Mechanising Hoare Logic

Given a Hoare triple ($\{\varphi\}C\{\psi\}$) rules are applied from the conclusion, assuming that the side conditions hold.

- If all side conditions hold, a proof can be build;
- If some side condition does not hold, the derivation tree is not a valid deduction, but is there an alternative derivation?

There is a strategy to build the derivation trees such that we can conclude (if some side conditions does not hold) that there is no derivation for the given Hoare triple.

Tableaux

- The tableaux system allows to obtain the derivation of a Hoare triple, that is the conclusion.
- The derivation is valid if the verification conditions are satisfiable.
- But if they are not, how to ensure that there is no other derivation?
- If there is no determinism one cannot mechanise the Hoare logic.
- We will see that the tableaux ensure that if the verification conditions are not satisfiable *no other* derivation exists.
- and the tableaux can be automated.

Subformula property and Ambiguity

Most rules of Hoare logic have the *subformula property*:

all the assertions that occur in the premises of a rule also occur in its conclusion.

The exceptions are:

- The rule *comp*, which requires an intermediate condition;
- The rule *cons*, where the precondition and the postcondition must be guessed.

Other property that we want is that the choice of the rules is non ambiguous, but:

• The rule *cons*, can be applied to any Hoare triple. Thus it should be removed.

Hoare logic without the rule cons: system \mathcal{H}_g

$$\frac{\{\varphi\}\operatorname{skip}\{\psi\}}{\{\varphi\}\operatorname{skip}\{\psi\}} \text{ if } \models \varphi \to \psi$$

$$\frac{\{\varphi\} C_1 \{\eta\} \quad \text{ if } \models \varphi \to \psi[E/x]}{\{\varphi\} C_1; C_2 \{\psi\}}$$

$$\frac{\{\varphi\} C_1 \{\psi\} \quad \{\varphi \land \neg B\} C_2 \{\psi\}}{\{\varphi\} \text{ if } B \text{ then } C_1 \text{ else } C_2 \{\psi\}}$$

$$\frac{\{\eta \land B\} C \{\eta\}}{\{\varphi\} \text{ while } B \operatorname{do}\{\eta\} C \{\psi\}} \text{ if } \models \varphi \to \eta \text{ and } \models \eta \land \neg B \to \psi$$

In the $while_p$ rule the loop is annotated with the invariant η , to keep the subformula property.

We can show that the *cons* is derivable in \mathcal{H}_q . Let Γ be a set of assertions.

Lema 7.1. If
$$\Gamma \vdash_{\mathcal{H}_g} \{\varphi\}C\{\psi\}$$
 and $\models \varphi' \rightarrow \varphi$, $\models \psi \rightarrow \psi'$, then $\Gamma \vdash_{\mathcal{H}_g} \{\varphi'\}C\{\psi'\}$.

Proof: By induction on the derivation of $\Gamma \vdash_{\mathcal{H}_g} \{\psi\} C\{\varphi\}$. We consider the case skip and sequence.

- For $C \equiv \text{skip}$, we have $\Gamma \vdash_{\mathcal{H}_g} \{\varphi\} \text{skip} \{\psi\}$, if $\models \varphi \to \psi$. We have $\models \varphi' \to \varphi$, $\models \varphi \to \psi$ and $\models \psi \to \psi'$, thus $\models \varphi' \to \psi'$, what means that $\Gamma \vdash_{\mathcal{H}_g} \{\varphi'\} \text{skip} \{\psi'\}$.
- For $C \equiv C_1; C_2$, we have $\Gamma \vdash_{\mathcal{H}_g} \{\varphi\}C_1; C_2\{\psi\}$, if $\Gamma \vdash_{\mathcal{H}_g} \{\varphi\}C_1\{\eta\}$ and $\Gamma \vdash_{\mathcal{H}_g} \{\eta\}C_2\{\psi\}$.

By induction we have

$$\Gamma \vdash_{\mathcal{H}_g} \{\varphi'\} C_1 \{\eta\} \text{ as } \models \varphi' \to \varphi \text{ and } \models \eta \to \eta,$$

 $\Gamma \vdash_{\mathcal{H}_g} \{\eta\} C_2 \{\psi'\} \text{ as } \models \eta \to \eta \text{ and } \models \psi \to \psi',$

thus $\Gamma \vdash_{\mathcal{H}_g} \{\varphi'\}C_1; C_2\{\psi'\}.$

Exerc. 7.1. Complete the previous proof.

Equivalence between \mathcal{H} and \mathcal{H}_q

Lema 7.2.
$$\Gamma \vdash_{\mathcal{H}} \{\varphi\}C\{\psi\} \text{ iff } \Gamma \vdash_{\mathcal{H}_q} \{\varphi\}C\{\psi\}$$

Proof:

- (\Rightarrow) By induction on the derivation of $\Gamma \vdash_{\mathcal{H}} \{\varphi\}C\{\psi\}$, using the lemma. We consider the case of assignment and consequence.
 - we have $\Gamma \vdash_{\mathcal{H}} \{\varphi[E/x]\}x \leftarrow E\{\varphi\}$ and $\models \varphi[E/x] \rightarrow \varphi[E/x]$, thus $\Gamma \vdash_{\mathcal{H}_q} \{\varphi[E/x]\}x \leftarrow E\{\varphi\}$
 - By the rule of consequence we have

$$\Gamma \vdash_{\mathcal{H}} \{\varphi\}C\{\psi\},\$$

if $\Gamma \vdash_{\mathcal{H}} \{\varphi'\}C\{\psi'\}$ and $\models \varphi \to \varphi', \models \psi' \to \psi$.

By induction we have $\Gamma \vdash_{\mathcal{H}_g} \{\varphi'\}C\{\psi'\}$, thus by the previous lemma we have $\Gamma \vdash_{\mathcal{H}_g} \{\varphi\}C\{\psi\}$.

- (\Leftarrow) By induction on the derivation of $\Gamma \vdash_{\mathcal{H}_g} \{\varphi\}C\{\psi\}$. We consider the case of assignment and conditional.
 - we have

$$\Gamma \vdash_{\mathcal{H}_g} \{\varphi\}x \leftarrow E\{\psi\} \text{ if } \models \varphi \rightarrow \psi[E/x].$$

As

$$\Gamma \vdash_{\mathcal{H}} \{\psi[E/x]\}x \leftarrow E\{\psi\} \text{ and } \models \varphi \rightarrow \psi[E/x]$$

and $\models \psi \to \psi$, by $cons_p$ rule, we have $\Gamma \vdash_{\mathcal{H}} {\{\varphi\}}x \leftarrow E{\{\psi\}}$.

• we have $\Gamma \vdash_{\mathcal{H}_q} {\{\varphi\}}$ if B then C_1 else $C_2 {\{\psi\}}$, if

$$\Gamma \vdash_{\mathcal{H}_a} \{\varphi \land B\} C_1 \{\psi\} \text{ and } \Gamma \vdash_{\mathcal{H}_a} \{\varphi \land \neg B\} C_2 \{\psi\}.$$

By induction $\Gamma \vdash_{\mathcal{H}} \{\varphi \land B\}C_1\{\psi\}$ and $\Gamma \vdash_{\mathcal{H}} \{\varphi \land \neg B\}C_2\{\psi\}$, thus $\Gamma \vdash_{\mathcal{H}} \{\varphi\} \text{if } B \text{ then } C_1 \text{ else } C_2\{\psi\}$

Exerc. 7.2. Complete the previous proof.

Pro and Cons

Advantages of \mathcal{H}_q :

• The ambiguity of rule *cons* was eliminated.

Drawbacks of \mathcal{H}_q :

• Is still necessary to guess the intermediate preconditions in comp.

The weakest precondition strategy:tableaux

We already saw that for building a derivation for $\{\varphi\}C\{\psi\}$, where φ can or not be known (we write $\{?\}C\{\psi\}$).

- 1. if φ is known, we apply the unique rule of \mathcal{H}_g . if C is C_1 ; C_2 , we build a subproof of the form $\{?\}C_2\{\psi\}$. when the proof terminates we can go on with $\{\varphi\}C_1\{\theta\}$, with θ obtained in the previous sub-derivation.
- 2. if φ is unknown, the construction proceeds as before, except that, in the rules for skip, assignment and loops, with a side condition $\varphi \to \theta$, we tale the precondition φ to be θ (which is exactly the $wp(C.\psi)$.

Two phases verification

Verification condition generator, VCG

Given $\{\varphi\}C\{\psi\}$ to compute $VC(C,\psi)$ we have to:

- Compute the weakest precondition $wp(C, \psi)$
- we have that $\varphi \to wp(C, \psi)$ is a verification condition (VC)
- The remaining VC are collected from the conditions introduced in the loops while.

Computation of the weakest preconditions (wp)

Given a program C and a postcondition ψ , we can compute $wp(C, \psi)$ such that $\{wp(C, \psi)\}C\{\psi\}$ is valid and if $\{\varphi\}C\{\psi\}$ is valid for any φ then $\varphi \to wp(C, \psi)$.

$$\begin{array}{rcl} wp(\mathbf{skip},\psi) & = & \psi \\ wp(x \leftarrow E,\psi) & = & \psi[E/x] \\ wp(C_1;C_2,\psi) & = & wp(C_1,wp(C_2,\psi)) \\ wp(\mathbf{if}\,B\,\mathbf{then}\,C_1\,\mathbf{else}\,C_2,\psi) & = & (B \rightarrow wp(C_1,\psi)) \\ & & \wedge (\neg B \rightarrow wp(C_2,\psi)) \\ wp(\mathbf{while}\,B\,\mathbf{do}\,\{\eta\}C,\psi) & = & \eta \end{array}$$

Properties of wp and VCG

Given a program C and an assertion ψ if $\Gamma \vdash_{\mathcal{H}_g} \{\varphi\}C\{\psi\}$, for any precondition φ , then

Lema 7.3.

- 1. $\Gamma \vdash_{\mathcal{H}_g} \{wp(C,\psi)\}C\{\psi\}$
- 2. $\Gamma \models \varphi \rightarrow wp(C, \psi)$

Proof: By induction on C. We consider the cases of skip and while.

- For $C \equiv \text{skip}$, we have $\Gamma \vdash_{\mathcal{H}_g} \{\varphi\} \text{skip}\{\psi\}$ if $\models \varphi \rightarrow \psi$. Note that $wp(\text{skip}, \psi) = \psi$.
 - 1. Trivially we have $\Gamma \vdash_{\mathcal{H}_g} \{\psi\}$ skip $\{\psi\}$, as $\models \psi \to \psi$.
 - 2. By hypothesis we have $\Gamma \models \varphi \rightarrow \psi = wp(\mathtt{skip}, \psi)$.
- $C \equiv \text{while } B \text{ do } C$, we have

$$\Gamma \vdash_{\mathcal{H}_g} \{\varphi\} \text{ while } B \text{ do } \{\eta\} C \, \{\psi\} \text{ if } \Gamma \vdash_{\mathcal{H}_g} \{\eta \wedge B\} C \{\eta\}$$

and
$$\models \varphi \to \eta$$
, $\models \eta \land \neg B \to \psi$.

Note that $wp(\mathtt{while}\, B\, \mathtt{do}\, \{\eta\}C,\psi)=\eta$

1. As $\models \eta \to \eta$, and by hypothesis $\models \eta \land \neg B \to \psi$ and $\Gamma \vdash_{\mathcal{H}_g} \{ \eta \land B \} C \{ \eta \}$, then

$$\Gamma \vdash_{\mathcal{H}_q} \{\eta\} \, \mathrm{while} \, B \, \mathrm{do} \, \{\eta\} C \, \{\psi\}$$

2. by hypothesis we have $\Gamma \models \varphi \rightarrow \eta = wp(\mathtt{while}\, B\, \mathtt{do}\, \{\eta\} C\, \psi)$.

Exerc. 7.3. Complete the previous proof.

Algorithm VCG

First one computes $VC(C, \psi)$ without consider the preconditions

$$\begin{array}{rcl} VC(\mathtt{skip},\psi) & = & \emptyset \\ VC(x \leftarrow E,\psi) & = & \emptyset \\ VC(C_1;C_2,\psi) & = & VC(C_1,wp(C_2,\psi)) \cup VC(C_2,\psi) \\ VC(\mathtt{if}\,B\,\mathtt{then}\,C_1\,\mathtt{else}\,C_2,\psi) & = & VC(C_1,\psi) \cup VC(C_2,\psi) \\ VC(\mathtt{while}\,B\,\mathtt{do}\,\{\eta\}C,\psi) & = & \{(\eta\,\wedge\,B) \rightarrow wp(C,\eta)\} \cup \\ & \{(\eta\,\wedge\,\neg B) \rightarrow \psi\} \cup VC(C,\eta) \end{array}$$

Next one considers the precondition:

$$VCG(\{\varphi\}C\{\psi\}) = \{\varphi \to wp(C,\psi)\} \cup VC(C,\psi)$$

Example

let fact be the program:

$$\begin{aligned} f &\leftarrow 1; i \leftarrow 1; \\ \mathbf{while} \ i &\leq n \ \mathbf{do} \\ \{f &= (i-1)! \land i \leq n+1\} \\ f &\leftarrow f * i; \\ i &\leftarrow i+1; \end{aligned}$$

 \triangleright Invariante

We compute

$$VCG({n \ge 0} fact{f = n!})$$

with

$$\theta = f = (i-1)! \land i \le n+1$$

$$C_w = f \leftarrow f * i; i \leftarrow i+1$$

$$\begin{array}{ll} VC(\mathsf{fact},f=n!) \\ = & VC(f\leftarrow 1;i\leftarrow 1,wp(\mathbf{while}\ i\leq n\ \mathbf{do}\{\theta\}C_w,f=n!)) \\ & \cup VC(\mathbf{while}\ i\leq n\ \mathbf{do}\{\theta\}C_w,f=n!) \\ = & VC(f\leftarrow 1;i\leftarrow 1,\theta)\cup\{\theta\wedge i\leq n\rightarrow wp(C_w,\theta)\} \\ & \cup\{\theta\wedge i>n\rightarrow f=n!\}\cup VC(C_w,\theta) \\ = & VC(f\leftarrow 1,wp(i\leftarrow 1,\theta))\cup VC(i\leftarrow 1,\theta) \\ & \cup\{f=(i-1)!\wedge i\leq n+1\wedge i\leq n\rightarrow wp(f\leftarrow f*i;i\leftarrow i+1,\theta)\} \\ & \cup\{f=(i-1)!\wedge i\leq n+1\wedge i>n\rightarrow f=n!\} \\ & \cup VC(f=f*i,wp(i\leftarrow i+1,\theta))\cup VC(i\leftarrow i+1,\theta) \\ = & \emptyset\cup\emptyset\cup\{f=(i-1)!\wedge i\leq n+1\wedge i\leq n \\ & \rightarrow wp(f\leftarrow f*i,f=(i+1-1)!\wedge i+1\leq n+1)\} \\ & \cup\{f=(i-1)!\wedge i\leq n+1\wedge i\leq n\rightarrow f=n!\}\cup\emptyset\cup\emptyset \\ = & \{f=(i-1)!\wedge i\leq n+1\wedge i\leq n\rightarrow f*i=(i+1-1)! \\ & \wedge i+1\leq n+1,f=(i-1)!\wedge i\leq n+1\wedge i\leq n\rightarrow f=n!\} \\ & VCG(\{n\geq 0\}\mathsf{fact}\{f=n!\}) \\ = & \{n\geq 0\rightarrow wp(\mathsf{fact},f=n!)\}\cup VC(\mathsf{fact},f=n!) \\ = & \{n\geq 0\rightarrow wp(f\leftarrow 1;i\leftarrow 1;wp(\mathsf{while}\ i< n\ \mathsf{do}\{\theta\}C_w,f=n!), \\ \end{array}$$

We have the following proof obligations:

 $= \{n \geq 0 \rightarrow wp(f \leftarrow 1; i \leftarrow 1; \theta),$

1.
$$n \ge 0 \to 1 = (1-1)! \land 1 \le n+1$$

2. $f = (i-1)! \land i \le n+1 \land i \le n \to f * i = (i+1-1)! \land i+1 \le n+1$
3. $f = (i-1)! \land i < n+1 \land i < n \to f = n!$

 $f = (i-1)! \land i \le n+1 \land i \le n \to f * i = (i+1-1)!$ $\land i+1 < n+1, f = (i-1)! \land i < n+1 \land i < n \to f = n!$

 $f = (i-1)! \land i \le n+1 \land i \le n \to f * i = (i+1-1)!$ $\land i+1 \le n+1, f = (i-1)! \land i \le n+1 \land i \le n \to f = n!$

Teorema 7.1 (Adequacy of VCG). Let $\{\varphi\}C\{\psi\}$ a Hoare triple and Γ a set of assertions.

$$\Gamma \models VCG(\{\varphi\}C\{\psi\}) \text{ iff } \Gamma \vdash_{\mathcal{H}_a} \{\varphi\}C\{\psi\}.$$

Proof:

- (\Rightarrow) By induction on the derivation of C. We consider the case of assignment and sequence
 - For $C \equiv x \leftarrow E$, we have

$$VCG(\{\varphi\}X \leftarrow E\{\psi\}) = \{\varphi \rightarrow wp(X \leftarrow E, \psi)\} \cup VC(x \leftarrow E, \psi)$$
$$= \{\varphi \rightarrow \psi[E/x]\}.$$

If $\Gamma \models \varphi \rightarrow \psi[E/x]$, then by the assignment rule

$$\Gamma \vdash_{\mathcal{H}_q} \{\varphi\}C\{\psi\}.$$

• For $C \equiv C_1; C_2$, we have

$$VCG(\{\varphi\}C_1; C_2\{\psi\}) = \{\varphi \to wp(C_1; C_2, \psi)\} \cup VC(C_1; C_2, \psi)$$

= $\{\varphi \to wp(C_1, wp(C_2, \psi))\}$
 $\cup VC(C_1, wp(C_2, \psi)) \cup VC(C_2, \psi).$

Let $\eta = wp(C_2, \psi)$. As

$$\Gamma \models \varphi \to wp(C_1, \eta) \cup VC(C_1, \eta) = VCG(\{\varphi\}C_1\{\eta\}),$$

by induction $\Gamma \vdash_{\mathcal{H}_g} {\{\varphi\}} C_1 {\{\eta\}}$.

Also $\Gamma \models \eta \to \eta \cup VC(C_2, \psi) = VCG(\{\eta\}C_2\{\psi\})$, by induction $\Gamma \vdash_{\mathcal{H}_g} \{\eta\}C_2\{\psi\}$, thus $\Gamma \vdash_{\mathcal{H}_g} \{\varphi\}C_1; C_2\{\psi\}$.

- (\Leftarrow) By induction on the derivation of $\Gamma \vdash_{\mathcal{H}_g} \{\psi\} C \{\varphi\}$. We consider the case skip and conditional.
 - $\Gamma \vdash_{\mathcal{H}_a} {\varphi} \operatorname{skip}{\psi}$, if $\Gamma \models \varphi \rightarrow \psi = VCG({\varphi} \operatorname{skip}{\psi})$.
 - $\Gamma \vdash_{\mathcal{H}_g} \{\varphi\}$ if B then C_1 else $C_2\{\psi\}$ if $\Gamma \vdash_{\mathcal{H}_g} \{\varphi \land B\}C_1\{\psi\}$ e $\Gamma \vdash_{\mathcal{H}_g} \{\varphi \land \neg B\}C_2\{\psi\}$. By induction

$$\Gamma \models VCG(\{\varphi \land B\}C_1\{\psi\}) = \{(\varphi \land B) \to wp(C_1, \psi)\} \cup VC(C_1, \psi)$$

and

$$\Gamma \models VCG(\{\varphi \land \neg B\}C_2\{\psi\}) = \{(\varphi \land \neg B) \to wp(C_2, \psi)\} \cup VC(C_2, \psi).$$

Note that,

$$wp(\texttt{if }B\texttt{ then }C_1\texttt{ else }C_2,\psi)=B\to wp(C_1,\psi)\land \neg B\to wp(C_2,\psi)\},$$

thus,

$$\Gamma \models \{\varphi \rightarrow wp(\text{if } B \text{ then } C_1 \text{ else } C_2, \psi)\}.$$

Thus, $\Gamma \models \{\varphi \rightarrow wp(\text{if } B \text{ then } C_1 \text{ else } C_2, \psi)\} \cup VC(C_1, \psi) \cup VC(C_2, \psi) = VCG(\{\varphi\} \text{if } B \text{ then } C_1 \text{ else } C_2\{\psi\}).$

Exerc. 7.4. Complete the previous proof.

References

[AFPMdS11] José Bacelar Almeida, Maria João Frade, Jorge Sousa Pinto, and Simão Melo de Sousa. Rigorous Software Development: An Introduction to Program Verification. Springer, 2011.