
Program verification

Nelma Moreira

Departamento de Ciência de Computadores da FCUP

Program verification
Lecture 9

What is SAT

• The Boolean satisfiability (SAT) problem:
• Find an assignment to the propositional variables of the formula such that the

formula evaluates to TRUE, or prove that no such assignment exists.

• SAT is an NP-complete decision problem.
• SAT was the first problem to be shown NP-complete (Cook’s theorem)
• There are no known polynomial time algorithms for SAT.

• SETH (Strong Exponential Time Hipothesis) any algorithm to solve CNF SAT in
the worst-case runs in time 2n, being n the number of variables.

CNF and Clauses

Usually SAT solvers deal with formulas in conjunctive normal form (CNF)

• literal: propositional variable or its negation: x , ¬x , y , ¬y
• clause: disjuntion of literals. (x1 ∨ ¬x2 ∨ x3)

• conjunctive normal form (CNF): conjuction of clauses.

(x1 ∨ ¬x2 ∨ x3) ∧ (¬x1 ∨ x2 ∨ ¬x4) ∧ (x2 ∨ ¬x3 ∨ ¬x4)

SAT is a success story of computer science

• Modern SAT solvers can check formulas with hundreds of thousands variables and
millions of clauses in a reasonable amount of time.

• There are small instances for which it is difficult to find a solution

• A huge number of practical applications.

• No matter what your research area or interest is, SAT solving is likely to be
relevant.

• Very good toolkit because many difficult problems can be reduced to deciding
satisfiability of formulas in logic.

Efficiency of SAT solvers since 2000

The x-axis represents CPU time, and the y -axis represents the number of solved
instances.

SAT solving algorithms

• The majority of modern SAT solvers can be classified into two main categories:
• SAT solvers based on the Davis-Putman-Loveland-Logemann (DPLL) framework:

• tools traverse and backtrack in a binary tree which nodes represent partial assigments
and leaves total assigments (corresponds to backtrack search through the space of
possible variable assignments).

• Optimizations to DPLL
• Most SAT solvers use the strategy CDCL (conflit-driven clause learning)

• Stochastic based search: the solver guesses a full assignment, and then, if the
formula is evaluated to false under this assignment, starts to flip values of variables
according to some heuristic.

• DPLL-based SAT solvers, however, are considered better in most cases..

• DPLL-based solvers are complete.

Stochastic local search

• Local search is incomplete; usually it cannot prove unsatisfiability.

• However, it can be very effective in specific contexts.
• The algorithm:

• Start with a (random) assignment and repeat a number of times:
• If not all clauses are satisfied, change the value of a variable.
• If all clauses satisfied, it is done.

• Repeat (random) selection of assignment a number of times.

• The algorithm terminates when a satisfying assignment is found or when a time
bound is elapsed (inconclusive answer).

Syntaxe of Propositional logic

The alphabet of the propositional language is organised into the following categories

• Propositional variables: VProp = {p, q, r , . . . , p1, . . .}
• Logical connectives: true, false, ∧, ∨, ¬, =⇒ , ⇐⇒
• Auxiliary symbols: (and)

The set of formulas Form of propositional logic is given by the abstract syntax (φ, ψ,
θ, . . .)

ϕ,ψ ::= p ∈ VProp | true | false | (¬ϕ) | (ϕ ∧ ψ) | (ϕ ∨ ψ) | (ϕ =⇒ ψ) | (ϕ ⇐⇒ ψ)

Semantics

• The meaning of PL is given by the truth values true and false, where true ∕= false.
We will represent true by 1 and false by 0.

• An assignment is a function v : VProp → {0, 1}, that assigns to every propositional
variable a truth value.

• An assignment v naturally extends to all formulas, v : Form → {0, 1}.
• The truth value of a formula is computed using truth tables:

ϕ ψ ¬ϕ ϕ ∧ ψ ϕ ∨ ψ ϕ =⇒ ψ ϕ ⇐⇒ ψ

0 0 1 0 0 1 1

0 1 1 0 1 1 0

1 0 0 0 1 0 0

1 1 0 1 1 1 1

Satisfability

Let v be an assignment, the relation |=v is inductively defined in the structure of ϕ by:

1 |=v p if v(p) = 1;

2 |=v true

3 ∕|=v false

4 |=v ¬ϕ if ∕|=v ϕ;

5 |=v ϕ ∧ ψ if |=v ϕ and |=v ψ;

6 |=v ϕ ∨ ψ if |=v ϕ or |=v ψ;

7 |=v ϕ =⇒ ψ if ∕|=v ϕ or |=v ψ;

8 |=v ϕ ⇐⇒ ψ if |=v ϕ =⇒ ψ and |=v ψ =⇒ ϕ

We say that v satisfies ϕ if |=v ϕ.

Negative normal form (NNF)

A formula ϕ is in NNF if it has only the opretors ∧, ∨ and ¬ and negations occur only
over variables.

Transforming a formula ϕ to equivalent formula ψ in NNF can be computed by
repeatedly replace any subformula that is an instance of the left-hand-side of one of
the following equivalences by the corresponding right-hand-side

ϕ =⇒ ψ ≡ ¬ϕ ∨ ψ ¬¬ϕ ≡ ϕ

¬(ϕ ∧ ψ) ≡ ¬ϕ ∨ ¬ψ ¬(ϕ ∨ ψ) ≡ ¬ϕ ∧ ¬ψ

This algorithm is linear on the size of the formula.

CNF

To transform a formula already in NNF into an equivalent CNF, apply recursively the
following equivalences (left-to-right):

ϕ ∨ (ψ ∧ γ) ≡ (ϕ ∨ ψ) ∧ (ϕ ∨ γ) (ϕ ∧ ψ) ∨ γ ≡ (ϕ ∨ γ) ∧ (ψ ∨ γ)

and the identities.

This algorithm converts a NNF formula into an equivalent CNF, but its worst case is
exponential on the size of the formula.

Worst-case example

Compute the CNF of (ϕ1 ∧ ψ1) ∨ (ϕ2 ∧ ψ2) ∨ · · · ∨ (ϕn ∧ ψn)

(ϕ1 ∧ ψ1) ∨ (ϕ2 ∧ ψ2) ∨ · · · (ϕn ∧ ψn)

≡(ϕ1 ∨ (ϕ2 ∧ ψ2) ∨ · · · (ϕn ∧ ψn)) ∧ (ψ1 ∨ (ϕ2 ∧ ψ2) ∨ · · · (ϕn ∧ ψn))

≡ · · ·
≡((ϕ1 ∨ · · · ∨ ϕn)∧
(ϕ1 ∨ · · · ∨ ϕn−1 ∨ ψn)∧
(ϕ1 ∨ · · · ∨ ϕn−2 ∨ ψn−1 ∨ ϕn)∧
(ϕ1 ∨ · · · ∨ ϕn−2 ∨ ψn−1 ∨ ψn)∧
· · ·∧
(ψ1 ∨ · · · ∨ ψn)

The original formula has 2n literals, while the equivalent CNF has 2n clauses, each
with n literals. The size of the formula increases exponentially.

Definitional CNF

Equisatisfiability

Two formulas ϕ and ψ are equisatisfiable when ϕ is satisfiable iff ψ is satisfiable.

• Any propositional formula can be transformed into a equisatisfiable CNF formula
with only linear increase in the size of the formula.

• The price to be paid is n Boolean variables, where n is the number of logical
connectives in the formula.

• This transformation can be done via Tseitin’s encoding

• This transformation compute what is called the definitional CNF of a formula,
because they rely on the introduction of new proposition symbols that act as
names for subformulas of the original formula.

Tseitin transformation

1 Introduce a new fresh variable for each compound subformula.

2 Assign new variable to each subformula (logic conective)

3 Encode local constraints as CNF.

4 Make conjunction of local constraints and the root variable.

• This transformation produces a formula that is equisatisfiable the result is
satisfiable if and only the original formula is satisfiable.

• One can get a satisfying assignment for original formula by projecting the
satisfying assignment onto the original variables.

• There are various optimizations that can be performed in order to reduce the size
of the resulting formula and the number of additional variables.

Example

Encode p =⇒ q ∧ r

1 We consider a1 and a2 new variables.

2 We need to satisfy a1 together with the following equivalences a1 ⇔ (p =⇒ a2)
and a2 ⇔ (q ∧ r)

3 These equivalences can be rewritten in CNF

(a1 ∨ p) ∧ (a1 ∨ ¬a2) ∧ (¬a1 ∨ ¬p ∨ a2)

(¬a2 ∨ q) ∧ (¬a2 ∨ r) ∧ (a2 ∨ ¬q ∨ ¬r)

4 The CNF which is equisatisfiable with p =⇒ q ∧ r is

a1 ∧ (a1 ∨ p) ∧ (a1 ∨ ¬a2) ∧ (¬a1 ∨ ¬p ∨ a2)

∧ (¬a2 ∨ q) ∧ (¬a2 ∨ r) ∧ (a2 ∨ ¬q ∨ ¬r)

DPLL framework

• A CNF is satisfied by an assignment if all its clauses are satisfied. And a clause is
satisfied if at least one of its literals is satisfied.

• The ideia is to incrementally construct an assignment compatible with a CNF.
• An assignment of a formula ϕ is a function mapping ϕ’s variables to 1 or 0.
• We say it is

• full if all of ϕ ’s variables are assigned,
• and partial, otherwise.

• Most current state-of-the-art SAT solvers are based on the
Davis-Putnam-Logemann-Loveland (DPLL) framework: the tool can be thought
of as traversing and backtracking on a binary tree, in which

• internal nodes represent partial assignments;
• and each branch represents an assignment to a variable.

• Initial version from 1960 but now solvers are much more efficient. See
• https://www.satlive.org
• Competition https://www.satcompetition.org/.

https://www.satlive.org
https://www.satcompetition.org/

State of a clause under an assignment

Given a partial assignment, a clause is

• satisfied if one or more of its literals are satisfied,

• confliting if all of its literals are assigned but not satisfied.

• unit if it is not satisfied and all but one of its literals are assigned

• unresolved otherwise.

Example

Let v(p) = 1, v(r) = 0, and v(q) = 1

• (p ∨ x ∨ ¬q) is satisfied
• (¬p ∨ r) is confliting

• (¬p ∨ ¬q ∨ x) is unit

• (¬p ∨ x ∨ a) is unsolved

Unit propagation (a.k.a. Boolean Constraint Propagation)

• Unit clause rule: Given a unit clause, its only unassigned literal must be assigned
value 1 for the clause to be satisfied.

• Unit propagation is the iterated application of the unit clause rule. This technique
is extensively used.

Consider the partial assignment v(p) = 0,and v(q) = 1

• Under this assignment
• (p ∨ ¬r ∨ ¬q) is a unit clause.
• (¬q ∨ x ∨ r) is not a unit clause.

• Performing unit propagation
• from (p ∨ ¬r ∨ ¬q) we have that r must be assigned the value 0, i.e. v(r) = 0.
• now (¬q ∨ x ∨ r) becames a unit clause, and x must be assigned the value 1, i.e.,

v(x) = 1.

DPLL algorithm

• Traditionally the DPLL algorithm is presented as a recursive procedure.

• The procedure DPLL is called with the CNF and a partial assignment.

• We will represent a CNF by a set of sets of literals.

• We will represent the partial assignment by a set of literals (p denote that p is set
to 1, and ¬p that p is set to 0).

• The algorithm:
• Progresses by making a decision about a variable and its value.
• Propagates implications of this decision that are easy to detect, simplifying the

clauses.
• Backtracks in case a conflict is detected in the form of a falsified clause.

• Recall that CNFs are formulas with the following shape (each lij denotes a literal):

(l11 ∨ l12 ∨ · · · ∨ l1k) ∧ · · · ∧ (ln1 ∨ ln2 ∨ · · · ∨ lnj)

• Associativity, commutativity and idempotence of both disjunction and conjunction
allow us to treat each CNF as a set of sets of literals S

S = {{l11, l12, . . . , l1k}, . . . , {ln1, ln2, . . . , lnj}}

• An empty inner set will be identified with false, and an empty outer set with true.
Therefore,

• if {} ∈ S , then S is equivalent to false;
• if S = {}, then S is true.

Simplification of a clause under an assignment

The opposite of a literal l , written −l , is defined by

−l =

󰀫
¬p, if l = p

p, if l = −p

When we set a literal to be true,

• any clause that has the literal l is now garantee to be satisfied, so we throw it
away for next part of the search

• any clause that had the literal −l must rely on the other literals in the clause,
hence we throw the literal −l before going forward

Simplification of S assuming l holds

S |l = {c \ {−l} | c ∈ S ∧ l /∈ c}

If a CNF S contains a clause that consists of a single literal (a unit clause), we know
for certain that the literal must be set to true and S can be simplified.

One should apply this rule while it is possible and worthwhile.

procedure unit-propagation(S , v)
while {} /∈ S and S has a unit clause l do

S → S |l
v → v ∪ {l}

DPLL algorithm (basic)

function DPLL(S , v)
unit-propagation(S , v)
if S = {} then

return SAT;
else if {} ∈ S then

return UNSAT;
else

l → a literal of S ;
if DPLL(S |l , v ∪ {l}) =SAT then

return SAT;
else

DPLL(S |−l , v ∪ {−l});

DPLL complete algorithm for SAT. Unsatisfiability of the complete formula can only
be detected after exhaustive search.

Example

Apply the algorithm to this set of clauses:

c1 = x1

c2 = ¬x1 ∨ x2

c3 = ¬x1 ∨ x3

c4 = ¬x2 ∨ ¬x3 ∨ x4

DPLL framework: heuristics & optimizations

• Many different techniques are applied to achieve efficiency in DPLL-based SAT
solvers.

• Decision heuristic: a very important feature in SAT solving is the strategy by
which the literals are chosen.

• Look-ahead: exploit information about the remaining search space.
• unit propagation
• pure literal rule

• Look-back: exploit information about search which has already taken place.
• non-chronological backtracking (a.k.a. backjumping)
• clause learning (CDCL)

• Other techniques:
• preprocessing (detection of subsumed clauses, simplification, . . .)
• (random) restart (restarting the solver when it seams to be in a hopeless branch of

the search tree)

DPLL-CDCL Solvers

• The process can be seen as a search in a binary (decision) tree in such way that
each decision of a variable value is associated to a level that corresponds to the
tree depth.

• The assignments that are implied by that decision has the same level of the
decision.

• The assignments of unary clauses (literals) have level 0.
• At each level:

• Decide the value of a variable (assignment)
• propagation of that decision (implications)
• backtracking in case of conflict

State of a Clause under an assignment (again)

Given a partial assignment, the state of a clause can be:

• satisfied if at least one literal is satisfied.

• conflict if all literals have an assignment but are not satisfied.

• unit if it is not satisfied but all except one literal are assigned . If C is an unit and
l the unassigned literal then C is the antecedent clause of l :

C = antecedent(l)

• unresolved, otherwise

Example

The clause C := ¬x1 ∨ ¬x4 ∨ x3 with assignment {x1 ← 1, x4 ← 1} imply the
assignment of x3 and antecedent(x3) = C .

DPLL-CDCL Algorithm

Input: proposicional formula B in CNF
Output: SAT or UNSAT

function DPLL-CDCL(B)
while TRUE do

while BCP() = ”conflict” do
backtrack-level← Analize-Conflict();
if backtrack-level< 0 then

return UNSAT;
else

Backtrack(backtrack-level)

if not Decide() then
return SAT

DPLL-CDCL based iterative algorithm

where bl is the backtracking level and α an assignment.

Algoritmo DPLL-CDCL - Components

Name: Decide()

Output: false iff there are no more variables to assign
Description: Chooses an unassigned variable and a truth value

for it (there are many heuristics)

Name: BCP()

Output: “conflict” iff a conflict is encountered
Description: Repeated application of the unit clause rule until

either a conflict is encountered or there are no more
implications. (Boolean Constraint Propagation)

Note: for the basic DPLL BCP was called unit-propagation

DPLL-CDCL - Components

Name: Analize-Conflict()

Output: -1 if a conflict at decision level 0 is detected (which
implies that the formula is unsatisfiable). Other-
wise, a decision level which the solver should back-
track to.

Name: Backtrack(bl)

Description: Sets the current decision level to bl and erases
assignments at desicion levels larger than bl

Conflict analysis and learning

• Non-chronological backtracking does not necessarily flip the last assignment and
can backtrack to an earlier decision level.

• The process of adding conflict clauses is generally referred to as learning.

• The conflict clauses record the reasons deduced from the conflict to avoid making
the same mistake in the future search. For that, implication graphs are used.

• Conflict-driven backtracking uses the conflict clauses learned to determine the
actual reasons for the conflict and the decision level to backtrack in order to
prevent the repetition of the same conflict.

Implication graph

• labeled acyclic digraph G = (V ,E) where
• V represents the current partial assignment,

• and each node represents a literal and is labeled with li@bl where li is the literal
• and bl the decision level at which it entered the partial assignment.
• If it is xi@bl this means that the value of xi is 1; otherwise it is ¬xi@bl and its value

is 0.
• and if it is ¬xi@bl then the value is 0.

• E = {(vi , vj) | vi , vj ∈ V ∧ ¬vi ∈ antecedent(vj)} and (vi , vj) ∈ E is labeled by

antecedent(vj) = C , i.e.. vi
C−→ vj .

• G can have a single conflict node labeled by κ and incoming edges
{(v ,κ) | ¬v ∈ C}, labeled with C for some conflicting clause C . In this case, G is
a conflict graph.

Example

Consider
c1 ∧ c2 ∧ c3 = (x1 ∨ ¬x4) ∧ (x1 ∨ x3) ∧ (¬x3 ∨ x2 ∨ x4)

There are no unitary clauses so one needs to decide an assignment. For instance
¬x4@1 and also ¬x1@2. Then BCP() determines by implication x3@2 and also x2@2.
Compute the implication graph. What can be conclude?

¬x4@1

¬x1@2 x3@2

x2@2
c3

c2

c3

The formula is SAT.

Example

Consider
c1 ∧ c2 ∧ c3 = (x1 ∨ ¬x4) ∧ (x1 ∨ x3) ∧ (¬x3 ∨ x2 ∨ x4)

There are no unitary clauses so one needs to decide an assignment. For instance
¬x4@1 and also ¬x1@2. Then BCP() determines by implication x3@2 and also x2@2.
Compute the implication graph. What can be conclude?

¬x4@1

¬x1@2 x3@2

x2@2
c3

c2

c3

The formula is SAT.

Example

Consider
c1 ∧ c2 ∧ c3 = (x1 ∨ ¬x4) ∧ (x1 ∨ x3) ∧ (¬x3 ∨ x2 ∨ x4)

There are no unitary clauses so one needs to decide an assignment. For instance
¬x4@1 and also ¬x1@2. Then BCP() determines by implication x3@2 and also x2@2.
Compute the implication graph. What can be conclude?

¬x4@1

¬x1@2 x3@2

x2@2
c3

c2

c3

The formula is SAT.

Implication graph

• Root nodes are decisions and internal nodes correspond to implications of BCP
((vi , vj) ∈ E then vi =⇒ vj).

• A conflict node where incoming edges are labeled by C mean that all literals in C
are not satisfied.

• Backtrack() diminish the size of G and BCP() makes G grow.

• The digraph depends on the implications order, thus is not unique

Consider the following set of clauses ψ

c1 = (¬x1 ∨ x2)
c2 = (¬x1 ∨ x3 ∨ x5)
c3 = (¬x2 ∨ x4)
c4 = (¬x3 ∨ ¬x4)

c5 = (x1 ∨ x5 ∨ ¬x2)
c6 = (x2 ∨ x3)
c7 = (x2 ∨ ¬x3)
c8 = (x6 ∨ ¬x5)

we have the following (fragment of) implication digraph if ¬x5@3 and if on level 6 we
decide x1 = 1, denoted by x1@6.

c1 = (¬x1 ∨ x2)
c2 = (¬x1 ∨ x3 ∨ x5)
c3 = (¬x2 ∨ x4)
c4 = (¬x3 ∨ ¬x4)
c5 = (x1 ∨ x5 ∨ ¬x2)
c6 = (x2 ∨ x3)
c7 = (x2 ∨ ¬x3)
c8 = (x6 ∨ ¬x5)

Then: c5 satisfied, c1, c2 unit:

At level 6 by BCP(): x2 = 1 (x2@6)

c1 = (¬x1 ∨ x2)
c2 = (¬x1 ∨ x3 ∨ x5)
c3 = (¬x2 ∨ x4)
c4 = (¬x3 ∨ ¬x4)
c5 = (x1 ∨ x5 ∨ ¬x2)
c6 = (x2 ∨ x3)
c7 = (x2 ∨ ¬x3)
c8 = (x6 ∨ ¬x5)

and also x3 = 1 (x3@6)

c1 = (¬x1 ∨ x2)
c2 = (¬x1 ∨ x3 ∨ x5)
c3 = (¬x2 ∨ x4)
c4 = (¬x3 ∨ ¬x4)
c5 = (x1 ∨ x5 ∨ ¬x2)
c6 = (x2 ∨ x3)
c7 = (x2 ∨ ¬x3)
c8 = (x6 ∨ ¬x5)

Now if x4 = 1 (x4@6) a conflict by BCP() occurs:

the roots ¬x5@3 and x1@6 are suficient to generate a conflict and the clause learned is

c9 = (x5 ∨ ¬x1)

We have ¬x5 ∧ x1 =⇒ ¬ψ, thus ψ =⇒ x5 ∨ ¬x1.
The learned clause c9 is added to the set to prune the search space (but does not
change the result).

In general, the learned clause corresponds to the disjunction of the negation of the root
literals in the conflict graph (or optimizations).

Conflict-driven backtracking

After detecting the conflict and adding the learned clause the solver determines which
decision level to backtrack to according to the conflict-driven backtracking strategy.
For instance:

• The backtracking level is set to the second most recent decision level in the
learned clause, while erasing all decisions and implications made after that level.

• In the case of (x5 ∨ ¬x1), the solver backtracks to decision level 3, and erases all
assignments from decision level 4 onwards, including the assignments to x1, x2, x3
and x4.

• In the case of learning a unary clause, the solver backtracks to the ground level.

Now at level 3 the clause c9 = x5 ∨ ¬x1 is unit and implies ¬x1@3

• The clause c9 = x5 ∨ ¬x1 is an asserting clause, that is, it forces an immediate
implication after backtracking.

• Analize-conflict can be designed to generate asserting clauses only.

• In the example, another conflict is reached with clause c7. And in this case the
conflict clause learned is just x2, as explained later.

Example

Consider

c1 ∧ c2 ∧ c3 = (x1 ∨ ¬x2 ∨ x3) ∧ (¬x1 ∨ x4) ∧ (¬x3 ∨ ¬x4 ∨ x5)

Suppose the decision x2@2 and x1@4. Compute the implication graph.

Conflict-driven backtracking terminates

Theorem
It is never the case that the solver enters a decision level again with the same partial
assignment.

Proof.
Consider a partial assignment up to the decision level dl − 1 that does not end with a
conflict, and assume falsely that this state is repeated later, after the solver backtracks
to some lower decision level dl− (0 ≤ dl− < dl). Any backtracking from a decision
level dl+ (dl+ ≥ dl) to decision level dl− adds an implication at level dl− of a variable
that was assigned at decision level dl+. Since this variable has not so far been part of
the partial assignment up to decision level dl , once the solver reaches dl again, it is
with a different partial assignment, which contradicts our assumption.

Example

Let

c1 ∧ c2 ∧ c3 ∧ c4 ∧ c5 ∧ c6

= (¬a ∨ ¬b ∨ c) ∧ (¬a ∨ d) ∧ (¬c ∨ ¬d ∨ e) ∧ (¬h ∨ ¬e ∨ f)

∧(¬e ∨ g) ∧ (¬f ∨ ¬g)

Suppose h@1, b@2 e a@4. We have the following conflict graph

Analyze-conflict

Computes a conflict clause and a backtracking level, by transversing the digraph from
the conflict node.

Input:
Output: backtracking level and a new asserting clause

function Analize-Conflict
if current-decision-level= 0 then

return −1;

cl ← current-conflicting-clause
while ¬StopCriterionMet(cl) do

lit ← Lastassignedliteral(cl)
var ← Variableofliteral(lit)
ante ← antecendent(lit)
cl ← Resolve(cl , ante, var)

Addclause(cl)
return clauseassertinglevel(cl)

To ensure an asserting clause is found we need the following notions

• unique implication point (UIP) : Given a partial conflict graph corresponding to
the decision level of the conflict, a unique implication point (UIP) is any node
other than the conflict node (κ) that is on all paths from the decision node to the
conflict node.

• The decision node is a UIP as well as any internal node corresponding to
implications at the decision level of the conflict.

• The first UIP is a UIP that is closest to the conflict node.

• StopCriterionMet(cl) returns true if and only if cl contains the negation of
the first UIP as its single literal at the current decision level. This negated literal
becomes asserted immediately after backtracking.

• This strategy backtracks to the lowest decision level

• The function Resolve(c1, c2, x) corresponds to the resolution rule applied to
clauses c1 and c2 with variable x and returns the resolvent clause:

(a1 ∨ · · · ∨ an ∨ x) (b1 ∨ · · · ∨ bm ∨ ¬x)
a1 ∨ · · · ∨ an ∨ b1 ∨ · · · ∨ bm

• A CNF formula is unsatisfiable iff there exists a finite series of resolution steps
ending with the empty clause.

• Analyze-Conflict progresses from right to left on the conflict graph, starting
from the conflicting clause, while constructing the new conflict clause through a
series of resolution steps. It begins with the conflicting clause cl , in which all
literals are set to 0. The literal lit is the literal in cl assigned last, and var denotes
its associated variable. The antecedent clause of var , denoted by ante, contains :
lit as the only satisfied literal, and other literals, all of which are currently
unsatisfied. The clauses cl and ante thus contain lit and −lit, respectively, and
can therefore be resolved with the resolution variable var . The resolvent clause is
again a conflicting clause, which is the basis for the next resolution step.

Example

Verify that in Example 8 the asserting clause is ¬h ∨ ¬b ∨ ¬a if one goes to the
decision node and ¬g the literal assigned last. The backtracking level would be 2.

Considering the first UIP e we have the clause ¬h ∨ ¬e. The backtracking level would
be 1.

Example

Consider the partial implication graph and set of clauses ci , and assume that the
implication order in the BCP was x4, x5, x6, x7.

c1 = (¬x4 ∨ x2 ∨ x5)
c2 = (¬x4 ∨ x10 ∨ x6)
c3 = (¬x5 ∨ ¬x6 ∨ ¬x7)
c4 = (¬x6 ∨ x7)

...

The conflict clause c5 = (x10 ∨ x2 ∨ ¬x4) is computed through a series of binary
resolutions.

name cl lit var ante

c4 (¬x6 ∨ x7) x7 x7 c3
(¬x5 ∨ ¬x6) ¬x6 x6 c2

(¬x4 ∨ ¬x10 ∨ ¬x5) ¬x5 x5 c1
c5 (x ∨ x2 ∨ ¬x4)

The clause c5 is an asserting clause in which the negation of the first UIP (x4) is the
only literal from the current decision level.

Decision heuristics

The strategy by which the variables and the value given to them are chosen
corresponds to several heuristics.

• Higher priority to literals that appear frequently in short clauses (Jeroslow-Wang):
choose literal l that maximises

J(l) =
󰁛

C∈B,l∈C
2−|C |

• DLIS (Dynamic Largest Individual Sum): choose the unassigned literal that
satisfies the largest number of currently unsatisfied clauses.

• VSIDS (Variable State Independent Decaying Sum): when counting the number
of clauses in which every literal appears, disregard the question of whether that
clause is already satisfied or not and periodically divide all scores by 2.

• Berkmin: as VSDIS but consider variables and not literals. Gives higher priority
to variables that appered in recent conflicts.

Conflict-Driven Clause Learning (CDCL) solvers- Summary

• DPLL framework.

• New clauses are learnt from conflicts.

• Structure (implication graphs) of conflicts exploited.

• Backtracking can be non-chronological.

• Efficient data structures (compact and reduced maintenance overhead).

• Backtrack search is periodically restarted.

• Can deal with hundreds of thousand variables and tens of million clauses!

Modern SAT solvers

• In the last two decades, satisfiability procedures have undergone dramatic
improvements in efficiency and expressiveness. Breakthrough systems like GRASP
(1996), SATO (1997), Chaff (2001) and MiniSAT (2003) have introduced several
enhancements to the efficiency of DPLL-based SAT solving.

• New SAT solvers are introduced every year. The satisfiability library SAT Live! is
an online resource that proposes, as a standard, a unified notation and a
collection of benchmarks for performance evaluation and comparison of tools.

• SAT Live!, https://www.satlive.org

• SAT Association, http://satassociation.org/sat-smt-school.html

• SAT Examples: https://sat-smt.codes

https://www.satlive.org
http://satassociation.org/sat-smt-school.html
https://sat-smt.codes

DIMACS CNF format

• DIMACS CNF format is a standard format for CNF used by most SAT solvers.

• Plain text file with following structure:

c <comments>

...

p cnf <num.of variables> <num.of clauses>

<clause> 0

<clause> 0

...

• Every number 1, 2, . . . corresponds to a variable (variable names have to be mapped
to numbers).

• A negative number denote the negation of the corresponding variable.
• Every clause is a list of numbers, separated by spaces. (One or more lines per clause).

Example

a1 ∧ (a1 ∨ p) ∧ (a1 ∨ ¬a2) ∧ (¬a1 ∨ ¬p ∨ a2)

∧ (¬a2 ∨ q) ∧ (¬a2 ∨ r) ∧ (a2 ∨ ¬q ∨ ¬r)

• we have 5 variables and 7 clauses

• p cnf 5 7

1 0

1 3 0

-1 -3 2 0

1 -2 0

-2 5 0

-2 4 0

-2 -5 -4 0

Modeling with PL

Scheduling a meeting

When can the meeting take place?

- Anne cannot meet on Friday.

- Peter can only meet either on Monday, Wednesday or Thursday.

- Mike cannot meet neither on Tuesday nor on Thursday.

• Create 5 variables to represent the days of week.

• The constraints can be encoded into the following proposition:

¬Fri ∧ (Mon ∨Wed ∨ Thu) ∧ (¬Tue ∧ ¬Thu)

• How can we use a SAT solver to explore the possible solutions to this problem?

Using the PySAT toolkit

from py sa t . s o l v e r s import Min i s a t22
s = Min i s a t22 ()
workdays = [’Mon ’ , ’Tue ’ , ’Wed ’ , ’Thu ’ , ’ F r i ’]
x = {}
c = 1
f o r d i n workdays :

x [d] = c
c += 1

s . a dd c l a u s e ([− x [’ F r i ’]])
s . a d d c l a u s e ([x [’Mon ’] , x [’Wed ’] , x [’Thu ’]])
s . a d d c l a u s e ([− x [’Tue ’]])
s . a d d c l a u s e ([− x [’Thu ’]])
i f s . s o l v e () :

m = s . ge t mode l ()
p r i n t (m)
f o r w i n workdays :

i f m[x [w]−1] > 0 : p r i n t (” the meet ing can take p l a c e on %s ” % w)
e l s e :

p r i n t (” the meet ing cannot take p l a c e . ”)
s . d e l e t e ()

Change the code to print all possible solutions to the problem.

Modeling with PL

Equivalence of if-then-else chains
Original C code Optimized C code

if(!a && !b) h();

else if(!a) g();

else f();

if(a) f();

else if(b) g();

else h();
Are these two programs equivalent?

• Model the variables a and b and the procedures that are called using the Boolean
variables a, b, f , g , and h.

• Compile if-then-else chains into Boolean formulae
compile(if x then y else z) = (x ∧ y) ∨ (¬x ∧ z)

• Check the validity of the following formula
compile(original) ⇔ compile(optimized) by reformulating it as a SAT problem.

In this case we have:

(¬a ∧¬b)∧ h)∨ ((a ∨ a)∧ (¬a ∧ g)∨ (a ∧ f)) iff (a ∧ f)∨ (¬a ∧ (((b ∧ g)∨¬(b ∧ h))

Graph coloring - 2 colors

Graph coloring refers to assigning colors to the nodes such that no two nodes
connected by an edge have the same color.

Considering only 2 colors, we will have for nodes 1 and 2

• They both should not be true: ¬(x1 ∧ x2)
• They both should not be false:¬(¬x1 ∧ ¬x2)
• That is (¬x1 ∨ ¬x2) ∧ (x1 ∨ x2)

And the same for x1 and x3 and x2 and x3.

Graph coloring - 3 colors I

All variables are two-digit integers. The first digit denotes the node, and the second
digit the color. So literal x21 means that node two has color 1. Literal ¬x21 means
that node 2 does not have color 1.

• No two nodes can have the same color

(¬x11 ∨ ¬x21) ∧ (¬x12 ∨ ¬x22) ∧ (¬x13 ∨ ¬x23)
(¬x11 ∨ ¬x31) ∧ (¬x12 ∨ ¬x32) ∧ (¬x33 ∨ ¬x33)
(¬x21 ∨ ¬x31) ∧ (¬x22 ∨ ¬x32) ∧ (¬x23 ∨ ¬x23)

• Every node has a color

(x11 ∨ x12 ∨ x13) ∧ (x21 ∨ x22 ∨ x23) ∧ (x31 ∨ x32 ∨ x33)

Graph coloring - 3 colors II

• Every node cannot have two colors at the same time

(¬x11 ∨ ¬x12) ∧ (¬x11 ∨ ¬x13) ∧ (¬x12 ∨ ¬x13)
(¬x21 ∨ ¬x22) ∧ (¬x21 ∨ ¬x23) ∧ (¬x22 ∨ ¬x23)
(¬x31 ∨ ¬x32) ∧ (¬x31 ∨ ¬x33) ∧ (¬x32 ∨ ¬x33)

Graph coloring: general case I

Graph coloring

Can one assign one of K colors to each of the vertices of graph G = (V, E) such that
adjacent vertices are assigned different colors?

• Create |V |× K variables:
• xij = 1 ⇐⇒ vertex i is assigned color j ;
• xij = 0 otherwise.

• For each edge (u, v), require different assigned colors to u and v :

∀ 1 ≤ j ≤ K (xuj =⇒ ¬xvj)

• Each vertex is assigned exactly one color.
• At least one color to each vertex:

∀ 1 ≤ i ≤ |V |

󰀳

󰁃
K󰁢

j=1

xij

󰀴

󰁄

Graph coloring: general case II

• At most one color to each vertex:

∀ 1 ≤ i ≤ |V |

󰀳

󰁃
K󰁡

a=1

(xia =⇒
K󰁡

b=1,b ∕=a

¬xib)

󰀴

󰁄

or equivalently

∀ 1 ≤ i ≤ |V |
󰀣

K−1󰁡

a=1

(xia =⇒
K󰁡

b=a+1

¬xib)
󰀤

equivalent to

∀ 1 ≤ i ≤ |V |
󰀣

K−1󰁡

a=1

K󰁡

b=a+1

(¬xia ∨ ¬xib)
󰀤

Make a Python program to solve the problem.

Armin Biere, Marjin Heulen, Hans van Maaren, and Tobis Walsh.
Handbook of Satisfiability.
IOS Press, second edition, 2021.

Aaron R. Bradley and Zohar Manna.
The Calculus of Computation: Decision Procedures with Applications to
Verification.
Springer Verlag, 2007.

Donald E. Knuth.
The Art of Computer Programming.Combinatorial ALgorithms Part II.
Addison-Wesley, 2022.

Daniel Kroening and Ofer Strichman.
Decision Procedures:An Algorithmic Point of View.
Texts in Theoretical Computer Science. An EATCS Series. Springer, 2016.

