
Program verification

Nelma Moreira

Lecture 22
Equality Logic and Theory of Uninterpreted Functions

Equality Logic and Uninterpreted Functions, EUF

• functional terms are added to the equality theory

ϕuf := ϕuf ∧ ϕuf | ¬ϕuf | t = t

t := x|c|F (t1, . . . , tn)

• only functional congruence

x1 = y1 ∧ · · · ∧ xn = yn → F (x1, . . . , xn) = F (y1, . . . , yn)

• Functions of a given theory can be substituted by uninterpreted functions
simplifying the validity proofs although equivalence is not preserved. We
have

|= ϕuf =⇒ |= ϕ

• but if ∕|= ϕuf nothing can be concluded.

Example: Program equivalence

1

Static single assignment

1. Remove the variable declarations and return statements.

2. Unroll the for loop.

3. Replace the left-hand side variable in each assignment with a new auxiliary
variables

4. Wherever a variable is read (referred to in an expression), replace it with
the auxiliary variable that replaced it in the last place where it was as-
signed.

5. Conjoin all program statements.

In the example, given two programs we obtain two formulae ϕ1 and ϕ′
1 and we

want to prove that
ϕ1 ∧ ϕ′

1 =⇒ out3 = out′1

Usage of uninterpreted functions

2

The advantage is that it is easy to prove the validity of uninterpreted functions.
In the example multiplication * is substituted by an uninterpreted function F
and we obtain ϕuf

1 and ϕ′uf
1 .

Decision procedures for conjunctions of equalities and with uninter-
preted functions with congruence closure

Input: conjunction of literals ϕuf

Output: Satisfiable or Unsatisfiable

1. Build congruence-closed equivalence classes.

a) Initially, put two terms t1, t2 (either variables or uninterpreted function
instances) in their own equivalence class if (t1 = t2) is a predicate in
ϕuf . All other variables form singleton equivalence classes.

b) Given two equivalence classes with a shared term, merge them. Repeat
until there are no more classes to be merged.

c) Compute the congruence closure: given two terms ti, tj that are in
the same class and that F (ti) and F (tj) are terms in ϕuf for some
uninterpreted function F , merge the classes of F (ti) and F (tj). Repeat
until there are no more such instances.

2. If there exists a disequality ti ∕= tj in ϕuf such that ti and tj are in the same
equivalence class, return ”Unsatisfiable”. Otherwise return ”Satisfiable”

Ex. 22.1. Let ϕuf be a conjunction

x1 = x2 ∧ x2 = x3 ∧ x4 = x5 ∧ x5 ∕= x1 ∧ F (x1) ∕= F (x3).

Initially the equivalence classes are:

{x1, x2}, {x2, x3}, {x4, x5}, {F (x3)}, {F (x1)}

We merge equal terms in the same classe

{x1, x2, x3}, {x4, x5}, {F (x3)}, {F (x1)}

3

By the congruence closure we have:

{x1, x2, x3}, {x4, x5}, {F (x1), F (x3)}

Finally as F (x1) ∕= F (x3) ∈ ϕuf , the output is Unsatisfiable.

• This algorithm can be implemented efficiently with a union-find data
structure, which results in a time complexity of O(n log(n)).

• To extend to general quantifier-free formulae one can use DPLL(T) or
(lazy) variants; or eager algorithms that reduces the whole formula ϕuf

to a equisatisfiable propositional formula (eager approach).

Ackerman reduction of uninterpreted functions to equality logic

Ackerman reduction

Input: An EUF formula ϕuf with m instances of an uninterpreted function F
Output: An equality logic formula ϕE such that ϕE is valid if and only if ϕuf is valid

1. Assign indices to the uninterpreted-function instances from subexpressions
F , Fi outwards. Denote by Fi the instance of F that is given the index i,
and by arg(Fi) its single argument.

2. Let flatE = T (ϕuf), where T is a function that takes an EUF formula
(or term) as input and transforms it to an equality formula (or term,
respectively) by replacing each uninterpreted-function instance Fi with a
new term-variable fi (in the case of nested functions, only the variable
corresponding to the most external instance remains).

4

3. Let FCE denote the following conjunction of functional-consistency con-
straints:

FCE :=

m−1󰁡

i=1

m󰁡

j=i+1

T (arg(Fi)) = T (arg(Fj)) =⇒ fi = fj

4. Let ϕE := FCE =⇒ flatE

5. Return ϕE

Example

Let ϕ be
x1 = x2 =⇒ F (F (G(x1)))) = F (F (G(x2)))

Consider the propositional variables g1, g2, f1, f2, f3, and f4

x1 = x2 =⇒

F (

F (

g1󰁽 󰂀󰁿 󰁾
G(x1))󰁿 󰁾󰁽 󰂀
f1)󰁿 󰁾󰁽 󰂀
f2 =

F (

F (

g2󰁽 󰂀󰁿 󰁾
G(x2))󰁿 󰁾󰁽 󰂀
f3)󰁿 󰁾󰁽 󰂀
f4

then flatE : x1 = x2 =⇒ f2 = f4 and FCE is

x1 = x2 =⇒ g1 = g2

g1 = f1 =⇒ f1 = f2

g2 = f3 =⇒ f3 = f4

g1 = g2 =⇒ f1 = f3

g1 = f3 =⇒ f1 = f4

f1 = g2 =⇒ f2 = f3

f1 = f3 =⇒ f2 = f4

g2 = f3 =⇒ f1 = f4

Thus, we have ϕE = FCE =⇒ flatE .

Eager procedures for equational logic

We will see how to construct a formula of propositional logic that is equisatis-
fiable to a formula of equational logic without quantifiers.

The SAT solver is called only once.

The presented algorithm will not be very efficient but can be optimized in order
to execute in polynomial time and obtain a propositional formula with a cubic
size in the number of variables of the equational formula.

5

Sets of literals of equalities and inequalities

Assume a equational formula ϕE (without constants) with Boolean operations
in NNF.

• Let E= be the set of positive literals in ϕE

• Let E ∕= be the set of negative literals in ϕE

For example ϕE

(x1 ∕= x2 ∨ y1 ∕= y2 ∨ f1 = f2)∧
(u1 ∕= f1 ∨ u2 ∕= f2 ∨ g1 = g2)∧
(u1 = f1 ∨ u2 = f2 ∨ z = g1) ∧ z ∕= g2

We have

E= = {f1 = f2, g1 = g2, u1 = f1, u2 = f2, z = g1}
E ∕= = {x1 ∕= x2, y1 ∕= y2, u1 ∕= f1, u2 ∕= f2, z ∕= g2}

Equality graph

Given a equality logic formula ϕE in NNF, the equality graph of ϕE , GE(ϕE)
is the graph (V,E=, E ∕=) where the nodes V are the variables in ϕE , the edges
E= correspond to the set of positive literals and the edges E ∕= to the set of
negative literals.

For example, for E= = {x1 = x5, x2 = x3, x2 = x5, x4 = x5} e E ∕= = {x1 ∕= x4}
we have

As in the case of conjunctions of literals, graphically we represent with a dashed
line the edges that correspond to equalities and solid those of inequalities.

• The equational graph GE(ϕE) is an abstraction of ϕE

6

• It actually represents all formulas that have the same literals as ϕE

• Since it does not consider Boolean connectives, it can represent both sat-
isfiable and unsatisfiable formulas

• For example x1 = x2 ∧ x1 ∕= x2 and x1 = x2 ∨ x1 ∕= x2 are represented by
the same graph.

Equality and Disequality Paths

• A equality path in GE is a path with only edges of E=. If there is such a
path between x and y we say that x =∗ y, for x, y ∈ V .

• A disequality path in GE is a path with edges of E= and only one edge og
E ∕=. If there is such a path between xand y we write x ∕=∗ y x, y ∈ V .

• Any of these paths is simple if has no cycles.

• If x =∗ y it can happen that x and y have the same value but is not
necessary (because we do not have the structure of the Boolean formula).

• For x ∕=∗ y it can happen that x and y have different values

• in the example x1 =∗ x4 and x1 ∕=∗ x4 but that may not be inconsistent

• A contradictory cycle is a cycle in GE that has exactly one edge in E ∕=

• For x, y ∈ V ia a contradictory cycle we have x =∗ y and x ∕=∗ y .

• The conjunction of literals of the cycle is unsatisfiable.

• In the example x1, x2, x4 is a contradictory cycle

We can simplify formulas if there are literals that do not participate in contra-
dictory cycles (simple).

Simplifications of the Formula

7

Example

Let

ϕE :=(x1 ∕= x2 ∨ y1 ∕= y2 ∨ f1 = f2) ∧ (u1 ∕= f1 ∨ u2 ∕= f2 ∨ g1 = g2)∧
(u1 = f1 ∨ u2 = f2 ∨ z = g1) ∧ z ∕= g2

the graph GE is

The edges f1 = f2, x1 ∕= x2 and y1 ∕= y2 are not part of any simple contradictory
cycle and can therefore be substituted by true.

ϕ′E :=(true ∨ true ∨ true) ∧ (u1 ∕= f1 ∨ u2 ∕= f2 ∨ g1 = g2)∧
(u1 = f1 ∨ u2 = f2 ∨ z = g1) ∧ z ∕= g2

Simplifying

ϕ′E :=(u1 ∕= f1 ∨ u2 ∕= f2 ∨ g1 = g2) ∧ (u1 = f1 ∨ u2 = f2 ∨ z = g1) ∧ z ∕= g2

And in this case, if we calculate the graph, we see that we can not simplify any
further. However, if the contradictory cycles disappear, we can conclude that
the formula is satisfiable (and only by simplifying).

8

Reduction to propositional Logic (sparse method, Bryant et al)

Nonpolar equality graph

Let ϕE be a equational formula, a nonpolar equality graph of ϕE , GE
NP (ϕ

E) is
a graph (V,E) where V are the variables of ϕE and the edges E correspond to
At(ϕE), i.e., all atomic formulae (equalities) ϕE .

• Note that x1 ∕= x2 is an abbreviation of ¬x1 = x2, then GE
NP only x1 = x2

is present in E.

• Instead of literals we only consider equalities (omitting the polarity).

Transformation to propositional logic

Given ϕE the procedure generates two propositional formulas e(ϕE) and Btrans

such that
ϕE is satisfiable ⇐⇒ e(ϕE) ∧ Btrans is satisfiable

• The formula e(ϕE) is the propositional skeleton of ϕE , where every pre-
dicate xi = xj (i ≤ j) is replaced with a new Boolean variable ei,j

• The formula Btrans is a conjunction of implications, the transitive con-
straints. Each such implication is associated with a cycle in the nonpolar
equality graph GE

NP .

• For a cycle with n edges Btrans forbids an assignment false to one of the
edges when all the other edges are assigned true.

Correctness

• If ϕE is satisfiable e(ϕE) is also satisfiable

• The constraints Btrans are enough to ensure that ϕE is satisfiable if e(ϕE)
is.

Let ϕE := x1 = x2 ∧ (((x2 = x3) ∧ (x1 ∕= x3)) ∨ (x1 ∕= x2)) then

e(ϕE) := e1,2 ∧ (((e2,3 ∧ (¬e1,3)) ∨ (¬e1,2))

The formulae x1 = x2, x2 = x3 and x1 = x3 form a cycle in GE
NP then the

transitive constraints are:

Btrans :=((e1,2 ∧ e2,3) =⇒ e1,3)∧
(e1,2 ∧ e1,3) =⇒ e2,3)∧
(e2,3 ∧ e1,3) =⇒ e1,2).

A nonch

9

Complexity and Optimization

• The algorithm can have exponential complexity because the number of
cycles in a graph can be exponential

• A chord in a cycle is any edge that connects two nonadjacent vertices in
a cycle

• Bryant et al shown that

It is sufficient to add transitive constraints for simple chord-free
cycles

• Chordal graphs A chordal graph is an undirected graph in which no cycle
of size 4 or more is chord-free.

• Every graph can be made chordal in a time polynomial in the number of
vertices

• Since the only chord-free cycles in a chordal graph are triangles, this im-
plies that applying the procedure to these graphs can be done in polyno-
mial time and obtain a formula whose size is not more than cubic in the
number of variables (3 constraints for each triangle). The newly added
chords are represented by new variables that appear in Btrans but not in
e(ϕE).

10

A nonchordal nonpolar equality graph corresponding to ϕE and a possible
chordal version of it (right).

For the triangle (x1, x2, x5),

References

[BdM15] Nikolai Bjorner and Leonardo de Moura. Z3 Theorem Prover. Rise,
Microsft, 2015.

[BM07] Aaron R. Bradley and Zohar Manna. The Calculus of Computation:
Decision Procedures with Applications to Verification. Springer Verlag,
2007.

11

[KS16] Daniel Kroening and Ofer Strichman. Decision Procedures:An Al-
gorithmic Point of View. Texts in Theoretical Computer Science. An
EATCS Series. Springer, 2016.

12

