Mechanising Hoare Logic

Given a Hoare triple ({¢}C{%}) rules are applied from the conclusion, assuming
that the side conditions hold.

e If all side conditions hold, a proof can be build;

e If some side condition does not hold, the derivation tree is not a valid
deduction, but is there an alternative derivation?

There is a strategy to build the derivation trees such that we can conclude (if
some side conditions does not hold) that there is no derivation for the given
Hoare triple.

Tableaux

e The tableaux system allows to obtain the derivation of a Hoare triple, that
is the conclusion.

e The derivation is valid if the verification conditions are satisfiable.
e But if they are not, how to ensure that there is no other derivation?
e If there is no determinism one cannot mechanise the Hoare logic.

e We will see that the tableaux ensure that if the verification conditions are
not satisfiable no other derivation exists.

e and the tableaux can be automated.

Subformula property and Ambiguity

Most rules of Hoare logic have the subformula property:

all the assertions that occur in the premises of a rule also occur in its conclu-
sion.

The exceptions are:

e The rule comp, which requires an intermediate condition;

e The rule cons, where the precondition and the postcondition must be
guessed.

Other property that we want is that the choice of the rules is non ambiguous,
but:

e The rule cons, can be applied to any Hoare triple. Thus it should be
removed.

Hoare logic without the rule cons: system H,

{¢} skip {v} ifEe =7

if o = [B/a)

{r}z « E{y}

{e} C1{n} {n} C2 {v}
{¢} C1; Co {2}

{o A B} C1{v} {en-B}Ca {y}
{¢} if BthenC} else Cy {9}

{n A B}C{n}
{¢}while Bdo {n}C {y}

ifEe = nand EnA-B = ¥

In the while, rule the loop is annotated with the invariant 1, to keep the
subformula property. .

We can show that the cons is derivable in H,. Let I" be a set of assertions.

Lema 7.1. If T' by, {p}C{Y} and = ¢ = o, E v = ', then
[b, {"1C{0'}

Proof: By induction on the derivation of " k4, {¢}C{p}. We consider the case
skip and sequence.

e For C' = skip, we have T' by, {p}skip{¢}, if F ¢ == 1. We have

o = g k¢ = pand kY = ¢, thus = ¢! = ¢, what
means that I' 4, {¢'}skip{t'}.

e For C = C1;Cy,we have T’ Fa, {p}C1; Co{y}, if T Fa, {¢}C1{n} and
[o, An}Ca{v}

By induction we have

Dhy, {@'}0{n} as E ¢ = pand EFn = 1,
Dhy, {n}Cof{d'} as = = nand o = ¢,

thus T' 4, {¢'}C1; Co{y'}.

Exerc. 7.1. Complete the previous proof.

Equivalence between H and H,
Lema 7.2. T' 3 {@}C{} iff T by, {0}C{0}

Proof:

(=) By induction on the derivation of I F¢ {¢}C{%}, using the lemma. We
consider the case of assignment and consequence.

e we have I' oy {¢[E/x]}x + E{¢} and = ¢[E/z] = ¢[E/z], thus
Uy, {plE/z]}e « E{p}

e By the rule of consequence we have

I B {e}C{y},

f T Ey {Q"tC{W'and o = ¢, ¢ = .
By induction we have I' by, {¢"}C{%'}, thus by the previous lemma
we have I' 3, {¢}C{9}.

(<) By induction on the derivation of I" 3, {¢}C{1)}. We consider the case
of assignment and conditional.

e we have
Dhw, {pte « E{}if o = y[E/z]

As
I by (IE/al}e < E{¢} and | = Y[E/x]
and = 1Y = 1, by cons, rule, we have I' -y {p}z + E{¢}.
e we have I' -3, {p}if BthenC else C {1}, if

[by, {o A BYC{y} and T by, {0 A =B}Co{e)}

By induction I F¢ {¢ A B}C1{¢} and T F4 {@ A =B}Cs{t}, thus
I'Fy {p}if BthenC else Cy {9}

Exerc. 7.2. Complete the previous proof.
Pro and Cons
Advantages of H,:
e The ambiguity of rule cons was eliminated.
Drawbacks of H4:

e Is still necessary to guess the intermediate preconditions in comp.

The weakest precondition strategy:tableaux

We already saw that for building a derivation for {¢}C{1}, where ¢ can or not
be known (we write {7}C{¢}).

1. if ¢ is known, we apply the unique rule of H,. if C' is Cy; Co, we build a

subproof of the form {?}C2{t}. when the proof terminates we can go on
with {p}C1{0}, with 6 obtained in the previous sub-derivation.

2. if ¢ is unknown, the construction proceeds as before, except that, in the
rules for skip, assignment and loops, with a side condition ¢ — 6, we tale
the precondition ¢ to be 6 (which is exactly the wp(C.4)).

Two phases verification

Légica de
Programa Hoare
anotado VCGen
contra-exemplos ?

Obrigagdes
Demostrador de Prova

Verification condition generator, VCG

Given {¢}C{9} to compute VC(C,v) we have to:

e Compute the weakest precondition wp(C, 1))
e we have that ¢ = wp(C,) is a verification condition (VC)

e The remaining VC are collected from the conditions introduced in the
loops while.

Computation of the weakest preconditions (wp)

Given a program C and a postcondition 1, we can compute wp(C, 1)) such
that {wp(C,¢)}C{y} is valid and if {p}C{t}is valid for any ¢ then ¢ —>
wp(C,).

wp(skip,) = ¢
wp(z + E,¢) = y[E/x]
wp(C1;C2,) = wp(Cr,wp(Ca, 1))
wp(if BthenC,else Cy,¢) = (B = wp(Ch,v))
AN(—B = wp(Cq,1)))
wp(while Bdo {n}C,¢y) = n

Properties of wp and VCG

Given a program C' and an assertion ¢ if I' 3, {0}C{1}, for any precondition
©, then

Lema 7.3.

1. T by, {wp(C,) }CO{a}
2. T o — wp(C,v)

Proof: By induction on C. We consider the cases of skip and while.

e For C' = skip, we have I' 3, {¢}skip{¢} if F ¢ = 1. Note that
wp(skip, P) = ¥.

1. Trivially we have I' 3, {¢}skip{¢}, as =9 = .
2. By hypothesis we have I' = ¢ — ¢ = wp(skip, 9).

e (' =while Bdo C, we have

I3, {¢}while Bdo {n}C {y} if T 4, {n A B}C{n}

and F o = n, EnA-B = .
Note that wp(while Bdo {n}C,¢) =17

1. As = n = 1, and by hypothesis = n A =B = ¢ and I' b4,
{n A B}C{n}, then

I'Fy, {n}while Bdo {n}C {¢}

2. by hypothesis we have I' = ¢ — 7 = wp(while Bdo {n}C).
Exerc. 7.3. Complete the previous proof.

Algorithm VCG

First one computes VC/(C,) without consider the preconditions

VC(skip,)
VC(x < E,9)
VO (C1;Co,v) = VCO(Cr,wp(Cay1))) UVC(Co, 1)
VC(if Bthen(CyelseCy,vp) = VC(Cy,¢)UVC(Cq, 1)
VC(while Bdo{n}C,v) = {(nAB) = wp(C,n)}U
{(nA-B) = »}uVC(C,n)

Next one considers the precondition:

VOG({p}C{Y}) = {v = wp(C,)} UVO(C,¢)

Example

let fact be the program:
fe i1,
while i <n do

{f=G-1IANi<n+1} > Invariante

[fxi

141+ 1;
We compute
VCG({n > O}fact{f = n!})
with

0 = f=@G-1)Ai<n+1
Cw = [frijii+1

VC(fact, f =nl)

= VC(f + 1;i + 1,wp(while ¢ <n do{0}C,, f =n!))
UV C(while i < n do{0}C,, f = n!)

= VO(f+ 11+ 1,0)u{dni<n— wp(Cy,0)}
U{OANi>n— f=nl}UuVC(Cy,,0)

= VC(f + 1,wp(i + 1,0))UVC(i+ 1,6)
UWf=0G-1DIA"i<n+1Ai<n—-wp(f+ fxi;i+—i+1,0)}
Wf=0G-IIAi<n+1Ai>n— f=nl}
UVCO(f = fi,wp(i < i+1,0) UVC(i +i+1,0)

= QUPU{f=(G—-1)Ai<n+1Ai<n

—Swp(f+ fxi,f=@G+1-1)Ai+1<n+1)}

Uf=G-DA"i<n+1Ai<n— f=nl}UduUld

= {f=(G-DINi<n+1Ai<n— fxi=(i+1—1)!
Ni+l1<n+1,f=>G(-1)IA"i<n+1Ai<n— f=nl}

VCG({n > O}fact{f = n!})

= {n>0— wp(fact, f =n!)} UVC(fact, f = n!)
{n>0— wp(f < 1;i + L;wp(while i <n do{6}C,, f =n!l),
F=(-DIAi<n+1Ai<n— fri=(+1—1)
Ni+l<n+1,f=(G-1)IAi<n+1Ai<n— f=nl}

= {n>0—-wp(f <+ 1;i+ 1;0),
f=0E-DINi<n4+1Ai<n— fxi=(G+1-1)
Ni+l<n+1,f=(-1)Ai<n+1Ai<n— f=nl}

We have the following proof obligations:
L.n>0=-1=01-DIA1<n+1
2. f=0G-DINi<n+1Ai<n— fxi=0G+1-DIAi+1<n+1)
. f=@G—-1IANi<n+1Ai<n— f=nl

Teorema 7.1 (Adequacy of VCG). Let {¢}C{v} a Hoare triple and T a set
of assertions.

I = VOG{erC{v}) iff T by, {}C{0}.

Proof:

(=)

By induction on the derivation of C'. We consider the case of assignment
and sequence

e For C =z + E, we have
VOG({p}X « E{y}) = {¢ = wp(X « E,)} UVC(z + E,¢)
={¢ = Y[E/a]}.
IT ¢ = 9[E/x], then by the assignment rule
', {}C{y}.
For C' = C4; Cs, we have

VOG({p}Cr; Co{tp}) = {p = wp(C1;Ca, 1)} UVC(Cy; Co,y 1)

= {()0 = wP(Cl,wp(Cm?l)))}
U VC(Cl, ’U.)p(CQ, 1/})) @] VC(CQ, 1/))

Let n = wp(Ca,). As
I'E¢ = wp(Cr,n) UVC(Crn) = VCG({e}Ci{n}),
by induction T' 4, {0}C1{n}.

Also T'En = nuUVC(Cyy) = VCG({n}Ce{t}), by induction
[g, {n}C2{v}, thus T' by, {p}Cr; Co{¥b}.

By induction on the derivation of T k4, {1/}C{¢}. We consider the case
skip and conditional.

o Tty {p}skip{v}, if I' = ¢ = ¢ = VCG({p}skip{¢}).

[by, {¢}if BthenC}elseCy {¢p} if T Fa, { N B}C1{¢yp} e T Fa,
{¢ A =B}C5{v}. By induction

I'EVCG({e A BICi{y}) = {(¢ A B) = wp(Cr,¥)} UVC(C,¢)
and

['EVCG({p A -B}CAd}) = {(p A=B) = wp(Ca,)} UVC(Cy, ¥).

Note that,
wp(if Bthen () else Cy,9) = B = wp(Ch,9Y) AN—-B = wp(Ca,¥)},

thus,
I' ={¢ = wp(if BthenCj elseCy,v)}.

Thus, I' E {¢ = wp(if BthenCy else C,) UV C(Cy,¢)UVC(Ca,tp) =
VCG({p}if BthenCelse Ca{1)}).

Exerc. 7.4. Complete the previous proof.

Verification Conditions for programs with arrays

Let maxarray be the following program:
mazx < 0;
14— 1;
while i < size do
if u[i] > u[max] then
max <1
else
skip;
14 1+1
We want to check that

{size > 1} maxarray {0 < maz < size AVa.0 < a < size — ufa] < u[maz]}

Which is the invariant?
The annotated program is:
Require: {size > 1}
mazx < 0;
14 1;
while i < size do {6}
if w[i] > u[max] then
max < 1
else
skip;
1 1+1
Ensure: {0 < maz < size AVa.0 < a < size — ula] < u[maz]}

where the invariant is
0 = 1<i<sizeAO<maz<iAVal<a<i— ula] <ulmaz]
Exerc. 7.5. Using the system H, build a tableaux for
{size > 1}maxarray{0 < maz < size AVa.0 < a < size — u[a] < u[maz]}

o

The verification conditions can be calculated by applying the VCG for
{size > 1} maxarray {0 < maz < size AVa.0 < a < size — ufa] < u[maz]}
We assume

0 = 1<i<size N0 <mar <iAVa0<a<i— ula] < u[maz]
C = if u[i] > u[max] then max < i else skip;i < i + 1;
v = 0<maz < size AVa.0 < a < size — ula] < u[maz]

We have

VCG({size > 1}maxarray{¢)}) = {size >1 = wp(maxarray,)}
U VC(maxarray,).

wp(C, 0)

(u[d] > ufmazr] = (1 <i+1 < size
0<i<i+1lAVal<a<i+1l— ula] <uli])
(ufi] < ufmazr] = (1 <i+1< size
0<mar <i+1

Va.0 <a <i+1— ufa] < u[maz]))

(1 <1< size
0<0<1AVa.0<a<1l-—ufa] <ul0])
{0Ni < size = wp(C,0),0 Ni > size = 1}
= {(1<i<size N0 <mazx <iA

Va.0 < a <i— ufa] <ulmaz]) = wp(C,0),
1<i=size NO <mazx <iA

Va.0 < a <i— ufa] <ulmaz]) = ¢}

> > > >

wp(maxarray, 6)

>

VC(maxarray,)

Extension of VCG for arrays
We add the following rule to H,:
if = = YulE> E]/u]

{p}ulE] « E'{y}
we expand wp and VC in the following way:
wp(u[E] + E',¢) = Y[ulE>E']/u]
VCO(u[E] + E',¢) = 0
For instance:
wp(uli] < 10,u[j] > 100) = w[i > 10][j] > 100
VO (uli] + 10, u[j] > 100) = 0

Exerc. 7.6. Using the VCG algorithm calculate:
1. VCG({ulj] > 100}uli] < 10{u[j] > 100})
2. VCG({i # j Aulj] > 100}uli] < 10{u[j] > 100})
3. VCG({i = 70}uli] + 10{u[i] = 10})

10

Safety Properties

In the operational semantics we considered, every expression evaluates to a value
and command execution would not produce any error.

We now consider some modifications that approximate the language to a real
programming language:

e incorporating in the language semantics a special error value;

e modifying the evaluation relation to admit evaluation of commands to a
special error state;

Error semantics for arithmetic expressions

A : Aexp — (State — (Z U {error}))

A[[n]]s = n
.A[[x]]s = 8(1’)
A[E, ® Es]s {A[[El]]s O A[E;]s if .A[[El]-]s # error # A[Es]s
error otherwise

para ® € {+,—, x}
A[E1]s + A[Es]s if A[E1]s # error # A[Es]s
A[Ey + Es]s = and A[E2]s # 0
error otherwise

Error semantics for Boolean expressions

T = {true,false}, B : Bexp — (State — (T U {error}))

Bltrue]s = true
B[false]s = false
true if B[b]s = false
B[-b)s = false if B[b]s = true
error if B[b]s = error
A[E4]s © A[E2]s if A[E1]s # error # A[Es]s

BB o Bl = {

error otherwise
for © € {=, <, <}
false if Bb1]s = false
Blby Abo]s = error if B[b1]s = error
B[b1]s otherwise

11

Natural semantics with errors (big-step)

(skip,s) — s

(r+ E,s) — {

(Cy,s) — error
(C1;Ca,8) —> error
(Cr,8) — &, (Cq,8) — s
(C1;Ca,s) —> §”
(if B then C else Cy,s) — error if B[B]s = error
(C1,8) — ¢
(if B then C4 else Ca,s) — &

s|A[E]s/x] if A[E]s # error

error otherwise

1
if s’ # error

if B[B]s = true

(Cqy8) — &
(if B then (4 else Cy,s) — &

if B[B]s = false

(while Bdo C,s) — error if B[B]s = error

(Cys) — error
(while Bdo C,s) — error

if B[B]s = true

(C,s) — §',(while Bdo C,s") — "
(while Bdo C,s) — "

if B[B]s = true, s" # error

(while Bdo C,s) — sif B[B]s=F

Hoare logic safety-sensitive

To extend the deductive systems of Hoare logic

e consider the structure of each command
e consider the possible values of the expressions that occur

e associate safety side conditions to each expression FE which we denote by
safe(F) (which is an assertion).

Hoare logic with safety conditions: system H;

skp (g} 2 =Y

12

{olz + E{} if o = safe(E) and ¢ = Y[E/x]

{e} C1{n} {n} C2 {v}
{¢} C1; C2 {9}

{pABYC1 {¥} {pA-B}Co{y} .
{¢}if BthenC else Cy {9} if ¢ = safe(B)

{nAB}C{n}
{}while Bdo {n}C {p}

ifpy = n,n = safe(B) and n A =B = ¢

VCG algorithm: calculation of the weakest preconditions (wp®)

wp®(skip,¢) =
wp®(z + E,¢v) = safe(E)AyY[E/x]
wp®(Cr;Co,9) = wp®(Cr,wp*(Co,v))
wp®(if BthenC else Cy,v¢)) = safe(B) A (B = wp®(Cy,v))

/\(_'B — wps(C%(p))
wp®(while Bdo {n}C,v) = n

VCG algorithm: Compute VC without preconditions

VC?®(skip,v) = 0
VC*(z+ E, W) = 0
VO (Cr;Co,) = VC*(Cr,wp®(Ca,) U
VCE(Ca,v)
VC?(if BthenCjelseCy,) = VC*(C1,9)UVC?(Cq, 1)
VC?®(while Bdo {n}C.,v) = {n = safe(B)} U

{(nAB) = wp*(C,n)} U
{(nA=B) = ¢}yuUVC*(C,n)

We define VCG? as:

VOG ({p}C{y}) = {e = wp®(C,9)} UV C*(C,)

13

The function safe for the Whilei®® language

We have

safe(n)
safe(x)
safe(—F)
safe(E1 © E»)

safe(Ey + Es)
safe(—B)
safe(B; A Bs)
safe(B; V Bs)

true

true

safe(E)

safe(E) A safe(Es)

with ©® € {+, —, x,=,<,<}
safe(E1) A safe(E2) A Es # 0
safe(B)

safe(B1) A (By = safe(Bs))
safe(By) A (—mB; = safe(Bs))

A[E]s # error iff [safe(E)]s = true.

Exerc. 7.7. Prove the previous proposition. <

Adequacy of VCG*

Let {¢}C{+} be a Hoare triple and T a set of assertions. Then

I VOG ({@}C{y}) iff T b, {p}C{y}.

Proof. (=) By induction on the structure of C.

(<) By induction on the derivation of T' b4 {p}C{9}.

Exerc. 7.8. Prove the previous result. ©

Ex. 7.1.

safe((z + y) > 2)

safe(7 >z A (z +y) > 2)

safe(z) A safe(y) Ay # 0 A safe(2)
true A true Ay # 0 A true

y#0

= safe(7>z) A

(7> z) — safe((z +y) > 2)
true Atrue A (7 >z — (y #0))
T>x—y#0

14

Bounded Arrays: While2 (V]

e The notion of array introduced before is unrealistic since arrays are virtu-
ally infinite.

e we will consider expressions of the for array[/N], representing arrays of
size N, that admit as valid indexes nonnegative integers below NV.

e What to do if the operations refer indexes out of the array limits?
e We consider as error situations.

e We introduce len(A) that given a array A returns its length.

Syntax of language Whilearray[N]

For n € Num,x € Var,u € Array

Exparrayny A= u| A[ED> E]

Exzpiny Eu= n|z|-E|E+E|E-FE
|ExE|E+E
| A[E] | Llen(A)

Exppoor B = true|false|-B|E=FE
|B<E|B<B|BAB|BV B

Semantics of the arithmetic expressions for While2rr2y[V]

We only need to define the semantics for Exparray(n]-

Afu]s = s(u)
A[A]s[A[E]s/A[E]s] if
A[A]s # error
, B A[E]s # error
AlAIE> Ells = 0 < A[E]s < A[len(A)]s
A[E’]s # error
error otherwise.

15

AJlen(A)]s = N
A[A]s # error

 JA[A]s(A[E]s) if A[E]s # error
AlAE]s = 0 < A[E]s < A[len(A)]s
error otherwise.

Extension of VCG for array[N]
We add the following rule to H:
if ¢ = safe(u[E> E’]) and ¢ = Y[u[E> E'|/u]

{p}ulE] « E"{¢}
we extend wp® and VC?® and safe as follows:

wp®(ulE] + E',¢) = safe(u[E> E')) Apu[E > E']/u]
VC*(ulE] + E',¢) = 0
safe(u) = true
safe(len(A))

safe(A[E)])
safe(A[E > E'])

true

safe(A) Asafe(E) A0 < E < len(A)
= safe(A) Asafe(E) A
0 < E < len(A) Asafe(E’)

Ex. 7.2.

safe(uz +2]) = safe(u) Asafe(x +2) A0 <z +2 < len(u)
= true A safe(z) Asafe(2) A2 #0
N0 <z +2< len(u)
= true AtrueAtrueAN2#A0A0 <z +2< len(u)
= 2#0AN0<z+2<1len(u)

safe(u[3>10]) = safe(u) Asafe(3) A0 <3 < len(u) A safe(10)
true Atrue A0 < 3 < len(u) A true
0 <3< 1len(u)

maxarray
Now one needs consider the range of valid indexes of an array u

valid_range(u,i,j7) = 0<i<j<1len(u)Vi>j

16

Require: {size > 1 Avalid_range(u,0, size — 1)}
mazx < 0;
1+ 0;
while i < size do {60}
if u[i] > u[max] then
max < 14
else
skip;
1 i+1
Ensure: {0 < max < size AVa.0 < a < size — ula] < u[maz]}

wp®(C,) =safe(uli] > u[max])

A (u[i] > u[maz] = (safe(i) A safe(i + 1)
ANl <i+1<sizeN0<i<i+1
AVa.0 <a<i+1— ula] <uli]))
A (—(ufi] < ulmaz]) = (safe(i+ 1)
ANl<i+1<size NO<mazr<i+1
AVa.0 <a<i+1— ufa] < u[maz]))

wp®(maxarray,) = (safe(0) Asafe(1) A1 <1 < size
ANO<0<1AVa.0<a<1—ula <ul0])

VC?®(maxarray,) = {§ —> safe(i < size),

(1<i<size N0 < mazx <iA
Va.0 < a <i— ufa] <ulmaz]) = wp®(C,0),
(1 <i=size N0 < maz < iA
Va.0 <a <i— ula] <ulmaz]) = ¢}

See [AFPMdS11] Chap. 6.5, 7.

References
[AFPMdS11] José Bacelar Almeida, Maria Joao Frade, Jorge Sousa Pinto, and

Simao Melo de Sousa. Rigorous Software Development: An In-
troduction to Program Verification. Springer, 2011.

17

