

Weakest preconditions - $cons_p$

Consequence

The rule $cons_p$ can be applied when $\varphi' \implies \varphi$ and we have $\{\varphi\} C \{\psi\}$. In this case the *tableaux* can have two formulas in a row: φ' and below φ .

$$\begin{array}{l} \{\varphi'\} \\ \{\varphi\} \\ \end{array} cons_p \end{array}$$

Exerc. 2.1. Show with a tableaux $\vdash_p \{y = 5\}x \leftarrow y + 1\{x = 6\}$.

Weakest preconditions if_p

Conditional

We want φ such that $wp(if B \text{ then } C_1 \text{ else } C_2, \psi) = \varphi$. $\{(B \implies \varphi_1) \land (\neg B \implies \varphi_2)\}$ if B then $\{\varphi_1\}$ C_1 $\{\psi\}$ if_p else $\{\varphi_2\}$ C_2 $\{\psi\}$ $\{\psi\}$ if_p

We can compute $\{\varphi_1\}C_1\{\psi\} \in \{\varphi_2\}C_2\{\psi\}$, and then $\varphi \equiv (B \implies \varphi_1) \land (\neg B \implies \varphi_2)$, i.e.,

 $wp(if B \operatorname{then} C_1 \operatorname{else} C_2, \psi) = (B \implies \varphi_1) \land (\neg B \implies \varphi_2)$

and the verification conditions are the ones generated by φ_1 and φ_2 .

Ex. 2.2. Show with a tableaux

```
 \begin{split} & \vdash_p \{ \mathsf{true} \} \\ & a \leftarrow x+1; \\ & \texttt{if} \ a-1 = 0 \texttt{then} \\ & y \leftarrow 1 \\ & \texttt{else} \\ & y \leftarrow a \\ & \{ y = x+1 \} \end{split}
```

```
{true}
\{(x=0\implies 1=1)\land (\neg(x=0)\implies x+1=x+1)\}
                                                                          cons_p
\{(x+1-1=0 \implies 1=x+1) \land (\neg (x+1-1=0) \implies x+1=x+1)\} cons_p
a \leftarrow x + 1
\{(a-1=0\implies 1=x+1)\land (\neg(a-1=0)\implies a=x+1)\}
                                                                                   ass_p
{\tt if}\,a-1=0\,{\tt then}
                           if'_p
\{1 = x + 1\}
y \leftarrow 1
\{y = x + 1\}
                           ass_p
else
\{a = x + 1\}
                           if'_p
y \leftarrow a
\{y = x + 1\}
                           ass_p
```

We use the following inference rule:

 $[if'_p]$

$$\frac{\{\varphi_1\} C_1 \{\psi\} \quad \{\varphi_2\} C_2 \{\psi\}}{\{(B \implies \varphi_1) \land (\neg B \implies \varphi_2)\} \text{ if } B \text{ then } C_1 \text{ else } C_2 \{\psi\}}$$

Exerc. 2.2. Show that this rule can be deduced from the inference system \mathcal{H} \diamond

Weakest preconditions - $while_p$

We want $\vdash_p \{\varphi\}$ while $B \operatorname{do} C \{\psi\}$. To use $while_p$ rule we need a formula η such that:

- $\varphi \implies \eta$ • $\eta \land \neg B \implies \psi$ e
- $\vdash_p \{\eta\}$ while B do $C\{\eta \land \neg B\}$

Invariant

One invariant of the cycle while $B \operatorname{do} C$ is a formula η such that

 $\models_p \{\eta \land B\}C\{\eta\}.$

Weakest preconditions - $while_p$

$$\begin{array}{l} \{\varphi\} \\ \{\eta\} \\ \text{while } B \text{ do} \\ \left\{\eta \wedge B\right\} \\ C \\ \{\eta\} \\ \{\eta \wedge \neg B\} \\ \{\psi\} \\ \end{array} while_p \\ \begin{array}{l} while_p \\ cons_p \end{array} \end{array}$$

We have that $wp(\texttt{while } B \texttt{ do } C, \psi) = \eta$, the verification conditions are $\varphi \implies \eta$, $\eta \land \neg B \implies \psi$ and the verification conditions of $\{\eta \land B\}C\{\eta\}$.

Ex. 2.3. Show that

 $\vdash_p \{\mathsf{true}\}y \leftarrow 1; z \leftarrow 0; \mathsf{while} \neg z = x \ do \ (z \leftarrow z + 1; y \leftarrow y \times z) \{y = x!\}$

The invariant I is : y = z! and verifies the conditions: Is implied by the precondition of while which is $y = 1 \land z = 0$:

$$\begin{array}{l} y \leftarrow 1 \\ z \leftarrow 0 \\ \{y = z!\} & ? \\ \texttt{while} \neg z = x \operatorname{do} \\ & \{y = z! \land \neg z = x\} \\ & \{y \times (z+1) = (z+1)!\} \\ & z = z+1 \\ & \{y \times z = z!\} \\ & y = y \times z \\ & \{y = z!\} \\ & ass_p \\ \{y = x!\} \end{array}$$

because $(y = z! \land \neg z = x) \implies y = z! \implies y \times (z+1) = (z+1)!.$

$$\begin{aligned} \{ \mathsf{true} \} \\ \{1 = 0! \} & cons_p \\ y \leftarrow 1 \\ \{y = 0! \} & ass_p \\ z \leftarrow 0 \\ \{y = z! \} & ass_p \\ \mathsf{while} \neg z = x \operatorname{do} \\ & \{y = z! \land \neg z = x \} \\ & \{y \times (z+1) = (z+1)! \} \\ & z \leftarrow z+1 \\ & \{y \times z = z! \} \\ & y \leftarrow y \times z \\ & \{y = z! \} \\ & ass_p \\ \{y = z! \land z = x \} \\ & while_p \\ \{y = x! \} \\ \end{aligned}$$

Exerc. 2.3. Show that

$$\begin{split} & \vdash_p \{\texttt{true}\} \\ & r \leftarrow x; q \leftarrow 0; \\ \texttt{while} \ y \leq r \ \texttt{do} \\ & r \leftarrow r - y; \\ & q \leftarrow q + 1 \\ \{r < y \land x = r + (y \times q)\} \end{split}$$

 \diamond

The condition $x = r + (y \times q)$ is the invariant.

Exerc. 2.4. Show that

 $\begin{aligned} \{x \geq 0\}z \leftarrow x; y \leftarrow 0; \text{ while } \neg z = 0 \text{ do } (y \leftarrow y+1; z \leftarrow z-1)\{x=y\}. \\ \diamond \end{aligned}$