
Mechanising Hoare Logic

Given a Hoare triple ({ϕ}C{ψ}) rules are applied from the conclusion, assuming
that the side conditions hold.

• If all side conditions hold, a proof can be build;

• If some side condition does not hold, the derivation tree is not a valid
deduction, but is there an alternative derivation?

There is a strategy to build the derivation trees such that we can conclude (if
some side conditions does not hold) that there is no derivation for the given
Hoare triple.

Tableaux

• The tableaux system allows to obtain the derivation of a Hoare triple, that
is the conclusion.

• The derivation is valid if the verification conditions are satisfiable.

• But if they are not, how to ensure that there is no other derivation?

• If there is no determinism one cannot mechanise the Hoare logic.

• We will see that the tableaux ensure that if the verification conditions are
not satisfiable no other derivation exists.

• and the tableaux can be automated.

Subformula property and Ambiguity

Most rules of Hoare logic have the subformula property:

all the assertions that occur in the premises of a rule also occur in its conclu-
sion.

The exceptions are:

• The rule comp, which requires an intermediate condition;

• The rule cons, where the precondition and the postcondition must be
guessed.

Other property that we want is that the choice of the rules is non ambiguous,
but:

• The rule cons, can be applied to any Hoare triple. Thus it should be
removed.

1

Hoare logic without the rule cons: system Hg

if |= ϕ =⇒ ψ
{ϕ} skip {ψ}

if |= ϕ =⇒ ψ[E/x]
{ϕ}x ← E {ψ}

{ϕ}C1 {η} {η}C2 {ψ}
{ϕ}C1;C2 {ψ}

{ϕ ∧B}C1 {ψ} {ϕ ∧ ¬B}C2 {ψ}
{ϕ} ifB thenC1 elseC2 {ψ}

{η ∧B}C {η}
if |= ϕ =⇒ η and |= η ∧ ¬B =⇒ ψ

{ϕ} whileB do {η}C {ψ}

In the whilep rule the loop is annotated with the invariant η, to keep the
subformula property. .

We can show that the cons is derivable in Hg. Let Γ be a set of assertions.

Lema 7.1. If Γ ⊢Hg {ϕ}C{ψ} and |= ϕ′ =⇒ ϕ, |= ψ =⇒ ψ′, then
Γ ⊢Hg

{ϕ′}C{ψ′}.

Proof: By induction on the derivation of Γ ⊢Hg
{ψ}C{ϕ}. We consider the case

skip and sequence.

• For C ≡ skip, we have Γ ⊢Hg {ϕ}skip{ψ}, if |= ϕ =⇒ ψ. We have
|= ϕ′ =⇒ ϕ, |= ϕ =⇒ ψ and |= ψ =⇒ ψ′, thus |= ϕ′ =⇒ ψ′, what
means that Γ ⊢Hg {ϕ′}skip{ψ′}.

• For C ≡ C1;C2,we have Γ ⊢Hg {ϕ}C1;C2{ψ}, if Γ ⊢Hg {ϕ}C1{η} and
Γ ⊢Hg {η}C2{ψ}.
By induction we have

Γ ⊢Hg {ϕ′}C1{η} as |= ϕ′ =⇒ ϕ and |= η =⇒ η,

Γ ⊢Hg
{η}C2{ψ′} as |= η =⇒ η and |= ψ =⇒ ψ′,

thus Γ ⊢Hg {ϕ′}C1;C2{ψ′}.

Exerc. 7.1. Complete the previous proof.

2

Equivalence between H and Hg

Lema 7.2. Γ ⊢H {ϕ}C{ψ} iff Γ ⊢Hg
{ϕ}C{ψ}

Proof:

(⇒) By induction on the derivation of Γ ⊢H {ϕ}C{ψ}, using the lemma. We
consider the case of assignment and consequence.

• we have Γ ⊢H {ϕ[E/x]}x ← E{ϕ} and |= ϕ[E/x] =⇒ ϕ[E/x], thus
Γ ⊢Hg

{ϕ[E/x]}x ← E{ϕ}
• By the rule of consequence we have

Γ ⊢H {ϕ}C{ψ},

if Γ ⊢H {ϕ′}C{ψ′} and |= ϕ =⇒ ϕ′, |= ψ′ =⇒ ψ.

By induction we have Γ ⊢Hg {ϕ′}C{ψ′}, thus by the previous lemma
we have Γ ⊢Hg

{ϕ}C{ψ}.

(⇐) By induction on the derivation of Γ ⊢Hg
{ϕ}C{ψ}. We consider the case

of assignment and conditional.

• we have
Γ ⊢Hg {ϕ}x ← E{ψ} if |= ϕ =⇒ ψ[E/x].

As
Γ ⊢H {ψ[E/x]}x ← E{ψ} and |= ϕ =⇒ ψ[E/x]

and |= ψ =⇒ ψ, by consp rule, we have Γ ⊢H {ϕ}x ← E{ψ}.
• we have Γ ⊢Hg {ϕ}ifB thenC1 elseC2 {ψ}, if

Γ ⊢Hg {ϕ ∧B}C1{ψ} and Γ ⊢Hg {ϕ ∧ ¬B}C2{ψ}.

By induction Γ ⊢H {ϕ ∧ B}C1{ψ} and Γ ⊢H {ϕ ∧ ¬B}C2{ψ}, thus
Γ ⊢H {ϕ}ifB thenC1 elseC2 {ψ}

Exerc. 7.2. Complete the previous proof.

Pro and Cons

Advantages of Hg:

• The ambiguity of rule cons was eliminated.

Drawbacks of Hg:

• Is still necessary to guess the intermediate preconditions in comp.

3

The weakest precondition strategy:tableaux

We already saw that for building a derivation for {ϕ}C{ψ}, where ϕ can or not
be known (we write {?}C{ψ}).

1. if ϕ is known, we apply the unique rule of Hg. if C is C1;C2, we build a
subproof of the form {?}C2{ψ}. when the proof terminates we can go on
with {ϕ}C1{θ}, with θ obtained in the previous sub-derivation.

2. if ϕ is unknown, the construction proceeds as before, except that, in the
rules for skip, assignment and loops, with a side condition ϕ → θ, we tale
the precondition ϕ to be θ (which is exactly the wp(C.ψ).

Two phases verification

Verification condition generator, VCG

Given {ϕ}C{ψ} to compute V C(C,ψ) we have to:

• Compute the weakest precondition wp(C,ψ)

• we have that ϕ =⇒ wp(C,ψ) is a verification condition (VC)

• The remaining VC are collected from the conditions introduced in the
loops while.

4

Computation of the weakest preconditions (wp)

Given a program C and a postcondition ψ, we can compute wp(C,ψ) such
that {wp(C,ψ)}C{ψ} is valid and if {ϕ}C{ψ}is valid for any ϕ then ϕ =⇒
wp(C,ψ).

wp(skip,ψ) = ψ

wp(x ← E,ψ) = ψ[E/x]

wp(C1;C2,ψ) = wp(C1, wp(C2,ψ))

wp(ifB thenC1 elseC2,ψ) = (B =⇒ wp(C1,ψ))

∧(¬B =⇒ wp(C2,ψ))

wp(whileB do {η}C,ψ) = η

Properties of wp and V CG

Given a program C and an assertion ψ if Γ ⊢Hg {ϕ}C{ψ}, for any precondition
ϕ, then

Lema 7.3.

1. Γ ⊢Hg
{wp(C,ψ)}C{ψ}

2. Γ |= ϕ → wp(C,ψ)

Proof: By induction on C. We consider the cases of skip and while.

• For C ≡ skip, we have Γ ⊢Hg
{ϕ}skip{ψ} if |= ϕ =⇒ ψ. Note that

wp(skip,ψ) = ψ.

1. Trivially we have Γ ⊢Hg {ψ}skip{ψ}, as |= ψ =⇒ ψ.

2. By hypothesis we have Γ |= ϕ → ψ = wp(skip,ψ).

• C ≡ whileB doC, we have

Γ ⊢Hg {ϕ} whileB do {η}C {ψ} if Γ ⊢Hg {η ∧B}C{η}

and |= ϕ =⇒ η, |= η ∧ ¬B =⇒ ψ.

Note that wp(whileB do {η}C,ψ) = η

1. As |= η =⇒ η, and by hypothesis |= η ∧ ¬B =⇒ ψ and Γ ⊢Hg

{η ∧B}C{η}, then

Γ ⊢Hg {η} whileB do {η}C {ψ}

2. by hypothesis we have Γ |= ϕ → η = wp(whileB do {η}C ψ).

Exerc. 7.3. Complete the previous proof.

5

Algorithm V CG

First one computes V C(C,ψ) without consider the preconditions

V C(skip,ψ) = ∅
V C(x ← E,ψ) = ∅
V C(C1;C2,ψ) = V C(C1, wp(C2,ψ)) ∪ V C(C2,ψ)

V C(ifB thenC1 elseC2,ψ) = V C(C1,ψ) ∪ V C(C2,ψ)

V C(whileB do {η}C,ψ) = {(η ∧B) =⇒ wp(C, η)} ∪
{(η ∧ ¬B) =⇒ ψ} ∪ V C(C, η)

Next one considers the precondition:

V CG({ϕ}C{ψ}) = {ϕ =⇒ wp(C,ψ)} ∪ V C(C,ψ)

Example

let fact be the program:

f ← 1; i ← 1;
while i ≤ n do

{f = (i− 1)! ∧ i ≤ n+ 1} ⊲ Invariante
f ← f ∗ i;
i ← i+ 1;

We compute

VCG({n ≥ 0}fact{f = n!})

with

θ = f = (i− 1)! ∧ i ≤ n+ 1

Cw = f ← f ∗ i; i ← i+ 1

6

V C(fact, f = n!)

= V C(f ← 1; i ← 1, wp(while i ≤ n do{θ}Cw, f = n!))

∪V C(while i ≤ n do{θ}Cw, f = n!)

= V C(f ← 1; i ← 1, θ) ∪ {θ ∧ i ≤ n → wp(Cw, θ)}
∪{θ ∧ i > n → f = n!} ∪ V C(Cw, θ)

= V C(f ← 1, wp(i ← 1, θ)) ∪ V C(i ← 1, θ)

∪{f = (i− 1)! ∧ i ≤ n+ 1 ∧ i ≤ n → wp(f ← f ∗ i; i ← i+ 1, θ)}
∪{f = (i− 1)! ∧ i ≤ n+ 1 ∧ i > n → f = n!}
∪V C(f = f ∗ i, wp(i ← i+ 1, θ)) ∪ V C(i ← i+ 1, θ)

= ∅ ∪ ∅ ∪ {f = (i− 1)! ∧ i ≤ n+ 1 ∧ i ≤ n

→ wp(f ← f ∗ i, f = (i+ 1− 1)! ∧ i+ 1 ≤ n+ 1)}
∪{f = (i− 1)! ∧ i ≤ n+ 1 ∧ i ≤ n → f = n!} ∪ ∅ ∪ ∅

= {f = (i− 1)! ∧ i ≤ n+ 1 ∧ i ≤ n → f ∗ i = (i+ 1− 1)!

∧ i+ 1 ≤ n+ 1, f = (i− 1)! ∧ i ≤ n+ 1 ∧ i ≤ n → f = n!}

V CG({n ≥ 0}fact{f = n!})
= {n ≥ 0 → wp(fact, f = n!)} ∪ V C(fact, f = n!)

= {n ≥ 0 → wp(f ← 1; i ← 1;wp(while i ≤ n do{θ}Cw, f = n!),

f = (i− 1)! ∧ i ≤ n+ 1 ∧ i ≤ n → f ∗ i = (i+ 1− 1)!

∧i+ 1 ≤ n+ 1, f = (i− 1)! ∧ i ≤ n+ 1 ∧ i ≤ n → f = n!}
= {n ≥ 0 → wp(f ← 1; i ← 1; θ),

f = (i− 1)! ∧ i ≤ n+ 1 ∧ i ≤ n → f ∗ i = (i+ 1− 1)!

∧i+ 1 ≤ n+ 1, f = (i− 1)! ∧ i ≤ n+ 1 ∧ i ≤ n → f = n!}

We have the following proof obligations:

1. n ≥ 0 → 1 = (1− 1)! ∧ 1 ≤ n+ 1

2. f = (i− 1)! ∧ i ≤ n+ 1 ∧ i ≤ n → f ∗ i = (i+ 1− 1)! ∧ i+ 1 ≤ n+ 1)

3. f = (i− 1)! ∧ i ≤ n+ 1 ∧ i ≤ n → f = n!

Teorema 7.1 (Adequacy of V CG). Let {ϕ}C{ψ} a Hoare triple and Γ a set
of assertions.

Γ |= V CG({ϕ}C{ψ}) iff Γ ⊢Hg {ϕ}C{ψ}.

7

Proof:

(⇒) By induction on the derivation of C. We consider the case of assignment
and sequence

• For C ≡ x ← E, we have

V CG({ϕ}X ← E{ψ}) = {ϕ =⇒ wp(X ← E,ψ)} ∪ V C(x ← E,ψ)

= {ϕ =⇒ ψ[E/x]}.

If Γ |= ϕ =⇒ ψ[E/x], then by the assignment rule

Γ ⊢Hg {ϕ}C{ψ}.

• For C ≡ C1;C2, we have

V CG({ϕ}C1;C2{ψ}) = {ϕ =⇒ wp(C1;C2,ψ)} ∪ V C(C1;C2,ψ)

= {ϕ =⇒ wp(C1, wp(C2,ψ))}
∪ V C(C1, wp(C2,ψ)) ∪ V C(C2,ψ).

Let η = wp(C2,ψ). As

Γ |= ϕ =⇒ wp(C1, η) ∪ V C(C1, η) = V CG({ϕ}C1{η}),

by induction Γ ⊢Hg {ϕ}C1{η}.
Also Γ |= η =⇒ η ∪ V C(C2,ψ) = V CG({η}C2{ψ}), by induction
Γ ⊢Hg

{η}C2{ψ}, thus Γ ⊢Hg
{ϕ}C1;C2{ψ}.

(⇐) By induction on the derivation of Γ ⊢Hg {ψ}C{ϕ}. We consider the case
skip and conditional.

• Γ ⊢Hg {ϕ}skip{ψ}, if Γ |= ϕ =⇒ ψ = V CG({ϕ}skip{ψ}).

• Γ ⊢Hg
{ϕ}ifB thenC1 elseC2 {ψ} if Γ ⊢Hg

{ϕ ∧ B}C1{ψ} e Γ ⊢Hg

{ϕ ∧ ¬B}C2{ψ}. By induction

Γ |= V CG({ϕ ∧B}C1{ψ}) = {(ϕ ∧B) =⇒ wp(C1,ψ)} ∪ V C(C1,ψ)

and

Γ |= V CG({ϕ ∧ ¬B}C2{ψ}) = {(ϕ ∧ ¬B) =⇒ wp(C2,ψ)} ∪ V C(C2,ψ).

Note that,

wp(ifB thenC1 elseC2,ψ) = B =⇒ wp(C1,ψ) ∧ ¬B =⇒ wp(C2,ψ)},

thus,
Γ |= {ϕ =⇒ wp(ifB thenC1 elseC2,ψ)}.

Thus, Γ |= {ϕ =⇒ wp(ifB thenC1 elseC2,ψ)}∪V C(C1,ψ)∪V C(C2,ψ) =
V CG({ϕ}ifB thenC1 elseC2{ψ}).

Exerc. 7.4. Complete the previous proof.

8

Verification Conditions for programs with arrays

Let maxarray be the following program:

max ← 0;
i ← 1;
while i < size do

if u[i] > u[max] then
max ← i

else
skip;

i ← i+ 1

We want to check that

{size ≥ 1} maxarray {0 ≤ max < size ∧ ∀a.0 ≤ a < size → u[a] ≤ u[max]}

Which is the invariant?

The annotated program is:

Require: {size ≥ 1}
max ← 0;
i ← 1;
while i < size do {θ}

if u[i] > u[max] then
max ← i

else
skip;

i ← i+ 1

Ensure: {0 ≤ max < size ∧ ∀a.0 ≤ a < size → u[a] ≤ u[max]}

where the invariant is

θ = 1 ≤ i ≤ size ∧ 0 ≤ max < i ∧ ∀a.0 ≤ a < i → u[a] ≤ u[max]

Exerc. 7.5. Using the system Hg build a tableaux for

{size ≥ 1}maxarray{0 ≤ max < size ∧ ∀a.0 ≤ a < size → u[a] ≤ u[max]}

⋄

The verification conditions can be calculated by applying the VCG for

{size ≥ 1} maxarray {0 ≤ max < size ∧ ∀a.0 ≤ a < size → u[a] ≤ u[max]}
We assume

θ = 1 ≤ i ≤ size ∧ 0 ≤ max < i ∧ ∀a.0 ≤ a < i → u[a] ≤ u[max]

C = if u[i] > u[max] then max ← i else skip; i ← i+ 1;

ψ = 0 ≤ max < size ∧ ∀a.0 ≤ a < size → u[a] ≤ u[max]

9

We have

V CG({size ≥ 1}maxarray{ψ}) = {size ≥ 1 =⇒ wp(maxarray,ψ)}
∪ V C(maxarray,ψ).

wp(C, θ) = (u[i] > u[max] =⇒ (1 ≤ i+ 1 ≤ size

∧ 0 ≤ i < i+ 1 ∧ ∀a.0 ≤ a < i+ 1 → u[a] ≤ u[i])

∧ (u[i] ≤ u[max] =⇒ (1 ≤ i+ 1 ≤ size

∧ 0 ≤ max < i+ 1

∧ ∀a.0 ≤ a < i+ 1 → u[a] ≤ u[max]))

wp(maxarray, θ) = (1 ≤ 1 ≤ size

∧ 0 ≤ 0 < 1 ∧ ∀a.0 ≤ a < 1 → u[a] ≤ u[0])

V C(maxarray,ψ) = {θ ∧ i < size =⇒ wp(C, θ), θ ∧ i ≥ size =⇒ ψ}
= {(1 ≤ i < size ∧ 0 ≤ max < i ∧

∀a.0 ≤ a < i → u[a] ≤ u[max]) =⇒ wp(C, θ),

1 ≤ i = size ∧ 0 ≤ max < i ∧
∀a.0 ≤ a < i → u[a] ≤ u[max]) =⇒ ψ}

Extension of VCG for arrays

We add the following rule to Hg:

if |= ϕ =⇒ ψ[u[E ⊲ E′]/u]
{ϕ}u[E] ← E′ {ψ}

we expand wp and VC in the following way:

wp(u[E] ← E′,ψ) = ψ[u[E ⊲ E′]/u]

V C(u[E] ← E′,ψ) = ∅

For instance:

wp(u[i] ← 10, u[j] > 100) = u[i ⊲ 10][j] > 100

V C(u[i] ← 10, u[j] > 100) = ∅

Exerc. 7.6. Using the VCG algorithm calculate:

1. V CG({u[j] > 100}u[i] ← 10{u[j] > 100})

2. V CG({i ∕= j ∧ u[j] > 100}u[i] ← 10{u[j] > 100})

3. V CG({i = 70}u[i] ← 10{u[i] = 10})

⋄

10

Safety Properties

In the operational semantics we considered, every expression evaluates to a value
and command execution would not produce any error.

We now consider some modifications that approximate the language to a real
programming language:

• incorporating in the language semantics a special error value;

• modifying the evaluation relation to admit evaluation of commands to a
special error state;

Error semantics for arithmetic expressions

A : Aexp → (State → (Z ∪ {error}))

A[[n]]s = n

A[[x]]s = s(x)

A[[E1 ⊙ E2]]s =

󰀫
A[[E1]]s⊙A[[E2]]s if A[[E1]]s ∕= error ∕= A[[E2]]s

error otherwise

para ⊙ ∈ {+,−,×}

A[[E1 ÷ E2]]s =

󰀻
󰁁󰀿

󰁁󰀽

A[[E1]]s÷A[[E2]]s if A[[E1]]s ∕= error ∕= A[[E2]]s

and A[[E2]]s ∕= 0

error otherwise

Error semantics for Boolean expressions

T = {true, false}, B : Bexp → (State → (T ∪ {error}))

B[[true]]s = true

B[[false]]s = false

B[[¬b]]s =

󰀻
󰀿

󰀽

true if B[[b]]s = false
false if B[[b]]s = true
error if B[[b]]s = error

B[[E1 ⊙ E2]]s =

󰀝
A[[E1]]s⊙A[[E2]]s if A[[E1]]s ∕= error ∕= A[[E2]]s
error otherwise

for ⊙ ∈ {=, <,≤}.

B[[b1 ∧ b2]]s =

󰀻
󰀿

󰀽

false if B[[b1]]s = false
error if B[[b1]]s = error
B[[b1]]s otherwise

11

Natural semantics with errors (big-step)

〈skip, s〉 −→ s

〈x ← E, s〉 −→
󰀫
s[A[[E]]s/x] if A[[E]]s ∕= error

error otherwise

〈C1, s〉 −→ error

〈C1;C2, s〉 −→ error

〈C1, s〉 −→ s′ , 〈C2, s
′〉 −→ s′′

〈C1;C2, s〉 −→ s′′
if s′ ∕= error

〈if B then C1 else C2, s〉 −→ error if B[[B]]s = error

〈C1, s〉 −→ s′

〈if B then C1 else C2, s〉 −→ s′
if B[[B]]s = true

〈C2, s〉 −→ s′

〈if B then C1 else C2, s〉 −→ s′
if B[[B]]s = false

〈while B do C, s〉 −→ error if B[[B]]s = error

〈C, s〉 −→ error

〈while B do C, s〉 −→ error
if B[[B]]s = true

〈C, s〉 −→ s′, 〈while B do C, s′〉 −→ s′′

〈while B do C, s〉 −→ s′′
if B[[B]]s = true, s′ ∕= error

〈while B do C, s〉 −→ s if B[[B]]s = F

Hoare logic safety-sensitive

To extend the deductive systems of Hoare logic

• consider the structure of each command

• consider the possible values of the expressions that occur

• associate safety side conditions to each expression E which we denote by
safe(E) (which is an assertion).

Hoare logic with safety conditions: system Hs

if ϕ =⇒ ψ
{ϕ} skip {ψ}

12

if ϕ =⇒ safe(E) and ϕ =⇒ ψ[E/x]
{ϕ}x ← E {ψ}

{ϕ}C1 {η} {η}C2 {ψ}
{ϕ}C1;C2 {ψ}

{ϕ ∧B}C1 {ψ} {ϕ ∧ ¬B}C2 {ψ}
if ϕ =⇒ safe(B)

{ϕ} ifB thenC1 elseC2 {ψ}

{η ∧B}C {η}
if ψ =⇒ η, η =⇒ safe(B) and η ∧ ¬B =⇒ ϕ

{ψ} whileB do {η}C {ϕ}

VCG algorithm: calculation of the weakest preconditions (wps)

wps(skip,ψ) = ψ

wps(x ← E,ψ) = safe(E) ∧ ψ[E/x]

wps(C1;C2,ψ) = wps(C1, wp
s(C2,ψ))

wps(ifB thenC1 elseC2,ψ) = safe(B) ∧ (B =⇒ wps(C1,ψ))

∧(¬B =⇒ wps(C2,ϕ))

wps(whileB do {η}C,ψ) = η

VCG algorithm: Compute V C without preconditions

V Cs(skip,ψ) = ∅
V Cs(x ← E,ψ) = ∅
V Cs(C1;C2,ψ) = V Cs(C1, wp

s(C2,ψ)) ∪
V Cs(C2,ψ)

V Cs(ifB thenC1 elseC2,ψ) = V Cs(C1,ψ) ∪ V Cs(C2,ψ)

V Cs(whileB do {η}C,ψ) = {η =⇒ safe(B)} ∪
{(η ∧B) =⇒ wps(C, η)} ∪
{(η ∧ ¬B) =⇒ ψ} ∪ V Cs(C, η)

We define V CGs as:

V CGs({ϕ}C{ψ}) = {ϕ =⇒ wps(C,ψ)} ∪ V Cs(C,ψ)

13

The function safe for the Whileint language

safe(n) = true

safe(x) = true

safe(−E) = safe(E)

safe(E1 ⊙ E2) = safe(E1) ∧ safe(E2)

with ⊙ ∈ {+,−,×,=, <,≤}
safe(E1 ÷ E2) = safe(E1) ∧ safe(E2) ∧ E2 ∕= 0

safe(¬B) = safe(B)

safe(B1 ∧B2) = safe(B1) ∧ (B1 =⇒ safe(B2))

safe(B1 ∨ B2) = safe(B1) ∧ (¬B1 =⇒ safe(B2))

We have

A[[E]]s ∕= error iff [[safe(E)]]s = true.

Exerc. 7.7. Prove the previous proposition. ⋄

Adequacy of VCGs

Let {ϕ}C{ψ} be a Hoare triple and Γ a set of assertions. Then

Γ |= V CGs({ϕ}C{ψ}) iff Γ ⊢Hs
{ϕ}C{ψ}.

Proof. (⇒) By induction on the structure of C.

(⇐) By induction on the derivation of Γ ⊢Hs
{ϕ}C{ψ}.

Exerc. 7.8. Prove the previous result. ⋄

Ex. 7.1.

safe((x÷ y) > 2) = safe(x) ∧ safe(y) ∧ y ∕= 0 ∧ safe(2)

= true ∧ true ∧ y ∕= 0 ∧ true

≡ y ∕= 0

safe(7 > x ∧ (x÷ y) > 2) = safe(7 > x) ∧
((7 > x) → safe((x÷ y) > 2)

= true ∧ true ∧ (7 > x → (y ∕= 0))

≡ 7 > x → y ∕= 0

14

Bounded Arrays: Whilearray[N]

• The notion of array introduced before is unrealistic since arrays are virtu-
ally infinite.

• we will consider expressions of the for array[N], representing arrays of
size N , that admit as valid indexes nonnegative integers below N .

• What to do if the operations refer indexes out of the array limits?

• We consider as error situations.

• We introduce len(A) that given a array A returns its length.

Syntax of language Whilearray[N]

For n ∈ Num, x ∈ Var, u ∈ Array

Exparray[N] A ::= u | A[E ⊲ E]

Expint E ::= n | x | −E | E + E | E − E

| E × E | E ÷ E

| A[E] | len(A)

Expbool B ::= true | false | ¬B | E = E

| B < E | B ≤ B | B ∧B | B ∨ B

Semantics of the arithmetic expressions for Whilearray[N]

We only need to define the semantics for Exparray[N].

A[[u]]s = s(u)

A[[A[E ⊲ E′]]]s =

󰀻
󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰀽

A[[A]]s[A[[E′]]s/A[[E]]s] if

A[[A]]s ∕= error

A[[E]]s ∕= error

0 ≤ A[[E]]s < A[[len(A)]]s

A[[E′]]s ∕= error

error otherwise.

15

e

A[[len(A)]]s = N

A[[A[E]]]s =

󰀻
󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰀽

A[[A]]s(A[[E]]s) if

A[[A]]s ∕= error

A[[E]]s ∕= error

0 ≤ A[[E]]s < A[[len(A)]]s

error otherwise.

Extension of VCG for array[N]

We add the following rule to Hg:

if ϕ =⇒ safe(u[E ⊲ E′]) and ϕ =⇒ ψ[u[E ⊲ E′]/u]
{ϕ}u[E] ← E′ {ψ}

we extend wps and VCs and safe as follows:

wps(u[E] ← E′,ψ) = safe(u[E ⊲ E′]) ∧ ψ[u[E ⊲ E′]/u]

V Cs(u[E] ← E′,ψ) = ∅

safe(u) = true

safe(len(A)) = true

safe(A[E]) = safe(A) ∧ safe(E) ∧ 0 ≤ E ≤ len(A)

safe(A[E ⊲ E′]) = safe(A) ∧ safe(E) ∧
0 ≤ E ≤ len(A) ∧ safe(E′)

Ex. 7.2.

safe(u[x÷ 2]) = safe(u) ∧ safe(x÷ 2) ∧ 0 ≤ x÷ 2 < len(u)

= true ∧ safe(x) ∧ safe(2) ∧ 2 ∕= 0

∧0 ≤ x÷ 2 < len(u)

= true ∧ true ∧ true ∧ 2 ∕= 0 ∧ 0 ≤ x÷ 2 < len(u)

≡ 2 ∕= 0 ∧ 0 ≤ x÷ 2 < len(u)

safe(u[3 ⊲ 10]) = safe(u) ∧ safe(3) ∧ 0 ≤ 3 < len(u) ∧ safe(10)

= true ∧ true ∧ 0 ≤ 3 < len(u) ∧ true

≡ 0 ≤ 3 < len(u)

maxarray

Now one needs consider the range of valid indexes of an array u

valid range(u, i, j) = 0 ≤ i ≤ j < len(u) ∨ i > j

16

Require: {size ≥ 1 ∧ valid range(u, 0, size− 1)}
max ← 0;
i ← 0;
while i < size do {θ}

if u[i] > u[max] then
max ← i

else
skip;

i ← i+ 1

Ensure: {0 ≤ max < size ∧ ∀a.0 ≤ a < size → u[a] ≤ u[max]}

wps(C, θ) =safe(u[i] > u[max])

∧ (u[i] > u[max] =⇒ (safe(i) ∧ safe(i+ 1)

∧ 1 ≤ i+ 1 ≤ size ∧ 0 ≤ i < i+ 1

∧ ∀a.0 ≤ a < i+ 1 → u[a] ≤ u[i]))

∧ (¬(u[i] ≤ u[max]) =⇒ (safe(i+ 1)

∧ 1 ≤ i+ 1 ≤ size ∧ 0 ≤ max < i+ 1

∧ ∀a.0 ≤ a < i+ 1 → u[a] ≤ u[max]))

wps(maxarray, θ) = (safe(0) ∧ safe(1) ∧ 1 ≤ 1 ≤ size

∧ 0 ≤ 0 < 1 ∧ ∀a.0 ≤ a < 1 → u[a] ≤ u[0])

V Cs(maxarray,ψ) = {θ =⇒ safe(i < size),

(1 ≤ i < size ∧ 0 ≤ max < i∧
∀a.0 ≤ a < i → u[a] ≤ u[max]) =⇒ wps(C, θ),

(1 ≤ i = size ∧ 0 ≤ max < i∧
∀a.0 ≤ a < i → u[a] ≤ u[max]) =⇒ ψ}

See [AFPMdS11] Chap. 6.5, 7.

References

[AFPMdS11] José Bacelar Almeida, Maria João Frade, Jorge Sousa Pinto, and
Simão Melo de Sousa. Rigorous Software Development: An In-
troduction to Program Verification. Springer, 2011.

17

