Program verification

Nelma Moreira

Program verification
Lecture 8

Procedures

Until now we consider a program as a sequence of commands

The treatment of subrotines is challenging from the point of view of veri-
fication: procedures or functions

The treatment of procedures and functions includes the following aspects:

— recursive calls (that can lead to non termination in the evaluation of
expressions);

— parameters;
A program will be a set of procedures annotated with contracts.

We will not consider here an operational semantics for procedures but
assume that there exists one and the program logic will be adequate.

We start with procedures without parameters.

Procedures and Recursion

We suppose that procedures have no parameters.

proc p = (), defines a procedure p;
the command C,, is the body of the procedure p (body(p));

the new command call p invokes the procedure, transfering execution to
the body of p;

A natural semantics rule could be:
(body(p),s) — s
(call p,s) — &

!/

for non recursive procedures the rule of Hoare logic is

{¢}body (p){v'}
{¢}call p{}

Example

Consider the procedure

proc FACT =
f+1;
i+ 1
while i <n do
{f=fact(i—1)and i <n+1}
[fxi

t+1+1
By the correction of the body we have:
{n > 0An=ng}tbody(FACT){f = fact(n) An=mno}
Applying the above rule we have:

{n > 0An=ng}call FACT{f = fact(n) An =ng}

Modularity

e In verification it is useful that one can reuse correctness results;
o Let
fact = f+ 1;i« L;whilei <ndo (f+ fXxii+i+1)
and fact(n) = n!, and we have a proof of
{n > 0}fact{f = fact(n)}
we would like to use this result to prove a weaker specification:
{n =10}fact{f = fact(n)}
This can be achieved using the consequence rule.
e However, if we have,
{n>0An=nglfact{f = fact(n) An=ng}

we cannot derive the weaker triple.

Adaptation

The problem of matching a proved specification of a program with a weaker
specification is called the adaptation problem (without the full proof of this last
specification).

(Satisfiable specification) A specification (p,1)) is satisfiable if there is a
program C' such that &= {¢}C{¢}.

(Adaptation completeness) Let (¢,) satisfiable and for any program C we
have |= {¢'}C{¢'} whenever |= {¢}C{¢}. A deductive system of Hoare triples
is adaptation complete iff for any program C' the following rule is derivable.

{o}C{v}

{e'rC{y’}
Hoare logic is not adaptation complete, due to the presence of auxiliary vari-
ables.

e Informally, auxiliary variables are universally quantified over Hoare triples,
connecting pre and post conditions. But, the side conditions in cons, rule
do not take that in consideration.

e A solution was proposed by Kleymann, considering a stronger consequence
rule, formalizing the difference between program and auxiliary variables.

e In the consequence rule

{p}C{y}

wioty ey

e The first side condition is interpreted in the pre-state, whereas the second
is interpreted in the post-state. Both should communicate through the
auxiliary variables.

e The auxiliary variables in 9 have to be interpreted in the pre-state and
should be existentially quantified:in the factorial example n = 10 — n >
0 An = ng, does not hold, but n = 10 — Ing.n > 0 An = ng does.

The adequate side condition suggested by Kleymann has the form

o = (AW =)

Let ¥ be the auxiliary variables in {¢}C{¢}, quantification is introduced as
follows:

¢ = 35 (elur /vl AN W7 /9] = ¥)

We interpret the auxiliary variables in ¢’ and 1)’ and substituted program vari-
ables in the post-state by universally quantified fresh variables

{p}C{v}
{¥"3C{y'}

where 7 are the auxiliary variables in {¢}C{t¢}, T the program variables in C,
and ¥y, Ty are fresh variables.

se ¢’ — Vry.3y7. (o7 /9 A (W7 /9, T5 /7] — V[T /7))

e The previous rule works for total correctness.

e we have a weaker condition por partial correctness

¢ = ((p =) =)

The program variables are now universally quantified
o' = (V7.(p =) =)

The resulting rule is

{p}C{v}

{¢'yC{y'}
where 7 are auxiliary variables {¢}C{¢}, T are the program variables of C' and
Yy and Ty fresh.

se ¢’ = VI7. (V7. (o7 /9] = Y7 /3. 75/7) = ' [77/7])

We will only use these new consequence rules to deal with recursive procedures

Example
Given the assertion:
{n>0An=ng}tfact{f = fact(n) An=ng}
To derive a weaker assertion:
{n = 10}fact{f = fact(n)}
we obtain the side condition

n= 10— Vny, ff.(Vnor.n > 0An =nor — fr = fact(ng) Any = noy)
— f5 = fact(10))

Adaptation

We can use the adapted consequence rule for system H

LWL it o v el 9] — ol .77/7) — (5

where

e 7 are the auxiliar variables in {p}C{¢}
e T program variables in C'

e 77 and ¥y fresh variables

to reuse the above deduction for a stronger precondition

{n > 0An=ng}call FACT{f = fact(n) An =ng}
{n = 10}call FACT{f = fact(10)}

and we obtain the side condition

n= 10— VYny, fr.(Vnog.n >0An=nos — fr = fact(ng) Any =ngy)
S fy = fact(10))

For the system H, this is not possible because it lacks a consequence rule, but
we may have a specific rule to deal with recursive procedures.

Notation~

In practice specification languages avoid the generality allowed by auxiliary
variables and forbid their use in the procedure specifications.

Given a variable x we denote 2 its value in the pre-state.

For the previous example we have

{n > 0}call FACT{f = fact(n) An =n}

The new consequence rule is

{e}Clvd
{¥3C{y"}

where T are program variables and [¢[T7/Z]| denotes the result of substituting
in Y[T;/Z] every variable & by the corresponding x. The triple

if " = Vr7.((p — [Y[ET7/7]]) = V'[77/7])

{n = 10}call FACT{f = fact(10)}

can be derived by consequence rule

{n > 0}call FACT{f = fact(n) An =}
{n = 10}call FacT{f = fact(10)}

and we obtain the side condition, considering n and f program variables,
n =10 —VYn;, fr.((n >0 = (fy = fact(ng) Any =n)) — fr = fact(10))
To derive the triple with a

{n > 0}call FACT{f = fact(n) An =n}

one needs to modify the call rule as follows

{p Az =2 A... Azy = 2, body (p){¥}
{p}call p{y}

where 1, ...z, are the program variables of body(p).

In the example

{n > 0An=n}body(FacT){f = fact(n) An =1}
{n > 0}call FAcT{f = fact(n) An =n}

Exerc. 8.1. Given {x > 0Ay > 0}body(p){z = z +y Az = &} for some
procedure p, apply the deduction rules and obtain the verification conditions to
ensure the derivation of

{p}call p{y}
where
pisr>0ANy>0Az =2+ 100
Yvisz=x+yAr =2+ 100
o

Recursive procedures

e In recursive procedures, body(p) can contain commands call p

e The application of the rule for procedures given above can lead to infinite
derivations.

e The following rule was proposed by Hoare

[{}call p{}]

{o}body (p){¥)}
(el p{¢)

Assuming {¢}call p{¢} we can derive {p}body(p){¢}, then {p}call p{y}
can be derived without hypotheses (and that is why the hypothesis had

square brackets).

e For total correctness new rules with variants need to be introduce.

e [t is an axiomatic counterpart of fixpoint induction.

Example

Consider the procedure

proc FACTR =

if n==0 then
f+1

else
n<+<n—1;
call FACTR;
n << n—+1;
fenxf

then
{n > 0An=ng}call FACTR{f = fact(n) An =ng}

can be derived using an adapted consequence rule

Procedure calls in H, (idea)

In this case the side conditions of the rule for procedures should include an
adaptation condition

oAb N it ot = vy (va7.ola/5) — wl575:757/7) — ¥ 77/7)

where 7 are the auxiliary variables of {¢}body(p){¢}, T are the program vari-
ables of body(p), and 77, Ty fresh. The idea of the rule is that the body of p
is proved correct with respect to (¢, 1), then this specification should be strong
enough to adapt the procedure to weaker specifications. (For more [AFPMdS11]
Chap. 8.1).

Contracts and mutual recursion

e we consider programs as a set of procedures and a set of global variables

e procedures communicate through the global variables and thus do not
have parameters

e procedures can be mutually recursive

e this also models very simple object-oriented programming languages

We extend the syntax of the programming language:

e PN is a set of procedure names p, q, ...

e Proc are procedure definitions, ®

e Prog are programs, 11

e Pspec are programs correctness formulas, S,

® ::= prepposty procp=C
M= |11
Sp = {II}

And let

e Var= {2| x € Var}

e Var(y) = {z | occurs in ¢}

o 0] =0[z1/z1,...,xn/xy), for any formula 6 such that Var(0) = {x1,...,z,}.
Given a program II with a procedure p,

pre ¢ post ¢ procp = C

we define
pre(p) = ¢
post(p) =1
body(p) = C
And

e pre(p) and post(p) contain no auxiliar variables (only either program
variables or quantified logical variables)

e pre(p) has no occurrence of ~ variables.

Contract triple

Given a program II a contract triple for a procedure p is
{pre(p)}call p{post(p)}

A program II is correct, denoted by {II}, if all procedures are correct with
respect to their specifications

E{Il} < | {pre(p) Azy = x7 A--- Axy, = zxfcall p{post(p)}, Vp e PN(I).

where we suppose PN(II) = {p1,...,pn}.

Deductive System for Parameterless Procedures,

[mutual recursion parameterless |

[{11}] [{11}]
{pre(p1) }body (p1) {post(p:)} {pre(p,)}body (p,) {post(p.)}
{11}

where pre(p;) = pre(p;) ANz1 =z A Az = x)
Var(post(p;)) = {z1,..., 2k}

[procedure call parameterless |

{11} :

m if o — V@.((Pre(p) — |post(p) [@/EH) N ?ﬁ[@/f])

where T = Var(post(p)) U Var(v)

T are fresh variables

Example

Let II be the program below with PN(II) = {p1, p2}

prexz>0Ay >0
postx = Ay=2xXyAz=x+yAz>2
proc p; =

Yy 2 Xy;

24—ty
pre x >0
post =2 Ay=2xyAz=3xx+ 200
proc p; =

y < x + 100;

call p;

Verification Conditions Generator

We can extend the VCG algorithm to cope with procedures. For the call
command we have

wp(call p,) = Vzy.((pre(p) — [post(p)[Zy/z]]) — ¥[T7/z])
VC(call p,yp) =0

The set of verification conditions for a program correctness formula {IT} can be
computed by

VoGt = |J VCG({pre(p)}body(p) {post(p)})
pEPN(II)

Exerc. 8.2. Considering the program IL given above compute VCG({II}) o

VCG({pre(p)tbody (p1) {post(p)})
=VOGH{z>0Ny>0AN 2=2dN y=yA z=7}
Y—2Xy;z4—x+y
{zr=dNy=2xyAhz=zxz+yAz>2})

={z>0ANy>0N 2=0dN y=yA z=2—
T=TA2XY=2XyAx+2xy=x+2XyA2xy+z>2}

—_~—

VCG({pre(pz2)}body(p2) {post(p2)})

=VCG{x>0 AN z=0AN y=yA z=7}

y < =+ 100; call p;{z = 3 x 2+ 200})

={z>0ANx=0dNy=yA z=2—

wp(call p1,z =3 x &+ 200)[z 4+ 100/y]}

={z>0ANax=0ANy=yA z=72—

Ver,yp,zp.((x >0A2+100>0 s ap = Ay =2x (x+100) Az =af+ysAzp >2
— zy = 3 x £+ 200)

where

wp(call p1,z =3 x &+ 200)

=Varyrzp (e >0Ay>0—= oy =AYy =2XyAzr =25 +ys ANzp >2])
— zp = 3 x a7+ 200)

=V yrnzr (e >0ANy>0—ap=xAy;=2xyAzy=x;+ysAzs>2)
— z§ = 3 x £+ 200)

articleAll verification conditions are valid thus the program is correct.

10

Frame conditions

After the execution of a call command call p nothing is assumed about the value
of the variables that do not occur in Var(post(p)) U Var(¢) according to the
correctness rule:

{11}
{¢}call p{}

Thus if one wants to connect the value of any variable between the pre-state
and the post-state this must be expressed in post(p).

if ¢ — Vzry.((pre(p) — [post(p)[z5/z]]) — ¥[z7/7])

If one knows which variables p modifies then one could have
T = frame(p)

where frame(p) denotes the set of variables possibly assigned by p. In this way
the value of a variable not assigned in p and occurring in 1) is considered in the
pre-state. It is the same as post(p) contains z = .

For instance

prexz>0Ay >0
post z =z +y
frame z

proc p =

Instead for explicitly state that the value of x is preserved by the execution of
p, the contract just says that only z will be modified. If
p=z>0ANy>xzANx=2x+ 100
and after the execution of call p the post-condition 1 is true,
Yv=z=zx+yANz=x+ 100
then the side condition for the call rule would be

r>0ANy>cAx=04+100 =Vz;. (e >0 Ny >0 zp=a+y) —
zf = +y Az =2+ 100)

Procedures with Parameters
We now have to consider a list of formal arguments for procedure definitions
and a list of expressions in the call command.

We only consider parameters passed by value. Parameters passed by reference
could easily be considered in the syntax but their axiomatic semantics is much
more complicated due to aliases (as for arrays).

11

Arglist Ai=a,\|¢
Proc @ :=prepposty procp(\) =C
Comm C :=...|call p(E)

For p € PN(II)

e param(p) = A, i.e., list of formal parameters passed by value

e we have now global variables and parameter variables, which have local
scope

e pre(p) and post(p) can contain occurrences of parameters

e any variable occurring in the body of a procedure and not in its parameter
list is a global variable

For instance,

pre 6

post p

proc p(x,z)=

C

We have param(p) = {x, z}, but parameters may be substituted by fresh vari-
ables in the procedure’s body and contract. The following definition is equivalent
to the above if 2’ and 2’ do not occur free in C, 6, or p.

pre [z’ /x, 2" /2]

post plz’/x, %' /2]

proc p(x’,z")=

Clz'/x, 7' /2]

If a variable is both global and a parameter, the global one would not be visible
inside the procedure. But we will assume that this cannot occur: global variables
cannot occur as parameters of a procedure p € PN(II).

We assume static scope: when a procedure is called the values of the caller’s
local variables do not affect the callee.

Parameters Passed by Value

Suppose first that a procedure p has a single formal parameter a. A procedure
call rule without adaptation could be

{11}
{p}eall p(E){v}

if ¢ — pre(p)[E/a] and post(p)[E/a] — v
e if a occurs in ¢ (or in F) its value is the value in the caller procedure

12

e if a occurs in pre(p) or post(p) its value is substituted by the one in the
pre-state (caller).

e if @ is not assigned in p, it is called a constant value; in this case, the
mutual recursion rule is the same as for parameterless procedures.

e if @ is assigned in p, as the internal value in p is irrelevant for the caller,
in post(p) and ¢ the value of a is the one in the pre-sate

However, if a is not a constant value, the mutual recursion rule must change.
Consider just one branch

{113]

{pre(p) A a = dYbody(p) {post(p)[d/al}
{m

Example

Consider again the factorial as a one-parameter procedure.

pren >0
post [= fact(n)
proc FACTR (n)=
[+ 1+ 1,
while i <n do
{f = fact(i—1)ANi<n+1}
< fxug

ti+1
The following triple can be derived
{z > —10}call FACT(z + 20){f = fact(x + 20)}
with the following side conditions:

x> —10 = (n > 0)[z + 20/n]
f = fact(z +20) — f = fact(n)[z + 20/n]

Deductive system for mutually recursive procedures with parameters
passed by value

[mutual recursion pbv]

13

{113] {I13]

—_~—

{pre(p:)}body(p1) {post(p1)} {pre(p,)}body(p,) {post(p,)}
{m

where o
pre(p;) = pre(p;) Az =1 A Axg = T,
with Var(post(p;)) U param(p;) = {x1,...,2x}, and

—~

post(p;) = post(p;)[ar/ai, ..., am/anm],

with param(p;) = {a1,...,am}-

[procedure call pbv]

{11}
{¢}call p(E){y}

if ¢ — Vzy.((pre(p)[E/a] — |post(p)[E/a,77/7]]) — v[T7/7])

where

a = param(p)
T = Var(post(p)) U Var ()
T are fresh variables

e global variables that occur in E are not substituted by fresh variables in
post(p) as they must be interpreted in the pre-state (thus the simultan-
eous substitution of @ and T).

e T has no parameter variables (of any procedure)

e parameters are not substituted by fresh variables

Example

Consider

prea>0Ay >0
post z=a+vy
proc p(a)=

The variable y must be a global variable and suppose we onde to prove the
following triple:

{z>0Ay>za}callp@ xz+1){z=2xz+1+y}

14

If x is global the side conditions is

(x>0Ay>z) = Vo, yp2zp.2x2+14+y>0Ay>0— 2y =2xaz+14yy)
*)Zf:2X$f+1+yf

which is not valid:
e z¢ is the final value of z and in the contract is given in terms of the value

of x in the pre-state while the postcondition of the triple uses the value of
z in the post-state.

e this can be fixed if we include in the contract postz =a+yAx =2
But if z is a local parameter of the caller then the side condition is

(>0Ay>2z) =>Vyr2z;.2x2+14y>0Ay>0— 2y =2xaz+1+yy)
—zp=2xz+1+y;

which is valid, as p cannot modify the value of a parameter.

Other features of procedures

e Parameters passed by value/reference
e Aliasing
e Return values of procedures

e Pure functions

For more see: [AFPMdS11] Chap. 8.2

References

[AFPMdS11] José Bacelar Almeida, Maria Joao Frade, Jorge Sousa Pinto, and
Simao Melo de Sousa. Rigorous Software Development: An In-
troduction to Program Verification. Springer, 2011.

15

