Mechanising Hoare Logic

Given a Hoare triple ({¢}C{4}) rules are applied from the conclusion, assuming
that the side conditions hold.

e If all side conditions hold, a proof can be build;

e If some side condition does not hold, the derivation tree is not a valid
deduction, but is there an alternative derivation?

There is a strategy to build the derivation trees such that we can conclude (if
some side conditions does not hold) that there is no derivation for the given
Hoare triple.

Tableaux

e The tableaux system allows to obtain the derivation of a Hoare triple, that
is the conclusion.

e The derivation is valid if the verification conditions are satisfiable.
e But if they are not, how to ensure that there is no other derivation?
e If there is no determinism one cannot mechanise the Hoare logic.

o We will see that the tableaux ensure that if the verification conditions are
not satisfiable no other derivation exists.

e and the tableaux can be automated.

Subformula property and Ambiguity

Most rules of Hoare logic have the subformula property:

all the assertions that occur in the premises of a rule also occur in its conclu-
sion.

The exceptions are:

e The rule comp, which requires an intermediate condition;

e The rule cons, where the precondition and the postcondition must be
guessed.

Other property that we want is that the choice of the rules is non ambiguous,
but:

e The rule cons, can be applied to any Hoare triple. Thus it should be
removed.

Hoare logic without the rule cons: system H,

olskp o) T Fe7Y

if = o = Y[E/x]

{v}z « E{y}

{e} C1{n} {n} Co{v}
{o} C1;C2 {9}

{p A BYC{y} {p A ~B}Ca {9}
{¢} if BthenCy else Cy {9}

{n A B}C{n}
{¢} while Bdo {n}C {4}

ifEe—nandfEn A "B =1

In the while, rule the loop is annotated with the invariant 7, to keep the
subformula property. .

We can show that the cons is derivable in H,. Let I' be a set of assertions.

Lema 7.1. If T' by, {@}C{¢} and = ¢ — ¢, E ¥ — o, then T' by,
{o'yC{y'}

Proof: By induction on the derivation of I' b3, {1/}C{p}. We consider the case
skip and sequence.

e For C = skip, we have I' 3, {p}skip{¢}, if F ¢ — 9. We have
Eo = p Ep—9and Ey — ¢, thus E ¢ — ¢/, what means that
I o, {¢'skip{y'}.

e For C = C1;Cy,we have I' by, {¢}C1; Co{v}, if T by, {@}C1{n} and
[y, {n}Co{v}.

By induction we have

Ly, {@'}C01{n} as =" = pand En— 1,
Dy, {n}Cofe'} asf=n—nand ¢ — ¢/,

thus T' 4, {0'}C1; Co{y'}.

Exerc. 7.1. Complete the previous proof.

Equivalence between H and H,

Lema 7.2. T' ¢ {o}C{} iff T by, {0}C{0}

Proof:

(=) By induction on the derivation of I F¢ {¢}C{#}, using the lemma. We
consider the case of assignment and consequence.

e we have I' by {p[E/z]}z <+ E{¢} and | p[E/x] — ¢[E/z], thus

Iy, {plE/z]}e « E{p}
e By the rule of consequence we have

[y {e}C{y},

if Iy {0 }C{Y'} and = @ = ¢, =4 — 9.
By induction we have I' -4, {¢’}C{%'}, thus by the previous lemma
we have I' 3, {@}C {1}

(<) By induction on the derivation of " 3, {¢}C{1)}. We consider the case
of assignment and conditional.

e we have

[y, {ote « E{y}if = o = ¢[E/a].
As
Iy {[E/a]}e < E{¢} and = ¢ — ¢[E/7]
and |= ¢ — 1, by cons, rule, we have I' o {p}z + E{¢}.
e we have I' 3, {¢}if BthenC}else Cy {9}, if

T Fy, {p A BYC1{v} and T by, {p A ~B}Ca{t}.

By induction I" F¢ {¢ A B}C1 {9} and T b4 {¢ A ="B}Cs{¢}, thus
'ty {p}if Bthen(Cy else Cs {¢}

Exerc. 7.2. Complete the previous proof.
Pro and Cons
Advantages of H,:
e The ambiguity of rule cons was eliminated.
Drawbacks of H,:

e Is still necessary to guess the intermediate preconditions in comp.

The weakest precondition strategy:tableaux

We already saw that for building a derivation for {¢}C{1}, where ¢ can or not
be known (we write {7}C{¢}).

1. if ¢ is known, we apply the unique rule of H,. if C' is Cy; Cy, we build a

subproof of the form {?}C5{1}. when the proof terminates we can go on
with {¢}C1{0}, with € obtained in the previous sub-derivation.

2. if ¢ is unknown, the construction proceeds as before, except that, in the
rules for skip, assignment and loops, with a side condition ¢ — 6, we tale
the precondition ¢ to be 6 (which is exactly the wp(C.1).

Two phases verification

Légica de
Programa Hoare
anotado VCGen
contra-exemplos ?

Obrigagoes
Demostrador de Prova

Verification condition generator, VCG

Given {¢}C{t} to compute VC(C,) we have to:

e Compute the weakest precondition wp(C, 1)
e we have that ¢ — wp(C, 1) is a verification condition (VC)

e The remaining VC are collected from the conditions introduced in the
loops while.

Computation of the weakest preconditions (wp)

Given a program C and a postcondition 1, we can compute wp(C, 1)) such that
{wp(C,¥)}C{1} is valid and if {@}C{}is valid for any ¢ then ¢ — wp(C,).

wp(skip,¢) = ¢
wp(z « E,¢) = v[E/z]
wp(Cr;C2,9) = wp(Cr,wp(C2,v))
wp(if BthenCielse Cy,9) = (B — wp(Ch,v))
AN(=B — wp(C2,¢))
wp(while Bdo {n}C,v) = 17

Properties of wp and VCG

Given a program C' and an assertion ¢ if I' -3, {¢}C{1)}, for any precondition
©, then

Lema 7.3.

1. T by, {wp(C,9)}C{y}
2. T = p— wp(C,)

Proof: By induction on C'. We consider the cases of skip and while.

e For C = skip, we have I' 3, {p}skip{¢} if F ¢ — 1. Note that
wp(skip,) = 1.

L. Trivially we have I' 4, {¢}skip{¢}, as = ¢ — 1.
2. By hypothesis we have I' = ¢ — ¢ = wp(skip, 9).

e C' =while BdoC, we have
I3, {¢}while Bdo {n}C {4} if T 4, {n A B}C{n}

and = = n, EnA-B—).
Note that wp(while Bdo {n}C,¢) =17

1. As = 1 — n, and by hypothesis = n A =B — ¢ and I' 3, {n A
B}C{n}, then

I'Fy, {n}while Bdo {n}C {4}

2. by hypothesis we have I' = ¢ — n = wp(while Bdo {n}C).
Exerc. 7.3. Complete the previous proof.

Algorithm VCG

First one computes VC(C,) without consider the preconditions

VC(skip,v)

VC(z + E,)

VC(Cy;Co, 1)

VC(if BthenC; else (s, 1))
VC(while Bdo {n}C,v)

Next one considers the precondition:

= 0

= 0
VCO(C1,wp(Cy,1p)) UV C(Cy,1h)
VO(C1,¥) UV C(Cy,)

{(n A B) = wp(C,n)}U

{(n A =B) = 4}UVC(C,n)

VOG({p}C{v}) = {p = wp(C,¢)} UVC(C,¥)

Example

let fact be the program:
f<Li+1;
while 1 <n do
{f=G-1NAi<n+1}
e i

141+ 1;

We compute

> Invariante

VCG({n > 0}act{f = n!})

with

f=
f—f*xi+—i+1

(i—1)IAi<n+1

VC(fact, f =nl)

= VC(f + 1;i + 1,wp(while i <n do{0}C,, f = n!))
UV C(while i <n do{0}Cy, f =n!)

= VO(f+1;i+ 1,0)u{dni<n— wp(Cy,0)}
UdAni>n— f=nl}UVC(C,,0)

= VC(f+ 1Lbwp(i+ 1,0))UVC(i + 1,6)
U{f=>G—-1Ai<n+1Ai<n—wp(f < fxii+i+1,0)}
UWf=G-DIA"i<n+1Ai>n— f=nl}
UVC(f=fx*i,wp(i<+i+1,0)UVC(i+«+i+1,0)

= QUOU{f=0GE—-1DI"i<n+1Ai<n

—wp(f < fxi,f=0G+1-1)Ai+1<n+1)}

U f=G-DA"i<n+1Ai<n— f=nl}UdUD

= {f=0G-DA"i<n+1Ai<n— fxi=(i+1-1)!
Ni+l1<n+1,f=>G(-1)IA"i<n+1Ai<n— f=nl}

VCG({n > O}fact{f = nl})

= {n>0— wp(fact, f =n!)} UVC(fact, f =n!)

= {n>0— wp(f <+ 1;i < 1;wp(while i <n do{A}Cy, f =nl!),
F=(G-DIAi<n+1Ai<n— fri=(+1—1)
N+1<n+1,f=>G(-1)IA"i<n+1Ai<n— f=nl}

= {n>20—-wp(f+ 1;i+ 1;0),
F=(G-DIAi<n+1Ai<n— fri=(+1—1)
N+1<n+1l,f=>0G—-DINi<n+1Ai<n— f=nl}

We have the following proof obligations:

Ln>0—-1=(1-1)IA1<n+1
2. f=@G-DNi<n+1ANi<n— fxi=(G+1-1)ANi+1<n+1)
3. f=@G—-1D)'Ai<n+1Ai<n— f=n

Teorema 7.1 (Adequacy of VCG). Let {¢}C{v} a Hoare triple and T a set
of assertions.

I = VOG{e}C{y}) iff T by, {}C{0}.

Proof:

(=)

By induction on the derivation of C'. We consider the case of assignment
and sequence

e For C =z + FE, we have
VCG({p}X + E{y}) = {p = wp(X < E,4)} UVC(z + E,¢)
={p = Y[E/a]}.
If T | ¢ — ¢[E/x], then by the assignment rule
Iy, {0}C{0}.
For C' = Cy; Cs, we have
VOG({p}Cr;Co{yp}) = {p = wp(Cr;C2,9)} UVCO(Cy; Co,9)

= {o = wp(Cr,wp(Cs,¥))}
U VC(Cla IUP(CQ, 1/})) U VC(CQa ZZJ)

Let n = wp(Ca,¢). As
I' = ¢ = wp(C1,n) UVC(C1,n) = VCG({e}Ci{n}),
by induction I' 3, {¢}C1{n}.

Also T'En —=nuUVC(Cay) = VCG({n}C2{v}), by induction I' -3,
{n}Caf{}, thus I' o, {p}Cr; Cafep}.

By induction on the derivation of I' k4, {1/}C{p}. We consider the case
skip and conditional.

o I'tyy, {ptskip{¢}, if I' |F o — ¢ = VOG({p}skip{}).

[by, {¢}if Bthen(Cj elseCy {¢} if T Fa, {e N B}C1{y} e T Fa,
{¢ A =B}C3{%}. By induction

I'EVCG{e A BYC1{y}) = {(¢ A B) = wp(C1,%)} UVC(Cr, 7))
and
I'=VCOG({e A -B}C{y}) = {(¢ A =B) = wp(C2, 1)} UV C(C2,1)).
Note that,
wp(if Bthen C} else Cy,¢) = B — wp(C1,¢) A =B — wp(Cs, 1)},

thus,
I'={¢ = wp(if BthenC; else Ca,1))}.

Thus, I' E {¢ — wp(if BthenC] else Cy,9) UV C(Cy,p)UVC(Co,v) =
VCG({¢}if BthenCy else Co{9}).

Exerc. 7.4. Complete the previous proof.

References

[AFPMdS11] José Bacelar Almeida, Maria Joao Frade, Jorge Sousa Pinto, and
Simao Melo de Sousa. Rigorous Software Development: An In-
troduction to Program Verification. Springer, 2011.

