
Program verification

Nelma Moreira

Program verification
Lecture 23

Theories: integers, arrays and bit vectors. Quantifier elimination.
Modeling and Examples in Z3

Linear arithmetic

Decision procedures for conjunctions of linear constraints.

• Domains: integers, rationals, reals

• For integers the problem is NP-complete

• Classic methods of optimization (that can be reduced to decision prob-
lems): Simplex Algorithm accepts constraints of the form

a1x1 + · · ·+ anxn = 0

ℓi ≤ xi ≤ ui

• Branch and Bound

• Fourier-Motzin Variable Elimination

• Omega Test: conjunction of linear constraints of the form
󰁓n

i=1 aixi = b
and

󰁓n
i=1 aixi ≤ b (ai ∈ Z

Theory of arrays

The axiomatization of arrays is the following, where the quantifier-free fragment
is decidable:

TE
∀a, i, j.i = j → read(a, i) = read(a, j)

∀a, i, j, v.i = j → read(write(a, i, v), j) = v

∀a, i, j, v.¬(i = j) → read(write(a, i, v), j) = read(a, j)

∀a, b.(∀i.read(a, i) = read(b, i)) → a = b

1

We formalise an array a as a map from index type theory TI to an element type
theory TE .

The type of an array a is
TA = TI → TE

Reading and writing

Let a ∈ TA be an array.The basic operations are:

Reading a[i] denotes read(a, i), i.e., an element of TE that correspond to the
index i ∈ TI of a

Writing a[i ← e] denotes write(a, i, e), i.e., e ∈ TE is the value to be written
at index i of a.

Array Logic

We assume that TI is a theory where the quantified fragment is decidable (e.g.
Presburger arithmetic, i.e., linear arithmetic over integers).

In this way it is possible to model properties such as there exists an array
element that is zero or all elements of the array are nonzero.

Let tI and tE be the terms of TI and TE and ida ∈ V ararray identifiers for
arrays, then the terms for TA are:

tA := ida | tA[tI ← tE]

Terms of tE are extended to include the elements of arrays:

tE := tA[termI] | · · ·

The formulae include the ones of TI and TE plus the equality of terms of TA.,
i.e.

ϕ := tA = tA | · · ·

We can consider a1 = a2 an abbreviation of ∀i.a1[i] = a2[i], if TI includes
quantifiers. The axioms given above can be rewritten as:

∀a1 ∈ TA.∀a2 ∈ TA.∀i ∈ TI .∀j ∈ TI .((a1 = a2 ∧ i = j) =⇒ a1[i] = a2[j]), (1)

∀a ∈ TA.∀e ∈ TE .∀i ∈ TI .∀j ∈ TI .a[i ← e][j] =

󰀫
e i = j,

a[j] otherwise,
(2)

∀a1 ∈ TA.∀a2 ∈ TA.(∀i ∈ TI .a1[i] = a2[i]) =⇒ a1 = a2. (3)

The axiom (2) is called read-over write axiom and the axiom (3) is the
extensionality rule

Note: in this theory the arrays have unbounded dimension. The array dimension
can be given using formulae over integers.

2

Example

Consider the Hoare triple

{True} for i ← 0 to 99 do a[i] ← 0 {∀0 ≤ k < 100, a[k] = 0}

Let η : ∀0 ≤ k < i, a[k] = 0 be the invariant and the following tableaux :

{true}
{0 ≤ 99}
for i ← 0 to 99 do

{
{(∀0 ≤ k < i, a[k] = 0) ∧ 0 ≤ i ∧ i ≤ 99}
{∀0 ≤ k < i+ 1, a[i ← 0][k] = 0} constot

a[i] ← 0

{∀0 ≤ k < i+ 1, a[k] = 0} asstot

}
{η[100/i]}
{∀0 ≤ k < 100, a[k] = 0}

Arrays as Uninterpreted functions

In the previous example we need to proof the following verification condition:

(∀0 ≤ k < i, a[k] = 0) =⇒ ∀0 ≤ k < i+ 1, a[i ← 0][k] = 0

Suppose that there are no quantifiers over arrays, i.e. arrays are ground terms

Considering a a function we can substitute each of its instances by an uninter-
preted function, where the index is the only argument.

In particular, the axiom (1) corresponds to the functional congruence.

Example 1. If TE is the theory of strings

(i = j ∧ a[j] = ”z”) =⇒ a[i] =′ z′

can be substituted by

(i = j ∧ Fa(j) =
′ z′) =⇒ Fa(i) =

′ z′

that can be evaluated by the decision procedures already considered.

Array updates

3

To replace terms of the form
a[i ← e],

fresh variables of type array are introduced, a′ ∈ V ararray and two constraints
are added (that correspond to the two cases of the read-over write rule).

This rule is an equivalence-preserving transformation

Write rule

1. a′[i] = e

2. ∀j ∕= i.a′[j] = a[j]

Example 2. The formula
a[i ← e][i] ≥ e

is transformed into
a′[i] = e =⇒ a′[i] ≥ e

. The formula a[0] = 10 =⇒ a[1 ← 20][0] = 10 is transformed into:

(a[0] = 10 ∧ a′[1] = 20 ∧ (∀j ∕= 1.a′[j] = a[j])) =⇒ a′[0] = 10.

Introducing Fa and Fa′ we have

(Fa(0) = 10 ∧ Fa′(1) = 20 ∧ (∀j ∕= 1.Fa′(j) = Fa(j))) =⇒ Fa′(0) = 10.

A Reduction Algorithm for Array Logic

• The combination of Presburger theory with uninterpreted functions is in
general undecidable.

• Thus, we need to restrict the set of formulas we consider.

• We consider formulae that are Boolean combinations of array properties.

Array properties

Definição 23.1 (Array properties). Is a formula of the form

∀i1 · · · ∀ik ∈ TI .ϕI(i1, . . . , ik) =⇒ ϕV (i1, . . . , ik)

where

1. ϕI is called the index guard and must follow the grammar

ϕI := ϕI ∧ ϕI | ϕI ∨ ϕI | ti ≤ ti | ti = ti

ti := i1 | · · · | ik | t
t := n ∈ N | n× idi | t+ t

Terms t are expressions over integers and idi is a variable of TI distinct
from ij.

2. Index variables i1, . . . , ik can only be used in array read expressions of the
form a[ij] in ϕV .

4

Examples

• Extensionality is an array property

∀i.a1[i] = a2[i]

where the guard is true.

• The formula a′ = a[i ← 0] is replaced by two formulas:

– a′[i] = 0 is an array property and

– ∀j ∕= i.a′[j] = a[j].

In this case we need to replace it by

∀j.((j ≤ i− 1 ∨ i+ 1 ≤ j) =⇒ a′[j] = a[j])

which is an array property.

A Reduction Algorithm

We now describe an algorithm that accepts a formula from the array prop-
erty fragment of array theory and reduces it to an equisatisable formula that
uses the element and index theories combined with equalities and uninterpreted
functions.

The input will be an array property in NNF, where universal quantifiers can be
replaced by existential quantifiers but no alternation of quantifiers occur (due
to the syntactic restrictions).

Array-reduction

Input: An array property formula ϕA in NNF
Output: A formula ϕuf of the theories TI and TE ,

and with uninterpreted functions.

1. Apply the write rule to remove all array updates a[i ← e] from ϕA .

2. Replace all existencial quantifiers ∃i ∈ TI .P (i) by P (j), where j is a fresh
variable.

3. Replace all universal quantifiers ∀i ∈ TI .P (i) by

󰁡

i∈I(ϕ)

P (i).

4. Replace the array read operators (a[i]) by uninterpreted functions, and
obtain ϕuf .

5. return ϕuf .

5

I(ϕ)

The set I(ϕ) denotes the index expressions that i might possibly be equal to in
the formula ϕ which is the current formula. Contains:

1. All expressions used as an array index in ϕ expect quantified variables

2. All expressions used inside index guards in ϕ expect quantified variables

3. if ϕ contains none of the above I(ϕ) = {0} (in order to obtain a nonempty
set of index expressions).

Example

Let k, i ∈ N0, and let us prove the validity of

(∀k.k < i =⇒ a[k] = 0) =⇒ (∀k.k ≤ i =⇒ a[i ← 0][k] = 0)

For that we consider that its negation is not satisfiable.

(∀k.k < i =⇒ a[k] = 0) ∧ (∃k.k ≤ i ∧ a[i ← 0][k] ∕= 0)

By applying the write rule, we obtain

(∀k.k < i =⇒ a[k] = 0) ∧ a′[i] = 0 ∧ (∀j ∕= i.a′[j] = a[j])

∧ (∃k.k ≤ i ∧ a′[k] ∕= 0)

We instantiate k with k1 to eliminate the quantifier ∃k

(∀k.k < i =⇒ a[k] = 0) ∧ a′[i] = 0 ∧ (∀j ∕= i.a′[j] = a[j])

∧ k1 ≤ i ∧ a′[k1] ∕= 0

We have I = {i, k1}. Then we eliminate the universal quantifiers:

(i < i =⇒ a[i] = 0) ∧ (k1 < i =⇒ a[k1] = 0) ∧ a′[i] = 0

∧ (i ∕= i =⇒ a′[i] = a[i])

∧ (k1 ∕= i =⇒ a′[k1] = a[k1]) ∧ k1 ≤ i ∧ a′[k1] ∕= 0

Simplifying, we get

(k1 < i =⇒ a[k1] = 0) ∧ a′[i] = 0

∧ (k1 ∕= i =⇒ a′[k1] = a[k1]) ∧ k1 ≤ i ∧ a′[k1] ∕= 0

We replace a and a′ by uninterpreted functions and obtain

6

(k1 < i =⇒ Fa(k1) = 0) ∧ Fa′(i) = 0

∧ (k1 ∕= i =⇒ F ′
a(k1) = Fa(k1)) ∧ k1 ≤ i ∧ F ′

a(k1) ∕= 0

Considering the three cases k1 < i, k1 = i and k1 > i we can conclude that the
formula is unsatisfiable.

Thus, we conclude the validity of the initial verification condition.

Arrays em SMT-LIB/Z3

• To define arrays one use the (sort) Array

A = Array(’A’, IntSort(), IntSort())

x, y = Consts(’x y’,IntSort())

solve(A[x] == x, Store(A, x, y) == A)

• A[x] is defined by Select(A,x) (or A[x])

• Store(A,x,v), corresponds to A[x ← v].

• K(Sort,v) is an array of Sort where all indexes have the value v (constant
array, it is used to show a solution).

• For the verification condition above

solve (Implies(ForAll([x],(Implies(x< y, A[x]==0))),

ForAll([x],(Implies(x<= y, Store(A, y, 0)[x]==0)))))

Arrays can be represented by λ-terms : if f : A×B → C then Lambda [x,y].

f(x, y) has type Array(A,B,C).

a[i] # select array ’a’ at index ’i’

Select(a, i)

Store(a, i, v) # update array ’a’ with ’v’ at index ’i’

= Lambda(j, If(i == j, v, a[j]))

K(D, v) # constant Array(D, R), where R is sort of ’v’.

= Lambda(j, v)

Map(f, a) # map function ’f’ on values of ’a’

= Lambda(j, f(a[j]))

Ext(a, b) # Extensionality

Implies(a[Ext(a, b)] == b[Ext(a, b)], a == b)

Bit-vector theories

7

Quantifier elimination

• Many of the theories considered have undecidable fragments when quan-
tifiers are considered.

• Even if those fragments are decidable complexity of the decision proced-
ures is high.

• For quantified boolean formulas (QBF) quantifier elimination is decidable
(pspace-complete)

• If there are only existential quantifiers (it is a formula in prenex normal
form) one can use Skolemization to obtain a equisatisfiable formula

• Some kinds of alternation of quantifiers can also yield decidable fragments
of some theories.

General quantification- Skolemization and Instantiation

• Formulae in prenex normal form

• and in Skolem normal form. Application of Skolemization

• For instance, ∀y1∀y2∃x.(f(y1, y2) ∧ f(x, y2) ∧ x < 0) after Skolemization
becomes:

∀y1∀y2(f(y1, y2) ∧ f(fx(y1, y2), y2) ∧ fx(y1, y2) < 0)

• The general problem is to have a ground formula G which validity must
be proven with respect to axioms.

• for instance, prove that

f(h(a), b) = f(b, h(a))

is implied by
∀x∀y.f(x, y) = f(y, x)

• Considering the satisfiability problem we need to show that the following
formula isunsatisfiable:

∀x∀y.f(x, y) = f(y, x) ∧ f(h(a), b) ∕= f(b, h(a)).

• It is easy to see that if x is instantiated to h(a) and y to b we get a
contradiction.

8

E-matching

• Let ∀x.ψ∧G be the formula we want to proof unsatisfiable, with G ground.

• One can instantiate x with all ground terms of G of the same type

• But that is in general exponential.

• The solver simplify implemented an heuristic called E-graph algorithm
that is now widely used (and improved):

• for each ∀x.ψ, identify those subterms in ψ that contain references to all
the variables in x. These are the triggers.

• In the example above both f(x, y) and f(y, x) are triggers.

• Try to match each trigger tr (pattern) to an existing ground term gr in G
and take the correspond substitution. In the example, matching f(x, y)
to f(h(a), b) yields s = {x 󰀁→ h(a), y 󰀁→ b}.

• Assign G := G ∧ ψ[x ← s] and check the satisfiability of G.

Example 3. Let G be

b = c =⇒ f(h(a), g(c)) = f(g(b), h(a))

where f is commutative, i.e.,

∀x∀y.f(x, y) = f(y, x)

Consider the trigger f(x, y) which can match both f(h(a), g(c)), with substitu-
tion {x 󰀁→ h(a), y 󰀁→ g(c)} and f(g(b), h(a)) with substitution {x 󰀁→ g(b), y 󰀁→
h(a)}. Then one needs to check the satisfiability of

b = c ∧ f(h(a), g(c)) ∕= f(g(b), h(a))∧
f(h(a), g(c)) = f(g(c), h(a)) ∧ f(g(b), h(a)) = f(h(a), g(b))

which is unsatisfiable.

E-matching algorithm

• Frequently, however, the predicates necessary for proving unsatisability
are not based on terms in the existing formula.

• Simplify has a more flexible matching algorithm,

• which exploits its current knowledge on equivalences among various terms,
which is called E-matching.

9

The algorithm
uses union-find to represent the classes of equivalence of equality of terms.

• dom(α) is the domain of the substitution

• find(gr) returns the representative element of the class of gr. If two terms
gr1, gr2 are such that find(gr1) = find(gr2) then it means that they are
equivalent.

• class(gr) returns the equivalence class of gr.

• The algorithm uses functional congruence with a member of the equival-
ence class.

• The output of this algorithm is a set of substitutions, each of which brings
us from tr to gr, possibly by using congruence closure.

• If E denotes the equalities, then for each possible substitution α ∈ sub, it
holds that E |= α(tr) = gr, where α(tr) denotes the substitution applied
to the trigger tr.

• For example, for tr = f(x) and gr = f(a), if E = {a = b}, the value of
sub at the end of the algorithm will be {x 󰀁→ a, x 󰀁→ b}.

Example 4. Let (∀x.f(x) = x)∧(∀y1.∀y2.g(g(y1, y2), y2) = y2)∧g(f(g(a, b)), b) ∕=
b .

The triggers are f(x) and g(y1, y2). For the first we consider

match(f(x), f(g(a, b)), ∅)

10

Line 7 is invoked and we consider g(a, b):

match(x, g(a, b), ∅) = {x 󰀁→ g(a, b)}

and f(g(a, b)) = g(a, b) is added to E. For the second trigger g(g(y1, y2), y2),
the candidate ground terms for matching are g(a, b) and g(f(g(a, b)), b)). In the
first case the matching fails

match(y2, b,match(g(y1, y2), a, ∅)) == fail

as class(a) has no term with functional symbol g.

In the second case we have

= match(y2, b,match(g(y1, y2), f(g(a, b)), ∅))
= match(y2, b,match(g(y1, y2), g(a, b), ∅))
= match(y2, b,match(y2, b,match(y1, a, ∅)))
= match(y2, b,match(y2, b, {y1 󰀁→ a}))
= match(y2, b, {y1 󰀁→ a, y2 󰀁→ b})
= {y1 󰀁→ a, y2 󰀁→ b}

Note the switch between f(g(a, b)) and g(a, b): it happens, because these two
terms are in the same equivalence class according to the E-graph.

As E-matching works only with functional congruence. It cannot deal with
interpreted functions (as arithmetic ones).

1 Bibliografia

References

[BdM15] Nikolai Bjorner and Leonardo de Moura. Z3 Theorem Prover. Rise,
Microsft, 2015.

[BM07] Aaron R. Bradley and Zohar Manna. The Calculus of Computation:
Decision Procedures with Applications to Verification. Springer Verlag,
2007.

[KS16] Daniel Kroening and Ofer Strichman. Decision Procedures:An Al-
gorithmic Point of View. Texts in Theoretical Computer Science. An
EATCS Series. Springer, 2016.

11

