
Texts in Theoretical Computer Science
An EATCS Series

Decision
Procedures

Daniel Kroening
Ofer Strichman

An Algorithmic Point of View

Second Edition



Texts in Theoretical Computer Science.
An EATCS Series

Series editors

Monika Henzinger, Faculty of Science, Universität Wien, Wien, Austria
Juraj Hromkovič, Department of Computer Science, ETH Zürich, Zürich,
Switzerland
Mogens Nielsen, Department of Computer Science, Aarhus Universitet, Denmark
Grzegorz Rozenberg, Leiden Centre of Advanced Computer Science, Leiden,
The Netherlands
Arto Salomaa, Turku Centre of Computer Science, Turku, Finland



More information about this series at http://www.springer.com/series/3214



Daniel Kroening • Ofer Strichman

Decision Procedures
An Algorithmic Point of View

Second Edition

123



Daniel Kroening
Computing Laboratory
University of Oxford
Oxford
UK

Ofer Strichman
Information Systems Engineering
The William Davidson Faculty of Industrial
Engineering and Management

Technion – Israel Institute of Technology
Haifa
Israel

ISSN 1862-4499
Texts in Theoretical Computer Science. An EATCS Series
ISBN 978-3-662-50496-3 ISBN 978-3-662-50497-0 (eBook)
DOI 10.1007/978-3-662-50497-0

Library of Congress Control Number: 2016957285

© Springer-Verlag Berlin Heidelberg 2008, 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer-Verlag GmbH Germany
The registered company address is: Heidelberger Platz 3, 14197 Berlin, Germany



Foreword to the first edition

By Randal E. Bryant

Research in decision procedures started several decades ago, but both their
practical importance and the underlying technology have progressed rapidly
in the last five years. Back in the 1970s, there was a flurry of activity in this
area, mostly centered at Stanford and the Stanford Research Institute (SRI),
motivated by a desire to apply formal logic to problems in artificial intelligence
and software verification. This work laid foundations that are still in use today.
Activity dropped off through the 1980s and 1990s, accompanied by a general
pessimism about automated formal methods. A conventional wisdom arose
that computer systems, especially software, were far too complex to reason
about formally.

One notable exception to this conventional wisdom was the success of
applying Boolean methods to hardware verification, beginning in the early
1990s. Tools such as model checkers demonstrated that useful properties could
be proven about industrial-scale hardware systems, and that bugs that had
otherwise escaped extensive simulation could be detected. These approaches
improved on their predecessors by employing more efficient logical reasoning
methods, namely ordered binary decision diagrams and Boolean satisfiability
solvers. The importance of considering algorithmic efficiency, and even low-
level concerns such as cache performance, became widely recognized as having
a major impact on the size of problems that could be handled.

Representing systems at a detailed Boolean level limited the applicability
of early model checkers to control-intensive hardware systems. Trying to model
data operations, as well as the data and control structures found in software,
leads to far too many states, when every bit of a state is viewed as a separate
Boolean signal.

One way to raise the level of abstraction for verifying a system is to view
data in more abstract terms. Rather than viewing a computer word as a col-
lection of 32 Boolean values, it can be represented as an integer. Rather than
viewing a floating-point multiplier as a complex collection of Boolean func-
tions, many verification tasks can simply view it as an “uninterpreted func-
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tion” computing some repeatable function over its inputs. From this approach
came a renewed interest in decision procedures, automating the process of rea-
soning about different mathematical forms. Some of this work revived methods
dating back many years, but alternative approaches also arose that made use
of Boolean methods, exploiting the greatly improved performance of Boolean
satisfiability (SAT) solvers. Most recently, decision procedures have become
quite sophisticated, using the general framework of search-based SAT solvers,
integrated with methods for handling the individual mathematical theories.

With the combination of algorithmic improvements and the improved per-
formance of computer systems, modern decision procedures can readily handle
problems that far exceed the capacity of their forebearers from the 1970s. This
progress has made it possible to apply formal reasoning to both hardware and
software in ways that disprove the earlier conventional wisdom. In addition,
the many forms of malicious attacks on computer systems have created a pro-
gram execution environment where seemingly minor bugs can yield serious
vulnerabilities, and this has greatly increased the motivation to apply formal
methods to software analysis.

Until now, learning the state of the art in decision procedures required
assimilating a vast amount of literature, spread across journals and confer-
ences in a variety of different disciplines and over multiple decades. Ideas are
scattered throughout these publications, but with no standard terminology
or notation. In addition some approaches have been shown to be unsound,
and many have proven ineffective. I am therefore pleased that Daniel Kroen-
ing and Ofer Strichman have compiled the vast amount of information on
decision procedures into a single volume. Enough progress has been made in
the field that the results will be of interest to those wishing to apply deci-
sion procedures. At the same time, this is a fast-moving and active research
community, making this work essential reading for the many researchers in
the field.

FOREWORD TO THE FIRST EDITION



Foreword to the second edition

By Leonardo de Moura1, Microsoft Research

Decision procedures are already making a profound impact on a number of
application areas, and had become so efficient in practice in the last 15 years
(mostly since the introduction of a new generation of SAT solvers, and in par-
ticular the introduction of Chaff in 2001) that numerous practical problems
that were beyond our reach beforehand are now routinely solved in seconds.
Yet, they draw on a combination of some of the most fundamental areas in
computer science as well as discoveries from the past century of symbolic
logic. They combine the problem of Boolean satisfiability with domains such
as those studied in convex optimization and term-manipulating symbolic sys-
tems. They involve the decision problem, completeness and incompleteness of
logical theories, and finally complexity theory.

It is an understatement to say that we use decision procedures in Mi-
crosoft on a daily basis. Applications include security testing, static code
analysis, constraint solving and software verification, to cite a few. With more
than five hundred machine years, security testing at Microsoft is the largest
computational usage ever for decision procedures. It has been instrumental in
uncovering hundreds of subtle security critical bugs that traditional testing
methods have been unable to find.

This book is both an introduction to this fascinating topic and a refer-
ence for advanced developers. It dedicates a chapter to many of the useful
theories (and their combination), and describes some of their applications in
software engineering, including techniques that we use for static code analy-
sis at Microsoft. The new information in this second edition is important for
both the researcher and the practitioner, since it includes general quantifi-
cation (an algorithm such as E-matching), updates on efficient SAT solving
and related problems (such as incremental solving), effectively propositional
reasoning (EPR), and other topics of great value.

1 The main developer of Z3, an award-winning SMT solver
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Preface

A decision procedure is an algorithm that, given a decision problem, terminates
with a correct yes/no answer. In this book, we focus on decision procedures
for decidable first-order theories that are useful in the context of automated
software and hardware verification, theorem proving, compiler optimization,
and, since we are covering propositional logic, any problem that is in the
complexity class NP and is not polynomial. The range of modeling languages
that we cover in this book—propositional logic, linear arithmetic, bitvectors,
quantified formulas etc.—and the modeling examples that we include for each
of those, will assist the reader to translate their particular problem and solve
it with one of the publically available tools. The common term for describing
this field is Satisfiability Modulo Theories, or SMT for short, and software
that solves SMT formulas is called an SMT solver.

Since coping with the above-mentioned tasks on an industrial scale de-
pends critically on effective decision procedures, SMT is a vibrant and prosper-
ing research subject for many researchers around the world, both in academia
and in industry. Intel, AMD, ARM and IBM are some of the companies that
routinely apply decision procedures in circuit verification with ever-growing
capacity requirements. Microsoft is developing an SMT solver and applies it
routinely in over a dozen code analysis tools. Every user of Microsoft Windows
and Microsoft Office therefore indirectly enjoys the benefits of this technol-
ogy owing to the increased reliability and resilience to hacker attacks of these
software packages. There are hundreds of smaller, less famous companies that
use SMT solvers for various software engineering tasks, and for solving various
planning and optimization problems.

There are now numerous universities that teach courses dedicated to de-
cision procedures; occasionally, the topic is also addressed in courses on algo-
rithms or on logic for computer science. The primary goal of this book is to
serve as a textbook for an advanced undergraduate- or graduate-level com-
puter science course. It does not assume specific prior knowledge beyond what
is expected from a third-year undergraduate computer science student. The
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Fig. 1. Decision procedures can be rather complex . . . those that we consider in
this book take formulas of different theories as input, possibly mix them (using
the Nelson–Oppen procedure—see Chap. 10), decide their satisfiability (“YES” or
“NO”), and, if yes, provide a satisfying assignment

book may also help graduate students entering the field, who can save the
effort to gather information from what seems to be an endless list of articles.

The decision procedures that we describe in this book draw from diverse
fields such as graph theory, logic, operations research, and artificial intelli-
gence. These procedures have to be highly efficient, since the problems they
solve are inherently hard. They never seem to be efficient enough, however:
what we want to be able to prove is always harder than what we can prove.
Their asymptotic complexity and their performance in practice must always
be pushed further. These characteristics are what makes this topic so com-
pelling for research and teaching.

PREFACE
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Which Theories? Which Algorithms?

A first-order theory can be considered “interesting”, at least from a practical
perspective, if it fulfills at least these two conditions:

1. The theory is expressive enough to model a real decision problem. More-
over, it is more expressive or more natural for the purpose of expressing
some models in comparison with theories that are easier to decide.

2. The theory is either decidable or semidecidable, and more efficiently solv-
able than theories that are more expressive, at least in practice if not in
theory.2

All the theories described in this book fulfill these two conditions. Further-
more, they are all used in practice. We illustrate applications of each theory
with examples representative of real problems, whether they may be verifica-
tion of C programs, verification of hardware circuits, or optimizing compilers.
Background in any of these problem domains is not assumed, however.

Other than in one chapter, all the theories considered are quantifier-free.
The problem of deciding them is NP-complete. In this respect, they can all
be seen as alternative modeling languages that can be solved with a variety of
decision procedures. They differ from each other mainly in how naturally they
can be used for modeling various decision problems. For example, consider the
theory of equality, which we describe in Chap. 4: this theory can express any
Boolean combination of Boolean variables and expressions of the form x1 = x2,
where x1 and x2 are variables ranging over, for example, the natural numbers.
The problem of satisfying an expression in this theory can be reduced to a
satisfiability problem of a propositional logic formula (and vice versa). Hence,
there is no difference between propositional logic and the theory of equality in
terms of their ability to model decision problems. However, many problems are
more naturally modeled with the equality operator and non-Boolean variables.

For each theory that is discussed, there are many alternative decision pro-
cedures in the literature. Effort was made to select those procedures that are
known to be relatively efficient in practice, and at the same time are based on
what we believe to be an interesting idea. In this respect, we cannot claim to
have escaped the natural bias that one has towards one’s own line of research.

Every year, new decision procedures and tools are being published, and
it is impossible to write a book that reports on this moving target of “the
most efficient” decision procedures (the worst-case complexity of most of the
competing procedures is the same). Moreover, many of them have never been
thoroughly compared with one another. We refer readers who are interested
in the latest developments in this field to the SMT-LIB web page, as well as to
the results of the annual tool competition SMT-COMP (see Appendix A). The
SMT-COMP competitions are probably the best way to stay up to date as to
the relative efficiency of the various procedures and the tools that implement

2 Terms such as expressive and decidable have precise meanings, and we will define
them in the first chapter.
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them. One should not forget, however, that it takes much more than a good
algorithm to be efficient in practice.

The Structure and Nature of This Book

The first chapter is dedicated to basic concepts that should be familiar to
third- or fourth-year computer science students, such as formal proofs, the
satisfiability problem, soundness and completeness, and the trade-off between
expressiveness and decidability. It also includes the theoretical basis for the
rest of the book. From Sect. 1.5 onwards, the chapter is dedicated to more
advanced issues that are necessary as a general introduction to the book,
and are therefore recommended even for advanced readers. Chapters 2 and 3
describe how propositional formulas are checked for satisfiability, and then
how this capability can be extended to more sophisticated theories. These
chapters are necessary for understanding the rest of the book. Chapters 4–11
are mostly self-contained, and generally do not rely on references to material
other than that in the first three chapters. The last chapter describes the
application of these methods for verifying the correctness of software, and for
solving various problems in computational biology.

The mathematical symbols and notations are mostly local to each chapter.
Each time a new symbol is introduced, it appears in a rounded box in the
margin of the page for easy reference. All chapters conclude with problems,
bibliographic notes, and a glossary of symbols.

Teaching with This Book

We are aware of 38 courses worldwide that list the first edition of this book
as the textbook of the course, in addition to our own courses in the Tech-
nion (Haifa, Israel) and Oxford University (UK). Our own courses are com-
bined undergraduate and graduate courses. The slides that were used in these
courses, as well as links to other resources and ideas for projects, appear on
the book’s web page (www.decision-procedures.org). Source code of a
C++ library for rapid development of decision procedures can also be down-
loaded from this page. This library provides the necessary infrastructure for
programming many of the algorithms described in this book, as explained in
Appendix B. Implementing one of these algorithms was a requirement in the
course, and it proved successful. It even led several students to their thesis
topic.

Notes for the Second Edition

The sales of the first edition of this book crossed, apparently, the threshold
above which the publisher asks the authors to write a second one... Writing
this edition was a necessity for more fundamental reasons, however: at the time
the first edition was written (2004–2008) the field now called SMT was in its
infancy, without the standard terminology and canonic algorithms that it has

PREFACE
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now. What constituted the majority of Chap. 11 in the first edition (propo-
sitional encodings and the DPLL(T ) framework) became so dominant in the
years that have passed that we expanded it and brought it forward to Chap. 3.
In turn, most of the so-called eager-encoding algorithms have been moved to
Chap. 11. In addition, we updated Chap. 2 with further modern SAT heuris-
tics, added a section about incremental satisfiability, and added a section on
the related constraint satisfaction problem (CSP). To the quantifiers chapter
(Chap. 9) we added a section about general quantification using E-matching
and a section about the Bernays–Schönfinkel–Ramsey fragment of first-order
logic (also called EPR). Finally, we added a new chapter (Chap. 12) on the
application of SMT for software engineering in industry, partially based on
writings of Nikolaj Bjørner and Leonardo de Moura from Microsoft Research,
and for solving problems in computational biology based on writings of Hillel
Kugler, also from Microsoft Research.
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While the focus of this book is on algorithms rather than mathematical logic,
the two points of view are inevitably mixed: one cannot truly understand
why a given algorithm is correct without understanding the logic behind it.
This does not mean, however, that logic is a prerequisite, or that without
understanding the fundamentals of logic, it is hard to learn and use these
algorithms. It is similar, perhaps, to a motorcyclist who has the choice of
whether to learn how his or her bike works.

He or she can ride a long way without such knowledge, but at certain
points, when things go wrong or if the bike has to be tuned for a particular
ride, understanding how and why things work comes in handy. And then
again, suppose our motorcyclist does decide to learn mechanics: where should
he or she stop? Is the physics of combustion engines important? Is the “why”
important at all, or just the “how”? Or an even more fundamental question:
should one first learn how to ride a motorcycle and then refer to the basics
when necessary, or learn things “bottom-up”, from principles to mechanics—
from science to engineering—and then to the rules of driving?

The reality is that different people have different needs, tendencies, and
backgrounds, and there is no right way to write a motorcyclist’s manual that
fits all. And things can get messier when one is trying to write a book about
decision procedures which is targeted, on the one hand, at practitioners—
programmers who need to know about algorithms that solve their particular
problems—and, on the other hand, at students and researchers who need to
see how these algorithms can be defined in the theoretical framework that
they are accustomed to, namely logic.

This first chapter has been written with both types of reader in mind. It
is a combination of a reference for later chapters and a general introduction.
Section 1.1 describes the two most common approaches to formal reasoning,
namely deduction and enumeration, and demonstrates them with proposi-
tional logic. Section 1.2 serves as a reference for basic terminology such as
validity, satisfiability, soundness, and completeness. More basic terminology
is given in Sect. 1.3, which is dedicated to normal forms and some of their
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properties. Up to that point in the chapter, there is no new material. As of
Sect. 1.4, the chapter is dedicated to more advanced issues that are necessary
as a general introduction to the book. Section 1.4 positions the subject which
this book is dedicated to in the theoretical framework in which it is typically
discussed in the literature. This is important mainly for the second type of
reader: those who are interested in entering this field as researchers, and, more
generally, those who are trained to some extent in mathematical logic. This
section also includes a description of the types of problems that we are con-
cerned with in this book, and the standard form in which they are presented
in the following chapters. Section 1.5 describes the trade-off between expres-
siveness and decidability. In Sect. 1.6, we conclude the chapter by discussing
the need for reasoning about formulas with a Boolean structure.

What about the rest of the book? Each chapter is dedicated to a different
first-order theory. We have not yet explained what a theory is, and specifi-
cally what a first-order theory is—that is the role of Sect. 1.4—but some
examples are still in order, as some intuition as to what theories are is required
before we reach that section in order to understand the direction in which we
are proceeding.

Informally, one may think of a theory as a finite or an infinite set of formu-
las, which are characterized by common grammatical rules, the functions and
predicates that are allowed, and a domain of values. The fact that they are
called “first-order” means only that there is a restriction on the quantifiers
(only variables, rather than sets of variables, can be quantified), but this is
mostly irrelevant to us, because, in all chapters but one, we restrict the discus-
sion to quantifier-free formulas. The table below lists some of the first-order
theories that are covered in this book. The list includes the theories of bit-
vectors, arrays, and pointer logic, which are necessary components in the field
of software formal verification. This is a subfield of software engineering
dedicated to proving the correctness of computer programs with respect to a
given formal specification. Indeed, in Chap. 12, we describe several software
verification techniques that are based on the ability to solve such formulas.

Theory name Example formula Chapter

Propositional logic x1 ∧ (x2 ∨ ¬x3) 2
Equality y1 = y2 ∧ ¬(y1 = y3) =⇒ ¬(y2 = y3) 4,11
Difference logic (z1 − z2 < 5) ∨ (z2 − z3 ≤ 6) 5
Linear arithmetic (2z1 + 3z2 ≤ 5) ∨ (z2 + 5z2 − 10z3 ≥ 6) 5
Bit vectors ((a>> b) & c) < c 6
Arrays (i = j ∧ a[j] = 1) =⇒ a[i] = 1 7
Pointer logic p = q ∧ ∗p = 5 =⇒ ∗q = 5 8
Quantified Boolean formulas ∀x1. ∃x2. ∀x3. x1 =⇒ (x2 ∨ x3) 9
Combined theories (i ≤ j ∧ a[j] = 1) =⇒ a[i] < 2 10
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In the next few sections, we use propositional logic, which we assume the
reader is familiar with, in order to demonstrate various concepts that apply
equally to other first-order theories.

1.1 Two Approaches to Formal Reasoning

The primary problem that we are concerned with is that of the validity (or
satisfiability) of a given formula. Two fundamental strategies for solving this
problem are the following:

• The proof-theoretic approach is to use a deductive mechanism of rea-
soning, based on axioms and inference rules, which together are called
an inference system.

• The model-theoretic approach is to enumerate possible solutions from
a finite number of candidates.

These two directions—deduction and enumeration—are apparent as early as
the first lessons on propositional logic. We dedicate this section to demon-
strating them.

Consider the following three claims that together are inconsistent:

1. If x is a prime number greater than 2, then x is odd.
2. It is not the case that x is not a prime number greater than 2.
3. x is not odd.

Denote the statement “x is a prime number greater than 2 ” by A and the
statement “x is odd” by B. These claims translate into the following propo-
sitional formulas:

A =⇒ B
¬¬A
¬B .

(1.1)

We would now like to prove that this set of formulas is indeed inconsistent.

1.1.1 Proof by Deduction

The first approach is to derive conclusions by using an inference system. In-
ference rules relate antecedents to their consequents. For example, the
following are two inference rules, called modus ponens (M.P.) and Contra-
diction:

ϕ1 =⇒ ϕ2 ϕ1

ϕ2
(M.P.) , (1.2)

ϕ ¬ϕ
false

(Contradiction) . (1.3)

The rule M.P. can be read as follows: from ϕ1 =⇒ ϕ2 and ϕ1 being true,
deduce that ϕ2 is true. The formula ϕ2 is the consequent of the rule M.P.
Axioms are inference rules without antecedents:
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¬¬ϕ ⇐⇒ ϕ
(Double-negation-AX) . (1.4)

(Axioms are typically written without the separating line above them.) We
can also write a similar inference rule:

¬¬ϕ
ϕ

(Double-negation) . (1.5)

(Double-negation-AX and Double-negation are not the same, because
the latter is not symmetric.) Many times, however, axioms and inference rules
are interchangeable, so there is not always a sharp distinction between them.

The inference rules and axioms above are expressed with the help of ar-
bitrary formula symbols (such as ϕ1 and ϕ2 in (1.2)). In order to use them
for proving a particular theorem, they need to be instantiated , which means
that these arbitrary symbols are replaced with specific variables and formulas
that are relevant to the theorem that we wish to prove. For example, the in-
ference rules (1.2), (1.3), and (1.5) can be instantiated such that false, i.e.,
a contradiction, can be derived from the set of formulas in (1.1):

(1) A =⇒ B (premise)
(2) ¬¬A (premise)
(3) A (2; Double-negation)
(4) ¬B (premise)
(5) B (1, 3; M.P.)
(6) false (4, 5; Contradiction) .

(1.6)

Here, in step (3), ϕ in the rule Double-negation is instantiated with A. The
antecedent ϕ1 in the rule M.P. is instantiated with A, and ϕ2 is instantiated
with B.

More complicated theorems may require more complicated inference sys-
tems. This raises the question of whether everything that can be proven with a
given inference system is indeed valid (in this case the system is called sound),
and whether there exists a proof of validity using the inference system for ev-
ery valid formula (in this case it is called complete). These questions are
fundamental for every deduction system; we delay further discussion of this
subject and a more precise definition of these terms to Sect. 1.2.

While deductive methods are very general, they are not always the most
convenient or the most efficient way to know whether a given formula is valid.

1.1.2 Proof by Enumeration

The second approach is relevant if the problem of checking whether a for-
mula is satisfiable can be reduced to a problem of searching for a satisfying
assignment within a finite set of options. This is the case, for example, if the
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variables range over a finite domain,1 such as in propositional logic. In the
case of propositional logic, enumerating solutions can be done using truth
tables, as demonstrated by the following example:

A B (A =⇒ B) ¬¬A ¬B (A =⇒ B) ∧ ¬¬A ∧ ¬B

1 1 1 1 0 0
1 0 0 1 1 0
0 1 1 0 0 0
0 0 1 0 1 0

The third, fourth, and fifth columns list the truth value of the subformulas
of (1.1), whereas the sixth column lists the truth value of their conjunction.
As can be seen, this formula is not satisfied by any of the four possible as-
signments, and is hence unsatisfiable.

1.1.3 Deduction and Enumeration

The two basic approaches demonstrated above, deduction and enumeration,
go a long way, and in fact are major subjects in the study of logic. In practice,
many decision procedures are not based on explicit use of either enumeration
or deduction. Yet, typically their actions can be understood as performing one
or the other (or both) implicitly, which is particularly helpful when arguing
for their correctness.

1.2 Basic Definitions

We begin with several basic definitions that are used throughout the book.
Some of the definitions that follow do not fully coincide with those that are
common in the study of mathematical logic. The reason for these gaps is
that we focus on quantifier-free formulas, which enables us to simplify various
definitions. We discuss these issues further in Sect. 1.4.

Definition 1.1 (assignment). Given a formula ϕ, an assignment of ϕ from
a domain D is a function mapping ϕ’s variables to elements of D. An assign-
ment to ϕ is full if all of ϕ’s variables are assigned, and partial otherwise.

Definition 1.2 (satisfiability, validity, and contradiction). A formula
is satisfiable if there exists an assignment of its variables under which the
formula evaluates to true. A formula is a contradiction if it is not satisfiable.
A formula is valid (also called a tautology) if it evaluates to true under all
assignments.

1 A finite domain is a sufficient but not a necessary condition. In many cases, even
if the domain is infinite, it is possible to find a bound such that, if there exists
a satisfying assignment, then there exists one within this bound. Theories that
have this property are said to have the small-model property.
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What does it mean that a formula “evaluates to true” under an assignment?
To evaluate a formula, one needs a definition of the semantics of the various
functions and predicates in the formula. In propositional logic, for example,
the semantics of the propositional connectives is given by truth tables. Indeed,
given an assignment of all variables in a propositional formula, a truth table
can be used for checking whether it satisfies a given formula, or, in other words,
whether the given formula evaluates to true under this assignment. The term
Satisfiability Modulo Theories (SMT) is used to describe the satisfiability
problem for an arbitrary theory or combinations thereof. Software that solves
this problem is called an SMT solver. This book is mostly about algorithms
that are used in such solvers.

It is not hard to see that a formula ϕ is valid if and only if ¬ϕ is a
contradiction. Although somewhat trivial, this is a very useful observation,
because it means that we can check whether a formula is valid by checking
instead whether its negation is a contradiction, i.e., not satisfiable.

Example 1.3. The propositional formula

A ∧B (1.7)

is satisfiable because there exists an assignment, namely {A 7→ true, B 7→
true}, which makes the formula evaluate to true. The formula

(A =⇒ B) ∧A ∧ ¬B (1.8)

is a contradiction, as we saw earlier: no assignment satisfies it. On the other
hand, the negation of this formula, i.e.,

¬((A =⇒ B) ∧A ∧ ¬B) , (1.9)

is valid: every assignment satisfies it.

Given a formula ϕ and an assignment α of its variables, we write α |= ϕ to
�� ��α |= ϕ

denote that α satisfies ϕ. If a formula ϕ is valid (and hence, all assignments
satisfy it), we write |= ϕ.2

�� ��|= ϕ

Definition 1.4 (the decision problem for formulas). The decision prob-
lem for a given formula ϕ is to determine whether ϕ is valid.

Given a theory T , we are interested in a procedure3 that terminates with
�� ��T

2 Recall that the discussion here refers to propositional logic. In the more general
case, we are not talking about assignments, rather about structures that may
or may not satisfy a formula. In that case, the notation |= ϕ means that all
structures satisfy ϕ. These terms are explained later in Sect. 1.4.
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a correct answer to the decision problem, for every formula of the theory T .4

This can be formalized with a generalization of the notions of “soundness”
and “completeness” that we saw earlier in the context of inference systems.
These terms can be defined for the more general case of procedures as follows:

Definition 1.5 (soundness of a procedure). A procedure for a decision
problem is sound if, when it returns “Valid”, the input formula is valid.

Definition 1.6 (completeness of a procedure). A procedure for a decision
problem is complete if

• it always terminates, and
• it returns “Valid” when the input formula is valid.

Definition 1.7 (decision procedure). A procedure is called a decision pro-
cedure for T if it is sound and complete with respect to every formula of T .

Definition 1.8 (decidability of a theory). A theory is decidable if and
only if there is a decision procedure for it.

Given these definitions, we are able to classify procedures according to whether
they are sound and complete or only sound. It is rarely the case that unsound
procedures are of interest. Ideally, we would always like to have a decision pro-
cedure, as defined above. However, sometimes either this is not possible (if the
problem is undecidable) or the problem is easier to solve with an incomplete
procedure. Some incomplete procedures are categorized as such because they
do not always terminate (or they terminate with a “don’t know” answer).
However, in many practical cases, they do terminate. Thus, completeness can
also be thought of as a quantitative property rather than a binary one.

All the theories that we consider in this book, with a short exception in
Sect. 9.5, are decidable. Once a theory is decidable, the next question is how
difficult it is to decide it. Most of the decision problems that we consider in this
book are NP-complete. The worst-case complexity of the various algorithms
that we present for solving them is frequently the same, but this is not the
only important measure. It is rare that one procedure dominates another. The
common practice is to consider a decision procedure relevant if it is able to
perform faster than others on some significant subset of public benchmarks,

3 We follow the convention by which a procedure does not necessarily terminate,
whereas an algorithm terminates. This may cause confusion, because a “decision
procedure” is by definition terminating, and thus should actually be called a
“decision algorithm”. This confusion is rooted in the literature, and we follow it
here.

4 Every theory is defined over a set of symbols (e.g., linear arithmetic is defined
over symbols such as “+” and “≥”). By saying “every formula of the theory” we
mean every formula that is restricted to the symbols of the theory. This will be
explained in more detail in Sect. 1.4.



8 1 Introduction and Basic Concepts

or on some well-defined subclass of problems. When there is no way to predict
the relative performance of procedures without actually running them, they
can be run in parallel, with a “first-to-end kills all others” policy. This is a
common practice in industry.

1.3 Normal Forms and Some of Their Properties

The term normal form, in the context of formulas, is commonly used to
indicate that a formula has certain syntactic properties. In this chapter, we
introduce normal forms that refer to the Boolean structure of the formula. It is
common to begin the process of deciding whether a given formula is satisfiable
by transforming it to some normal form that the decision procedure is designed
to work with. In order to argue that the overall procedure is correct, we need
to show that the transformation preserves satisfiability. The relevant term for
describing this relation is the following:

Definition 1.9 (equisatisfiability). Two formulas are equisatisfiable if they
are both satisfiable or they are both unsatisfiable.

The basic blocks of a first-order formula are its predicates, also called
the atoms of the formula. For example, Boolean variables are the atoms of
propositional logic, whereas equalities of the form xi = xj are the atoms of
the theory of equality that is studied in Chap. 4.

Definition 1.10 (negation normal form (NNF)). A formula is in nega-
tion normal form (NNF) if negation is allowed only over atoms, and ∧,∨,¬
are the only allowed Boolean connectives.

For example, ¬(x1 ∨ x2) is not an NNF formula, because the negation is
applied to a subformula which is not an atom.

Every quantifier-free formula with a Boolean structure can be transformed
in linear time to NNF, by rewriting =⇒ ,

(a =⇒ b) ≡ (¬a ∨ b) , (1.10)

and applying repeatedly what are known as De Morgan’s rules,

¬(a ∨ b) ≡ (¬a ∧ ¬b) ,
¬(a ∧ b) ≡ (¬a ∨ ¬b) . (1.11)

In the case of the formula above, this results in ¬x1 ∧ ¬x2.

Definition 1.11 (literal). A literal is either an atom or its negation. We
say that a literal is negative if it is a negated atom, and positive otherwise.
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For example, in the propositional logic formula

(a ∨ ¬b) ∧ ¬c , (1.12)

the set of literals is {a,¬b,¬c}, where the last two are negative. In the theory
of equality, where the atoms are equality predicates, a set of literals can be
{x1 = x2,¬(x1 = x3),¬(x2 = x1)}.

Literals are syntactic objects. The set of literals of a given formula changes
if we transform it by applying De Morgan’s rules. Formula (1.12), for example,
can be written as ¬(¬a ∧ b) ∧ ¬c, which changes its set of literals.

Definition 1.12 (state of a literal under an assignment). A positive
literal is satisfied if its atom is assigned true. Similarly, a negative literal is
satisfied if its atom is assigned false.

Definition 1.13 (pure literal). A literal is called pure in a formula ϕ, if
all occurrences of its variable have the same sign.

In many cases, it is necessary to refer to the set of a formula’s literals as if
this formula were in NNF. In such cases, either it is assumed that the input
formula is in NNF (or transformed to NNF as a first step), or the set of literals
in this form is computed indirectly. This can be done by simply counting the
number of negations that nest each atom instance: it is negative if and only
if this number is odd.

For example, ¬x1 is a literal in the NNF of

ϕ := ¬(¬x1 =⇒ x2) , (1.13)

because there is an occurrence of x1 in ϕ that is nested in three negations
(the fact that x1 is on the left-hand side of an implication is counted as a
negation). It is common in this case to say that the polarity (also called the
phase) of this occurrence is negative.

Theorem 1.14 (monotonicity of NNF). Let ϕ be a formula in NNF and
let α be an assignment of its variables. Let the positive set of α with respect to
ϕ, denoted pos(α,ϕ), be the literals that are satisfied by α. For every assign-

�� ��pos
ment α′ to ϕ’s variables such that pos(α,ϕ) ⊆ pos(α′, ϕ), α |= ϕ =⇒ α′ |= ϕ.

Figure 1.1 illustrates this theorem: increasing the set of literals satisfied by
an assignment maintains satisfiability. It does not maintain unsatisfiability,
however: it can turn an unsatisfying assignment into a satisfying one.

The proof of this theorem is left as an exercise (Problem 1.3).

Example 1.15. Let
ϕ := (¬x ∧ y) ∨ z (1.14)

be an NNF formula. Consider the following assignments and their correspond-
ing positive sets with respect to ϕ:
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α α |= ϕ =⇒ α′ |= ϕα′

Fig. 1.1. Illustration of Theorem 1.14. The ellipses correspond to the sets of literals
satisfied by α and α′, respectively

α := {x 7→ 0, y 7→ 1, z 7→ 0} pos(α,ϕ) := {¬x, y} ,
α′ := {x 7→ 0, y 7→ 1, z 7→ 1} pos(α′, ϕ) := {¬x, y, z} . (1.15)

By Theorem 1.14, since α |= ϕ and pos(α,ϕ) ⊆ pos(α′, ϕ), then α′ |= ϕ.
Indeed, α′ |= ϕ.

We now describe two very useful restrictions of NNF: disjunctive normal
form (DNF) and conjunctive normal form (CNF).

Definition 1.16 (disjunctive normal form (DNF)). A formula is in dis-
junctive normal form if it is a disjunction of conjunctions of literals, i.e., a
formula of the form ∨

i

(∧
j

lij
)
, (1.16)

where lij is the j-th literal in the i-th term (a term is a conjunction of literals).

Example 1.17. In propositional logic, l is a Boolean literal, i.e., a Boolean
variable or its negation. Thus the following formula over Boolean variables a,
b, c, and d is in DNF:

(a ∧ c ∧ ¬b) ∨
(¬a ∧ d) ∨
(b ∧ ¬c ∧ ¬d) ∨

...

(1.17)

In the theory of equality, the atoms are equality predicates. Thus, the following
formula is in DNF:

((x1 = x2) ∧ ¬(x2 = x3) ∧ ¬(x3 = x1)) ∨
(¬(x1 = x4) ∧ (x4 = x2)) ∨
((x2 = x3) ∧ ¬(x3 = x4) ∧ ¬(x4 = x1)) ∨

...

(1.18)

Every formula with a Boolean structure can be transformed into DNF, while
potentially increasing the size of the formula exponentially. The following
example demonstrates this exponential ratio:
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Example 1.18. The following formula is of length linear in n:

(x1 ∨ x2) ∧ · · · ∧ (x2n−1 ∨ x2n) . (1.19)

The length of the equivalent DNF, however, is exponential in n, since every
new binary clause (a disjunction of two literals) doubles the number of terms
in the equivalent DNF, resulting, overall, in 2n terms:

(x1 ∧ x3 ∧ · · · ∧ x2n−3 ∧ x2n−1) ∨
(x1 ∧ x3 ∧ · · · ∧ x2n−3 ∧ x2n) ∨
(x1 ∧ x3 ∧ · · · ∧ x2n−2 ∧ x2n) ∨

...

(1.20)

Although transforming a formula to DNF can be too costly in terms of
computation time, it is a very natural way to decide formulas with an arbitrary
Boolean structure.

Suppose we are given a disjunctive linear arithmetic formula, that is, a
Boolean structure in which the atoms are linear inequalities over the reals.
We know how to decide whether a conjunction of such literals is satisfiable:
there is a known method called Simplex that can give us this answer. In order
to use the Simplex method to solve the more general case in which there are
also disjunctions in the formula, we can perform syntactic case-splitting.
This means that the formula is transformed into DNF, and then each term
is solved separately. Each such term contains a conjunction of literals, a form
which we know how to solve. The overall formula is satisfiable, of course, if
any one of the terms is satisfiable. Semantic case-splitting, on the other
hand, refers to techniques that split the search space, in the case where the
variables are finite (“first the case in which x = 0, then the case in which
x = 1 . . .”).

The term case-splitting (without being prefixed with “syntactic”) usually
refers in the literature to either syntactic case-splitting or a “smart” imple-
mentation thereof. Indeed, many of the cases that are generated in syntactic
case-splitting are redundant, i.e., they share a common subset of conjuncts
that contradict each other. Efficient decision procedures should somehow avoid
replicating the process of deducing this inconsistency, or, in other words, they
should be able to learn, as demonstrated in the following example:

Example 1.19. Consider the following formula:

ϕ := (a = 1 ∨ a = 2) ∧ a ≥ 3 ∧ (b ≥ 4 ∨ b ≤ 0) . (1.21)

The DNF of ϕ consists of four terms:

(a = 1 ∧ a ≥ 3 ∧ b ≥ 4) ∨
(a = 2 ∧ a ≥ 3 ∧ b ≥ 4) ∨
(a = 1 ∧ a ≥ 3 ∧ b ≤ 0) ∨
(a = 2 ∧ a ≥ 3 ∧ b ≤ 0) .

(1.22)
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These four cases can each be discharged separately, by using a decision proce-
dure for linear arithmetic (Chap. 5). However, observe that the first and the
third case share the two conjuncts a = 1 and a ≥ 3, which already makes the
case unsatisfiable. Similarly, the second and the fourth case share the con-
juncts a = 2 and a ≥ 3. Thus, with the right learning mechanism, two of the
four calls to the decision procedure can be avoided. This is still case-splitting,
but more efficient than a plain transformation to DNF.

The problem of reasoning about formulas with a general Boolean structure
is a common thread throughout this book.

Definition 1.20 (conjunctive normal form (CNF)). A formula is in con-
junctive normal form if it is a conjunction of disjunctions of literals, i.e., it
has the form ∧

i

(∨
j

lij
)
, (1.23)

where lij is the j-th literal in the i-th clause (a clause is a disjunction of
literals).

Every formula with a Boolean structure can be transformed into an equiv-
alent CNF formula, while potentially increasing the size of the formula ex-
ponentially. Yet, any propositional formula can also be transformed into an
equisatisfiable CNF formula with only a linear increase in the size of the for-
mula. The price to be paid is n new Boolean variables, where n is the number
of logical gates in the formula. This transformation is done via Tseitin’s
encoding [277].

Tseitin suggested that one new variable should be added for every logical
gate in the original formula, and several clauses to constrain the value of this
variable to be equal to the gate it represents, in terms of the inputs to this
gate. The original formula is satisfiable if and only if the conjunction of these
clauses together with the new variable associated with the topmost operator
is satisfiable. This is best illustrated with an example.

Example 1.21. Given a propositional formula

x1 =⇒ (x2 ∧ x3) , (1.24)

with Tseitin’s encoding we assign a new variable to each subexpression, or,
in other words, to each logical gate, for example, AND (∧), OR (∨), and
NOT (¬). For this example, let us assign the variable a2 to the AND gate
(corresponding to the subexpression x2 ∧ x3) and a1 to the IMPLICATION
gate (corresponding to x1 =⇒ a2), which is also the topmost operator of this
formula. Figure 1.2 illustrates the derivation tree of our formula, together
with these auxiliary variables in square brackets.

We need to satisfy a1, together with two equivalences,
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∧

=⇒ [a1]

x2

x1

x3

[a2]

Fig. 1.2. Tseitin’s encoding. Assigning an auxiliary variable to each logical gate
(given here in square brackets) enables us to translate each propositional formula to
CNF, while increasing the size of the formula only linearly

a1 ⇐⇒ (x1 =⇒ a2) ,
a2 ⇐⇒ (x2 ∧ x3) .

(1.25)

The first equivalence can be rewritten in CNF as

(a1 ∨ x1) ∧
(a1 ∨ ¬a2) ∧
(¬a1 ∨ ¬x1 ∨ a2) ,

(1.26)

and the second equivalence can be rewritten in CNF as

(¬a2 ∨ x2) ∧
(¬a2 ∨ x3) ∧
(a2 ∨ ¬x2 ∨ ¬x3) .

(1.27)

Thus, the overall CNF formula is the conjunction of (1.26), (1.27), and the
unit clause

(a1) , (1.28)

which represents the topmost operator.

There are various optimizations that can be performed in order to reduce
the size of the resulting formula and the number of additional variables. For
example, consider the following formula:

x1 ∨ (x2 ∧ x3 ∧ x4 ∧ x5) . (1.29)

With Tseitin’s encoding, we need to introduce four auxiliary variables. The
encoding of the clause on the right-hand side, however, can be optimized to
use just a single variable, say a2:

a2 ⇐⇒ (x2 ∧ x3 ∧ x4 ∧ x5) . (1.30)

In CNF,
(¬a2 ∨ x2) ∧
(¬a2 ∨ x3) ∧
(¬a2 ∨ x4) ∧
(¬a2 ∨ x5) ∧
(a2 ∨ ¬x2 ∨ ¬x3 ∨ ¬x4 ∨ ¬x5) .

(1.31)
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In general, we can encode a conjunction of n literals with a single variable and
n + 1 clauses, which is an improvement over the original encoding, requiring
n− 1 auxiliary variables and 3(n− 1) clauses.

Such savings are also possible for a series of disjunctions (see Problem 1.1).
Another popular optimization is that of subsumption: given two clauses
such that the set of literals in one of the clauses subsumes the set of literals
in the other clause, the longer clause can be discarded without affecting the
satisfiability of the formula.

Finally, if the original formula is in NNF, the number of clauses can be
reduced substantially, as was shown by Plaisted and Greenbaum in [225].
Tseitin’s encoding is based on constraints of the form

auxiliary variable ⇐⇒ formula , (1.32)

but only the left-to-right implication is necessary. The proof that this improve-
ment is correct is left as an exercise (Problem 1.4). In practice, experiments
show that, owing to the requirement to transform the formula to NNF first,
this reduction has a relatively small (positive) effect on the run time of modern
SAT solvers compared with Tseitin’s encoding.

Example 1.22. Consider a gate x1 ∧ x2, which we encode with a new
auxiliary variable a. Three clauses are necessary to encode the constraint
a ⇐⇒ (x1∧x2), as was demonstrated in (1.27). The constraint a⇐= (x1∧x2)
(equivalently, (a∨¬x1 ∨¬x2)) is redundant, however, which means that only
two out of the three constraints are necessary.

A conversion algorithm with similar results to [225], in which the elimina-
tion of the negations is built in (rather than the formula being converted to
NNF a priori), has been given by Wilson [285].

1.4 The Theoretical Point of View

While we take the algorithmic point of view in this book, it is important to
understand also the theoretical context, especially for readers who are also
interested in following the literature in this field or are more used to the
terminology of formal logic. It is also necessary for understanding Chaps. 3
and 10. We must assume in this subsection that the reader is familiar to
some extent with first-order logic—a reasonable exposition of this subject is
beyond the scope of this book. See [43, 138] for a more organized study of
these matters. Let us recall some of the terms that are directly relevant to our
topic.

First-order logic (also called predicate logic) is based on the following
elements:

1. Variables : a set of variables.
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2. Logical symbols : the standard Boolean connectives (e.g., “∧”, “¬”, and
“∨”), quantifiers (“∃” and “∀”), and parentheses.

3. Nonlogical symbols : function, predicate, and constant symbols.
4. Syntax : rules for constructing formulas. Formulas adhering to these rules

are said to be well formed.

Essentially, first-order logic extends propositional logic with quantifiers
and the nonlogical symbols. The syntax of first-order logic extends the syntax
of propositional logic naturally. Two examples of such formulas are

• ∃y ∈ Z. ∀x ∈ Z. x > y ,
• ∀n ∈ N. ∃p ∈ N. n > 1 =⇒ (isprime(p) ∧ n < p < 2n) ,

where “>”, “<”, and “isprime” are nonlogical binary predicate symbols.
The elements listed above only refer to symbols and syntax—they still

do not tell us how to evaluate whether a given formula is true or false. This
separation between symbols and their interpretation—between syntax and
semantics—is an important principle in the study of logic. We shall explain
this separation with an example. Let Σ denote the set of symbols {0, 1,+,=},
where “0” and “1” are constant symbols, “+” is a binary function symbol,
and “=” is a binary predicate symbol. Consider the following formula over Σ:

ϕ := ∃x. x+ 0 = 1 . (1.33)

Now, is ϕ true in N0? (N0 denotes the naturals, including 0.)
What seems like a trivial question is not so simple in the world of formal

logic. A logician would say that the answer depends, among other things,
on the interpretation of the symbols in Σ. What does the “+” symbol
mean? Which elements in the domain do “0” and “1” refer to? From a formal
perspective, whether ϕ is true can only be answered with respect to a given
interpretation, which has the form of a structure:

• A domain
• An interpretation of the nonlogical symbols, in the form of a mapping

from each function and predicate symbol to a function and a predicate,
respectively, and an assignment of a domain element to each of the constant
symbols

• An assignment of a domain element to each of the free (unquantified)
variables

For example, if we choose to interpret the “+” symbol as the multiplication
function, the answer is that ϕ in (1.33) is false.

The formula ϕ is satisfiable if and only if there exists a structure under
which the formula is true. Indeed, in this case there exists such a domain and
interpretation—namely, N0 and the common interpretation of “+”, “=”, “0”,
and “1”—and, hence, the formula is satisfiable.

This example is confusing because it demonstrated that we have to specify
an interpretation for the symbol “+”, which already has a common interpre-
tation. It is of course inadvisable to do such a thing when defining a theory:
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one should not use symbols preloaded with meaning, and then require that the
meaning will be formally specified. We will therefore assume that the inter-
pretation of such symbols is fixed and matches their common interpretation.
Interpretation will only be necessary for “anonymous” symbols.

First-order logic can be thought of as a framework giving a generic syn-
tax and the building blocks for defining specific restrictions thereof, called
theories. The restrictions defined by a theory are on the nonlogical symbols
that can be used and the interpretation that we can give them. Indeed, in a
practical setting, we would not want to consider an arbitrary interpretation of
the symbols as above (where “+” is multiplication); rather we consider only
specific ones.

A set of nonlogical symbols is called a signature. Given a signature Σ, a
Σ-formula is a formula that uses only nonlogical symbols from Σ (possibly
in addition to logical symbols). A variable is free if it is not bound by a
quantifier. A sentence is a formula without free variables. A first-order Σ-
theory T consists of a set of Σ-sentences. For a given Σ-theory T , aΣ-formula
ϕ is T -satisfiable if there exists a structure that satisfies both the formula
and the sentences of T . Similarly, a Σ-formula ϕ is T -valid if all structures
that satisfy the sentences of T also satisfy ϕ.

The set of sentences that are required is sometimes large or even infinite.
It is therefore common to define theories via a set of axioms, which implicitly
represent all the sentences that can be inferred from them, using some sound
and complete inference system for the logical symbols.

Example 1.23. Consider a simple signature Σ consisting only of the pred-
icate symbol “=”.5 Let T be a Σ-theory. An example of a well-formed Σ-
formula is

∀x. ∀y. ∀z. (((x = y) ∧ ¬(y = z)) =⇒ ¬(x = z)) . (1.34)

If we wish T to restrict the interpretation of “=” to the equality predicate,
the following three axioms are sufficient:

∀x. x = x (reflexivity) ,
∀x. ∀y. x = y =⇒ y = x (symmetry) ,
∀x. ∀y. ∀z. x = y ∧ y = z =⇒ x = z (transitivity) .

(1.35)

Since every domain and interpretation that satisfy these axioms also sat-
isfy (1.34), then (1.34) is T -valid.

As said above, a theory restricts only the nonlogical symbols. If we want
to restrict the set of logical symbols or the grammar, we need to speak about
fragments of the logic. For example, we can speak about the quantifier-
free fragment of T . This fragment, called equality logic, happens to be

5 It is frequently the case in the literature that the equality sign is considered as a
logical symbol, and then the theory defined here has an empty signature. We do
not follow this convention here, however.
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the subject of Chap. 4. Most of the chapters, in fact, are concerned with
quantifier-free fragments of theories. Another useful fragment is called the
conjunctive fragment, which means that the only Boolean connective that
is allowed is conjunction. What about restricting the interpretation of the
logical symbols? The axioms that restrict the interpretation of the logical
symbols, called the logical axioms, are assumed to be “built in”, i.e., they
are common to all first-order theories.

Numerous theories have been considered over the years, corresponding to
various problems of interest. Many of them lead to decidability and, frequently,
to efficient decision procedures. The theory of Presburger arithmetic, for
example, is defined with a signature Σ = {0, 1,+,=} and is still decidable. By
contrast, the theory of Peano arithmetic, which is defined over a signature
Σ = {0, 1,+, ·,=}, is undecidable. Thus, the addition of the multiplication
symbol and the corresponding axioms that define it makes the decision prob-
lem undecidable. Other famous theories include the theory of equality, the
theory of real arithmetic, the theory of integer arithmetic, the theory of ar-
rays, the theory of recursive data structures, and the theory of sets. Many of
the decidable ones that are in practical use are covered in this book.

1.4.1 The Problem We Solve

Unless otherwise stated, we are concerned with

the satisfiability problem of the quantifier-free fragment of various
first-order theories.

Formulas in such fragments are called ground formulas, as they only contain
free (unquantified, also called ground) variables and constants. Exceptions are
Chap. 9, which is concerned with quantified formulas, and a small part of
Chap. 7, which is concerned with quantified array logic.

There is a subtle difference between the satisfiability problem of ground
formulas and the satisfiability problem of existentially quantified formulas.
It is, of course, trivial that a ground formula ϕ over variables x1, . . . , xn is
satisfiable if and only if

∃x1, . . . , xn. ϕ (1.36)

is satisfiable. Thus, the decision procedures for both problems can be similar.
The reason we use the former definition is that this entails, from a formal per-
spective, that the satisfying structure includes an assignment of the variables,
because they are all free. In many practical applications, such an assignment
is necessary. In fact, the former problem can be seen as an instance of the
constraint satisfaction problem (CSP), which is all about finding an as-
signment that satisfies a set of unquantified constraints.6

6 The emphasis and terminology are somewhat different. Most of the research in
the CSP community is concerned with finite, discrete domains, in contrast to the
problems considered in this book.
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We assume that the input formulas are given in negation normal form,
or that they are implicitly transformed to this form as a first step of any
of the algorithms described later. As explained after Definition 1.10, every
formula can be transformed to this form in linear time. The reason that this
assumption is important is that it simplifies the algorithms and the arguments
for their correctness.

1.4.2 Our Presentation of Theories

Our presentation of theories in the chapters to come is not as defined above.
In an attempt to make the presentation more accessible and the chapters more
self-contained, we make the following changes:

1. Rather than specifying theories through their set of symbols and sentences,
we give the domain explicitly, and fix the interpretations of symbols in
accordance with their common use. Hence, “+” is always the addition
function, “0” is the 0 element in the given domain, and so forth.

2. Rather than specifying the theory fragment we are concerned with by
referring to the generic grammar of first-order logic as a starting point,
we give an explicit, self-contained definition of the grammar.

From a formal-logic point of view, fixing the interpretation means only
that we have the sentences implicitly; the satisfiability problem remains the
same. From the algorithmic point of view, however, the satisfiability problem
now amounts to searching for a satisfying assignment of variables from the
predefined domain. Whether a given assignment satisfies the formula can be
determined according to the commonly used meanings of the various symbols.

This form of presentation is in line with our focus on the algorithmic point
of view: when designing a decision procedure for a theory, the interpretation
of the symbols has to be predefined. In other words, changing the domain or
interpretation of symbols changes the algorithm.

1.5 Expressiveness vs. Decidability

There is an important trade-off between what a theory can express and how
hard it is to decide, that is, how hard it is to determine whether a given
formula allowed by the theory is valid or not. This is the reason for defining
many different theories: otherwise, we would define and use only a single
theory sufficiently expressive for all perceivable decision problems.

A theory can be seen as a tool for defining languages. Every formula in
the theory defines a language, which is the set of “words” (the assignments,
in the case of quantifier-free formulas) that satisfy it. We now define what it
means that one theory is more expressive than another.
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Definition 1.24 (expressiveness). Theory A is more expressive than theory
B if every language that can be defined by a B-formula can also be defined by
an A-formula, and there exists at least one language definable by an A-formula
that cannot be defined by a B-formula. We denote the fact that theory B is
less expressive than theory A by B ≺ A.

�� ��B ≺ A

For example, propositional logic is more expressive than what is known as
“2-CNF”, i.e., CNF in which each clause has at most two literals. In propo-
sitional logic, we can define the formula

x1 ∨ x2 ∨ x3 , (1.37)

which defines a language that we cannot define with 2-CNF: it accepts all truth
assignments to x1, x2, x3 except {x1 7→ false, x2 7→ false, x3 7→ false}.
How can we prove this?

Well, assume that there exists a 2-CNF representation of this formula
using the same set of variables, and consider one of its binary clauses. Such
a clause contradicts two of the eight possible assignments. For example, a
clause (x1 ∨ x2) contradicts {x1 7→ false, x2 7→ false, x3 7→ false} and
{x1 7→ false, x2 7→ false, x3 7→ true}. Any additional clause can only
contradict more assignments. Hence, we can never create a 2-CNF formula
such that exactly one of the eight assignments does not satisfy it.

On the other hand, 2-CNF is a restriction of propositional logic; Hence,
obviously, any 2-CNF formula can be expressed in propositional logic. Thus,
we have

2-CNF ≺ propositional logic . (1.38)

This example also demonstrates the influence of expressiveness on compu-
tational hardness: while propositional logic is NP-complete, 2-CNF can be
solved in polynomial time.

In order to illustrate the trade-off between how expressive a theory is and
how hard it is to decide formulas in that theory, consider a theory T defined by
some syntax. Let T1, . . . , Tn denote a list of fragments of T , defined by various
restrictions on the syntax of T (similarly to the way we restricted propositional
logic to 2-CNF above), for which T1 ≺ T2 ≺ . . . ≺ Tn ≺ T . Technically, this
means that we have imposed a total order on these fragments in terms of
their expressive power. Under such assumptions, Fig. 1.3 illustrates the trade-
off between expressiveness and computational hardness: the less expressive
the theory is (the more restrictions we put on it), the easier it is to decide
it. Assume our imaginary theory T is undecidable. After some threshold is
crossed (from right to left in the figure), the theory fragments can become
decidable. After enough restrictions have been added, the theory becomes
solvable in polynomial time. The decidable but nonpolynomially decidable
fragments pose a computational challenge. This is one of the challenges we
focus on in this book.

This view is simplistic, however, because there is no total order on the
expressive power of theories, only a partial order. This means that there can
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be two theories, A and B, neither of which is more expressive than the other,
yet their expressive power is different. In other words, there are languages
that can be defined by A and not by B, and there are languages that can be
defined by B and not by A.

Computational

More expressiveEasier to decide

Decidable Undecidable

Polynomial

challenge

Fig. 1.3. The trade-off between expressiveness of theories and the hardness of de-
ciding them, illustrated for an imaginary series of theories T1, . . . , Tn for which each
Ti, i ∈ {1, . . . , n} is less expressive than its successor

1.6 Boolean Structure in Decision Problems

Many decision procedures assume that the decision problem is given by a
conjunction of constraints. The Simplex algorithm and the Omega test, both
of which are described in Chap. 5, are examples of such procedures.

Many applications, however, require a more complex Boolean structure.
In program analysis and verification, for example, disjunctions may appear in
the program to be verified, either explicitly (e.g., x = y || z) or implicitly
through constructs such as if and switch statements. Any reasoning system
about such programs, therefore, must be able to deal with disjunctions. For
example, verification conditions that arise in program verification (e.g.,
using Hoare logic) often have the form of an implication.

The following example focuses on a technique for reasoning about pro-
grams that demonstrates how program structure, including if statements, is
evident in the underlying verification conditions that need to be checked:

Example 1.25. Bounded model checking (BMC) of programs is a tech-
nique for verifying that a given property (typically given as an assertion by
the user) holds for a program in which the number of loop iterations and re-
cursive calls is bounded by a given number k. The states that the program can
reach within this bound are represented symbolically by a formula, together
with the negation of the property. If the combined formula is satisfiable, then
there exists a path in the program that violates the property.
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Consider the program in the left part of Fig. 1.4. The number of paths
through this program is exponential in N , as each of the a[i] elements can
be either zero or nonzero. Despite the exponential number of paths through
the program, its states can be encoded with a formula of size linear in N , as
demonstrated in the right part of the figure.

int a[N]; unsigned c;
...

c = 0;
for(i = 0; i < N; i++)
if(a[i] == 0)
c++;

c1 = 0 ∧
c2 = (a[0] = 0) ? c1 + 1 : c1 ∧
c3 = (a[1] = 0) ? c2 + 1 : c2 ∧
. . .

cN+1 = (a[N−1] = 0) ? cN + 1 : cN

Fig. 1.4. A simple program with an exponential number of paths (left), and a
static single assignment (SSA) form of this program after unwinding its for loop
(right)

The formula on the right of Fig. 1.4 encodes the states of the program on
its left, using the static single assignment (SSA) form. Briefly, this means
that, in each assignment of the form x = exp;, the left-hand side variable
x is replaced with a new variable, say x1, and any reference to x after this
line and before x is assigned again is replaced with x1. Such a replacement is
possible because there are no loops (recall that this is done in the context of
BMC). After this transformation, the statements are conjoined. The resulting
equation represents the states of the original program.

The ternary operator c ?x : y in the equation on the right of Fig. 1.4 can
be rewritten using a disjunction, as illustrated in (1.39). These disjunctions
lead to an exponential number of clauses once the formula is converted to
DNF.

c1 = 0 ∧
((a[0] = 0 ∧ c2 = c1 + 1) ∨ (a[0] 6= 0 ∧ c2 = c1)) ∧
((a[1] = 0 ∧ c3 = c2 + 1) ∨ (a[1] 6= 0 ∧ c3 = c2)) ∧
. . .
((a[N−1] = 0 ∧ cN+1 = cN + 1) ∨ (a[N−1] 6= 0 ∧ cN+1 = cN )) .

(1.39)

In order to verify that some assertion holds at a specific location in the pro-
gram, it is sufficient to add a constraint corresponding to the negation of this
assertion, and check whether the resulting formula is satisfiable. For example,
to prove that at the end of the program c ≤ N , we need to conjoin (1.39) with
(cN+1 > N).

To summarize this section, there is a need to reason about formulas with
disjunctions, as illustrated in the example above. The simple solution of going
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through DNF does not scale, and better solutions are needed. Solutions that
perform better in practice (the worst case remains exponential, of course)
indeed exist, and are covered extensively in this book.

1.7 Logic as a Modeling Language

Before we continue with algorithms, let us briefly discuss the benefits of mod-
eling with logic to a layperson. Indeed, whereas (mathematical) logic was
originally developed, over a century ago, as a means to formalize math, today
most people know it as a modeling language that may help them solve various
problems in engineering, logistics, combinatorial optimization, etc. The sim-
plistic example in (1.1) uses logic to model a sequence of mathematical claims,
which can then be solved by off-the-shelf software, but one can also use it to
model problems that arise in industry, like discovering bugs in software or
checking whether a robot can complete a specific task within a given number
of steps. The availability of powerful solvers for such formulas—solvers that
are based on algorithms that are presented in this book—is what enables one
to forget that logic reasoning is what eventually solves their problems.

What is the alternative to reducing the problem to a logical formula? The
answer is: working even harder. One can always try to find an algorithm that
solves the problem directly. Perhaps that solution would even have better
worst-case complexity, based on some properties unique to the problem at
hand (such cases typically imply that the wrong logic fragment was used to
model the problem in the first place). But it is more likely that ready-made
engines, which reflect research over decades and immense effort by hundreds
of people, are going to solve it faster.

In that sense the boundaries between the fields of logic, constraint solv-
ing, and more generally mathematical programming is vague. The latter
is a field that was developed mostly in parallel to computational logic in the
operations research community. It also offers a modeling language and cor-
responding engines to solve models written in this language, but there are still
some differences in emphasis:

1. The constraints language: Mathematical programming is traditionally fo-
cused on solving linear and nonlinear constraints over infinite domains.
Constraint solving is mostly focused on solving formulas in which the
variables are restricted to a finite domain. SMT, on the other hand, offers
a much more expressive modeling language that covers both7 (consider the
examples given in the beginning of this chapter: arrays, pointers, bitvec-
tors, etc.). SMT offers a very general algorithmic framework, which sepa-
rates the Boolean structure from the theory, and offers a generic way to

7 In Sect. 2.2.8 we describe constraints solving. It is also an extensible modeling
language, like SMT, and as such the SMT language cannot “cover” it. But con-
straints solving problems can be reduced to propositional logic, which is covered
by SMT.
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combine theories. Correspondingly the SMT-LIB standard, which covers
the modeling language, is occasionally extended with new theories. A brief
description of the current standard is given in Appendix A. In the same
appendix we describe which of the theories in the standard are covered in
this book (see diagram on page 310).

2. The technology : The underlying technology of SMT solvers is different,
even when it comes to solving linear programming problems. SMT solvers
are based on SAT solvers (Chap. 2), and as such they are highly effective
for solving large formulas with a rich Boolean structure.

3. The goal : The focus of mathematical programming is not on satisfiability,
rather on the slightly harder problem of optimality : given a model of the
constraints, it attempts to find a solution that brings to minimum the
value of a given function, called the objective function. When it comes to
problems in which the domains are finite, however, the difference between
optimization and satisfiability is shallow: given a satisfiability engine one
can find the optimal solution, if a solution exists at all, with a sequence of
satisfiability checks. Each check involves adding a new constraint, which
requires the value of the objective to be better than the previous time.
Indeed, some use SMT solvers as optimization engines.

The communities behind these fields—all of which include both academics and
companies—adopt each other’s algorithms and concepts, to the point that the
distinction between them is mostly because of historical reasons.

1.8 Problems

Problem 1.1 (improving Tseitin’s encoding).

(a) Using Tseitin’s encoding, transform the following formula ϕ to CNF. How
many clauses are needed?

ϕ := ¬(x1 ∧ (x2 ∨ . . . ∨ xn)) . (1.40)

(b) Consider a clause (x1∨ . . .∨xn), n > 2, in a non-CNF formula. How many
auxiliary variables are necessary for encoding it with Tseitin’s encoding?
Suggest an alternative way to encode it, using a single auxiliary variable.
How many clauses are needed?

Problem 1.2 (expressiveness and complexity).

(a) Let T1 and T2 be two theories whose satisfiability problem is decidable and
in the same complexity class. Is the satisfiability problem of a T1-formula
reducible to a satisfiability problem of a T2-formula?

(b) Let T1 and T2 be two theories whose satisfiability problems are reducible
to one another. Are T1 and T2 in the same complexity class?



24 1 Introduction and Basic Concepts

Problem 1.3 (monotonicity of NNF with respect to satisfiability).
Prove Theorem 1.14.

Problem 1.4 (one-sided Tseitin encoding). Let ϕ be an NNF formula (see
Definition 1.10). Let −→ϕ be a formula derived from ϕ as in Tseitin’s encoding
(see Sect. 1.3), but where the CNF constraints are derived from implications
from left to right rather than equivalences. For example, given a formula

a1 ∧ (a2 ∨ ¬a3) ,

the new encoding is the CNF equivalent of the following formula:

x0 ∧
(x0 =⇒ a1 ∧ x1) ∧
(x1 =⇒ a2 ∨ x2) ∧
(x2 =⇒ ¬a3) ,

where x0, x1, x2 are new auxiliary variables. Note that Tseitin’s encoding to
CNF starts with the same formula, except that the “=⇒” symbol is replaced
with “⇐⇒”.

(a) Prove that −→ϕ is satisfiable if and only if ϕ is.
(b) Let l,m, n be the number of AND, OR, and NOT gates, respectively, in ϕ.

Derive a formula parameterized by l, m, and n that expresses the ratio of
the number of CNF clauses in Tseitin’s encoding to that in the one-sided
encoding suggested here.

1.9 Glossary

The following symbols were used in this chapter:

First used
Symbol Refers to . . . on page . . .

α |= ϕ An assignment α satisfies a formula ϕ 6

|= ϕ A formula ϕ is valid (in the case of quantifier-free
formulas, this means that it is satisfied by all assign-
ments from the domain)

6

continued on next page
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continued from previous page

First used
Symbol Refers to . . . on page . . .

T A theory 6

pos(α,ϕ) Set of literals of ϕ satisfied by an assignment α 9

B ≺ A Theory B is less expressive than theory A 19



2.1 Propositional Logic

We assume that the reader is familiar with propositional logic, and with the
complexity classes NP and NP-complete.

The syntax of formulas in propositional logic is defined by the following
grammar:

formula : formula ∧ formula | ¬formula | (formula) | atom

atom : Boolean-identifier | true | false

Other Boolean operators such as OR (∨) and XOR (⊕) can be constructed
using AND (∧) and NOT (¬).

2.1.1 Motivation

Since SAT, the problem of deciding the satisfiability of propositional formulas,
is NP-complete, it can be used for solving any NP problem. Any other NP-
complete problem (e.g., k-coloring of a graph) can be used just as well, but
none of them has a natural input language such as propositional logic to model
the original problem. Indeed, propositional logic is widely used in diverse
areas such as database queries, planning problems in artificial intelligence,
automated reasoning, and circuit design. Let us consider two examples: a
layout problem and a program verification problem.

Example 2.1. Let S = {s1, . . . , sn} be a set of radio stations, each of which
has to be allocated one of k transmission frequencies, for some k < n. Two
stations that are too close to each other cannot have the same frequency. The
set of pairs having this constraint is denoted by E. To model this problem,
define a set of propositional variables {xij | i ∈ {1, . . . , n}, j ∈ {1, . . . , k}}.
Intuitively, variable xij is set to true if and only if station i is assigned the
frequency j. The constraints are:

2
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• Every station is assigned at least one frequency:

n∧
i=1

k∨
j=1

xij . (2.1)

• Every station is assigned not more than one frequency:

n∧
i=1

k−1∧
j=1

(xij =⇒
∧

j<t≤k

¬xit) . (2.2)

• Close stations are not assigned the same frequency. For each (i, j) ∈ E,

k∧
t=1

(xit =⇒ ¬xjt) . (2.3)

Note that the input of this problem can be represented by a graph, where
the stations are the graph’s nodes and E corresponds to the graph’s edges.
Checking whether the allocation problem is solvable corresponds to solving
what is known in graph theory as the k-colorability problem: can all nodes be
assigned one of k colors such that two adjacent nodes are assigned different
colors? Indeed, one way to solve k-colorability is by reducing it to propositional
logic.

Example 2.2. Consider the two code fragments in Fig. 2.1. The fragment
on the right-hand side might have been generated from the fragment on the
left-hand side by an optimizing compiler.

if(!a && !b) h();
else

if(!a) g();
else f();

if(a) f();
else

if(b) g();
else h();

Fig. 2.1. Two code fragments—are they equivalent?

We would like to check if the two programs are equivalent. The first step
in building the verification condition is to model the variables a and b and
the procedures that are called using the Boolean variables a, b, f , g, and h,
as can be seen in Fig. 2.2.

The if-then-else construct can be replaced by an equivalent proposi-
tional logic expression as follows:

(if x then y else z) ≡ (x ∧ y) ∨ (¬x ∧ z) . (2.4)

Consequently, the problem of checking the equivalence of the two code frag-
ments is reduced to checking the validity of the following propositional for-
mula:
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if ¬a ∧ ¬b then h
else

if ¬a then g
else f

if a then f
else

if b then g
else h

Fig. 2.2. In the process of building a formula—the verification condition—we re-
place the program variables and the function symbols with new Boolean variables

(¬a ∧ ¬b) ∧ h ∨ ¬(¬a ∧ ¬b) ∧ (¬a ∧ g ∨ a ∧ f)
⇐⇒ a ∧ f ∨ ¬a ∧ (b ∧ g ∨ ¬b ∧ h) .

(2.5)

2.2 SAT Solvers

2.2.1 The Progress of SAT Solving

Given a propositional formula B, a SAT solver decides whether B is satisfiable;
if it is, it also reports a satisfying assignment. In this chapter, we consider
only the problem of solving formulas in conjunctive normal form (CNF) (see
Definition 1.20). Since every formula can be converted to this form in linear
time (as explained right after Definition 1.20), this does not impose a real
restriction.1 Solving general propositional formulas can be somewhat more
efficient in some problem domains, but most of the solvers and most of the
research are still focused on CNF formulas.

The practical and theoretical importance of the satisfiability problem has
led to a vast amount of research in this area, which has resulted in excep-
tionally powerful SAT solvers. Modern SAT solvers can solve many real-life
CNF formulas with hundreds of thousands or even millions of variables in a
reasonable amount of time. Figures 2.3 and 2.4 illustrate the progress of these
tools through the years (see captions). Of course, there are also instances of
problems two orders of magnitude smaller that these tools still cannot solve.
In general, it is very hard to predict which instance is going to be hard to
solve, without actually attempting to solve it. Some tools, however, called
SAT portfolio solvers, use machine-learning techniques to extract features
of CNF formulas in order to select the most suitable SAT solver for the job.
More details on this approach are given in Sect. 2.4.

The success of SAT solvers can be largely attributed to their ability to
learn from wrong assignments, to prune large search spaces quickly, and to
focus first on the “important” variables, those variables that, once given the

1 Appendix B provides a library for performing this conversion and generating
CNF in the DIMACS format, which is used by virtually all publicly available
SAT solvers.
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right value, simplify the problem immensely.2 All of these factors contribute
to the fast solving of both satisfiable and unsatisfiable instances. There is
empirical evidence in [213] that shows that solving satisfiable instances fast
requires a different set of heuristics than those that are necessary for solving
unsatisfiable instances.
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Fig. 2.3. The size of industrial CNF formulas (instances generated for solving var-
ious realistic problems such as verification of circuits and planning problems) that
are regularly solved by SAT solvers in a few hours, according to year. Most of the
progress in efficiency has been made in the last decade

The majority of modern SAT solvers can be classified into two main cat-
egories. The first category is based on the Conflict-Driven Clause Learning
(CDCL) framework: in this framework the tool can be thought of as travers-
ing and backtracking on a binary tree, in which internal nodes represent par-
tial assignments, and the leaves represent full assignments. Building a simple
CDCL solver is surprisingly easy: one can do so with fewer than 500 lines of
C++ and STL.

The second category is based on a stochastic search: the solver guesses
a full assignment, and then, if the formula is evaluated to false under this
assignment, starts to flip values of variables according to some (greedy) heuris-
tic. Typically it counts the number of unsatisfied clauses and chooses the flip
that minimizes this number. There are various strategies that help such solvers
avoid local minima and avoid repeating previous bad moves. CDCL solvers,
however, are considered better in most cases according to annual competitions
that measure their performance with numerous CNF instances. CDCL solvers
also have the advantage that, unlike most stochastic search methods, they are
complete (see Definition 1.6). Stochastic methods seem to have an average

2 Specifically, every formula has what is known as backdoor variables [284], which
are variables that, once given the right value, simplify the formula to the point
that it is polynomial to solve.
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Fig. 2.4. Annual competitions measure the success of SAT solvers when applied
to randomly selected benchmarks arriving from industry. The graph shows a com-
parison between the winners of these competitions as of 2002, when applied to a
common benchmark set and using the same single-core hardware. Such graphs are
nicknamed “cactus plots”. A point (x, y) means that x benchmarks are solved within
y amount of time each. Hence, the more the graph is to the right, the better it is.
One may observe that the number of solved instances within 20 minutes has more
than doubled within a decade, thanks to better algorithms. The instances in this set
are large, and solvers created before 2002 run out of memory when trying to solve
them. (Courtesy of Daniel Le-Berre)

advantage in solving randomly generated (satisfiable) CNF instances, which
is not surprising: in these instances there is no structure to exploit and learn
from, and no obvious choices of variables and values, which makes the heuris-
tics adopted by CDCL solvers ineffective. We shall focus on CDCL solvers
only.

A historical note: CDCL was developed over time as a series of improve-
ments to the Davis–Putnam–Loveland–Logemann (DPLL) framework. See
the bibliographic notes at the end of this chapter for further discussion.

2.2.2 The CDCL Framework

In its simplest form, a CDCL solver progresses by making a decision about a
variable and its value, propagating implications of this decision that are easy
to detect, and backtracking in the case of a conflict. Viewing the process as
a search on a binary tree, each decision is associated with a decision level,
which is the depth in the binary decision tree at which it is made, starting
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from 1. The assignments implied by a decision are associated with its decision
level. Assignments implied regardless of the current assignments (owing to
unary clauses, which are clauses with a single literal) are associated with
decision level 0, also called the ground level.

Definition 2.3 (state of a clause under an assignment). A clause is
satisfied if one or more of its literals are satisfied (see Definition 1.12), con-
flicting if all of its literals are assigned but not satisfied, unit if it is not
satisfied and all but one of its literals are assigned, and unresolved other-
wise.

Note that the definitions of a unit clause and an unresolved clause are only
relevant for partial assignments (see Definition 1.1).

Example 2.4. Given the partial assignment

{x1 7→ 1, x2 7→ 0, x4 7→ 1} , (2.6)

(x1 ∨ x3 ∨ ¬x4) is satisfied,
(¬x1 ∨ x2) is conflicting,
(¬x1 ∨ ¬x4 ∨ x3) is unit,
(¬x1 ∨ x3 ∨ x5) is unresolved.

Given a partial assignment under which a clause becomes unit, it must
be extended so that it satisfies the unassigned literal of this clause. This
observation is known as the unit clause rule. Following this requirement is
necessary but obviously not sufficient for satisfying the formula.

For a given unit clause C with an unassigned literal l, we say that l
is implied by C and that C is the antecedent clause of l, denoted by
Antecedent(l). If more than one unit clause implies l, the clause that the
SAT solver actually used in order to imply l is the one we refer to as l’s
antecedent.

Example 2.5. The clause C := (¬x1 ∨ ¬x4 ∨ x3) and the partial assignment
{x1 7→ 1, x4 7→ 1} imply the assignment x3 and Antecedent(x3) = C.

A framework followed by most modern CDCL solvers has been presented
by, for example, Zhang and Malik [299], and is shown in Algorithm 2.2.1. The
table in Fig. 2.6 includes a description of the main components used in this
algorithm, and Fig. 2.5 depicts the interaction between them. A description
of the Analyze-Conflict function is delayed to Sect. 2.2.6.

2.2.3 BCP and the Implication Graph

We now demonstrate Boolean constraint propagation (BCP), reaching a con-
flict, and backtracking. Each assignment is associated with the decision level
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Algorithm 2.2.1: CDCL-SAT

Input: A propositional CNF formula B
Output: “Satisfiable” if the formula is satisfiable and “Unsatisfiable”

otherwise

1. function CDCL
2. while (true) do
3. while (BCP() = “conflict”) do
4. backtrack-level := Analyze-Conflict();
5. if backtrack-level < 0 then return “Unsatisfiable”;
6. BackTrack(backtrack-level);
7. if ¬Decide() then return “Satisfiable”;

SAT

UNSAT

bl ≥ 0

BackTrack

Analyze-
Conflict

BCP
bl < 0

all assigned

α

α
Decide

conflict

Fig. 2.5. CDCL-SAT: high-level overview of the Conflict-Driven Clause-Learning
algorithm. The variable bl is the backtracking level, i.e., the decision level to which
the procedure backtracks. α is an assignment (either partial or full)

at which it occurred. If a variable xi is assigned 1 (true) (owing to either
a decision or an implication) at decision level dl, we write xi@dl. Similarly,

�� ��xi@dl
¬xi@dl reflects an assignment of 0 (false) to this variable at decision level
dl. Where appropriate, we refer only to the truth assignment, omitting the
decision level, in order to make the notation simpler.

The process of BCP is best illustrated with an implication graph. An
implication graph represents the current partial assignment and the reason
for each of the implications.

Definition 2.6 (implication graph). An implication graph is a labeled di-
rected acyclic graph G(V,E), where:
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Name Decide()

Output false if and only if there are no more variables to assign.

Description Chooses an unassigned variable and a truth value for it.

Comments There are numerous heuristics for making these decisions, some
of which are described later in Sect. 2.2.5. Each such decision is
associated with a decision level, which can be thought of as the
depth in the search tree.

Name BCP()

Output “conflict” if and only if a conflict is encountered.

Description Repeated application of the unit clause rule until either a conflict
is encountered or there are no more implications.

Comments This repeated process is called Boolean Constraint Propagation
(BCP). BCP is applied even before the first decision because of
the possible existence of unary clauses.

Name Analyze-Conflict()

Output Minus 1 if a conflict at decision level 0 is detected (which implies
that the formula is unsatisfiable). Otherwise, a decision level
which the solver should backtrack to.

Description A detailed description of this function is delayed to Sect. 2.2.4.
Briefly, it is responsible for computing the backtracking level,
detecting global unsatisfiability, and adding new constraints on
the search in the form of new clauses.

Name BackTrack(dl)

Description Sets the current decision level to dl and erases assignments at
decision levels larger than dl.

Fig. 2.6. A description of the main components of Algorithm 2.2.1

• V represents the literals of the current partial assignment (we refer to a
node and the literal that it represents interchangeably). Each node is labeled
with the literal that it represents and the decision level at which it entered
the partial assignment.

• E with E = {(vi, vj) | vi, vj ∈ V,¬vi ∈ Antecedent(vj)} denotes the set of
directed edges where each edge (vi, vj) is labeled with Antecedent(vj).

• G can also contain a single conflict node labeled with κ and incoming
edges {(v, κ) | ¬v ∈ c} labeled with c for some conflicting clause c.

The root nodes of an implication graph correspond to decisions, and the inter-
nal nodes to implications through BCP. A conflict node with incoming edges
labeled with c represents the fact that the BCP process has reached a con-
flict, by assigning 0 to all the literals in the clause c (i.e., c is conflicting).
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In such a case, we say that the graph is a conflict graph. The implication
graph corresponds to all the decision levels lower than or equal to the current
one, and is dynamic: backtracking removes nodes and their incoming edges,
whereas new decisions, implications, and conflict clauses increase the size of
the graph.

The implication graph is sensitive to the order in which the implications
are propagated in BCP, which means that the graph is not unique for a given
partial assignment. In most SAT solvers, this order is rather arbitrary (in
particular, BCP progresses along a list of clauses that contain a given literal,
and the order of clauses in this list can be sensitive to the order of clauses in
the input CNF formula). In some other SAT solvers—see for example [223]—
this order is not arbitrary; rather, it is biased towards reaching a conflict
faster.

A partial implication graph is a subgraph of an implication graph,
which illustrates the BCP at a specific decision level. Partial implication
graphs are sufficient for describing Analyze-Conflict. The roots in such
a partial graph represent assignments (not necessarily decisions) at decision
levels lower than dl, in addition to the decision at level dl, and internal nodes
correspond to implications at level dl. The description that follows uses mainly
this restricted version of the graph.

Consider, for example, a formula that contains the following set of clauses,
among others:

c1 = (¬x1 ∨ x2) ,
c2 = (¬x1 ∨ x3 ∨ x5) ,
c3 = (¬x2 ∨ x4) ,
c4 = (¬x3 ∨ ¬x4) ,
c5 = (x1 ∨ x5 ∨ ¬x2) ,
c6 = (x2 ∨ x3) ,
c7 = (x2 ∨ ¬x3) ,
c8 = (x6 ∨ ¬x5) .

(2.7)

Assume that at decision level 3 the decision was ¬x6@3, which implied ¬x5@3
owing to clause c8 (hence, Antecedent(¬x5) = c8). Assume further that the
solver is now at decision level 6 and assigns x1 7→ 1. At decision levels 4 and 5,
variables other than x1, . . . , x6 were assigned, and are not listed here as they
are not relevant to these clauses.

The implication graph on the left of Fig. 2.7 demonstrates the BCP process
at the current decision level 6 until, in this case, a conflict is detected. The
roots of this graph, namely ¬x5@3 and x1@6, constitute a sufficient condition
for creating this conflict. Therefore, we can safely add to our formula the
conflict clause

c9 = (x5 ∨ ¬x1) . (2.8)

While c9 is logically implied by the original formula and therefore does not
change the result, it prunes the search space. The process of adding conflict
clauses is generally referred to as learning, reflecting the fact that this is the
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Fig. 2.7. A partial implication graph for decision level 6, corresponding to the
clauses in (2.7), after a decision x1 7→ 1 (left) and a similar graph after learning the
conflict clause c9 = (x5 ∨ ¬x1) and backtracking to decision level 3 (right)

solver’s way to learn from its past mistakes. As we progress in this chapter,
it will become clear that conflict clauses not only prune the search space, but
also have an impact on the decision heuristic, the backtracking level, and the
set of variables implied by each decision.

Analyze-Conflict is the function responsible for deriving new conflict
clauses and computing the backtracking level. It traverses the implication
graph backwards, starting from the conflict node κ, and generates a conflict
clause through a series of steps that we describe later in Sect. 2.2.4. For now,
assume that c9 is indeed the clause generated.

After detecting the conflict and adding c9, the solver determines which
decision level to backtrack to according to the conflict-driven backtracking
strategy. According to this strategy, the backtracking level is set to the second
most recent decision level in the conflict clause, while erasing all decisions and
implications made after that level. There are two special cases: when learning
a unary clause, the solver backtracks to the ground level; when the conflict
is at the ground level, the backtracking level is set to –1 and the solver exits
and declares the formula to be unsatisfiable.

In the case of c9, the solver backtracks to decision level 3 (the decision level
of x5), and erases all assignments from decision level 4 onwards, including the
assignments to x1, x2, x3, and x4.

The newly added conflict clause c9 becomes a unit clause since x5 = 0,
and therefore the assignment ¬x1@3 is implied. This new implication restarts
the BCP process at level 3. Clause c9 is a special kind of conflict clause, called
an asserting clause: it forces an immediate implication after backtracking.
Analyze-Conflict can be designed to generate asserting clauses only, as
indeed most competitive solvers do.

After asserting x1 = 0 the solver again reaches a conflict, as can be seen in
the right drawing in Fig. 2.7. This time the conflict clause (x2) is added, and
the solver backtracks to decision level 0 and continues from there. Why (x2)?
The strategy of Analyze-Conflict in generating these clauses is explained
later in Sect. 2.2.4, but observe for the moment how indeed ¬x2 leads to a
conflict through clauses c6 and c7, as can also be inferred from Fig. 2.7 (right).
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Aside: Multiple Conflict Clauses
More than one conflict clause can be derived from a conflict graph. In the
present example, the assignment {x2 7→ 1, x3 7→ 1} is also a sufficient con-
dition for the conflict, and hence (¬x2 ∨ ¬x3) is also a conflict clause. A
generalization of this observation requires the following definition.

Definition 2.7 (separating cut). A separating cut in a conflict graph is a
minimal set of edges whose removal breaks all paths from the root nodes to the
conflict node.

This definition is applicable to a full implication graph (see Definition 2.6), as
well as to a partial graph focused on the decision level of the conflict. The cut
bipartitions the nodes into the reason side (the side that includes all the roots)
and the conflict side. The set of nodes on the reason side that have at least
one edge to a node on the conflict side constitute a sufficient condition for the
conflict, and hence their negation is a legitimate conflict clause. Different SAT
solvers have different strategies for choosing the conflict clauses that they add:
some add as many as possible (corresponding to many different cuts), while
others try to find the most effective ones. Some, including most of the modern
SAT solvers, add a single clause, which is an asserting clause (see below), for
each conflict. Modern solvers also have a strategy for erasing conflict clauses:
without this feature the memory is quickly filled with millions of clauses. A
typical strategy is to measure the activity of each clause, and periodically erase
clauses with a low activity score. The activity score of a clause is increased
when it participates in inferring new clauses.

Conflict-driven backtracking raises several issues:

• It seems to waste work, because the partial assignments up to decision
level 5 can still be part of a satisfying assignment. However, empirical
evidence shows that conflict-driven backtracking, coupled with a conflict-
driven decision heuristic such as VSIDS (discussed later in Sect. 2.2.5),
performs very well. A possible explanation for the success of this heuristic
is that the conflict encountered can influence the decision heuristic to
decide values or variables different from those at deeper decision levels
(levels 4 and 5 in this case). Thus, keeping the decisions and implications
made before the new information (i.e., the new conflict clause) had arrived
may skew the search to areas not considered best anymore by the heuristic.
Some of the wasted work can be saved, however, by simply keeping the last
assignment, and reusing it whenever the variable’s value has to be decided
again [261]. An extensive analysis of this technique can be found in [222].

• Is this process guaranteed to terminate? In other words, how do we know
that a partial assignment cannot be repeated forever? The learned conflict
clauses cannot be the reason, because in fact most SAT solvers erase many
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of them after a while to prevent the formula from growing too much. The
reason is the following:

Theorem 2.8. It is never the case that the solver enters decision level dl
again with the same partial assignment.

Proof. Consider a partial assignment up to decision level dl− 1 that does
not end with a conflict, and assume falsely that this state is repeated later,
after the solver backtracks to some lower decision level dl− (0 ≤ dl− < dl).
Any backtracking from a decision level dl+ (dl+ ≥ dl) to decision level
dl− adds an implication at level dl− of a variable that was assigned at
decision level dl+. Since this variable has not so far been part of the partial
assignment up to decision level dl, once the solver reaches dl again, it is
with a different partial assignment, which contradicts our assumption.

The (hypothetical) progress of a SAT solver based on this strategy is illus-
trated in Fig. 2.8. More details of this graph are explained in the caption.
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Fig. 2.8. Illustration of the progress of a SAT solver based on conflict-driven back-
tracking. Every conflict results in a conflict clause (denoted by c1, . . . , c5 in the
drawing). If the top left decision is x = 1, then this drawing illustrates the work
done by the SAT solver to refute this wrong decision. Only some of the work during
this time was necessary for creating c5, refuting this decision, and computing the
backtracking level. The “wasted work” (which might, after all, become useful later
on) is due to the imperfection of the decision heuristic

2.2.4 Conflict Clauses and Resolution

Now consider Analyze-Conflict (Algorithm 2.2.2). The description of the
algorithm so far has relied on the fact that the conflict clause generated is
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an asserting clause, and we therefore continue with this assumption when
considering the termination criterion for line 3. The following definitions are
necessary for describing this criterion:

�

�

�

�

Algorithm 2.2.2: Analyze-Conflict

Input:
Output: Backtracking decision level + a new conflict clause

1. if current-decision-level = 0 then return -1;
2. cl := current-conflicting-clause;
3. while (¬Stop-criterion-met(cl)) do
4. lit := Last-assigned-literal(cl);
5. var := Variable-of-literal(lit);
6. ante := Antecedent(lit);
7. cl := Resolve(cl, ante, var);
8. add-clause-to-database(cl);
9. return clause-asserting-level(cl); . 2nd highest decision level in cl

Definition 2.9 (unique implication point (UIP)). Given a partial con-
flict graph corresponding to the decision level of the conflict, a unique impli-
cation point (UIP) is any node other than the conflict node that is on all paths
from the decision node to the conflict node.

The decision node itself is a UIP by definition, while other UIPs, if they exist,
are internal nodes corresponding to implications at the decision level of the
conflict. In graph-theoretical terms, UIPs dominate the conflict node.

Definition 2.10 (first UIP). A first UIP is a UIP that is closest to the
conflict node.

We leave the proof that the notion of a first UIP in a conflict graph is well
defined as an exercise (see Problem 2.14). Figure 2.9 demonstrates UIPs in a
conflict graph (see also the caption).

Empirical studies show that a good strategy for Stop-criterion-met(cl)
(line 3) is to return true if and only if cl contains the negation of the first UIP
as its single literal at the current decision level. This negated literal becomes
asserted immediately after backtracking. There are several advantages to this
strategy, which may explain the results of the empirical studies:

1. The strategy has a low computational cost, compared with strategies that
choose UIPs further away from the conflict.

2. It backtracks to the lowest decision level.
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Fig. 2.9. An implication graph (stripped of most of its labels) with two UIPs. The
left UIP is the decision node, and the right one is the first UIP, as it is the one
closest to the conflict node

The second fact can be demonstrated with the help of Fig. 2.9. Let l1
and l2 denote the literals at the first and the second UIP, respectively. The
asserting clauses generated with the first-UIP and second-UIP strategies are,
respectively, (¬l1∨¬x1∨¬x2) and (¬l2∨¬x1∨¬x2∨¬x4). It is not a coincidence
that the second clause subsumes the first, other than the asserting literals ¬l1
and ¬l2: it is always like this, by construction. Now recall how the backtracking
level is determined: it is equal to the decision level corresponding to the second
highest in the asserting clause. Clearly, this implies that the backtracking level
computed with regard to the first clause is lower than that computed with
regard to the second clause. In our example, these are decision levels 4 and 7,
respectively.

In order to explain lines 4–7 of Analyze-Conflict, we need the following
definition:

Definition 2.11 (binary resolution and related terms). Consider the
following inference rule:

(a1 ∨ . . . ∨ an ∨ β) (b1 ∨ . . . ∨ bm ∨ ¬β)

(a1 ∨ . . . ∨ an ∨ b1 ∨ . . . ∨ bm)
(Binary Resolution) , (2.9)

where a1, . . . , an, b1, . . . , bm are literals and β is a variable. The variable β is
called the resolution variable. The clauses (a1 ∨ . . .∨an ∨β) and (b1 ∨ . . .∨
bm ∨ (¬β)) are the resolving clauses, and (a1 ∨ . . . ∨ an ∨ b1 ∨ . . . ∨ bm) is
the resolvent clause.

A well-known result obtained by Robinson [243] shows that a deductive system
based on the binary-resolution rule as its single inference rule is sound and
complete. In other words, a CNF formula is unsatisfiable if and only if there
exists a finite series of binary-resolution steps ending with the empty clause.

The function Resolve(c1, c2, v) used in line 7 of Analyze-Conflict re-
turns the resolvent of the clauses c1, c2, where the resolution variable is v. The
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Aside: Hard Problems for Resolution-Based Procedures
Some propositional formulas can be decided with no less than an exponential
number of resolution steps in the size of the input. Haken [137] proved in 1985
that the pigeonhole problem is one such problem: given n > 1 pigeons and
n − 1 pigeonholes, can each of the pigeons be assigned a pigeonhole without
sharing? While a formulation of this problem in propositional logic is rather
trivial with n · (n − 1) variables, currently no SAT solver (which, recall, im-
plicitly perform resolution) can solve this problem in a reasonable amount of
time for n larger than several tens, although the size of the CNF itself is rela-
tively small. As an experiment, we tried to solve this problem for n = 20 with
four leading SAT solvers: Siege4 [248], zChaff-04 [202], HaifaSat [124], and
Glucose-2014 [8]. On a Pentium 4 with 1 GB of main memory, none of them
could solve this problem within three hours. Compare this result with the
fact that, bounded by the same timeout, these tools routinely solve problems
arising in industry with hundreds of thousands and even millions of variables.

The good news is that some SAT solvers now support a preprocessing step
with which cardinality constraints (constraints of the form Σixi ≤ k) are
identified in the CNF, and solved by a separate technique. The pigeonhole
problem implicitly uses a cardinality constraint of the form Σixi ≤ 1 for each
pigeonhole, to encode the fact that it can hold at most one pigeon, and indeed
a SAT solver such as SAT4J, which supports this technique, can solve this
problem even with n = 200 [32].

Antecedent function used in line 6 of this function returns Antecedent(lit).
The other functions and variables are self-explanatory.

Analyze-Conflict progresses from right to left on the conflict graph,
starting from the conflicting clause, while constructing the new conflict clause
through a series of resolution steps. It begins with the conflicting clause cl,
in which all literals are set to 0. The literal lit is the literal in cl assigned
last, and var denotes its associated variable. The antecedent clause of var,
denoted by ante, contains ¬lit as the only satisfied literal, and other literals,
all of which are currently unsatisfied. The clauses cl and ante thus contain
lit and ¬lit, respectively, and can therefore be resolved with the resolution
variable var. The resolvent clause is again a conflicting clause, which is the
basis for the next resolution step.

Example 2.12. Consider the partial implication graph and set of clauses in
Fig. 2.10, and assume that the implication order in the BCP was x4, x5, x6, x7.

The conflict clause c5 := (x10 ∨ x2 ∨ ¬x4) is computed through a series
of binary resolutions. Analyze-Conflict traverses backwards through the
implication graph starting from the conflicting clause c4, while following the
order of the implications in reverse, as can be seen in the table below. The
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c1 = (¬x4 ∨ x2 ∨ x5)
c2 = (¬x4 ∨ x10 ∨ x6)
c3 = (¬x5 ∨ ¬x6 ∨ ¬x7)
c4 = (¬x6 ∨ x7)

...

¬x2@3

c1

c2 c4c4

c3

c3

¬x7@5

x6@5

c1
x5@5

κ
c2

x4@5

¬x10@3

Fig. 2.10. A partial implication graph and a set of clauses that demonstrate Algo-
rithm 2.2.2. The nodes are depicted so that their horizontal position is consistent
with the order in which they were created. Algorithm 2.2.2 traverses the nodes in
reverse order, from right to left. The first UIP it finds is x4, and, correspondingly,
the asserted literal is ¬x4

intermediate clauses, in this case the second and third clauses in the resolution
sequence, are typically discarded.

Name cl lit var ante

c4 (¬x6 ∨ x7) x7 x7 c3
(¬x5 ∨ ¬x6) ¬x6 x6 c2

(¬x4 ∨ x10 ∨ ¬x5) ¬x5 x5 c1
c5 (¬x4 ∨ x2 ∨ x10)

The clause c5 is an asserting clause in which the negation of the first UIP (x4)
is the only literal from the current decision level.

2.2.5 Decision Heuristics

Probably the most important element in SAT solving is the strategy by which
the variables and the value given to them are chosen. This strategy is called the
decision heuristic of the SAT solver. Let us survey some of the best-known
decision heuristics, in the order in which they were suggested, which is also
the order of their average efficiency as measured by numerous experiments.
New strategies are published every year.

Jeroslow–Wang

Given a CNF formula B, compute for each literal l

J(l) = Σω∈B,l∈ω2−|ω| , (2.10)

where ω represents a clause and |ω| its length. Choose the literal l for which
J(l) is maximal, and for which neither l or ¬l is asserted.
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This strategy gives higher priority to literals that appear frequently
in short clauses. It can be implemented statically (one computation at the
beginning of the run) or dynamically, where in each decision only unsatisfied
clauses are considered in the computation. The dynamic approach produces
better decisions, but also imposes large overhead at each decision point.

Dynamic Largest Individual Sum (DLIS)

At each decision level, choose the unassigned literal that satisfies the largest
number of currently unsatisfied clauses.

The common way to implement such a heuristic is to keep a pointer
from each literal to a list of clauses in which it appears. At each decision
level, the solver counts the number of clauses that include this literal and
are not yet satisfied, and assigns this number to the literal. Subsequently, the
literal with the largest count is chosen. DLIS imposes a large overhead, since
the complexity of making a decision is proportional to the number of clauses.
Another variation of this strategy, suggested by Copty et al. [79], is to count
the number of satisfied clauses resulting from each possible decision and its
implications through BCP. This variation indeed makes better decisions, but
also imposes more overhead.

Variable State Independent Decaying Sum (VSIDS) and Variants

This is a strategy that was introduced in the SAT solver Chaff [202], which
is reminiscent of DLIS but far more efficient. First, when counting the number
of clauses in which every literal appears, disregard the question of whether
that clause is already satisfied or not. This means that the estimation of the
quality of every decision is compromised, but the complexity of making a
decision is better: it takes a constant time to make a decision assuming we
keep the literals in a list sorted by their score. Second, periodically divide all
scores by 2.

The idea is to make the decision heuristic conflict-driven, which means
that it tries to solve recently discovered conflicts first. For this purpose, it
needs to give higher scores to variables that are involved in recent conflicts.
Recall that every conflict results in a conflict clause. A new conflict clause,
like any other clause, adds 1 to the score of each literal that appears in it.
The greater the amount of time that has passed since this clause was added,
the more often the score of these literals is divided by 2. Thus, variables in
new conflict clauses become more influential. The SAT solver Chaff, which
introduced VSIDS, allows one to tune this strategy by controlling the fre-
quency with which the scores are divided and the constant by which they are
divided. It turns out that different families of CNF formulas are best solved
with different parameters.

There are other conflict-driven heuristics. Consider, for example, the strat-
egy adopted by the award-winning SAT solver MiniSAT. MiniSAT maintains
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an activity score for each variable (in the form of a floating-point number with
double precision), which measures the involvement of each variable in infer-
ring new clauses. If a clause c is inferred from clauses c1, . . . , cn, then each
instance of a variable v in c1, . . . , cn entails an increase in the score of v
by some constant inc. inc is initially set to 1, and then multiplied by 1.05
after each conflict, thus giving higher score to variables that participate in
recent conflicts. To prevent overflow, if the activity score of some variable is
higher than 10100, then all variable scores as well as inc are multiplied by
10−100. The variable that has the highest score is selected. The value chosen
for this variable is either false, random, or, when relevant, the previous value
that this variable was assigned. The fact that in such a successful solver as
MiniSAT there is no attempt to guess the right value of a variable indicates
that what matters is the locality of the search coupled with learning, rather
than a correct guess of the branch. This is not surprising: most branches, even
in satisfiable formulas, do not lead to a satisfying assignment.

Clause-Based Heuristics

In this family of heuristics, literals in recent conflict clauses are given absolute
priority. This effect is achieved by traversing backwards the list of learned
clauses each time a decision has to be made. We begin by describing in detail
a heuristic called Berkmin.

Maintain a score per variable, similar to the score VSIDS maintains for
each literal (i.e., increase the counter of a variable if one of its literals appears
in a clause, and periodically divide the counters by a constant). Maintain a
similar score for each literal, but do not divide it periodically. Push conflict
clauses into a stack. When a decision has to be made, search for the topmost
clause on this stack that is unresolved. From this clause, choose the unassigned
variable with the highest variable score. Determine the value of this variable
by choosing the literal corresponding to this variable with the highest literal
score. If the stack is empty, the same strategy is applied, except that the
variable is chosen from the set of all unassigned variables rather than from a
single clause.

This heuristic was first implemented in a SAT solver called Berkmin. The
idea is to give variables that appear in recent conflicts absolute priority, which
seems empirically to be more effective. It also concentrates only on unresolved
conflicts, in contrast to VSIDS.

A different clause-based strategy is called Clause-Move-To-Front (CMTF).
It is similar to Berkmin, with the difference that, at the time of learning a
new clause, k clauses (k being a constant that can be tuned) that participated
in resolving the new clause are pushed to the end of the list, just before the
new clause. The justification for this strategy is that it keeps the search more
focused. Suppose, for example, that a clause c is resolved from c1, c2, and c3.
We can write this as c1 ∧ c2 ∧ c3 =⇒ c, which makes it clear that satisfying
c is easier than satisfying c1 ∧ c2 ∧ c3. Hence the current partial assignment
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contradicted c1 ∧ c2 ∧ c3, the solver backtracked, and now tries to satisfy an
easier formula, namely c, before returning to those three clauses. CMTF is
implemented in a SAT solver called HaifaSat [124], and a variation of it
called Clause-Based Heuristic (CBH) is implemented in Eureka [99].

2.2.6 The Resolution Graph and the Unsatisfiable Core

Since each conflict clause is derived from a set of other clauses, we can keep
track of this process with a resolution graph.

Definition 2.13 (binary resolution graph). A binary resolution graph is
a directed acyclic graph where each node is labeled with a clause, each root
corresponds to an original clause, and each nonroot node has exactly two in-
coming edges and corresponds to a clause derived by binary resolution from
its parents in the graph.

Typically, SAT solvers do not retain all the intermediate clauses that are
created during the resolution process of the conflict clause. They store enough
clauses, however, for building a graph that describes the relation between the
conflict clauses.

Definition 2.14 (hyper-resolution graph). A hyper-resolution graph is
a directed acyclic graph where each node is labeled with a clause, each root
corresponds to an original clause, and each nonroot node has two or more
incoming edges and corresponds to a clause derived by binary resolution from
its parents in the graph, possibly through other clauses that are not represented
in the graph.

Example 2.15. Consider once again the implication graph in Fig. 2.10. The
clauses c1, . . . , c4 participate in the resolution of c5. The corresponding reso-
lution graph appears in Fig. 2.11.

c5

c3

c2

c1

c4

Fig. 2.11. A hyper-resolution graph corresponding to the implication graph in
Fig. 2.10
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In the case of an unsatisfiable formula, the resolution graph has a sink
node (i.e., a node with incoming edges only), which corresponds to an empty
clause.3

The resolution graph can be used for various purposes, some of which we
mention here. The most common use of this graph is for deriving an unsatis-
fiable core of unsatisfiable formulas.

Definition 2.16 (unsatisfiable core). An unsatisfiable core of a CNF un-
satisfiable formula is any unsatisfiable subset of the original set of clauses.

Unsatisfiable cores which are relatively small subsets of the original set of
clauses are useful in various contexts, because they help us to focus on a cause
of unsatisfiability (there can be multiple unsatisfiable cores not contained in
each other, and not even intersecting each other). We leave it to the reader
in Problem 2.17 to find an algorithm that computes a core given a resolution
graph.

Another common use of a resolution graph is for certifying a SAT solver’s
conclusion that a formula is unsatisfiable. Unlike the case of satisfiable in-
stances, for which the satisfying assignment is an easy-to-check piece of evi-
dence, checking an unsatisfiability result is harder. Using the resolution graph,
however, an independent checker can replay the resolution steps starting from
the original clauses until it derives the empty clause. This verification requires
time that is linear in the size of the resolution proof.

2.2.7 Incremental Satisfiability

In numerous industrial applications the SAT solver is a component in a bigger
system that sends it satisfiability queries. For example, a program that plans
a path for a robot may use a SAT solver to find out if there exists a path
within k steps from the current state. If the answer is negative, it increases
k and tries again. The important point here is that the sequence of formulas
that the SAT solver is asked to solve is not arbitrary: these formulas have a
lot in common. Can we use this fact to make the SAT solver run faster? We
should somehow reuse information that was gathered in previous instances to
expedite the solution of the current one. To make things simpler, consider two
CNF formulas, C1 and C2, which are solved consecutively, and assume that
C2 is known at the time of solving C1. Here are two kinds of information that
can be reused when solving C2:

• Reuse clauses. We should answer the following question: if c is a conflict
clause learned while solving C1, under what conditions are C2 and C2 ∧ c
equisatisfiable? It is easier to answer this question if we view C1 and C2

3 In practice, SAT solvers terminate before they actually derive the empty clause, as
can be seen in Algorithms 2.2.1 and 2.2.2, but it is possible to continue developing
the resolution graph after the run is over and derive a full resolution proof ending
with the empty clause.
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as sets of clauses. Let C denote the clauses in the intersection C1 ∩ C2.
Any clause learnt solely from C clauses can be reused when solving C2. In
practice, as in the path planning problem mentioned above, consecutive
formulas in the sequence are very similar, and hence C1 and C2 share the
vast majority of their clauses, which means that most of what was learnt
can be reused. We leave it as an exercise (Problem 2.16) to design an
algorithm that discovers the clauses that can be reused.

• Reuse heuristic parameters. Various weights are updated during the solving
process, and used to heuristically guide the search, e.g., variable score is
used in decision making (Sect. 2.2.5), weights expressing the activity of
clauses in deriving new clauses are used for determining which learned
clauses should be maintained and which should be deleted, etc. If C1 and
C2 are sufficiently similar, starting to solve C2 with the weights at the end
of the solving process of C1 can expedite the solving of C2.

To understand how modern SAT solvers support incremental solving, one
should first understand a mechanism called assumptions, which was intro-
duced with the SAT solver MiniSAT [110]. Assumptions are literals that are
known to hold when solving C1, but may be removed or negated when solv-
ing C2. The list of assumption literals is passed to the solver as a parameter.
The solver treats assumptions as special literals that dictate the initial set
of decisions. If the solver backtracks beyond the decision level of the last
assumption, it declares the formula to be unsatisfiable, since there is no so-
lution without changing the assumptions. For example, suppose a1, . . . , an
are the assumption literals. Then the solver begins by making the decisions
a1 = true, . . . , an = true, while applying BCP as usual. If at any point the
solver backtracks to level n or less, it declares the formula to be unsatisfiable.

The key point here is that all clauses that are learnt are independent of the
assumptions and can therefore be reused when these assumptions no longer
hold. This is the nature of learning: it learns clauses that are independent
of specific decisions, and assumptions are just decisions. Hence, we can start
solving C2 while maintaining all the clauses that were learnt during the solv-
ing process of C1. Note that in this way we reuse both types of information
mentioned above, and save the time of reparsing the formula.

We now describe how assumptions are used for solving the general incre-
mental SAT problem, which requires both addition and deletion of clauses
between instances. As for adding clauses, the solver receives the set of clauses
that should be added (C2 \C1 in our case) as part of its interface. Removing
clauses is done by adding a new assumption literal (corresponding to a new
variable) to every clause c ∈ (C1 \C2), negated. For example, if c = (x1 ∨x2),
then it is replaced with c′ = (¬a ∨ x1 ∨ x2), where a is a new variable. Note
that under the assumption a = true, c = c′, and hence the added assump-
tion literal does not change the satisfiability of the formula. When solving C2,
however, we replace that assumption with the assumption a = false, which
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is equivalent to erasing the clause c. Assumption literals used in this way are
called clause selectors.

2.2.8 From SAT to the Constraint Satisfaction Problem

In parallel to the research on the SAT problem, there has been a lot of
research on the Constraint Satisfaction Problem (CSP) [98], with a lot of
cross-fertilization between these two fields. CSP allows arbitrary constraints
over variables with finite discrete domains. For example, a CSP instance
can be defined by variable domains x1 ∈ {1 . . . 10}, x2 ∈ {2, 4, 6, . . . , 30},
x3 ∈ {−5,−4, . . . , 5} and a Boolean combination of constraints over these
variables

AllDifferent(x1, x2, x3) ∧ x1 < x3 . (2.11)

The AllDifferent constraint means that its arguments must be assigned
different values. Modern CSP solvers support dozens of such constraints. A
propositional formula can be seen as a special case of a CSP model, which
does not use constraints, other than the Boolean connectives, and the domains
of the variables are limited to {0, 1}.

CSP solving is an NP problem, and hence can be reduced to SAT in poly-
nomial time.4 Since the domains are restricted to finite discrete domains,
“flattening” them to propositional logic requires some work. For example,
a variable with a domain {1, . . . , n} can be encoded with dlog(n)e propo-
sitional variables. If there are “holes” in the domain, then additional con-
straints are needed on the values that these variables can be assigned. Simi-
larly, the constraints should be translated to propositional formulas. For ex-
ample, if x1 is encoded with propositional variables b1, . . . , b5 and x2 with
c1, . . . c5, then the constraint x1 6= x2 can be cast in propositional logic
as ∨5i=1(bi ∨ ci) ∧ (¬bi ∨ ¬ci), effectively forcing at least one of the bits to
be different. AllDifferent is then just a pairwise disequality of all its
arguments. Additional bitwise (logarithmic) translation methods appear in
Chap. 6, whereas a simpler linear-size translation is the subject of Prob-
lem 2.11. Indeed, some of the competitive CSP solvers are just front-end util-
ities that translate the CSP to SAT, either up-front, or lazily. Other solvers
handle the constraints directly.

A description of how CSP solvers work is beyond the scope of this book.
We will only say that they can be built with a core similar to that of SAT,
including decision making, constraint propagation, and learning. Each type
of constraint has to be handled separately, however. CSP solvers are typically
modular, and hence adding one’s favorite constraint to an existing CSP solver
is not difficult. Most of the work is in defining a propagator for the constraint.
A propagator of a constraint c is a function that, given c and the current

4 This complexity result is based on the set of constraints that is typically supported
by CSP solvers. Obviously it is possible to find constraints that will push CSP
away from NP.
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domains of the variables, can (a) infer reductions in domains that are implied
by c, and (b) detect that c is conflicting, i.e., it cannot be satisfied in the
current domains. In the example above, a propagator for the < constraint
should conclude from x1 < x3 that the domain of x1 should be reduced to
{1, . . . , 4}, because higher values are not supported by the current domain
of x3. In other words, for an assignment such as x1 = 5, no value in the
current domain of x3, namely {−5, . . . , 5}, can satisfy x1 < x3. As another
example, suppose we have the CSP

x1 ∈ {0, 1}, x2 ∈ {0, 1}, x3 ∈ {0, 1}
AllDifferent(x1, x2, x3) .

The propagator of AllDifferent should detect that the constraint cannot
be satisfied under these domains. The equivalent of a propagator in SAT is
BCP—see Sect. 2.2.3. Propagators must be sound, but for some constraints it
is too computationally expensive to make them complete (see Definition 1.6).
In other words, it may not find all possible domain reductions, and may not
always detect a conflict under a partial assignment. This does not change the
fact that the overall solver is complete, because it does detect a conflict with
a full assignment.

Given a constraints problem, there are two potential advantages to mod-
eling it as a CSP, rather than in propositional logic:

• CSP as a modeling language is far more readable and succinct, and
• When using a CSP solver that is not based on reduction to SAT, one

may benefit from the fact that some constraints, such as AllDifferent,
have polynomial-time precise propagators, whereas solving the same con-
straint with SAT after it is reduced to propositional logic is worst-case
exponential.5

Typically these two potential advantages do not play a major role, however,
because (a) most problems that are solved in industry are generated auto-
matically, and hence readability is immaterial, and (b) realistic constraints
problems mix many types of constraints, and hence solving them remains ex-
ponential. The current view is that neither CSP nor SAT dominate the other
in terms of run time, and it is more a question of careful engineering than
something substantial.

2.2.9 SAT Solvers: Summary

In this section we have covered the basic elements of modern CDCL solvers,
including decision heuristics, learning with conflict clauses, and conflict-driven
backtracking. There are various other mechanisms for gaining efficiency that

5 Certain constraints that have a polynomial propagator can be translated to a
specific form of propositional formula that, with the right strategy of the SAT
solver, can be solved in polynomial time as well—see [220].
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we do not cover in this book, such as efficient implementation of BCP, de-
tection of subsumed clauses, preprocessing and simplification of the formula,
deletion of conflict clauses, and restarts (i.e., restarting the solver when it
seems to be in a hopeless branch of the search tree). The interested reader is
referred to the references given in Sect. 2.4.

Let us now reflect on the two approaches to formal reasoning that we
described in Sect. 1.1—deduction and enumeration. Can we say that SAT
solvers, as described in this section, follow either one of them? On the one
hand, SAT solvers can be thought of as searching a binary tree with 2n leaves,
where n is the number of Boolean variables in the input formula. Every leaf is a
full assignment, and, hence, traversing all leaves corresponds to enumeration.
From this point of view, conflict clauses are generated in order to prune the
search space. On the other hand, conflict clauses are deduced via the resolution
rule from other clauses. If the formula is unsatisfiable, then the sequence of
applications of this rule, as listed in the SAT solver’s log, is a deductive proof of
unsatisfiability. The search heuristic can therefore be understood as a strategy
of applying an inference rule—searching for a proof. Thus, the two points of
view are equally legitimate.

2.3 Problems

2.3.1 Warm-up Exercises

Problem 2.1 (propositional logic: practice). For each of the following
formulas, determine if it is satisfiable, unsatisfiable or valid:

1. (p =⇒ (q =⇒ p))
2. (p ∧ q) ∧ (a =⇒ q) ∧ (b =⇒ ¬p) ∧ (a ∨ b)
3. (p ∨ q) ∧ (¬p ∨ ¬q) ∧ (p ∨ ¬q) ∧ (¬p ∨ q)
4. (a =⇒ ¬a) =⇒ ¬a
5. (((a =⇒ p) ∧ (b =⇒ q)) ∧ (¬a ∨ ¬b)) =⇒ ¬(p ∧ q)
6. (a ∧ b ∧ c) ∧ (a⊕ b⊕ c) ∧ (a ∨ b ∨ c)
7. (a ∧ b ∧ c ∧ d) ∧ (a⊕ b⊕ c⊕ d) ∧ (a ∨ b ∨ c ∨ d)

where ⊕ denotes the XOR operator.

Problem 2.2 (modeling: simple). Consider three persons A, B, and C who
need to be seated in a row, but:

• A does not want to sit next to C.
• A does not want to sit in the left chair.
• B does not want to sit to the right of C.

Write a propositional formula that is satisfiable if and only if there is a seat
assignment for the three persons that satisfies all constraints. Is the formula
satisfiable? If so, give an assignment.
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Problem 2.3 (modeling: program equivalence). Show that the two
if-then-else expressions below are equivalent:

!(a ‖ b) ? h : !(a == b) ? f : g !(!a ‖ !b) ? g : (!a && !b) ? h : f

You can assume that the variables have only one bit.

Problem 2.4 (SAT solving). Consider the following set of clauses:

(x5 ∨ ¬x1 ∨ x3) , (¬x1 ∨ x2) ,
(¬x2 ∨ x4) , (¬x3 ∨ ¬x4) ,
(¬x5 ∨ x1) , (¬x5 ∨ ¬x6) ,
(x6 ∨ x1) .

(2.12)

Apply the VSIDS decision heuristic and Analyze-Conflict with conflict-
driven backtracking. In the case of a tie (during the application of VSIDS),
make a decision that eventually leads to a conflict. Show the implication graph
at each decision level.

2.3.2 Propositional Logic

Problem 2.5 (propositional logic: NAND and NOR). Prove that any
propositional formula can be equivalently written with

• only a NAND gate,
• only a NOR gate.

2.3.3 Modeling

Problem 2.6 (a reduction from your favorite NP-C problem). Show
a reduction to propositional logic from your favorite NP-complete problem
(not including SAT itself and problems that appear below). A list of famous
NP-complete problems can be found online (some examples are: vertex-cover,
hitting-set, set-cover, knapsack, feedback vertex set, bin-packing...). Note that
many of those are better known as optimization problems, so begin by for-
mulating a corresponding decision problem. For example, the optimization
variant of vertex-cover is: find the minimal number of vertices that together
touch all edges; the corresponding decision problem is: given a natural number
k, is it possible to touch all edges with k vertices?

Problem 2.7 (unwinding a finite automaton). A nondeterministic finite
automaton is a 5-tuple 〈Q,Σ, δ, I, F 〉, where

• Q is a finite set of states,
• Σ is the alphabet (a finite set of letters),
• δ : Q×Σ 7→ 2Q is the transition function (2Q is the power set of Q),
• I ⊆ Q is the set of initial states, and
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• F ⊆ Q is the set of accepting states.

The transition function determines to which states we can move given the
current state and input. The automaton is said to accept a finite input string
s1, . . . , sn with si ∈ Σ if and only if there is a sequence of states q0, . . . , qn
with qi ∈ Q such that

• q0 ∈ I ,
• ∀i ∈ {1, . . . , n}. qi ∈ δ(qi−1, si), and
• qn ∈ F .

For example, the automaton in Fig. 2.12 is defined by Q = {s1, s2},Σ = {a, b},
δ(s1, a) = {s1}, δ(s1, b) = {s1, s2}, I = {s1}, F = {s2}, and accepts strings
that end with b. Given a nondeterministic finite automaton 〈Q,Σ, δ, I, F 〉 and
a fixed input string s1, . . . , sn, si ∈ Σ, construct a propositional formula that
is satisfiable if and only if the automaton accepts the string.

b

s1 s2

a, b

Fig. 2.12. A nondeterministic finite automaton accepting all strings ending with
the letter b

Problem 2.8 (assigning teachers to subjects). A problem of covering m
subjects with k teachers may be defined as follows. Let T : {T1, . . . , Tn} be a
set of teachers. Let S : {S1, . . . , Sm} be a set of subjects. Each teacher t ∈ T
can teach some subset S(t) of the subjects S (i.e., S(t) ⊆ S). Given a natural
number k ≤ n, is there a subset of size k of the teachers that together covers
all m subjects, i.e., a subset C ⊆ T such that |C| = k and (

⋃
t∈C S(t)) = S?

Problem 2.9 (Hamiltonian cycle). Show a formulation in propositional
logic of the following problem: given a directed graph, does it contain a Hamil-
tonian cycle (a closed path that visits each node, other than the first, exactly
once)?

2.3.4 Complexity

Problem 2.10 (space complexity of CDCL with learning). What is the
worst-case space complexity of a CDCL SAT solver as described in Sect. 2.2,
in the following cases:

(a) Without learning
(b) With learning, i.e., by recording conflict clauses
(c) With learning in which the length of the recorded conflict clauses is

bounded by a natural number k
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Problem 2.11 (from CSP to SAT). Suppose we are given a CSP over
some unified domain D : [min..max] where all constraints are of the form
vi ≤ vj , vi − vj ≤ c or vi = vj + c for some constant c. For example

((v2 ≤ v3) ∨ (v4 ≤ v1)) ∧ v2 = v1 + 4 ∧ v4 = v3 + 3

for v1, v2, v3, v4 ∈ [0..7] is a formula belonging to this fragment. This formula
is satisfied by one of two solutions: (v1 7→ 0, v2 7→ 4, v3 7→ 4, v4 7→ 7), or
(v3 7→ 0, v1 7→ 3, v4 7→ 3, v2 7→ 7).

Show a reduction of such formulas to propositional logic. Hint: an encod-
ing which requires |V | · |D| propositional variables, where |V | is the number of
variables and |D| is the size of the domain, is given by introducing a propo-
sitional variable bij for each variable vi ∈ V and j ∈ D, which indicates that
vi ≤ j is true.

For the advanced reader: try to find a logarithmic encoding.

Problem 2.12 (polynomial-time (restricted) SAT). Consider the fol-
lowing two restrictions of CNF:

• A CNF in which there is not more than one positive literal in each clause.
• A CNF formula in which no clause has more than two literals.

1. Show a polynomial-time algorithm that solves each of the problems above.
2. Show that every CNF can be converted to another CNF which is a con-

junction of the two types of formula above. In other words, in the resulting
formula all the clauses are either unary, binary, or have not more than one
positive literal. How many additional variables are necessary for the con-
version?

2.3.5 CDCL SAT Solving

Problem 2.13 (backtracking level). We saw that SAT solvers working with
conflict-driven backtracking backtrack to the second highest decision level dl
in the asserting conflict clause. This wastes all of the work done from decision
level dl + 1 to the current one, say dl′ (although, as we mentioned, this has
other advantages that outweigh this drawback). Suppose we try to avoid this
waste by performing conflict-driven backtracking as usual, but then repeat the
assignments from levels dl + 1 to dl′ − 1 (i.e., override the standard decision
heuristic for these decisions). Can it be guaranteed that this reassignment will
progress without a conflict?

Problem 2.14 (is the first UIP well defined?). Prove that, in a conflict
graph, the notion of a first UIP is well defined, i.e., there is always a single
UIP closest to the conflict node. Hint: you may use the notion of dominators
from graph theory.
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2.3.6 Related Problems

Problem 2.15 (blocked clauses). Let ϕ be a CNF formula, let c ∈ ϕ be
a clause such that l ∈ c where l is a literal, and let ϕ¬l ⊆ ϕ be the subset of
ϕ′s clauses that contain ¬l. We say that c is blocked by l if the resolution of c
with any clause in ϕ¬l using var(l) as the pivot is a tautology. For example,
if c = (l ∨ x∨ y) and ϕ¬l has a single clause c′ = (¬l ∨¬x∨ z), then resolving
c and c′ on l results in (x ∨ ¬x ∨ y ∨ z), which is a tautology, and hence c is
blocked by l. Prove that ϕ is equisatisfiable to ϕ \ c, i.e., blocked clauses can
be removed from ϕ without affecting its satisfiability.

Problem 2.16 (incremental satisfiability). In Sect. 2.2.7 we saw a condi-
tion for sharing clauses between similar instances. Suggest a way to implement
this check, i.e., how can a SAT solver detect those clauses that were inferred
from clauses that are common to both instances? The solution cannot use the
mechanism of assumptions.

Problem 2.17 (unsatisfiable cores).

(a) Suggest an algorithm that, given a resolution graph (see Definition 2.14),
finds an unsatisfiable core of the original formula that is as small as pos-
sible (by this we do not mean that it has to be minimal).

(b) Given an unsatisfiable core, suggest a method that attempts to minimize
it further.

Problem 2.18 (unsatisfiable cores and transition clauses). Let B be
an unsatisfiable CNF formula, and let c be a clause of B. If removing c from
B makes B satisfiable, we say that c is a transition clause. Prove the fol-
lowing claim: all transition clauses of a formula are contained in each of its
unsatisfiable cores.

2.4 Bibliographic Notes

The very existence of the 980-pages Handbook of Satisfiability [35] from 2009,
which covers all the topics mentioned in this chapter and much more, indicates
what a small fraction of SAT can be covered here. More recently Donald
Knuth dedicated almost 300 pages to this topic in his book series The Art of
Computer Programming [168]. Some highlights from the history of SAT are
in order nevertheless.

The Davis–Putnam–Loveland–Logemann (DPLL) framework was a two-
stage invention. In 1960, Davis and Putnam considered CNF formulas and
offered a procedure to solve them based on an iterative application of three
rules [88]: the pure literal rule, the unit clause rule (what we now call BCP),
and what they called “the elimination rule”, which is a rule for eliminating a
variable by invoking resolution (e.g., to eliminate x from a given CNF, apply



2.4 Bibliographic Notes 55

resolution to each pair of clauses of the form (x∨A)∧(¬x∨B), erase the resolv-
ing clauses, and maintain the resolvent). Their motivation was to optimize a
previously known incomplete technique for deciding first-order formulas. Note
that, at the time, “optimizing” also meant a procedure that was easier to con-
duct by hand. In 1962, Loveland and Logemann, two programmers hired by
Davis and Putnam to implement their idea, concluded that it was more ef-
ficient to split and backtrack rather than to apply resolution, and together
with Davis published what we know today as the basic DPLL framework [87].
The SAT community tends to distinguish modern solvers from those based
on DPLL by referring to them as Conflict-Driven Clause Learning (CDCL)
solvers, which emphasizes their learning capability combined with nonchrono-
logical backtracking, and the fact that their search is strongly tied to the
learning scheme, via a heuristic such as VSIDS. The fact that modern solvers
restart the search very frequently adds another major distinction from the
earlier DPLL solvers. The main alternative to DPLL/CDCL are the stochas-
tic solvers, also called local-search SAT solvers, which were not discussed
at length in this chapter. For many years they were led by the GSAT and
WalkSat solvers [254]. There are various solvers that combine local search
with learning and propagation, such as UnitWalk [143].

The development of SAT solvers has always been influenced by devel-
opments in the world of Constraint Satisfaction Problem (CSP), a problem
which generalizes SAT to arbitrary finite discrete domains and arbitrary con-
straints. The definition of CSP by Montanari [201] (and even before that by
Waltz in 1975), and the development of efficient CSP solvers, led to cross-
fertilization between the two fields: nonchronological backtracking, for exam-
ple, was first used in CSP, and then adopted by Marques-Silva and Sakallah
for their GRASP SAT solver [262], which was the fastest from 1996 to 2000.
In addition, learning via conflict clauses in GRASP was inspired by CSP’s no-
good recording. Bayardo and Schrag [21] also published a method for adapting
conflict-driven learning to SAT. CSP solvers have an annual competition,
called the MiniZinc challenge. The winner of the 2016 competition in the free
(unrestricted) search category is Michael Veksler’s solver HaifaCSP [279].

The introduction of Chaff in 2001 [202] by Moskewicz, Madigan, Zhao,
Zhang, and Malik marked a breakthrough in performance that led to renewed
interest in the field. Chaff introduced the idea of conflict-driven nonchrono-
logical backtracking coupled with VSIDS, the first conflict-driven decision
heuristic. It also included a new mechanism for performing fast BCP based
on a data structure called two-watched literals, which is now standard in all
competitive solvers. The description of the main SAT procedure in this chapter
was inspired mainly by works related to Chaff [298, 299]. Berkmin, a SAT
solver developed by Goldberg and Novikov, introduced what we have named
“the Berkmin decision heuristic” [133]. The solver Siege introduced Variable-
Move-To-Front (VMTF), a decision heuristic that moves a constant number
of variables from the conflict clause to the top of the list, which performs very
well in practice [248]. MiniSAT [110], a minimalistic open-source solver by
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Niklas Eén and Niklas Sörensson, has not only won several competitions in
the last decade, but also became a standard platform for SAT research. In the
last few competitions there was even a special track for variants of MiniSAT.
Starting from 2009, Glucose [8] seems to be one of the leading solvers. It
introduced a technique for predicting the quality of a learned clause, based on
the number of decision levels that it contains. When the solver erases some of
the conflict clauses as most solvers do periodically, this measure improves its
chances of keeping those that have a better chance of participating in further
learning. The series of solvers by Armin Biere, PicoSAT [30], PrecoSAT,
and Lingeling [31] have also been very dominant in the last few years and
include dozens of new optimizations. We will only mention here that they are
designed for very large CNF instances, and contain accordingly inprocessing,
i.e., linear-time simplifications of the formula that are done periodically during
the search. The simplifications are a selected subset of those that are typically
done only as a preprocessing phase. Another very successful technique called
cube-and-conquer [140] partitions the SAT problem into possibly millions
of much easier ones. The challenge is of course to know how to perform this
partitioning such that the total run time is reduced. In the first phase, it finds
consistent cubes, which are simply partial assignments (typically giving values
to not more than 10% of the variables); heuristics that are relatively compu-
tationally expensive are used in this phase, e.g., checking the impact of each
possible assignment on the size of the remaining formula before making the
decision. Such an expensive procedure is not competitive if applied through-
out the solving process, but here it is used only for identifying relatively short
cubes. In the second phase it uses a standard SAT solver to solve the formula
after being simplified by the cube. This type of strategy is very suitable for
parallelization, and indeed the solver Treengeling, also by Biere, is a highly
efficient cube-and-conquer parallel solver. New SAT solvers are introduced ev-
ery year; readers interested in the latest tools should check the results of the
annual SAT competitions.

The realization that different classes of problems are best solved with
different solvers led to a strategy of invoking an algorithm portfolio. This
means that one out of n predefined solvers is chosen automatically for a given
problem instance, based on a prediction of which solver is likely to perform
best. First, a large “training set” is used for building empirical hardness
models [212] based on various features of the instances in this set. Then,
given a problem instance, the run time of each of the n solvers is predicted,
and accordingly the solver is chosen for the task. SATzilla [289] is a successful
algorithm portfolio based on these ideas that won several categories in the 2007
competition. Even without the learning phase and the automatic selection of
solvers, running different solvers in parallel and reporting the result of the
first one to find a solution is a very powerful technique. A parallel version of
Lingeling, for example, called Plingeling [31], won the SAT competition in
2010 for parallel solvers, and was much better than any of the single-core ones.
It simply runs Lingeling on several cores but each with a different random
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seed, and with slightly different parameters that affect its preprocessing and
tie-breaking strategies. The various threads only share learned unit clauses.

The connection between the process of deriving conflict clauses and reso-
lution was discussed in, for example, [22, 122, 180, 295, 298]. Zhang and Malik
described a procedure for efficient extraction of unsatisfiable cores and unsat-
isfiability proofs from a SAT solver [298, 299]. There are many algorithms for
minimizing such cores—see, for example, [123, 150, 184, 214]. A variant of the
minimal unsatisfiable core (MUC) problem is called the high-level minimal
unsatisfiable core (HLMUC) problem [203, 249]. The input to the problem,
in addition to the CNF B, is a set of sets of clauses from B. Rather than
minimizing the core, here the problem is to minimize the number of such sets
that have a nonempty intersection with the core. This problem has various
applications in formal verification as described in the above references.

Incremental satisfiability in its modern version, i.e., the problem of which
conflict clauses can be reused when solving a related problem (see Prob-
lem 2.16), was introduced by Strichman in [260, 261] and independently by
Whittemore, Kim, and Sakallah in [281]. Earlier versions of this problem were
more restricted, for example, the work of Hooker [148] and of Kim, Whitte-
more, Marques-Silva, and Sakallah [164].

There is a very large body of theoretical work on SAT as well. Some exam-
ples are: in complexity, SAT was the problem that was used for establishing
the NP-complete complexity class by Cook in 1971 [77]; in proof complexity,
there is a large body of work on various characteristics of resolution proofs [23]
and various restrictions and extensions thereof. In statistical mechanics, physi-
cists study the nature of random formulas [67, 197, 48]: for a given number
of variables n, and a given fixed clause size k, a clause is randomly generated
by choosing, at uniform, from the

(
n
k

)
· 2k options. A formula ϕ is a conjunc-

tion of α · n random clauses. It is clear that when α→∞, ϕ is unsatisfiable,
and when α = 0, it is satisfiable. At what value of α is the probability of
ϕ being satisfiable 0.5? The answer is α = 4.267. It turns out that formu-
las constructed with this ratio tend to be the hardest to solve empirically.
Furthermore, the larger n is, the sharper the phase transition between SAT
and UNSAT, asymptotically reaching a step function, i.e., all formulas with
α > 4.267 are unsatisfiable, whereas all formulas with α < 4.267 are satis-
fiable. This shift from SAT to UNSAT is called a phase transition. There
have been several articles about this topic in Science [166, 196], Nature [200],
and even The New York Times [157].

Let us conclude these notes by mentioning that, in the first edition of this
book, this chapter included about 10 pages on Ordered Binary Decision Dia-
grams (OBDDs) (frequently called BDDs for short). BDDs were invented by
Randal Bryant [55] and were extremely influential in various fields in com-
puter science, most notably in automated theorem proving, symbolic model
checking, and other subfields of formal verification. With BDDs one can rep-
resent and manipulate propositional formulas. A key benefit of BDDs is the
fact that they are canonical as long as the BDDs are built following the
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same variable order, which means that logically equivalent propositional for-
mulas have identical BDDs. If the BDD is not empty, then the formula is
trivially satisfiable, which means that once the BDD is built the satisfiability
problem can be solved in constant time. The catch is that the construction
itself can take exponential space and time, and indeed in practice nowadays
CDCL-based SAT is generally better at solving satisfiability problems. Various
SAT-based techniques such as Craig interpolants [193] and Property-Directed
Reachability [42] mostly replaced BDDs in verification, although BDD-based
engines are still used in commercial model checkers. BDDs also find uses in
solving other problems, such as precise existential quantification of proposi-
tional formulas, counting the number of solutions a propositional formula has
(an operation that can be done in linear time in the size of the BDD), and
more. Knuth dedicated a large chapter to this topic in The Art of Computer
Programming [167].

2.5 Glossary

The following symbols were used in this chapter:

First used
Symbol Refers to . . . on page . . .

xi@d (SAT) xi is assigned true at decision level d 33



3.1 Introduction

In the previous chapter we studied CDCL-based procedures for deciding
propositional formulas. Suppose, now, that instead of propositional variables
we have other predicates, such as equalities and disequalities over the reals,
e.g.,

(x1 = x2∨x1 = x3)∧(x1 = x2∨x1 = x4)∧x1 6= x2∧x1 6= x3∧x1 6= x4 . (3.1)

Or, perhaps we would like to decide a Boolean combination of linear-
arithmetic predicates:

((x1 + 2x3 < 5) ∨ ¬(x3 ≤ 1) ∧ (x1 ≥ 3)) , (3.2)

or a formula over arrays:

(i = j ∧ a[j] = 1) ∧ ¬(a[i] = 1) . (3.3)

Equalities, linear predicates, arrays... is there a general framework to define
them? Of course there is, and it is called first-order logic. Each of the above
examples is a formula in some quantifier-free fragment of a first-order theory .
Let us recall some basic terminology that was introduced already in Sect. 1.4.
Generally such formulas can use propositional connectives and a set Σ of
additional function and predicate symbols that uniquely define the theory T—
indeed Σ is called the signature of T .1 A decision procedure for T can decide
the validity of T -formulas. Accordingly such formulas can be characterized as
being T -valid, T -satisfiable (also called T -consistent), etc. We refer the reader
to Sect. 1.4 for a more elaborate discussion of these matters.

1 In this book we only consider signatures with commonly used symbols (e.g., “+”,
“*”, “<”) and assume that they are interpreted in the standard way (e.g., the
“+” symbol corresponds to addition). Hence, the interpretation of the symbols
in Σ is fixed.
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In this chapter we study a general method—a framework, really—that
generalizes CDCL to a decision procedure for decidable quantifier-free first-
order theories, such as those above.2 The method is commonly referred to as
DPLL(T ), emphasizing that it is parameterized by a theory T . The fact that
it is called DPLL(T ) and not CDCL(T ) is attributed to historical reasons
only: it is based on modern CDCL solvers (see Sect. 2.4 for a discussion on
the differences). It is implemented in most Satisfiability Modulo Theories
(SMT) solvers. In the case of (3.1), for example, T is simply the theory of
equality (see Chap. 4). DPLL(T ) is based on an interplay between a SAT
solver and a decision procedure DPT for the conjunctive fragment of T , i.e.,

�� ��DPT

formulas which are a conjunction of T -literals.
The following example demonstrates the existence of a decision procedure

DPT for the case of a conjunction of equalities:

Example 3.1. In the case where T is the theory of equality, a simple proce-
dure DPT is easy to design. The T -literals are either equalities or inequality
predicates over some set of variables V . Given a conjunction of T -literals ϕ,
build an undirected graph G(N,E=, E 6=) where the nodes N correspond to
the variables V , and there are two kinds of edges, E= and E 6=, corresponding
respectively to the equality and inequality predicates in ϕ. This is called an
equality graph. It is not hard to see that the formula ϕ is unsatisfiable if and
only if there exists an edge (v1, v2) ∈ E 6= such that v2 is reachable from v1
through a sequence of E= edges. The equality graph in Fig. 3.1, for exam-
ple, corresponds to x1 6= x2 ∧ x2 = x3 ∧ x1 = x3. This procedure can be
implemented with |E 6=| depth-first search (DFS) calls over G, and is hence
polynomial in the size of the input formula. More efficient procedures exist,
and will be discussed in Chap. 4.

x3x1 x2

Fig. 3.1. An equality graph corresponding to x1 6= x2 ∧ x2 = x3 ∧ x1 = x3

To reason about formulas with arbitrary propositional structure rather
than just conjunctions, we can simply perform case-splitting (see Sect. 1.3),
and decide each case with DPT . If any of the cases is satisfiable, then so is
the original formula. For example, there are four cases to consider in order to
decide (3.1):

2 Extending the framework for solving quantified formulas (which is not necessarily
decidable) will be discussed later on in the book, namely in Sect. 9.5.
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(x1 = x2 ∧ x1 = x2 ∧ x1 6= x2 ∧ x1 6= x3 ∧ x1 6= x4) ,
(x1 = x2 ∧ x1 = x4 ∧ x1 6= x2 ∧ x1 6= x3 ∧ x1 6= x4) ,
(x1 = x3 ∧ x1 = x2 ∧ x1 6= x2 ∧ x1 6= x3 ∧ x1 6= x4) ,
(x1 = x3 ∧ x1 = x4 ∧ x1 6= x2 ∧ x1 6= x3 ∧ x1 6= x4) ,

(3.4)

all of which are unsatisfiable. Hence, we can conclude that (3.1) is unsatisfi-
able.

The primary problem with this approach is the fact that the number of
cases is in general exponential in the size of the original formula—think how
many cases we would have if the original formula had n clauses—and indeed,
when attempting to solve formulas that have a nontrivial propositional struc-
ture with this method, the number of cases is typically a major bottleneck (see
Example 1.18). Furthermore, this method misses any opportunity for learning,
as each case is solved independently. In the example above, the contradiction
x1 = x2 ∧ x1 6= x2 appears in two separate cases, but we still have to infer
inconsistency for each one of them separately.

A better approach is to leverage the learning capabilities of SAT (see p. 35)
and other means of efficiency, and combine it with DPT in order to solve such
formulas. The two main engines in this framework work in tight collaboration:
the SAT solver chooses those literals that need to be satisfied in order to satisfy
the Boolean structure of the formula, and DPT checks whether this choice is
T -satisfiable.

The advantage of this approach is that any reasoning about the proposi-
tional part of ϕ is performed by the propositional SAT solver; any explicit case
splitting of disjunctions in ϕ is avoided. This has strong practical advantages,
as the resulting algorithms are both very modular and very efficient.

We will now present in detail how this combination can be implemented,
while continuing to use the theory of equality as an example.

3.2 An Overview of DPLL(T )

Recall that every theory T is defined with respect to a signature Σ, which is
the set of allowed symbols. In the case of the theory of equality, for example,
Σ = {‘=’}. When we write Σ-literals (or, similarly, Σ-atoms and Σ-formulas),
it means that the literal only uses symbols from Σ.

Let at(ϕ) denote the set of Σ-atoms in a given NNF formula ϕ. Assuming
�� ��at(ϕ)

some predefined order on the atoms, we denote the i-th distinct atom in ϕ by
at i(ϕ).

�� ��at i(ϕ)
Given atom a, we associate with it a unique Boolean variable e(a), which �� ��e(a)we call the Boolean encoder of this atom. Extending this idea to formulas,

given a Σ-formula t, e(t) denotes the Boolean formula resulting from substi- �� ��e(t)tuting each Σ-atom in t with its Boolean encoder.
For example, if x = y is a Σ-atom, then e(x = y), a Boolean variable,

denotes its encoder. And if
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ϕ := x = y ∨ x = z (3.5)

is a Σ-formula, then

e(ϕ) := e(x = y) ∨ e(x = z) . (3.6)

For a Σ-formula ϕ, the resulting Boolean formula e(ϕ) is called the propo-
sitional skeleton of ϕ.

Using this notation, we can now begin to give an overview of the method
studied in this chapter, while following a simple example. Some of the notation
that we shall use in this example will be defined more formally later on.

As before we will use the theory of equality for the example. Let

ϕ := x = y ∧ ((y = z ∧ ¬(x = z)) ∨ x = z) . (3.7)

The propositional skeleton of ϕ is

e(ϕ) := e(x = y) ∧ ((e(y = z) ∧ ¬e(x = z)) ∨ e(x = z)) . (3.8)

Let B be a Boolean formula, initially set to e(ϕ), i.e.,

B := e(ϕ) . (3.9)

As the next step, we pass B to a SAT solver. Assume that the formula is
satisfiable and that the SAT solver returns the satisfying assignment

α := {e(x = y) 7→ true, e(y = z) 7→ true, e(x = z) 7→ false} .

The decision procedure DPT now has to decide whether the conjunction of
the literals corresponding to this assignment is satisfiable. We denote this
conjunction by T̂ h(α) (the “Th” is intended to remind the reader that the
result of this function is a Theory, and the “hat” that it is a conjunction of
symbols). For the assignment above,

T̂ h(α) := x = y ∧ y = z ∧ ¬(x = z) . (3.10)

This formula is not satisfiable, which means that the negation of this formula
is a tautology. Thus B is conjoined with e(¬T̂ h(α)), the Boolean encoding of
this tautology:

e(¬T̂ h(α)) := (¬e(x = y) ∨ ¬e(y = z) ∨ e(x = z)) . (3.11)

This clause contradicts the current assignment, and hence blocks it from being
repeated. Such clauses are called blocking clauses. In general, we denote by
t the formula—also called the lemma—returned by DPT . In this example,
t := ¬T̂ h(α), that is, the lemma is the negation of the full assignment α and
hence it is a clause, but generally t can be multiple clauses, depending on the
implementation of DPT .
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After the blocking clause has been added, the SAT solver is invoked again
and suggests another assignment, for example,

α′ := {e(x = y) 7→ true, e(y = z) 7→ true, e(x = z) 7→ true} .

The corresponding Σ-formula

T̂ h(α′) := x = y ∧ y = z ∧ x = z (3.12)

is satisfiable, which proves that ϕ, the original formula, is satisfiable. Indeed,
any assignment that satisfies T̂ h(α′) also satisfies ϕ.

Figure 3.2 illustrates the information flow between the two components of
the decision procedure.

for a conjunction of Σ-literals
t

DPT – a decision procedure
T̂ h(α)

Propositional

SAT solver

α

e(t)

Fig. 3.2. The information exchanged between the SAT solver and a decision pro-
cedure DPT for a conjunction of Σ-literals

There are many improvements to this basic procedure, some of which
we shall cover later in this chapter, and some of which are left as exercises
in Sect. 3.5. One such improvement, for example, is to invoke the decision
procedure DPT after some or all partial assignments, rather than waiting for
a full assignment. A contradicting partial assignment leads to a more powerful
lemma t, as it blocks all assignments that extend it. Further, when the partial
assignment is not contradictory, it can be used to derive implications that are
propagated back to the SAT solver. Continuing the example above, consider
the partial assignment

α := {e(x = y) 7→ true, e(y = z) 7→ true} , (3.13)

and the corresponding formula that is transferred to DPT ,

T̂ h(α) := x = y ∧ y = z . (3.14)

This leads DPT to conclude that x = z is implied, and hence accordingly to
inform the SAT solver that e(x = z) 7→ true is implied by the current partial
assignment α. Thus, in addition to the normal Boolean constraint propagation
(BCP) performed by the SAT solver, there is now also theory propagation.
Such propagation may lead to further BCP, which means that this process
may iterate several times before the next decision is made by the SAT solver.

In the next few sections, we describe variations of the process demonstrated
above.
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3.3 Formalization

For a given encoding e(ϕ), we denote by α an assignment, either full or partial,
�� ��α

to the encoders in e(ϕ). Then for an encoder e(at i) that is assigned a truth
value by α, we define the corresponding literal, denoted Th(at i, α), as follows:

Th(at i, α)
.
=

{
at i α(at i) = true
¬at i α(at i) = false .

(3.15)

Somewhat overloading the notation, we write Th(α) to denote the set of lit-
�� ��Th(α)

erals such that their encoders are assigned by α:

Th(α)
.
= {Th(at i, α) | e(at i) is assigned by α} . (3.16)

We denote by T̂ h(α) the conjunction of the elements of the set Th(α).

�� ��T̂ h(α)

Example 3.2. To demonstrate the use of the above notation, let

at1 = (x = y), at2 = (y = z), at3 = (z = w) , (3.17)

and let α be a partial assignment such that

α := {e(at1) 7→ false, e(at2) 7→ true} . (3.18)

Then
Th(at1, α) := ¬(x = y), Th(at2, α) := (y = z) , (3.19)

and
Th(α) := {¬(x = y), (y = z)} . (3.20)

Conjoining these terms gives us

T̂ h(α) := ¬(x = y) ∧ (y = z) . (3.21)

Recall that DPT is a decision procedure for a conjunction of T -literals,
where T is a theory defined over the symbols in Σ. Let Deduction be a
procedure based on DPT , which receives a conjunction of T -literals as in-
put, decides whether it is satisfiable, and, if the answer is negative, returns
constraints over these literals, as explained below. On the basis of such a pro-
cedure, we now examine variations of the method that is demonstrated in the
introduction to this chapter.

Algorithm 3.3.1 (Lazy-Basic) decides whether a given T -formula ϕ is
satisfiable. It does so by iteratively solving a propositional formula B, starting

�� ��B
from B = e(ϕ), and gradually strengthening it with encodings of constraints
that are computed by Deduction.

In each iteration, SAT-Solver returns a tuple 〈assignment, result〉 in
line 4. If B is unsatisfiable, then so is ϕ: Lazy-Basic returns “Unsatisfiable”
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in line 5. Otherwise, in line 7 Deduction checks whether T̂ h(α) is satisfiable.
It returns a tuple of the form 〈constraint, result〉 where the constraint is a
clause over Σ-literals, and the result is one of {“Satisfiable”, “Unsatisfiable”}.
If it is “Satisfiable”, Lazy-Basic returns “Satisfiable” in line 8 (recall that
α is a full assignment). Otherwise, the formula t returned by Deduction

�� ��t
(typically one or more clauses) corresponds to a lemma about ϕ. In line 9,
Lazy-Basic continues by conjoining the e(t) with B and reiterating.

�

�

�

�

Algorithm 3.3.1: Lazy-Basic

Input: A formula ϕ
Output: “Satisfiable” if ϕ is satisfiable, and “Unsatisfiable” oth-

erwise

1. function Lazy-Basic(ϕ)
2. B := e(ϕ);
3. while (true) do
4. 〈α, res〉 := SAT-Solver(B);
5. if res =“Unsatisfiable” then return “Unsatisfiable”;
6. else
7. 〈t, res〉 := Deduction(T̂ h(α));
8. if res =“Satisfiable” then return “Satisfiable”;
9. B := B ∧ e(t);

Consider the following three requirements on the formula t that is returned
by Deduction:

1. The formula t is T -valid, i.e., t is a tautology in T . For example, if T is
the theory of equality, then x = y ∧ y = z =⇒ x = z is T -valid.

2. The atoms in t are restricted to those appearing in ϕ.
3. The encoding of t contradicts α, i.e., e(t) is a blocking clause.

The first requirement is sufficient for guaranteeing soundness. The second and
third requirements are sufficient for guaranteeing termination. Specifically, the
third requirement guarantees that α is not repeated.

Two of the three requirements above can be weakened, however:

• Requirement 1: t can be any formula that is implied by ϕ, and not just
a T -valid formula. However, finding formulas that on the one hand are
implied by ϕ and on the other hand fulfill the other two requirements may
be as hard as deciding ϕ itself, which misses the point. In practice, the
amount of effort dedicated to computing t needs to be tuned separately
for each theory and decision procedure, in order to maximize the overall
performance.



66 3 From Propositional to Quantifier-Free Theories

• Requirement 2: t may refer to atoms that do not appear in ϕ, as long as
the number of such new atoms is finite. For example, in equality logic,
we may allow t to refer to all atoms of the form xi = xj where xi, xj are
variables in var(ϕ), even if only some of these equality predicates appear
in ϕ.

Integration into CDCL

Let Bi be the formula B in the i-th iteration of the loop in Algorithm 3.3.1.
�� ��Bi

The constraint Bi+1 is strictly stronger than Bi for all i ≥ 1, because blocking
clauses are added but not removed between iterations. It is not hard to see
that this implies that any conflict clause that is learned while solving Bi can
be reused when solving Bj for i < j. This, in fact, is a special case of in-
cremental satisfiability, which is supported by most modern SAT solvers.3

Hence, invoking an incremental SAT solver in line 4 can increase the efficiency
of the algorithm.

A better option is to integrate Deduction into the CDCL-SAT al-
gorithm, as shown in Algorithm 3.3.2. This algorithm uses a procedure
AddClauses, which adds new clauses to the current set of clauses at run
time. We leave the question of why this is a better option than using an incre-
mental SAT solver to the reader (see Problem 3.1). We note that α, which is
referred to in line 9, is the current assignment to the propositional variables.

3.4 Theory Propagation and the DPLL(T ) Framework

3.4.1 Propagating Theory Implications

Algorithm 3.3.2 can be optimized further. Consider, for example, a formula ϕ
that contains an integer variable x1 and, among others, the literals x1 ≥ 10
and x1 < 0.

Assume that the Decide procedure assigns e(x1 ≥ 10) 7→ true and
e(x1 < 0) 7→ true. Inevitably, any call to Deduction results in a contradic-
tion between these two facts, independently of any other decisions that are
made. However, Algorithm 3.3.2 does not call Deduction until a full satisfy-
ing assignment is found. Thus, the time taken to complete the assignment is
wasted. Moreover, as was mentioned in the introduction to this chapter, the
refutation of this full assignment may be due to other reasons (i.e., a proof
that a different subset of the assignment is contradictory), and, hence, addi-
tional assignments that include the same wrong assignment to e(x1 ≥ 10) and
e(x1 < 0) are not ruled out.

3 Incremental satisfiability was described in Sect. 2.2.7. It is concerned with the
more general case in which clauses can also be removed. The question in that
case is which conflict clauses can be reused safely. See also Problem 2.16.
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�
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�
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Algorithm 3.3.2: Lazy-CDCL

Input: A formula ϕ
Output: “Satisfiable” if the formula is satisfiable, and “Unsatisfiable”

otherwise

1. function Lazy-CDCL
2. AddClauses(cnf (e(ϕ)));
3. while (true) do
4. while (BCP() = “conflict”) do
5. backtrack-level := Analyze-Conflict();
6. if backtrack-level < 0 then return “Unsatisfiable”;
7. else BackTrack(backtrack-level);
8. if ¬Decide() then . Full assignment
9. 〈t, res〉:=Deduction(T̂ h(α)); . α is the assignment

10. if res=“Satisfiable” then return “Satisfiable”;
11. AddClauses(e(t));

Algorithm 3.3.2 can therefore be improved by running Deduction even
before a full assignment to the encoders is available. This early call to
Deduction can serve two purposes:

1. Contradictory partial assignments are ruled out early.
2. Implications of literals that are still unassigned can be communicated back

to the SAT solver, as demonstrated in Sect. 3.2. Continuing our example,
once e(x1 ≥ 10) has been assigned true, we can infer that e(x1 < 0) must
be false and avoid the conflict altogether.

This brings us to the next version of the algorithm, called DPLL(T ), which
was first introduced in an abstract form by Tinelli [274]. As in Algorithms 3.3.1
and 3.3.2, the components of the algorithm are those of CDCL and a decision
procedure for a conjunctive fragment of a theory T . The name DPLL(T ) (as
mentioned above, it can also be called CDCL(T )) emphasizes that this is a
framework that can be instantiated with different theories and corresponding
decision procedures.

In the version of DPLL(T ) presented in Algorithm 3.4.1 (see also Fig. 3.3),
Deduction is invoked in line 9 after no further implications can be made by
BCP. It then finds T -implied literals and communicates them to the CDCL
part of the solver in the form of a constraint t.4 Hence, in addition to im-
plications in the Boolean domain, there are now also implications due to the

4 Deduction also returns the result res (whether T̂ h(α) is satisfiable), but res is
not used. We have kept it in the pseudocode in order for the algorithm to stay
similar to the previous algorithms.



68 3 From Propositional to Quantifier-Free Theories

Analyze-
Conflict UNSAT

Deduction AddClauses

α

t e(t)

Decide SAT

propagation
Theory

BackTrack

T̂ h(α)

bl ≥ 0

bl < 0

all assigned

/ conflict

N
o

th
in

g
to

p
ro

pa
ga

te
,

n
o

co
n

fl
ic

t

α

α

BCP
conflict

Fig. 3.3. The main components of DPLL(T ). Theory propagation is implemented
in Deduction

theory T . Accordingly, this technique is known by the name theory propa-
gation.

What are the requirements on these new clauses? As before, they have to
be implied by ϕ and are restricted to a finite set of atoms—typically to ϕ’s
atoms. It is desirable that, when T̂ h(α) is unsatisfiable, e(t) blocks α; it is not
mandatory, because whether it blocks α or not does not affect correctness—
Deduction only needs to be complete when α is a full assignment. Certain
SMT solvers exploit this fact to perform cheap checks on partial assignments,
e.g., bound the time dedicated to them. What if T̂ h(α) is satisfiable? Then
we require t to fulfill one of the following two conditions in order to guarantee
termination:

1. The clause e(t) is an asserting clause under α (asserting clauses are defined
in Sect. 2.2.3). This implies that the addition of e(t) to B and a call to
BCP leads to an assignment to the encoder of some literal.

2. When Deduction cannot find an asserting clause t as defined above, t
and e(t) are equivalent to true.

The second case occurs, for example, when all the Boolean variables are al-
ready assigned, and thus the formula is found to be satisfiable. In this case,
the condition in line 11 is met and the procedure continues from line 13, where
Decide is called again. Since all variables are already assigned, the procedure
returns “Satisfiable”.

Example 3.3. Consider once again the example of the two encoders e(x1 ≥
10) and e(x1 < 0). After the first of these has been set to true, the procedure
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Deduction detects that ¬(x1 < 0) is implied, or, in other words, that

t := ¬(x1 ≥ 10) ∨ ¬(x1 < 0) (3.22)

is T -valid. The corresponding encoded (asserting) clause

e(t) := (¬e(x1 ≥ 10) ∨ ¬e(x1 < 0)) (3.23)

is added to B, which leads to an immediate implication of ¬e(x1 < 0), and
possibly further implications.

�

�

�

�

Algorithm 3.4.1: DPLL(T )

Input: A formula ϕ
Output: “Satisfiable” if the formula is satisfiable, and “Unsatis-

fiable” otherwise

1. function DPLL(T )
2. AddClauses(cnf (e(ϕ)));
3. while (true) do
4. repeat
5. while (BCP() = “conflict”) do
6. backtrack-level := Analyze-Conflict();
7. if backtrack-level < 0 then return “Unsatisfiable”;
8. else BackTrack(backtrack-level);

9. 〈t, res〉:=Deduction(T̂ h(α));
10. AddClauses(e(t));
11. until t ≡ true;
12. if α is a full assignment then return “Satisfiable”;
13. Decide();

3.4.2 Performance, Performance...

Recall that, when α is partial, Deduction checks if there is a contradiction
on the theory side, and if not, it performs theory propagation.

For performance, it is frequently better to run an approximation in this
step for finding contradictions. Indeed, as long as α is partial, there is no need
for a complete procedure for deciding satisfiability. This is not changing the
completeness of the overall algorithm, since a complete check is performed
when α is full. A good example of this is what competitive solvers do when
the theory is integer linear arithmetic (to be covered in Sect. 5.3). Deciding
the conjunctive fragment of this theory is NP-complete, and therefore they
only consider the real relaxation of the problem (this means that they refer
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to the variables as being in R rather than in Z—reals instead of integers),
which can be solved in polynomial time. This means that Deduction will
occasionally miss a contradiction and hence not return a blocking clause.

Another performance consideration is related to theory propagation. It is
important to note that theory propagation is required not for correctness,
but only for efficiency. Hence, the amount of effort invested in computing
new implications needs to be well tuned in order to achieve the best overall
performance.

The term exhaustive theory propagation refers to a procedure that
finds and propagates all literals that are implied in T by T̂ h(α). A simple,
generic way (called “plunging”) to perform theory propagation is the follow-

ing: Given an unassigned theory atom at i, check whether T̂ h(α) implies either
at i or ¬at i. The set of unassigned atoms that are checked in this way depends
on how exhaustive we want the theory propagation to be.

Example 3.4. Consider equality logic, and the notation we used in Exam-
ple 3.1. A simple way to perform exhaustive theory propagation in equality
logic is the following: For each unassigned atom of the form xi = xj , check if
the current partial assignment forms a path in E= between xi and xj . If yes,
then this atom is implied by the literals in the path. If the partial assignment
forms a disequality path (a path in which exactly one edge is from E 6=), the
negation of this atom is implied.

This generic method is typically not the most efficient, however. In many
cases a better strategy is to perform only simple, inexpensive propagations,
while ignoring more expensive ones. In the case of linear arithmetic, for exam-
ple, experiments have shown that exhaustive theory propagation has a neg-
ative effect on overall performance. It is more efficient in this case to search
for simple-to-find implications, such as “if x > c holds, where x is a variable
and c a constant, then any literal of the form x > d is implied if d < c”.

3.4.3 Returning Implied Assignments Instead of Clauses

Another optimization of theory propagation is concerned with the way in
which the information discovered by Deduction is propagated to the Boolean
part of the solver. So far, we have required that the clause t returned by
Deduction be T -valid. For example, if α is such that T̂ h(α) implies a literal
lit , then

t := (lit ∨ ¬T̂ h(α)) . (3.24)

The encoded clause e(t) is of the form(
e(lit) ∨

∨
lit′∈Th(α)

¬e(lit ′)
)
. (3.25)

Nieuwenhuis, Oliveras, and Tinelli concluded that this was an inefficient
method, however [211]. Their experiments on various sets of benchmarks
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showed that on average fewer than 0.5% of these clauses were ever used again,
and that they burden the process. They suggested a better alternative, in
which Deduction returns a list of implied assignments (containing e(lit) in
this case) that the SAT solver then performs.

These implied assignments have no antecedent clauses in B, in con-
trast to the standard implications due to BCP. This causes a problem in
Analyze-Conflict (see Algorithm 2.2.2), which relies on antecedent clauses
for deriving conflict clauses. As a solution, when Analyze-Conflict needs
an antecedent for such an implied literal, it queries the decision procedure for
an explanation, i.e., a clause implied by ϕ that implies this literal given the
partial assignment at the time the assignment was created.

The explanation of an assignment might be the same clause that could
have been delivered in the first place, but not necessarily: for efficiency reasons,
typical implementations of Deduction do not retain such clauses, and hence
need to generate a new explanation. As an example, to explain an implied
literal x = y in equality logic, one needs to search for an equality path in the
equality graph between x and y, in which all the edges were present in the
graph at the time that this implication was identified and propagated.

3.4.4 Generating Strong Lemmas

If T̂ h(α) is unsatisfiable, Deduction returns a blocking clause t to eliminate
the assignment α. The stronger t is, the greater the number of inconsistent
assignments it eliminates. One way of obtaining a stronger formula is to con-
struct a clause consisting of the negation of those literals that participate in
the proof of unsatisfiability of T̂ h(α). In other words, if S is the set of literals
that serve as the premises in the proof of unsatisfiability, then the blocking
clause is

t :=
( ∨
l∈S

¬l
)
. (3.26)

Computing the set S corresponds to computing an unsatisfiable core of the
formula.5 Given a deductive proof of unsatisfiability, a core is easy to find.
For this purpose, one may represent such a proof as a directed acyclic graph,
as demonstrated in Fig. 3.4 (in this case for T being equality logic and unin-
terpreted functions). In this graph the nodes are labeled with literals and an
edge (n1, n2) denotes the fact that the literal labeling node n1 was used in
the inference of the literal labeling node n2. In such a graph, there is a single
sink node labeled with false, and the roots are labeled with the premises
(and possibly axioms) of the proof. The set of roots that can be reached by a
backward traversal from the false node correspond to an unsatisfiable core.

5 Unsatisfiable cores are defined for the case of propositional CNF formulas in
Sect. 2.2.6. The brief discussion here generalizes this earlier definition to inference
rules other than Binary Resolution.
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x1 = x2

x2 = x3

x1 = x3

x2 = x4

F (x1) = F (x3)

F (x1) 6= F (x3)
false

x3 = x4

Fig. 3.4. The premises of a proof of unsatisfiability correspond to roots in the graph
that can be reached by backward traversal from the false node (in this case all roots
other than x3 = x4). Whereas lemmas correspond to all roots, this subset of the
roots can be used for generating strong lemmas

3.4.5 Immediate Propagation

Now consider a variation of this algorithm that calls Deduction after every
new assignment to an encoding variable—which may be due to either a deci-
sion or a BCP implication—rather than letting BCP finish first. Furthermore,
assume that we are implementing exhaustive theory propagation as described
above. In this variant, a call to Deduction cannot lead to a conflict, which
means that it never has to return a blocking clause. A formal proof of this
observation is left as an exercise (Problem 3.5). An informal justification is

that, if an assignment to a single encoder makes T̂ h(α) unsatisfiable, then
the negation of that assignment would have been implied and propagated in
the previous step by Deduction. For example, if an encoder e(x = y) is
implied and communicated to Deduction, this literal can cause a conflict
only if there is a disequality path (such paths were discussed in Example 3.4)
between x and y according to the previous partial assignment. This means
that, in the previous step, ¬e(x = y) should have been propagated to the
Boolean part of the solver.

3.5 Problems

Problem 3.1 (incrementality in Lazy-CDCL). Recall that an incremental
SAT solver is one that knows which conflict clauses can be reused when given
a problem similar to the previous one (i.e., some clauses are added and others
are erased). Is there a difference between Algorithm 3.3.2 (Lazy-CDCL) and
replacing line 4 in Algorithm 3.3.1 with a call to an incremental SAT solver?

Problem 3.2 (an optimization for Algorithms 3.3.1–3.4.1?).

1. Consider the following variation of Algorithms 3.3.1–3.4.1 for an input
formula ϕ given in NNF (negations are pushed all the way into the
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atoms, e.g., ¬(x = y) appears as x 6= y). Rather than sending T̂ h(α) to
Deduction, send

∧
Thi for all i such that α(ei) = true. For example,

given an assignment

α := {e(x = y) 7→ true, e(y = z) 7→ false, e(x = z) 7→ true} , (3.27)

check
x = y ∧ x = z . (3.28)

Is this variation correct? Prove that it is correct or give a counterexample.
2. Show an example in which the above variation reduces the number of

iterations between Deduction and the SAT solver.

Problem 3.3 (theory propagation). Let DPT be a decision procedure for
a conjunction of Σ-literals. Suggest a procedure for performing exhaustive
theory propagation with DPT .

Problem 3.4 (pseudocode for a variant of DPLL(T )). Recall the variant
of DPLL(T ) suggested at the end of Sect. 3.4.5, where the partial assignment
is sent to the theory solver after every assignment to an encoder, rather than
only after BCP. Write pseudocode for this algorithm, and a corresponding
drawing in the style of Fig. 3.3.

Problem 3.5 (exhaustive theory propagation). In Sect. 3.4.5, it was
claimed that with exhaustive theory propagation, conflicts cannot occur
in Deduction and that, consequently, Deduction never returns blocking
clauses. Prove this claim.

3.6 Bibliographic Notes

The following are some bibliographic details about the development of the lazy
encoding frameworks and DPLL(T ). In 1999, Alessandro Armando, Claudio
Castellini, and Enrico Giunchiglia in [4] proposed a solver based on an in-
terplay between a SAT solver and a theory solver, in a fashion similar to the
simple lazy approach introduced at the beginning of this chapter. Their solver
was tailored to a single theory called disjunctive temporal constraints, which
is a restricted version of difference logic. In fact, they combined lazy with eager
reasoning: they used a preprocessing step that adds a large set of constraints
to the propositional skeleton (constraints of the form (¬e1 ∨¬e2) if a prelim-
inary check discovers that the theory literals corresponding to these encoders
contradict each other). This saves a lot of work later for the lazy-style engine.
In the same year LPSAT was introduced [286], which also includes many of
the features described in this chapter, including a process of learning strong
lemmas.
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The basic idea of integrating DPLL with a decision procedure for some
(single) theory was suggested even earlier than that; the focus of these efforts
are modal and description logics [5, 129, 149, 219].

The step-change in performance of SAT solving due to the Chaff SAT
solver in 2001 [202] led several groups, a year later, to (independently)
propose decision procedures that leverage this progress. All of these al-
gorithms correspond to some variation of the lazy approach described in
Sect. 3.3: CVC [19, 268] by Aaron Stump, Clark Barrett, and David Dill;
ICS-SAT [113] by Jean-Christophe Filliatre, Sam Owre, Harald Ruess, and
Natarajan Shankar; MathSAT [7] by Gilles Audemard, Piergiorgio Bertoli,
Alessandro Cimatti, Artur Kornilowicz, and Roberto Sebastiani; DLSAT
[186] by Moez Mahfoudh, Peter Niebert, Eugene Asarin, and Oded Maler;
and VeriFun [115] by Cormac Flanagan, Rajeev Joshi, Xinming Ou, and Jim
Saxe. Most of these tools were built as generic engines that can be extended
with different decision procedures. Since the introduction of these tools, this
approach has become mainstream, and at least twenty other solvers based on
the same principles have been developed and published.

DPLL(T ) was originally described in abstract terms, in the form of a cal-
culus, by Cesare Tinelli in [274]. Theory propagation had already appeared
under various names in the papers by Armando et al. [4] and Audemard et
al. [7] mentioned above. Efficient theory propagation tailored to the underly-
ing theory T (T being equalities with uninterpreted functions (EUF) in that
case) appeared first in a paper by Ganzinger et al. [120]. These authors also
introduced the idea of propagating theory implications by maintaining a stack
of such implied assignments, coupled with the ability to explain them a pos-
teriori, rather than sending asserting clauses to the DPLL part of the solver.
The idea of minimizing the lemmas (blocking clauses) can be attributed to
Leonardo de Moura and Harald Ruess [93], although, as we mentioned earlier,
finding small lemmas already appeared in the description of LPSAT.

Various details of how a DPLL-based SAT solver could be transformed
into a DPLL(T ) solver were described for the case of EUF in [120] and for
difference logic in [209]. A good description of DPLL(T ), starting from an
abstract DPLL procedure and ending with fine details of implementation, was
given in [211]. A very comprehensive survey on lazy SMT was given by Roberto
Sebastiani [253]. There has been quite a lot of research on how to design T -
solvers that can give explanations, which, as pointed out in Sect. 3.4.5, is a
necessary component for efficient implementation of this framework—see, for
example, [95, 210, 270].

Let us mention some SMT solvers that are, at the time of writing this
(2015), leading at various categories according to the annual competition:

1. Z3 from Microsoft Research, developed by Leonardo de Moura and Nikolaj
Bjørner [92]. In addition to its superior performance in many categories,
it also offers a convenient application-programming interface (API) in
several languages, and infrastructure for add-ons.
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2. CVC-4 [17, 15], the development of which is led by Clark Barrett and
Cesare Tinelli. CVC enables each theory to produce a proof that can be
checked independently with an external tool.

3. Yices-2 [90], which was originally developed by Leonardo de Moura and
later by Bruno Dutertre and Dejan Jovanovic.

4. MathSAT-5 [71], by Alessandro Cimatti, Alberto Griggio, and Roberto
Sebastiani.

5. Boolector [52], by Armin Biere and Robert Brummayer, which special-
izes in solving bit-vector formulas.

A procedure based on Binary Decision Diagrams (BDDs) [55], where the
predicates label the nodes, appeared in [132] and [199]. In the context of
hardware verification there have been a number of publications on multiway
decision graphs [81], a generalization of BDDs to various first-order theories.

3.7 Glossary

The following symbols were used in this chapter:

First used
Symbol Refers to . . . on page . . .

DPT A decision procedure for a conjunction of T -atoms 60

e(a) The propositional encoder of a Σ-atom a 61

α(t) A truth assignment (either full or partial) to the
variables of a formula t

61

at(ϕ) The atoms of ϕ 61

at i(ϕ) Assuming some predefined order on the atoms, this
denotes the i-th distinct atom in ϕ

61

α An assignment (either full or partial) to the atoms 64

Th(at i, α) See (3.15) 64

Th(α) See (3.16) 64

T̂ h(α) The conjunction over the elements in Th(α) 64

B A Boolean formula. In this chapter, initially set to
e(ϕ), and then strengthened with constraints

64

continued on next page
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continued from previous page

First used
Symbol Refers to . . . on page . . .

t For a Σ-theory T , t represents a Σ-formula (typi-
cally a clause) returned by Deduction

65

Bi The formula B in the i-th iteration of the loop in
Algorithm 3.3.1

66



4.1 Introduction

This chapter introduces the theory of equality, also known by the name
equality logic. Equality logic can be thought of as propositional logic where
the atoms are equalities between variables over some infinite type or between
variables and constants. As an example, the formula (y = z ∨ (¬(x = z)∧x =
2)) is a well-formed equality logic formula, where x, y, z ∈ R (R denotes the
reals). An example of a satisfying assignment is {x 7→ 2, y 7→ 2, z 7→ 0}.

Definition 4.1 (equality logic). An equality logic formula is defined by the
following grammar:

formula : formula ∧ formula | ¬formula | (formula) | atom
atom : term = term

term : identifier | constant

where the identifiers are variables defined over a single infinite domain such
as the Reals or Integers.1 Constants are elements from the same domain
as the identifiers.

From an algorithmic perspective, we restrict our attention to the conjunc-
tive fragment (i.e., conjunction is the only propositional operator allowed),
since the more general Boolean structure is handled in the DPLL(T ) frame-
work, as introduced in the previous chapter.

4.1.1 Complexity and Expressiveness

The satisfiability problem for equality logic, as defined in Definition 4.1, is
NP-complete. We leave the proof of this claim as an exercise (Problem 4.6).

1 The restriction to a single domain (also called a single type or a single sort) is
not essential. It is introduced for the sake of simplicity of the presentation.
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The fact that both equality logic and propositional logic are NP-complete
implies that they can model the same decision problems (with not more than
a polynomial difference in the number of variables). Why should we study
both, then?

For two main reasons: convenience of modeling, and efficiency. It is more
natural and convenient to use equality logic for modeling certain problems
than to use propositional logic, and vice versa. As for efficiency, the high-
level structure in the input equality logic formula can potentially be used to
make the decision procedure work faster. This information may be lost if the
problem is modeled directly in propositional logic.

4.1.2 Boolean Variables

Frequently, equality logic formulas are mixed with Boolean variables. Never-
theless, we shall not integrate them into the definition of the theory, in order
to keep the description of the algorithms simple. Boolean variables can easily
be eliminated from the input formula by replacing each such variable with an
equality between two new variables. But this is not a very efficient solution.
As we progress in this chapter, it will be clear that it is easy to handle Boolean
variables directly, with only small modifications to the various decision pro-
cedures. The same observation applies to many of the other theories that we
consider in this book.

4.1.3 Removing the Constants: a Simplification

Theorem 4.2. Given an equality logic formula ϕE, there is an algorithm that
�� ��ϕE

generates an equisatisfiable formula (see Definition 1.9) ϕE′ without constants,
in polynomial time.

�

�

�

�

Algorithm 4.1.1: Remove-Constants

Input: An equality logic formula ϕE with constants c1, . . . , cn
Output: An equality logic formula ϕE′ such that ϕE′ and ϕE are

equisatisfiable and ϕE′ has no constants

1. ϕE′ := ϕE.
2. In ϕE′, replace each constant ci, 1 ≤ i ≤ n, with a new variable Cci .

�� ��Cci
3. For each pair of constants ci, cj such that 1 ≤ i < j ≤ n, add the

constraint Cci 6= Ccj to ϕE′.

Algorithm 4.1.1 eliminates the constants from a given formula by replacing
them with new variables. Problems 4.1 and 4.2 focus on this procedure. Unless
otherwise stated, we assume from here on that the input equality formulas do
not have constants.
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4.2 Uninterpreted Functions

Equality logic is far more useful if combined with uninterpreted functions.
Uninterpreted functions are used for abstracting, or generalizing, theorems.
Unlike other function symbols, they should not be interpreted as part of a
model of a formula. In the following formula, for example, F and G are unin-
terpreted, whereas the binary function symbol “+” is interpreted as the usual
addition function:

F (x) = F (G(y)) ∨ x+ 1 = y . (4.1)

Definition 4.3 (equality logic with uninterpreted functions (EUF)).
An equality logic formula with uninterpreted functions and uninterpreted
predicates2 is defined by the following grammar:

formula : formula ∧ formula | ¬formula | (formula) | atom
atom : term = term | predicate-symbol (list of terms)

term : identifier | function-symbol (list of terms)

We generally use capital letters to denote uninterpreted functions, and use
the superscript “UF” to denote EUF formulas.

Aside: The Logic Perspective
To explain the meaning of uninterpreted functions from the perspective of
logic, we have to go back to the notion of a theory, which was explained in
Sect. 1.4. Recall the set of axioms (1.35), and that in this chapter we refer to
the quantifier-free fragment.

Only a single additional axiom (an axiom scheme, actually) is necessary
in order to extend equality logic to EUF. For each n-ary function symbol,
n > 0,

∀t1, . . . , tn, t′1, . . . , t′n.∧
i ti = t′i =⇒ F (t1, . . . , tn) = F (t′1, . . . , t

′
n) (Congruence) ,

(4.2)

where t1, . . . , tn, t
′
1, . . . , t

′
n are new variables. A similar axiom can be defined

for uninterpreted predicates.
Thus, whereas in theories where the function symbols are interpreted

there are axioms to define their semantics—what we want them to mean—
in a theory over uninterpreted functions, the only restriction we have over
a satisfying interpretation is that imposed by functional consistency, namely
the restriction imposed by the Congruence rule.

2 From here on, we refer only to uninterpreted functions. Uninterpreted predicates
are treated in a similar way.
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4.2.1 How Uninterpreted Functions Are Used

Replacing functions with uninterpreted functions in a given formula is a com-
mon technique for making it easier to reason about (e.g., to prove its validity).
At the same time, this process makes the formula weaker, which means that
it can make a valid formula invalid. This observation is summarized in the
following relation, where ϕUF is derived from a formula ϕ by replacing some

�� ��ϕUF

or all of its functions with uninterpreted functions:

|= ϕUF =⇒ |= ϕ . (4.3)

Uninterpreted functions are widely used in calculus and other branches of
mathematics, but in the context of reasoning and verification, they are mainly
used for simplifying proofs. Under certain conditions, uninterpreted functions
let us reason about systems while ignoring the semantics of some or all func-
tions, assuming they are not necessary for the proof. What does it mean to
ignore the semantics of a function? (A formal explanation is briefly given in
the aside on p. 79.) One way to look at this question is through the axioms
that the function can be defined by. Ignoring the semantics of the function
means that an interpretation need not satisfy these axioms in order to satisfy
the formula. The only thing it needs to satisfy is an axiom stating that the
uninterpreted function, like any function, is consistent, i.e., given the same
inputs, it returns the same outputs.3 This is the requirement of functional
consistency (also called functional congruence):

Functional consistency: Instances of the same function return the
same value if given equal arguments.

There are many cases in which the formula of interest is valid regardless
of the interpretation of a function. In these cases, uninterpreted functions
simplify the proof significantly, especially when it comes to mechanical proofs
with the aid of automatic theorem provers.

Assume that we have a method for checking the validity of an EUF formula.
Relying on this assumption, the basic scheme for using uninterpreted functions
is the following:

1. Let ϕ denote a formula of interest that has interpreted functions. As-
sume that a validity check of ϕ is too hard (computationally), or even
impossible.

3 Note that the term function here refers to the mathematical definition. ‘Functions’
in programming languages such as C or JAVA are not necessarily mathematical
functions, e.g., they do not necessarily terminate or return a value. Assuming
they do, they are functionally consistent with respect to all the data that they
read and write (including, e.g., global variables, the heap, data read from the
environment). If the function operates in a multi-threaded program or it has
nondeterminism, e.g., because of uninitialized local variables, then the definition
of consistency changes—see a discussion in [66].
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2. Assign an uninterpreted function to each interpreted function in ϕ. Sub-
stitute each function in ϕ with the uninterpreted function to which it is
mapped. Denote the new formula by ϕUF.

3. Check the validity of ϕUF. If it is valid, return “ϕ is valid” (this is justified
by (4.3)). Otherwise, return “don’t know”.

The transformation in step 2 comes at a price, of course, as it loses information.
As mentioned earlier, it causes the procedure to be incomplete, even if the
original formula belongs to a decidable logic. When there exists a decision
procedure for the input formula but it is too computationally hard to solve,
one can design a procedure in which uninterpreted functions are gradually
substituted back to their interpreted versions. We shall discuss this option
further in Sect. 4.4.

4.2.2 An Example: Proving Equivalence of Programs

As a motivating example, consider the problem of proving the equivalence of
the two C functions shown in Fig. 4.1. More specifically, the goal is to prove
that they return the same value for every possible input “in”.

int power3 ( int in )
{

int i , out a ;
out a = in ;
for ( i = 0 ; i < 2 ; i++)

out a = out a ∗ in ;
return out a ;

}

int power3 new ( int in )
{

int out b ;

out b = ( in ∗ in ) ∗ in ;

return out b ;
}

(a) (b)

Fig. 4.1. Two C functions. The proof of their equivalence is simplified by replacing
the multiplications (“*”) in both programs with uninterpreted functions

In general, proving the equivalence of two programs is undecidable, which
means that there is no sound and complete method to prove such an equiv-
alence. In the present case, however, equivalence can be decided.4 A key ob-
servation about these programs is that they have only bounded loops, and
therefore it is possible to compute their input/output relations. The deriva-
tion of these relations from these two programs can be done as follows:

1. Remove the variable declarations and “return” statements.

4 The undecidability of program verification and program equivalence is caused by
unbounded memory usage, which does not occur in this example.
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2. Unroll the for loop.
3. Replace the left-hand side variable in each assignment with a new auxiliary

variable.
4. Wherever a variable is read (referred to in an expression), replace it with

the auxiliary variable that replaced it in the last place where it was as-
signed.

5. Conjoin all program statements.

These operations result in the two formulas ϕa and ϕb, which are shown in
Fig. 4.2.5

out0 a = in0a ∧
out1 a = out0 a ∗ in0a ∧
out2 a = out1 a ∗ in0a

out0 b = (in0b∗in0b)∗in0b;

(ϕa) (ϕb)

Fig. 4.2. Two formulas corresponding to the programs (a) and (b) in Fig. 4.1. The
variables are defined over finite-width integers (i.e., bit vectors)

It is left to show that these two I/O relations are actually equivalent, that
is, to prove the validity of

in0 a = in0 b ∧ ϕa ∧ ϕb =⇒ out2 a = out0 b . (4.4)

Uninterpreted functions can help in proving the equivalence of the programs
(a) and (b), following the general scheme suggested in Sect. 4.2.1. The motiva-
tion in this case is computational: deciding formulas with multiplication over,
for example, 64-bit variables is notoriously hard. Replacing the multiplication
symbol with uninterpreted functions can solve the problem.

out0 a = in0 a ∧
out1 a = G(out0 a, in0 a) ∧
out2 a = G(out1 a, in0 a)

out0 b = G(G(in0 b, in0 b), in0 b)

(ϕUF
a ) (ϕUF

b )

Fig. 4.3. After replacing “∗” with the uninterpreted function G

Figure 4.3 presents ϕUF
a and ϕUF

b , which are ϕa and ϕb after the multi-
plication function has been replaced with a new uninterpreted function G.

5 A generalization of this form of translation to programs with “if” branches and
other constructs is known as static single assignment (SSA). SSA is used in
most optimizing compilers and can be applied to the verification of programs
with bounded loops in popular programming languages such as C [170]. See also
Example 1.25.
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Similarly, if we also had addition, we could replace all of its instances with
another uninterpreted function, say F . Instead of validating (4.4), we can now
attempt to validate

ϕUF

a ∧ ϕUF

b =⇒ out2 a = out0 b . (4.5)

Let us make the example more challenging. Consider the two programs in
Fig. 4.4. Now the input “in” to both programs is a pointer to a linked list,
which, we assume, is in both programs a structure of the following form:

struct l i s t {
struct l i s t ∗n ; // p o i n t e r to next e lement
int data ;

} ;

Simply enforcing the inputs to be the same, as we did in (4.4), is not suf-
ficient and is in fact meaningless since it is not the absolute addresses that
affect the outputs of the two programs, it is the data at these addresses that
matter. Hence we need to enforce the data rooted at “in” at the time of entry
to the functions, which is read by the two programs, to be the same at isomor-
phic locations. For example, the value of in −> n −> data is read by both
programs and hence should be the same on both sides. We use uninterpreted
functions to enforce this condition. In this case we need two such functions
which we call list n and list data, corresponding to the two fields in list.
See the formulation in Fig. 4.5. It gets a little more complicated when the
recursive data structure also gets written to—see Problem 4.7.

int mul3 ( struct l i s t ∗ in )
{
int i , out a ;
struct l i s t ∗a ;
a = in ;
out a = in −> data ;
for ( i = 0 ; i < 2 ; i++) {

a = a −> n ;
out a= out a ∗ a −> data ;

}
return out a ;
}

int mul3 new ( struct l i s t ∗ in )
{

int out b ;

out b =
in −> data ∗
in −> n −> data ∗
in −> n −> n −> data ;

return out b ;
}

(a) (b)

Fig. 4.4. The difference between these programs and those in Fig. 4.1 is that here
the input is a pointer to a list. Since now the input is an arbitrary address, the
challenge is to enforce the inputs to be the same in the verification condition
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a0 a = in0 a ∧
out0 a = list data(in0 a) ∧
a1 a = list n(a0 a) ∧
out1 a = G(out0 a, list data(a1 a)) ∧
a2 a = list n(a1 a) ∧
out2 a = G(out1 a, list data(a2 a))

out0 b = G(G(list data(in0 b),
list data(list n(in0 b)),
list data(list n(list n(in0 b)))))

(ϕUF
a ) (ϕUF

b )

Fig. 4.5. After replacing “∗” with the uninterpreted function G, and the fields n
and data with the uninterpreted function list n and list data, respectively

It is sufficient now to prove (4.4) in order to establish the equivalence of
these two programs.

As a side note, we should mention that that there are alternative methods
to prove the equivalence of these two programs. In this case, substitution is suf-
ficient: by simply substituting out2 a by out1 a∗in, out1 a by out0 a∗in, and
out0 a by in in ϕa, we can automatically prove (4.4), as we obtain syntacti-
cally equal expressions. However, there are many cases where such substitution
is not efficient, as it can increase the size of the formula exponentially. It is
also possible that substitution alone may be insufficient to prove equivalence.
Consider, for example, the two functions power3 con and power3 con new:

int power3 con
( int in , int con ) {

int i , out a ;
out a = in ;
for ( i = 0 ; i < 2 ; i++)

out a = con ? out a ∗ in
: out a ;

return out a ;
}

int power3 con new
( int in , int con ) {

int out b ;

out b = con ?( in ∗ in )∗ in
: in ;

return out b ;
}

(a) (b)

After substitution, we obtain two expressions,

out a = con? ((con? in ∗ in : in) ∗ in) : (con? in ∗ in : in) (4.6)

and
out b = con? (in ∗ in) ∗ in : in , (4.7)

corresponding to the two functions. Not only are these two expressions not
syntactically equivalent, but also the first expression grows exponentially with
the number of iterations.

Other examples of the use of uninterpreted functions are presented in
Sect. 4.5.
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4.3 Deciding a Conjunction of Equalities and
Uninterpreted Functions with Congruence Closure

We now show a method for solving a conjunction of equalities and uninter-
preted functions, introduced in 1978 by Shostak [258]. As is the case for most
of the theories that we consider in this book, the satisfiability problem for
conjunctions of predicates can be solved in polynomial time. Recall that we
are solving the satisfiability problem for formulas without constants, as those
can be removed with, for example, Algorithm 4.1.1.

Starting from a conjunction ϕUF of equalities and disequalities over vari-
ables and uninterpreted functions, Shostak’s algorithm proceeds in two stages
(see Algorithm 4.3.1) and is based on computing equivalence classes. The ver-
sion of the algorithm that is presented here assumes that the uninterpreted
functions have a single argument. The extension to the general case is left as
an exercise (Problem 4.5).

�

�

�

�

Algorithm 4.3.1: Congruence-Closure

Input: A conjunction ϕUF of equality predicates over variables
and uninterpreted functions

Output: “Satisfiable” if ϕUF is satisfiable, and “Unsatisfiable”
otherwise

1. Build congruence-closed equivalence classes.
(a) Initially, put two terms t1, t2 (either variables or uninterpreted-

function instances) in their own equivalence class if (t1 = t2) is a
predicate in ϕUF. All other variables form singleton equivalence
classes.

(b) Given two equivalence classes with a shared term, merge them.
Repeat until there are no more classes to be merged.

(c) Compute the congruence closure: given two terms ti, tj that are
in the same class and that F (ti) and F (tj) are terms in ϕUF for
some uninterpreted function F , merge the classes of F (ti) and
F (tj). Repeat until there are no more such instances.

2. If there exists a disequality ti 6= tj in ϕUF such that ti and tj are in
the same equivalence class, return “Unsatisfiable”. Otherwise return
“Satisfiable”.

Example 4.4. Consider the conjunction

ϕUF := x1 = x2 ∧ x2 = x3 ∧ x4 = x5 ∧ x5 6= x1 ∧ F (x1) 6= F (x3) . (4.8)

Initially, the equivalence classes are

{x1, x2}, {x2, x3}, {x4, x5}, {F (x1)}, {F (x3)} . (4.9)
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Step 1(b) of Algorithm 4.3.1 merges the first two classes:

{x1, x2, x3}, {x4, x5}, {F (x1)}, {F (x3)} . (4.10)

The next step also merges the classes containing F (x1) and F (x3), because
x1 and x3 are in the same class:

{x1, x2, x3}, {x4, x5}, {F (x1), F (x3)} . (4.11)

In step 2, we note that F (x1) 6= F (x3) is a predicate in ϕUF, but that F (x1)
and F (x3) are in the same class. Hence, ϕUF is unsatisfiable.

Variants of Algorithm 4.3.1 can be implemented efficiently with a union–
find data structure, which results in a time complexity of O(n log n) (see, for
example, [210]).

We ultimately aim at solving the general case of formulas with an arbi-
trary Boolean structure. In the original presentation of his method, Shostak
implemented support for disjunctions by means of case-splitting, which is the
bottleneck in this method. For example, given the formula

ϕUF := x1 = x2 ∨ (x2 = x3 ∧ x4 = x5 ∧ x5 6= x1 ∧ F (x1) 6= F (x3)) , (4.12)

he considered separately the two cases corresponding to the left and right
parts of the disjunction. This can work well as long as there are not too many
cases to consider.

The general problem of how to deal with propositional structure arises with
all the theories that we study in this book. There are two main approaches.
As discussed in Chap. 3, a highly efficient method is to combine a DPLL-
based SAT solver with an algorithm for deciding a conjunction of literals
from a particular theory. The former searches for a satisfying assignment to
the propositional part of the formula, and the latter is used to check whether
a particular propositional assignment corresponds to a satisfying assignment
to the equality predicates.

An alternative approach is based on a full reduction of the formula to
propositional logic, and is the subject of Chap. 11.

4.4 Functional Consistency Is Not Enough

Functional consistency is not always sufficient for proving correct statements.
This is not surprising, as we clearly lose information by replacing concrete,
interpreted functions with uninterpreted functions. Consider, for example, the
plus (“+”) function. Now suppose that we are given a formula containing the
two function instances x1 + y1 and x2 + y2, and, owing to other parts of the
formula, it holds that x1 = y2 and y1 = x2. Further, suppose that we re-
place “+” with a binary uninterpreted function F . Since we only compare
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arguments pairwise in the order in which they appear, the proof cannot rely
on the fact that these two function instances are evaluated to give the same
result. In other words, functional consistency alone does not capture the com-
mutativity of the “+” function, which may be necessary for the proof. This
demonstrates the fact that by using uninterpreted functions we lose complete-
ness (see Definition 1.6).

One may add constraints that capture more information about the original
function—commutativity, in the case of the example above. For the above
example, we may add

(x1 = y2 ∧ x2 = y1) =⇒ F (x1, x2) = F (y1, y2) . (4.13)

Such constraints can be tailored as needed, to reflect properties of the
uninterpreted functions. In other words, by adding these constraints we make
them partially interpreted functions, as we model some of their properties.
For the multiplication function, for example, we can add a constraint that,
if one of the arguments is equal to 0, then so is the result. Generally, the
more abstract the formula is, the easier it is, computationally, to solve it.
On the other hand, the more abstract the formula is, the fewer correct facts
about its original version can be proven. The right abstraction level for a given
formula can be found by a trial-and-error process. Such a process can even
be automated with an abstraction–refinement loop,6 as can be seen in
Algorithm 4.4.1 (this is not so much an algorithm as a framework that needs
to be concretized according to the exact problem at hand). In step 2, the
algorithm returns “Valid” if the abstract formula is valid. The correctness of
this step is implied by (4.3). If, on the other hand, the formula is not valid and
the abstract formula ϕ′ is identical to the original one, the algorithm returns
“Not valid” in the next step. The optional step that follows (step 4) is not
necessary for the soundness of the algorithm, but only for its performance.
This step is worth executing only if it is easier than solving ϕ itself.

Plenty of room for creativity is left when one is implementing such an
algorithm: Which constraints to add in step 5? When to resort to the origi-
nal interpreted functions? How to implement step 4? An instance of such a
procedure is described, for the case of bit-vector arithmetic, in Sect. 6.3.

4.5 Two Examples of the Use of Uninterpreted Functions

Uninterpreted functions can be used for property-based verification, that is,
proving that a certain property holds for a given model. Occasionally it hap-
pens that properties are correct regardless of the semantics of a certain func-
tion, and functional consistency is all that is needed for the proof. In such

6 Abstraction–refinement loops [173] are implemented in many automated formal-
reasoning tools. The types of abstractions used can be very different from those
presented here, but the basic elements of the iterative process are the same.
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Aside: Rewriting Systems
Observations such as “a multiplication by 0 is equal to 0” can be formulated
with rewriting rules . Such rules are the basis of rewriting systems [100, 151],
which are used in several branches of mathematics and mathematical logic.
Rewriting systems, in their basic form, define a set of terms and (possibly non-
deterministic) rules for transforming them. Theorem provers that are based
on rewriting systems (such as ACL2 [162]) use hundreds of such rules. Many
of these rules can be used in the context of the partially interpreted functions
that were studied in Sect. 4.4, as demonstrated for the “multiply by 0” rule.

Rewriting systems, as a formalism, have the same power as a Turing ma-
chine. They are frequently used for defining and implementing inference sys-
tems, for simplifying formulas by replacing subexpressions with equal but
simpler subexpressions, for computing results of arithmetic expressions, and
so forth. Such implementations require the design of a strategy for applying
the rules, and a mechanism based on pattern matching for detecting the set
of applicable rules at each step.

�

�

�

�

Algorithm 4.4.1: Abstraction-Refinement

Input: A formula ϕ in a logic L, such that there is a decision pro-
cedure for L with uninterpreted functions

Output: “Valid” if ϕ is valid, and “Not valid” otherwise

1. ϕ′ := T (ϕ). . T is an abstraction function.
2. If ϕ′ is valid then return “Valid”.
3. If ϕ′ = ϕ then return “Not valid”.
4. (Optional) Let α′ be a counterexample to the validity of ϕ′. If it is possible

to derive a counterexample α to the validity of ϕ (possibly by extending
α′ to those variables in ϕ that are not in ϕ′), return “Not valid”.

5. Refine ϕ′ by adding more constraints as discussed in Sect. 4.4, or by re-
placing uninterpreted functions with their original interpreted versions
(reaching, in the worst case, the original formula ϕ).

6. Return to step 2.

cases, replacing the function with an uninterpreted function can simplify the
proof.

The more common use of uninterpreted functions, however, is for proving
equivalence between systems. In the chip design industry, proving equivalence
between two versions of a hardware circuit is a standard procedure. Another
application is translation validation, a process of proving the semantic
equivalence of the input and output of a compiler. Indeed, we end this chapter
with a detailed description of these two problem domains.
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In both applications, it is expected that every function on one side of the
equation can be mapped to a similar function on the other side. In such cases,
replacing all functions with an uninterpreted version is typically sufficient for
proving equivalence.

4.5.1 Proving Equivalence of Circuits

Pipelining is a technique for improving the performance of a circuit such as a
microprocessor. The computation is split into phases, called pipeline stages.
This allows one to speed up the computation by making use of concurrent
computation, as is done in an assembly line in a factory.

The clock frequency of a circuit is limited by the length of the longest
path between latches (i.e., memory components), which is, in the case of a
pipelined circuit, simply the length of the longest stage. The delay of each
path is affected by the gates along that path and the delay that each one of
them imposes.

Figure 4.6(a) shows a pipelined circuit. The input, denoted by in, is pro-
cessed in the first stage. We model the combinational gates within the stages
with uninterpreted functions, denoted by C,F,G,H,K, and D. For the sake
of simplicity, we assume that they each impose the same delay. The circuit
applies function F to the inputs in, and stores the result in latch L1. This
can be formalized as follows:

L1 = F (in) . (4.14)

The second stage computes values for L2, L3, and L4:

L2 = L1 ,
L3 = K(G(L1)) ,
L4 = H(L1) .

(4.15)

The third stage contains a multiplexer. A multiplexer is a circuit that selects
between two inputs according to the value of a Boolean signal. In this case, this
selection signal is computed by a function C. The output of the multiplexer
is stored in latch L5:

L5 = C(L2) ?L3 : D(L4) . (4.16)

Observe that the second stage contains two functions, G and K, where the
output of G is used as an input for K. Suppose that this is the longest path
within the circuit. We now aim to transform the circuit in order to make it
work faster. This can be done in this case by moving the gates represented by
K down into the third stage.

Observe also that only one of the values in L3 and L4 is used, as the
multiplexer selects one of them depending on C. We can therefore remove one
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Fig. 4.6. Showing the correctness of a transformation of a pipelined circuit using
uninterpreted functions. After the transformation, the circuit has a shorter longest
path between stages, and thus can be operated at a higher clock frequency

of the latches by introducing a second multiplexer in the second stage. The
circuit after these changes is shown in Fig. 4.6(b). It can be formalized as
follows:

L′1 = F (in) ,
L′2 = C(L′1) ,
L′3 = C(L′1) ?G(L′1) : H(L′1) ,
L′5 = L′2 ?K(L′3) : D(L′3) .

(4.17)

The final result of the computation is stored in L5 in the original circuit,
and in L′5 in the modified circuit. We can show that the transformations are
correct by proving that, for all inputs, the conjunction of the above equalities
implies

L5 = L′5 . (4.18)

This proof can be automated by using a decision procedure for equalities and
uninterpreted functions.
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4.5.2 Verifying a Compilation Process with Translation Validation

The next example illustrates a translation validation process that relies on un-
interpreted functions. Unlike the hardware example, we start from interpreted
functions and replace them with uninterpreted functions.

Suppose that a source program contains the statement

z = (x1 + y1) ∗ (x2 + y2) , (4.19)

which the compiler that we wish to check compiles into the following sequence
of three assignments:

u1 = x1 + y1; u2 = x2 + y2; z = u1 ∗ u2 . (4.20)

Note the two new auxiliary variables u1 and u2 that have been added by the
compiler. To verify this translation, we construct the verification condition

u1 = x1+y1∧u2 = x2+y2∧z = u1∗u2 =⇒ z = (x1+y1)∗(x2+y2) , (4.21)

whose validity we wish to check.7

We now abstract the concrete functions appearing in the formula, namely
addition and multiplication, by the abstract uninterpreted-function symbols
F and G, respectively. The abstracted version of the implication above is

(u1 = F (x1, y1) ∧ u2 = F (x2, y2) ∧ z = G(u1, u2))
=⇒ z = G(F (x1, y1), F (x2, y2)) .

(4.22)

Clearly, if the abstracted version is valid, then so is the original concrete one
(see (4.3)).

The success of such a process depends on how different the two sides
are. Suppose that we are attempting to perform translation validation for
a compiler that does not perform heavy arithmetic optimizations. In such a
case, the scheme above will probably succeed. If, on the other hand, we are
comparing two arbitrary source codes, even if they are equivalent, it is unlikely
that the same scheme will be sufficient. It is possible, for example, that one
side uses the function 2 ∗ x while the other uses x + x. Since addition and
multiplication are represented by two different uninterpreted functions, they
are not associated with each other in any way according to the requirement of
functional consistency, and hence the proof of equivalence is not able to rely
on the fact that the two expressions are semantically equal.

7 This verification condition is an implication rather than an equivalence because
we are attempting to prove that the values allowed in the target code are also
allowed in the source code, but not necessarily the other way. This asymmetry
can be relevant when the source code is interpreted as a specification that allows
multiple behaviors, only one of which is actually implemented. For the purpose of
demonstrating the use of uninterpreted functions, whether we use an implication
or an equivalence is immaterial.
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4.6 Problems

Problem 4.1 (eliminating constants). Prove that, given an equality logic
formula, Algorithm 4.1.1 returns an equisatisfiable formula without constants.

Problem 4.2 (a better way to eliminate constants?). Is the following
theorem correct?

Theorem 4.5. An equality formula ϕE is satisfiable if and only if the for-
mula ϕE′ generated by Algorithm 4.6.1 (Remove-Constants-Optimized)
is satisfiable.

Prove the theorem or give a counterexample. You may use the result of Prob-
lem 4.1 in your proof.

�

�

�

�

Algorithm 4.6.1: Remove-Constants-Optimized

Input: An equality logic formula ϕE

Output: An equality logic formula ϕE′ such that ϕE′ contains
no constants and ϕE′ is satisfiable if and only if ϕE is
satisfiable

1. ϕE′ := ϕE.
2. Replace each constant c in ϕE′ with a new variable Cc.
3. For each pair of constants ci, cj with an equality path between them

(ci =∗ cj) not through any other constant, add the constraint Cci 6=
Ccj to ϕE′. (Recall that the equality path is defined over GE(ϕE),
where ϕE is given in NNF.)

Problem 4.3 (deciding a conjunction of equality predicates with a
graph analysis). Show a graph-based algorithm for deciding whether a given
conjunction of equality predicates is satisfiable, while relying on the notion of
contradictory cycles. What is the complexity of your algorithm?

Problem 4.4 (deciding a conjunction of equalities with equivalence
classes).

1. Consider Algorithm 4.6.2. Present details of an efficient implementation
of this algorithm, including a data structure. What is the complexity of
your implementation?
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Algorithm 4.6.2: Conj-of-Equalities-with-Equiv-Classes

Input: A conjunction ϕE of equality predicates
Output: “Satisfiable” if ϕE is satisfiable, and “Unsatisfiable” oth-

erwise

(a) Define an equivalence class for each variable. For each equality x = y
in ϕE, unite the equivalence classes of x and y.

(b) For each disequality u 6= v in ϕE, if u is in the same equivalence class
as v, return “Unsatisfiable”.

(c) Return “Satisfiable”.

2. Apply your algorithm to the following formula, and determine if it is
satisfiable:

x = f(f(f(f(f(x))))) ∧ x = f(f(f(x))) ∧ x 6= f(x) .

Problem 4.5 (a generalization of the Congruence-Closure algo-
rithm). Generalize Algorithm 4.3.1 to the case in which the input formula
includes uninterpreted functions with multiple arguments.

Problem 4.6 (complexity of deciding equality logic). Prove that decid-
ing equality logic is NP-complete.

Note that, to show membership in NP, it is not enough to say that every
solution can be checked in P-time, because the solution itself can be arbitrarily
large, and hence even reading it is not necessarily a P-time operation.

Problem 4.7 (using uninterpreted functions to encode fields of
a recursive data structure). Recall the example at the second part of
Sect. 4.2.2, involving pointers. The method as presented does not work if the
data structure is also written to. For example, in the figure below, the code
on the left results in the SSA equation on the right, which is contradictory.

a -> data = 1;
x = a -> data;
a -> data = 2;
x = a -> data.

data(a) = 1 ∧
x = data(a) ∧
data(a) = 2 ∧
x1 = data(a);

Generalize the method so it also works in the presence of updates.

4.7 Bibliographic Notes

The treatment of equalities and uninterpreted functions can be divided into
several eras. Solving the conjunctive fragment, for example as described in
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Sect. 4.3, coupled with the DPLL(T ) framework that was described in the
previous chapter, is the latest of those.

In the first era, before the emergence of the first effective theorem provers
in the 1970s, this logic was considered only from the point of view of math-
ematical logic, most notably by Ackermann [1]. In the same book, he also
offered what we now call Ackermann’s reduction, a procedure that we will de-
scribe in Sect. 11.2.1. Equalities were typically handled with rewriting rules,
for example, substituting x with y given that x = y.

The second era started in the mid-1970s with the work of Downey, Sethi,
and Tarjan [106], who showed that the decision problem was a variation on
the common-subexpression problem; the work of Nelson and Oppen [205], who
applied the union–find algorithm to compute the congruence closure and im-
plemented it in the Stanford Pascal Verifier; and then the work of Shostak, who
suggested in [258] the congruence closure method that was briefly presented
in Sect. 4.3. All of this work was based on computing the congruence closure,
and indicated a shift from the previous era, as it offered complete and rela-
tively efficient methods for deciding equalities and uninterpreted functions. In
its original presentation, Shostak’s method relied on syntactic case-splitting
(see Sect. 1.3), which is the source of the inefficiency of that algorithm. In
Shostak’s words, “it was found that most examples four or five lines long could
be handled in just a few seconds”. Even factoring in the fact that this was
done on a 1978 computer (a DEC-10 computer), this statement still shows
how much progress has been made since then, as nowadays many formulas
with tens of thousands of variables are solved in a few seconds. Several vari-
ants on Shostak’s method exist, and have been compared and described in
a single theoretical framework called abstract congruence closure in [10].
Shostak’s method and its variants are still used in theorem provers, although
several improvements have been suggested to combat the practical complexity
of case-splitting, namely lazy case-splitting, in which the formula is split only
when it is necessary for the proof, and other similar techniques.

The third era will be described in Chap. 11 (see also the bibliographic
notes in Sect. 11.9). It is based on the small-model property , namely reducing
the problem to one in which only a finite set of values needs to be checked
in order to determine satisfiability (this is not trivial, given that the original
domain of the variables is infinite). The fourth and current era, as mentioned
above, is based on solving the conjunctive fragment as part of the DPLL(T )
framework.
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4.8 Glossary

The following symbols were used in this chapter:

First used
Symbol Refers to . . . on page . . .

ϕE Equality formula 78

Cc A variable used for substituting a constant c in the
process of removing constants from equality formulas

78

ϕUF Equality formula + uninterpreted functions 80



5.1 Introduction

This chapter introduces decision procedures for conjunctions of linear con-
straints. Recall that this is all that is needed for solving the more general case
in which there is an arbitrary Boolean structure, based on the algorithms that
were described in Chap. 3.

Definition 5.1 (linear arithmetic). The syntax of a formula in linear
arithmetic is defined by the following rules:

formula : formula ∧ formula | (formula) | atom

atom : sum op sum

op : = | ≤ | <
sum : term | sum + term

term : identifier | constant | constant identifier

The binary minus operator a−b can be read as “syntactic sugar” for a+ −1b.
The operators ≥ and > can be replaced by ≤ and < if the coefficients are
negated. We consider the rational numbers and the integers as domains. For
the former domain the problem is polynomial, and for the latter the problem
is NP-complete.

As an example, the following is a formula in linear arithmetic:

3x1 + 2x2 ≤ 5x3 ∧ 2x1 − 2x2 = 0 . (5.1)

Note that equality logic, as discussed in Chap. 4, is a fragment of linear
arithmetic. The following example demonstrates how a compiler may use a
decision procedure for arithmetic in order to optimize code.

Example 5.2. Consider the following C code fragment:

5

Linear Arithmetic
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for(i=1; i<=10; i++)
a[j+i]=a[j];

This fragment is intended to replicate the value of a[j] into the locations
a[j+1] to a[j+10]. A compiler might generate the assembly code for the
body of the loop as follows. Suppose variable i is stored in register R1, and
variable j is stored in register R2:

R4 ←− mem[a+R2] /* set R4 to a[j] */
R5 ←− R2+R1 /* set R5 to j+i */
mem[a+R5] ←− R4 /* set a[j+i] to a[j] */
R1 ←− R1+1 /* i++ */

Code that requires memory access is typically very slow compared with code
that operates only on the internal registers of the CPU. Thus, it is highly
desirable to avoid load and store instructions. A potential optimization for the
code above is to move the load instruction for a[j], i.e., the first statement
above, out of the loop body. After this transformation, the load instruction is
executed only once at the beginning of the loop, instead of 10 times. However,
the correctness of this transformation relies on the fact that the value of
a[j] does not change within the loop body. We can check this condition by
comparing the index of a[j+i] with the index of a[j] together with the
constraint that i is between 1 and 10:

i ≥ 1 ∧ i ≤ 10 ∧ j + i = j . (5.2)

This formula has no satisfying assignment, and thus, the memory accesses
cannot overlap. The compiler can safely perform the read access to a[j] only
once.

5.1.1 Solvers for Linear Arithmetic

The Simplex method is one of the oldest algorithms for numerical optimiza-
tion. It is used to find an optimal value for an objective function given a
conjunction of linear constraints over real variables. The objective function
and the constraints together are called a linear program (LP). However,
since we are interested in the decision problem rather than the optimization
problem, we cover in this chapter a variant of the Simplex method called gen-
eral Simplex that takes as input a conjunction of linear constraints over the
reals without an objective function, and decides whether this set is satisfiable.

Integer linear programming, or ILP, is the same problem for con-
straints over integers. Section 5.3 covers Branch and Bound, an algorithm
for deciding such problems.

These two algorithms can solve conjunctions of a large number of con-
straints efficiently. We shall also describe two other methods that are con-
sidered less efficient, but can still be competitive for solving small problems.



5.2 The Simplex Algorithm 99

We describe them because they are still used in practice, and they are rel-
atively easy to implement in their basic form. The first of these methods is
called Fourier–Motzkin variable elimination, and decides the satisfiability
of a conjunction of linear constraints over the reals. The second method is
called Omega test, and decides the satisfiability of a conjunction of linear
constraints over the integers.

5.2 The Simplex Algorithm

The Simplex algorithm, originally developed by Dantzig in 1947, decides sat-
isfiability of a conjunction of weak linear inequalities. The set of constraints is
normally accompanied by a linear objective function in terms of the variables
of the formula. If the set of constraints is satisfiable, the Simplex algorithm
provides a satisfying assignment that maximizes the value of the objective
function. Simplex is worst-case exponential. Although there are polynomial-
time algorithms for solving this problem (the first known polynomial-time al-
gorithm, introduced by Khachiyan in 1979, is called the ellipsoid method),
Simplex is still considered a very efficient method in practice and the most
widely used, apparently because the need for an exponential number of steps
is rare in real problems.

5.2.1 A Normal Form

As we are concerned with the decision problem rather than the optimization
problem, we are going to cover a variant of the Simplex algorithm called
general Simplex that does not require an objective function. The general
Simplex algorithm accepts two types of constraints as input:

1. Equalities of the form

a1x1 + . . .+ anxn = 0 . (5.3)

2. Lower and upper bounds on the variables:1

li ≤ xi ≤ ui , (5.4)

where li and ui are constants representing the lower and upper bounds
�� ��li�� ��ui

on xi, respectively. The bounds are optional as the algorithm supports
unbounded variables.

This representation of the input formula is called the general form. It
is a normal form, which does not restrict the modeling power of weak linear
constraints, as we can transform an arbitrary weak linear constraint L ./ R
with ./∈ {=,≤,≥} into the form above as follows. Let m be the number of

�� ��m
constraints. For the i-th constraint, 1 ≤ i ≤ m:

1 This is in contrast to the classical Simplex algorithm, in which all variables are
constrained to be nonnegative.
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1. Move all addends in R to the left-hand side to obtain L′ ./ b, where b is
a constant.

2. Introduce a new variable si. Add the constraints

L′ − si = 0 and si ./ b . (5.5)

If ./ is the equality operator, rewrite si = b to si ≥ b and si ≤ b.

The original and the transformed conjunctions of constraints are obviously
equisatisfiable.

Example 5.3. Consider the following conjunction of constraints:

x +y ≥ 2 ∧
2x −y ≥ 0 ∧
−x +2y ≥ 1 .

(5.6)

The problem is rewritten into the general form as follows:

x +y −s1 = 0 ∧
2x −y −s2 = 0 ∧
−x +2y −s3 = 0 ∧

s1 ≥ 2 ∧
s2 ≥ 0 ∧
s3 ≥ 1 .

(5.7)

The new variables s1, . . . , sm are called the additional variables. The vari-
ables x1, . . . , xn in the original constraints are called problem variables.
Thus, we have n problem variables and m additional variables. As an opti-

�� ��n
mization of the procedure above, an additional variable is only introduced
if L′ is not already a problem variable or has been assigned an additional
variable previously.

5.2.2 Basics of the Simplex Algorithm

It is common and convenient to view linear constraint satisfaction problems
as geometrical problems. In geometrical terms, each variable corresponds to
a dimension, and each constraint defines a convex subspace: in particular,
inequalities define half-spaces and equalities define hyperplanes.2 The (closed)
subspace of satisfying assignments is defined by an intersection of half spaces
and hyperplanes, and forms a convex polytope. This is implied by the fact
that an intersection between convex subspaces is convex as well. A geometrical
representation of the original problem in Example 5.3 appears in Fig. 5.1.

It is common to represent the coefficients in the input problem using an
m-by-(n+m) matrix A. The variables x1, . . . , xn, s1, . . . , sm are written as a

�� ��A
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1 2 3 4

1

2

(A) (B)

2x− y ≥ 0

x+ y ≥ 2

x

y

3

(C)

−x+ 2y ≥ 1

Fig. 5.1. A graphical representation of the problem in Example 5.3, projected on
x and y. The shaded region corresponds to the set of satisfying assignments. The
marked points (A), (B), and (C) illustrate the progress that the Simplex algorithm
makes, as will be explained in the rest of this section

vector x. Following this notation, our problem is equivalent to the existence �� ��x
of a vector x such that

Ax = 0 and

m∧
i=1

li ≤ si ≤ ui , (5.8)

where li ∈ {−∞} ∪ Q is the lower bound of xi and ui ∈ {+∞} ∪ Q is the
upper bound of xi. The infinity values are for the case that a bound is not
set.

Example 5.4. We continue Example 5.3. Using the variable ordering x, y,
s1, s2, s3, a matrix representation for the equality constraints in (5.7) is 1 1 −1 0 0

2 −1 0 −1 0
−1 2 0 0 −1

 . (5.9)

Note that a large portion of the matrix in Example 5.4 is very regular: the
columns that are added for the additional variables s1, . . . , sm correspond to
an m-by-m diagonal matrix, where the diagonal coefficients are −1. This is a
direct consequence of using the general form.

While the matrix A changes as the algorithm progresses, the number of
columns of this kind is never reduced. The set of m variables corresponding

2 A hyperplane in a d-dimensional space is a subspace with d− 1 dimensions. For
example, in two dimensions, a hyperplane is a straight line, and in one dimension
it is a point.
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to these columns are called the basic variables and denoted by B. They are
also called the dependent variables, as their values are determined by those
of the nonbasic variables. The nonbasic variables are denoted by N . It is

�� ��B,N
convenient to store and manipulate a representation of A called the tableau,
which is simply A without the diagonal submatrix. The tableau is thus an
m-by-n matrix, where the columns correspond to the nonbasic variables, and
each row is associated with a basic variable—the same basic variable that has a
“−1” entry at that row in the diagonal submatrix in A. Thus, the information
originally stored in the diagonal matrix is now represented by the variables
labeling the rows.

Example 5.5. We continue our running example. The tableau and the bounds
for Example 5.3 are

x y

s1 1 1

s2 2 −1

s3 −1 2

2 ≤ s1
0 ≤ s2
1 ≤ s3

The tableau is simply a different representation of A, since Ax = 0 can be
rewritten into ∧

xi∈B

(
xi =

∑
xj∈N

aijxj

)
. (5.10)

When written in the form of a matrix, the sums on the right-hand side of
(5.10) correspond exactly to the tableau.

5.2.3 Simplex with Upper and Lower Bounds

The general Simplex algorithm maintains, in addition to the tableau, an as-
signment α : B ∪ N −→ Q. The algorithm initializes its data structures as

�� ��α
follows:

• The set of basic variables B is the set of additional variables.
• The set of nonbasic variables N is the set of problem variables.
• For any xi with i ∈ {1, . . . , n+m}, α(xi) = 0.

If the initial assignment of zero to all variables (i.e., the origin) satisfies
all upper and lower bounds of the basic variables, then the formula can be
declared satisfiable (recall that initially the nonbasic variables do not have
explicit bounds). Otherwise, the algorithm begins a process of changing this
assignment.

Algorithm 5.2.1 summarizes the steps of the general Simplex procedure.
The algorithm maintains two invariants:
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Algorithm 5.2.1: General-Simplex

Input: A linear system of constraints S
Output: “Satisfiable” if the system is satisfiable, and “Unsatisfiable”

otherwise

1. Transform the system into the general form

Ax = 0 and

m∧
i=1

li ≤ si ≤ ui .

2. Set B to be the set of additional variables s1, . . . , sm.
3. Construct the tableau for A.
4. Determine a fixed order on the variables.
5. If there is no basic variable that violates its bounds, return “Satisfiable”.

Otherwise, let xi be the first basic variable in the order that violates its
bounds.

6. Search for the first suitable nonbasic variable xj in the order for pivoting
with xi. If there is no such variable, return “Unsatisfiable”.

7. Perform the pivot operation on xi and xj .
8. Go to step 5.

• In-1. Ax = 0
• In-2. The values of the nonbasic variables are within their bounds:

∀xj ∈ N . lj ≤ α(xj) ≤ uj . (5.11)

Clearly, these invariants hold initially since all the variables in x are set to 0,
and the nonbasic variables have no bounds.

The main loop of the algorithm checks if there exists a basic variable
that violates its bounds. If there is no such variable, then both the basic
and nonbasic variables satisfy their bounds. Owing to invariant In-1, this
means that the current assignment α satisfies (5.8), and the algorithm returns
“Satisfiable”.

Otherwise, let xi be a basic variable that violates its bounds, and assume,
without loss of generality, that α(xi) > ui, i.e., the upper bound of xi is
violated. How do we change the assignment to xi so it satisfies its bounds?
We need to find a way to reduce the value of xi. Recall how this value is
specified:

xi =
∑
xj∈N

aijxj . (5.12)

The value of xi can be reduced by decreasing the value of a nonbasic variable
xj such that aij > 0 and its current assignment is higher than its lower bound
lj , or by increasing the value of a variable xj such that aij < 0 and its current
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assignment is lower than its upper bound uj . A variable xj fulfilling one of
these conditions is said to be suitable. If there are no suitable variables, then
the problem is unsatisfiable and the algorithm terminates.

Let θ denote by how much we have to increase (or decrease) α(xj) in order
�� ��θ

to meet xi’s upper bound:

θ
.
=

ui − α(xi)

aij
. (5.13)

Increasing (or decreasing) xj by θ puts xi within its bounds. On the other hand
xj does not necessarily satisfy its bounds anymore, and hence may violate the
invariant In-2. We therefore swap xi and xj in the tableau, i.e., make xi
nonbasic and xj basic. This requires a transformation of the tableau, which
is called the pivot operation. The pivot operation is repeated until either a
satisfying assignment is found, or the system is determined to be unsatisfiable.

The Pivot Operation

Suppose we want to swap xi with xj . We will need the following definition:

Definition 5.6 (pivot element, column, and row). Given two variables
xi and xj, the coefficient aij is called the pivot element. The column of xj is
called the pivot column. The row i is called the pivot row.

A precondition for swapping two variables xi and xj is that their pivot element
is nonzero, i.e., aij 6= 0. The pivot operation (or pivoting) is performed as
follows:

1. Solve row i for xj .
2. For all rows l 6= i, eliminate xj by using the equality for xj obtained from

row i.

The reader may observe that the pivot operation is also the basic operation
in the well-known Gaussian variable elimination procedure.

Example 5.7. We continue our running example. As described above, we
initialize α(xi) = 0. This corresponds to point (A) in Fig. 5.1. Recall the
tableau and the bounds:

x y

s1 1 1

s2 2 −1

s3 −1 2

2 ≤ s1
0 ≤ s2
1 ≤ s3

The lower bound of s1 is 2, which is violated. The nonbasic variable that is
the lowest in the ordering is x. The variable x has a positive coefficient, but
no upper bound, and is therefore suitable for the pivot operation. We need to
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increase s1 by 2 in order to meet the lower bound, which means that x has to
increase by 2 as well (θ = 2). The first step of the pivot operation is to solve
the row of s1 for x:

s1 = x+ y ⇐⇒ x = s1 − y . (5.14)

This equality is now used to replace x in the other two rows:

s2 = 2(s1 − y)− y ⇐⇒ s2 = 2s1 − 3y (5.15)

s3 = −(s1 − y) + 2y ⇐⇒ s3 = −s1 + 3y (5.16)

Written as a tableau, the result of the pivot operation is

s1 y

x 1 −1

s2 2 −3

s3 −1 3

α(x) = 2
α(y) = 0
α(s1) = 2
α(s2) = 4
α(s3) = −2

This new state corresponds to point (B) in Fig. 5.1.
The lower bound of s3 is violated; this is the next basic variable that is

selected. The only suitable variable for pivoting is y. We need to add 3 to s3
in order to meet the lower bound. This translates into

θ =
1− (−2)

3
= 1 . (5.17)

After performing the pivot operation with s3 and y, the final tableau is

s1 s3

x 2/3 −1/3

s2 1 −1

y 1/3 1/3

α(x) = 1
α(y) = 1
α(s1) = 2
α(s2) = 1
α(s3) = 1

This assignment α satisfies the bounds, and thus {x 7→ 1, y 7→ 1} is a satisfying
assignment. It corresponds to point (C) in Fig. 5.1.

Selecting the pivot element according to a fixed ordering for the basic and
nonbasic variable ensures that no set of basic variables is ever repeated, and
hence guarantees termination (no cycling can occur). For a detailed proof
see [109]. This way of selecting a pivot element is called Bland’s rule.

5.2.4 Incremental Problems

Decision problems are often constructed in an incremental manner, that is,
the formula is strengthened with additional conjuncts. This can make a once
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satisfiable formula unsatisfiable. One scenario in which an incremental decision
procedure is useful is the DPLL(T ) framework, which we saw in Chap. 3.

The general Simplex algorithm is well suited for incremental problems.
First, notice that any constraint can be disabled by removing its correspond-
ing upper and lower bounds. The equality in the tableau is afterwards redun-
dant, but will not render a satisfiable formula unsatisfiable. Second, the pivot
operation performed on the tableau is an equivalence transformation, i.e., it
preserves the set of solutions. We can therefore start the procedure with the
tableau we have obtained from the previous set of bounds.

The addition of upper and lower bounds is implemented as follows:

• If a bound for a nonbasic variable was added, update the values of the
nonbasic variables according to the tableau to restore In-2.

• Call Algorithm 5.2.1 to determine if the new problem is satisfiable. Start
with step 5.

Furthermore, it is often desirable to remove constraints after they have
been added. This is also relevant in the context of DPLL(T ) because this al-
gorithm activates and deactivates constraints. Normally constraints (or rather
bounds) are removed when the current set of constraints is unsatisfiable. After
removing a constraint the assignment has to be restored to a point at which it
satisfied the two invariants of the general Simplex algorithm. This can be done
by simply restoring the assignment α to the last known satisfying assignment.
There is no need to modify the tableau.

5.3 The Branch and Bound Method

Branch and Bound is a widely used method for solving integer linear pro-
grams. As in the case of the Simplex algorithm, Branch and Bound was
developed for solving the optimization problem, but the description here fo-
cuses on an adaptation of this algorithm to the decision problem.

The integer linear systems considered here have the same form as described
in Sect. 5.2, with the additional requirement that the value of any variable in
a satisfying assignment must be drawn from the set of integers. Observe that
it is easy to support strict inequalities simply by adding 1 to or subtracting 1
from the constant on the right-hand side.

Definition 5.8 (relaxed problem). Given an integer linear system S, its
relaxation is S without the integrality requirement (i.e., the variables are not
required to be integer).

We denote the relaxed problem of S by relaxed(S). Assume the exis-
tence of a procedure LPfeasible , which receives a linear system S as input,
and returns “Unsatisfiable” if S is unsatisfiable and a satisfying assignment
otherwise. LPfeasible can be implemented with, for example, a variation of
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General-Simplex (Algorithm 5.2.1) that outputs a satisfying assignment
if S is satisfiable. Using these notions, Algorithm 5.3.1 decides an integer
linear system of constraints (recall that only conjunctions of constraints are
considered here).�

�

�

�

Algorithm 5.3.1: Feasibility-Branch-and-Bound

Input: An integer linear system S
Output: “Satisfiable” if S is satisfiable, and “Unsatisfiable” oth-

erwise

1. procedure Search-integral-solution(S)
2. res = LPfeasible (relaxed(S));
3. if res = “Unsatisfiable” then return ; . prune branch
4. else
5. if res is integral then . integer solution found

abort(“Satisfiable”);
6. else
7. Select a variable v that is assigned a nonintegral value r;
8. Search-integral-solution (S ∪ (v ≤ brc));
9. Search-integral-solution (S ∪ (v ≥ dre));

10. . no integer solution in this branch

11. procedure Feasibility-Branch-and-Bound(S)
12. Search-integral-solution(S);
13. return (“Unsatisfiable”);

The idea of the algorithm is simple: it solves the relaxed problem with
LPfeasible ; if the relaxed problem is unsatisfiable, it backtracks because there
is also no integer solution in this branch. If, on the other hand, the relaxed
problem is satisfiable and the solution returned by LPfeasible happens to be
integral, it terminates—a satisfying integral solution has been found. Other-
wise, the problem is split into two subproblems, which are then processed with
a recursive call. The nature of this split is best illustrated by an example.

Example 5.9. Let x1, . . . , x4 be the variables of S. Assume that LPfeasible

returns the solution
(1, 0.7, 2.5, 3) (5.18)

in line 2. In line 7, Search-integral-solution chooses between x2 and x3,
which are the variables that were assigned a nonintegral value. Suppose that
x2 is chosen. In line 8, S (the linear system solved at the current recursion
level) is then augmented with the constraint

x2 ≤ 0 (5.19)
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and sent for solving at a deeper recursion level. If no solution is found in this
branch, S is augmented instead with

x2 ≥ 1 (5.20)

and, once again, is sent to a deeper recursion level. If both these calls return,
this implies that S has no satisfying solution, and hence the procedure re-
turns (backtracks). Note that returning from the initial recursion level causes
the calling function Feasibility-Branch-and-Bound to return “Unsatisfi-
able”.

Algorithm 5.3.1 is not complete: there are cases for which it will branch
forever. As noted in [109], the system 1 ≤ 3x − 3y ≤ 2, for example, has no
integer solutions but unbounded real solutions, and causes the basic branch
and bound algorithm to loop forever. In order to make the algorithm complete,
it is necessary to rely on the small-model property that such formulas have
(we discuss this property in detail in Sect. 11.6). This means that, if there is
a satisfying solution, then there is also such a solution within a finite bound,
which, for this theory, is also computable. Thus, once we have computed this
bound on the domain of each variable, we can stop searching for a solution
once we have passed it. A detailed study of this bound in the context of
optimization problems can be found in [208]. The same bounds are applicable
to the feasibility problem as well. Briefly, it was shown in [208] that, given an
integer linear system S with an M ×N coefficient matrix A, then if there is
a solution to S, then one of the extreme points of the convex hull of S is also
a solution, and any such solution x0 is bounded as follows:

x0j ≤ ((M +N) ·N · θ)N for j = 1, . . . , N , (5.21)

where θ is the maximal element in the problem. Thus, (5.21) gives us a bound
on each of the N variables, which, by adding it as an explicit constraint, forces
termination.

Finally, let us mention that Branch and Bound can be extended in a
straightforward way to handle the case in which some of the variables are
integers while the others are real. In the context of optimization problems,
this problem is known by the name mixed integer programming.

5.3.1 Cutting Planes

Cutting-planes are constraints that are added to a linear system that remove
only noninteger solutions; that is, all satisfying integer solutions, if they exist,
remain satisfying, as demonstrated in Fig. 5.2. These new constraints improve
the tightness of the relaxation in the process of solving integer linear systems,
and hence can make branch and bound faster (this combination is known by
the name branch-and-cut). Furthermore, if certain conditions are met—see
Chap. 23.8 in [252] for details—Simplex + cutting planes of the type described
below form a decision procedure for integer linear arithmetic.
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Aside: Branch and Bound for Integer Linear Programs
When Branch and Bound is used for solving an optimization problem, af-
ter a first feasible solution is found, the search is continued until no smaller
solution (assuming it is a minimization problem) can be found. A branch is
pruned if the value of the objective according to a solution to the relaxed
problem at its end is larger than the best solution found so far. The objective
can also be used to guide the branching heuristic (which variable to split on
next, and which side to explore first), e.g., find solutions that imply a small
value of the objective function, so more future branches are pruned (bound)
early.

satisfying assignments

Fig. 5.2. The dots represent integer solutions. The thin dotted line represents a
cutting-plane—a constraint that does not remove any integral solution

Here, we describe a family of cutting planes called Gomory cuts. We first
illustrate this technique with an example, and then generalize it.

Suppose that our problem includes the integer variables x1, . . . , x3, and
the lower bounds 1 ≤ x1 and 0.5 ≤ x2. Further, suppose that the final tableau
of the general Simplex algorithm includes the constraint

x3 = 0.5x1 + 2.5x2 , (5.22)

and that the solution α is {x3 �→ 1.75, x1 �→ 1, x2 �→ 0.5}, which, of course,
satisfies (5.22). Subtracting these values from (5.22) gives us

x3 − 1.75 = 0.5(x1 − 1) + 2.5(x2 − 0.5) . (5.23)

We now wish to rewrite this equation so the left-hand side is an integer:

x3 − 1 = 0.75 + 0.5(x1 − 1) + 2.5(x2 − 0.5) . (5.24)
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The two right most terms must be positive because 1 and 0.5 are the lower
bounds of x1 and x2, respectively. Since the right-hand side must add up to
an integer as well, this implies that

0.75 + 0.5(x1 − 1) + 2.5(x2 − 0.5) ≥ 1 . (5.25)

Note, however, that this constraint is unsatisfied by α since by construction
all the elements on the left other than the fraction 0.75 are equal to zero under
α. This means that adding this constraint to the relaxed system will rule out
this solution. On the other hand since it is implied by the integer system of
constraints, it cannot remove any integer solution.

Let us generalize this example into a recipe for generating such cutting
planes. The generalization refers also to the case of having variables assigned
their upper bounds, and both negative and positive coefficients. In order to
derive a Gomory cut from a constraint, the constraint has to satisfy two
conditions: First, the assignment to the basic variable has to be fractional;
second, the assignments to all the nonbasic variables have to correspond to
one of their bounds. The following recipe, which relies on these conditions, is
based on a report by Dutertre and de Moura [109].

Consider the i-th constraint:

xi =
∑
xj∈N

aijxj , (5.26)

where xi ∈ B. Let α be the assignment returned by the general Simplex
algorithm. Thus,

α(xi) =
∑
xj∈N

aijα(xj) . (5.27)

We now partition the nonbasic variables to those that are currently assigned
their lower bound and those that are currently assigned their upper bound:

J = {j | xj ∈ N ∧ α(xj) = lj} ,
K = {j | xj ∈ N ∧ α(xj) = uj} .

(5.28)

Subtracting (5.27) from (5.26) taking the partition into account yields

xi − α(xi) =
∑
j∈J

aij(xj − lj)−
∑
j∈K

aij(uj − xj) . (5.29)

Let f0 = α(xi)− bα(xi)c. Since we assumed that α(xi) is not an integer then
0 < f0 < 1. We can now rewrite (5.29) as

xi − bα(xi)c = f0 +
∑
j∈J

aij(xj − lj)−
∑
j∈K

aij(uj − xj) . (5.30)

Note that the left-hand side is an integer. We now consider two cases.
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• If
∑
j∈J aij(xj − lj) −

∑
j∈K aij(uj − xj) > 0 then, since the right-hand

side must be an integer,

f0 +
∑
j∈J

aij(xj − lj)−
∑
j∈K

aij(uj − xj) ≥ 1 . (5.31)

We now split J and K as follows:

J+ = {j | j ∈ J ∧ aij > 0} ,
J− = {j | j ∈ J ∧ aij < 0} ,
K+ = {j | j ∈ K ∧ aij > 0} ,
K− = {j | j ∈ K ∧ aij < 0} .

(5.32)

Gathering only the positive elements in the left-hand side of (5.31) gives
us ∑

j∈J+

aij(xj − lj)−
∑
j∈K−

aij(uj − xj) ≥ 1− f0 , (5.33)

or, equivalently,∑
j∈J+

aij
1− f0

(xj − lj)−
∑
j∈K−

aij
1− f0

(uj − xj) ≥ 1 . (5.34)

• If
∑
j∈J aij(xj − lj)−

∑
j∈K aij(uj − xj) ≤ 0 then again, since the right-

hand side must be an integer,

f0 +
∑
j∈J

aij(xj − lj)−
∑
j∈K

aij(uj − xj) ≤ 0 . (5.35)

Equation (5.35) implies that∑
j∈J−

aij(xj − lj)−
∑
j∈K+

aij(uj − xj) ≤ −f0 . (5.36)

Dividing by −f0 gives us

−
∑
j∈J−

aij
f0

(xj − lj) +
∑
j∈K+

aij
f0

(uj − xj) ≥ 1 . (5.37)

Note that the left-hand side of both (5.34) and (5.37) is greater than zero.
Therefore these two equations imply∑

j∈J+

aij
1− f0

(xj − lj)−
∑
j∈J−

aij
f0

(xj − lj)

+
∑
j∈K+

aij
f0

(uj − xj)−
∑
j∈K−

aij
1− f0

(uj − xj) ≥ 1 . (5.38)

Since each of the elements on the left-hand side is equal to zero under the
current assignment α, this assignment α is ruled out by the new constraint. In
other words, the solution to the linear problem augmented with the constraint
is guaranteed to be different from the previous one.
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5.4 Fourier–Motzkin Variable Elimination

Similarly to the Simplex method (Sect. 5.2), the Fourier–Motzkin variable
elimination algorithm takes a conjunction of linear constraints over real vari-
ables and decides their satisfiability. It is not as efficient as Simplex, but it
can still be competitive for small formulas. In practice it is used mostly as a
method for eliminating existential quantifiers, a topic that we will only cover
later, in Sect. 9.2.4.

Let m denote the number of such constraints, and let x1, . . . , xn denote
the variables used by these constraints. We begin by eliminating equalities.

5.4.1 Equality Constraints

As a first step, equality constraints of the following form are eliminated:

n∑
j=1

ai,j · xj = bi . (5.39)

We choose a variable xj that has a nonzero coefficient ai,j in an equality
constraint i. Without loss of generality, we assume that xn is the variable
that is to be eliminated. The constraint (5.39) can be rewritten as

xn =
bi
ai,n
−
n−1∑
j=1

ai,j
ai,n
· xj . (5.40)

Now we substitute the right-hand side of (5.40) for xn into all the other
constraints, and remove constraint i. This is iterated until all equalities are
removed. We are left with a system of inequalities of the form

m∧
i=1

n∑
j=1

ai,jxj ≤ bi . (5.41)

5.4.2 Variable Elimination

The basic idea of the variable elimination algorithm is to heuristically choose
a variable and then to eliminate it by projecting its constraints onto the rest
of the system, resulting in new constraints.

Example 5.10. Consider Fig. 5.3(a): the constraints

0 ≤ x ≤ 1, 0 ≤ y ≤ 1,
3

4
≤ z ≤ 1 (5.42)

form a cuboid. Projecting these constraints onto the x and y axes, and thereby
eliminating z, results in a square which is given by the constraints
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0 ≤ x ≤ 1, 0 ≤ y ≤ 1 . (5.43)

Figure 5.3(b) shows a triangle formed by the constraints

x ≤ y + 10, y ≤ 15, y ≥ −x+ 20 . (5.44)

The projection of the triangle onto the x axis is a line given by the constraints

5 ≤ x ≤ 25 . (5.45)

0

1
x

0

1y

0

z

0

x

0

y

(a)

5 10 15 20 25
x

2.5
5

7.5
10

12.5
15

17.5
y

x � 10 � y

y � 15

y � 20 � x

5 10 15 20 25
x

2.5
5

7.5
10

12.5
15

17.5
y

(b)

Fig. 5.3. Projection of constraints: (a) a cuboid is projected onto the x and y axes;
(b) a triangle is projected onto the x axis

Thus, the projection forms a new problem with one variable fewer, but possibly
more constraints. This is done iteratively until all variables but one have been
eliminated. The problem with one variable is trivially decidable.

The order in which the variables are eliminated may be predetermined,
or adjusted dynamically to the current set of constraints. There are various
heuristics for choosing the elimination order. A standard greedy heuristic gives
priority to variables that produce fewer new constraints when eliminated.

Once again, assume that xn is the variable chosen to be eliminated. The
constraints are partitioned according to the coefficient of xn. Consider the
constraint with index i:

n∑
j=1

ai,j · xj ≤ bi . (5.46)

By splitting the sum, (5.46) can be rewritten into

ai,n · xn ≤ bi −
n−1∑
j=1

ai,j · xj . (5.47)
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If ai,n is zero, the constraint can be disregarded when we are eliminating xn.
Otherwise, we divide by ai,n. If ai,n is positive, we obtain

xn ≤
bi
ai,n
−
n−1∑
j=1

ai,j
ai,n
· xj . (5.48)

Thus, if ai,n > 0, the constraint is an upper bound on xn. If ai,n < 0, the
constraint is a lower bound. We denote the right-hand side of (5.48) by βi.

�� ��βi

Unbounded Variables

It is possible that a variable is not bounded both ways, i.e., it has either only
upper bounds or only lower bounds. Such variables are called unbounded
variables. Unbounded variables can be simply removed from the system to-
gether with all constraints that use them. Removing these constraints can
make other variables unbounded. Thus, this simplification stage iterates until
no such variables remain.

Bounded Variables

If xn has both an upper and a lower bound, the algorithm enumerates all
pairs of lower and upper bounds. Let u ∈ {1, . . . ,m} denote the index of an
upper-bound constraint, and l ∈ {1, . . . ,m} denote the index of a lower-bound
constraint for xn, where l 6= u. For each such pair, we have

βl ≤ xn ≤ βu . (5.49)

The following new constraint is added:

βl ≤ βu . (5.50)

The Formula (5.50) may simplify to 0 ≤ bk, where bk is some constant smaller
than 0. In this case, the algorithm has found a conflicting pair of constraints
and concludes that the problem is unsatisfiable. Otherwise, all constraints
that involve xn are removed. The new problem is solved recursively as before.

Example 5.11. Consider the following set of constraints:

x1 −x2 ≤ 0
x1 −x3 ≤ 0
−x1 +x2 +2x3 ≤ 0

−x3 ≤ −1 .

(5.51)

Suppose we decide to eliminate the variable x1 first. There are two upper
bounds on x1, namely x1 ≤ x2 and x1 ≤ x3, and one lower bound, which is
x2 + 2x3 ≤ x1.
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Using x1 ≤ x2 as the upper bound, we obtain a new constraint 2x3 ≤ 0,
and using x1 ≤ x3 as the upper bound, we obtain a new constraint x2+x3 ≤ 0.
Constraints involving x1 are removed from the problem, which results in the
following new set:

2x3 ≤ 0
x2 +x3 ≤ 0
−x3 ≤ −1 .

(5.52)

Next, observe that x2 is unbounded (as it has no lower bound), and hence
the second constraint can be eliminated, which simplifies the formula. We
therefore progress by eliminating x2 and all the constraints that contain it:

2x3 ≤ 0
−x3 ≤ −1 .

(5.53)

Only the variable x3 remains, with a lower and an upper bound. Combining
the two into a new constraint results in 1 ≤ 0, which is a contradiction. Thus,
the system is unsatisfiable.

The Simplex method in its basic form, as described in Sect. 5.2, allows only
nonstrict (≤) inequalities.3 The Fourier–Motzkin method, on the other hand,
can easily be extended to handle a combination of strict (<) and nonstrict
inequalities: if either the lower or the upper bound is a strict inequality, then
so is the resulting constraint.

5.4.3 Complexity

In each iteration, the number of constraints can increase in the worst case
from m to m2/4, which results overall in m2n/4n constraints. Thus, as a
decision procedure, Fourier–Motzkin variable elimination is only suitable for
a relatively small set of constraints and a small number of variables.

5.5 The Omega Test

5.5.1 Problem Description

The Omega test is an algorithm to decide the satisfiability of a conjunction
of linear constraints over integer variables. It can be seen as a variant of
the Fourier–Motzkin algorithm (Sect. 5.4). Both are not considered to be
the fastest decision procedures, but they are used for existential quantifier
elimination, a topic that will only be covered later, in Chap. 9.

Each conjunct is assumed to be either an equality of the form

3 There are extensions of Simplex to strict inequalities. See, for example, [108].
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n∑
i=1

aixi = b (5.54)

or a nonstrict inequality of the form

n∑
i=1

aixi ≤ b . (5.55)

The coefficients ai are assumed to be integers; if they are not, by making
use of the assumption that the coefficients are rational, the problem can be
transformed into one with integer coefficients by multiplying the constraints
by the least common multiple of the denominators. In Sect. 5.6, we show how
strict inequalities can be transformed into nonstrict inequalities.

The run time of the Omega test depends on the size of the coefficients ai. It
is therefore desirable to transform the constraints such that small coefficients
are obtained. This can be done by dividing the coefficients a1, . . . , an of each
constraint by their greatest common divisor g. The resulting constraint is
called normalized. If the constraint is an equality constraint, this results in

n∑
i=1

ai
g
xi =

b

g
. (5.56)

If g does not divide b exactly, the system is unsatisfiable. If the constraint is
an inequality, one can tighten the constraint by rounding down the constant:

n∑
i=1

ai
g
xi ≤

⌊
b

g

⌋
. (5.57)

More simplifications of this kind are described in Sect. 5.6.

Example 5.12. The equality 3x+ 3y = 2 can be normalized to x+ y = 2/3,
which is unsatisfiable. The constraint 8x+6y ≤ 0 can be normalized to obtain
4x+ 3y ≤ 0. The constraint 1 ≤ 4y can be tightened to obtain 1 ≤ y.

As in the case of Fourier–Motzkin, equality and inequality constraints are
treated separately; all equality constraints are removed before inequalities are
considered.

5.5.2 Equality Constraints

In order to eliminate an equality of the form of (5.54), we first check if there is
a variable xj with a coefficient 1 or −1, i.e., |aj | = 1. If yes, we transform the
constraint as follows. Without loss of generality, assume j = n. We isolate xn:

xn =
b

an
−
n−1∑
i=1

ai
an
xi . (5.58)
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The variable xn can now be substituted by the right-hand side of (5.58) in all
constraints.

If there is no variable with a coefficient 1 or −1, we cannot simply divide
by the coefficient, as this would result in nonintegral coefficients. Instead, the
algorithm proceeds as follows: it determines the variable that has the nonzero
coefficient with the smallest absolute value. Assume again that xn is chosen,
and that an > 0. The Omega test transforms the constraints iteratively until
some coefficient becomes 1 or −1. The variable with that coefficient can then
be eliminated as above.

For this transformation, a new binary operator m̂od , called symmetric

�� ��a m̂od b
modulo, is defined as follows:

a m̂od b
.
= a− b ·

⌊
a

b
+

1

2

⌋
. (5.59)

The symmetric modulo operator is very similar to the usual modular arith-

metic operator. If a mod b < b/2, then a m̂od b = a mod b. If a mod b is greater
than or equal to b/2, b is deducted, and thus

a m̂od b =

{
a mod b : a mod b < b/2
(a mod b)− b : otherwise .

(5.60)

We leave the proof of this equivalence as an exercise (see Problem 5.12).
Our goal is to derive a term that can replace xn. For this purpose, we

define m
.
= an + 1, introduce a new variable σ, and add the following new

constraint:
n∑
i=1

(ai m̂odm)xi = mσ + b m̂odm . (5.61)

We split the sum on the left-hand side to obtain

(an m̂odm)xn = mσ + b m̂odm−
n−1∑
i=1

(ai m̂odm)xi . (5.62)

Since an m̂odm = −1 (see Problem 5.14), this simplifies to

xn = −mσ − b m̂odm+

n−1∑
i=1

(ai m̂odm)xi . (5.63)

The right-hand side of (5.63) is used to replace xn in all constraints. Any
equality from the original problem (5.54) is changed as follows:

n−1∑
i=1

aixi + an

(
−mσ − b m̂odm+

n−1∑
i=1

(ai m̂odm)xi

)
= b , (5.64)

which can be rewritten as
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− anmσ +

n−1∑
i=1

(ai + an(ai m̂odm))xi = b+ an(b m̂odm) . (5.65)

Since an = m− 1, this simplifies to

−anmσ +
∑n−1
i=1 ((ai − (ai m̂odm)) +m(ai m̂odm))xi =

b− (b m̂odm) +m(b m̂odm) .
(5.66)

Note that ai − (ai m̂odm) is equal to mbai/m + 1/2c, and thus all terms are
divisible by m. Dividing (5.66) by m results in

−anσ+

n−1∑
i=1

(bai/m+1/2c+(ai m̂odm))xi = bb/m+1/2c+(b m̂odm) . (5.67)

The absolute value of the coefficient of σ is the same as the absolute value
of the original coefficient an, and it seems that nothing has been gained by
this substitution. However, observe that the coefficient of xi can be bounded
as follows (see Problem 5.13):

|bai/m+ 1/2c+ (ai m̂odm)| ≤ 5

6
|ai| . (5.68)

Thus, the absolute values of the coefficients in the equality are strictly smaller
than their previous values. As the coefficients are always integral, repeated
application of equality elimination eventually generates a coefficient of 1 or −1
on some variable. This variable can then be eliminated directly, as described
earlier (see (5.58)).

Example 5.13. Consider the following formula:

−3x1 +2x2 = 0
3x1 +4x2 = 3 .

(5.69)

The variable x2 has the coefficient with the smallest absolute value (a2 = 2).
Thus, m = a2 + 1 = 3, and we add the following constraint (see (5.61)):

(−3 m̂od 3)x1 + (2 m̂od 3)x2 = 3σ . (5.70)

This simplifies to x2 = −3σ. Substituting −3σ for x2 results in the following
problem:

−3x1 −6σ = 0
3x1 −12σ = 3 .

(5.71)

Division by m results in
−x1 −2σ = 0
x1 −4σ = 1 .

(5.72)

As expected, the coefficient of x1 has decreased. We can now substitute x1 by
4σ + 1, and obtain −6σ = 1, which is unsatisfiable.
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5.5.3 Inequality Constraints

Once all equalities have been eliminated, the algorithm attempts to find a
solution for the remaining inequalities. The control flow of Algorithm 5.5.1 is
illustrated in Fig. 5.4. As in the Fourier–Motzkin procedure, the first step is
to choose a variable to be eliminated. Subsequently, the three subprocedures
Real-Shadow, Dark-Shadow, and Gray-Shadow produce new constraint sets,
which are solved recursively.

Note that many of the subproblems generated by the recursion are actu-
ally identical. An efficient implementation uses a hash table that stores the
solutions of previously solved problems.

�

�

�

�

Algorithm 5.5.1: Omega-Test

Input: A conjunction of constraints C
Output: “Satisfiable” if C is satisfiable, and “Unsatisfiable” otherwise

1. if C only contains one variable then
2. Solve and return result; . (solving this problem is trivial)
3.
4. Otherwise, choose a variable v that occurs in C;
5. CR := Real-Shadow(C, v);
6. if Omega-Test(CR) = “Unsatisfiable” then . Recursive call
7. return “Unsatisfiable”;
8.
9. CD := Dark-Shadow(C, v);

10. if Omega-Test(CD) = “Satisfiable” then . Recursive call
11. return “Satisfiable”;
12.
13. if CR = CD then . Exact projection?
14. return “Unsatisfiable”;
15.
16. C1

G, . . . , C
n
G := Gray-Shadow(C, v);

17. for all i ∈ {1, . . . , n} do
18. if Omega-Test(CiG) = “Satisfiable” then . Recursive call
19. return “Satisfiable”;
20.
21. return “Unsatisfiable”;

Checking the Real Shadow

Even though the Omega test is concerned with constraints over integers, the
first step is to check if there are integer solutions in the relaxed problem,
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Check

real shadow

Check

Check

dark shadow

gray shadow

No integer solution

Integer solution

Integer solution

No integer solution

No integer solution in dark shadow

Possible integer solution

UNSAT

SAT

UNSAT

SAT

Fig. 5.4. Overview of the Omega test

which is called the real shadow. The real shadow is the same projection that
the Fourier–Motzkin procedure uses. The Omega test is then called recursively
to check if the projection contains an integer. If there is no such integer, then
there is no integer solution to the original system either, and the algorithm
concludes that the system is unsatisfiable.

Assume that the variable to be eliminated is denoted by z. As in the case
of the Fourier–Motzkin procedure, all pairs of lower and upper bounds have
to be considered. Variables that are not bounded both ways can be removed,
together with all constraints that contain them.

Let β ≤ bz and cz ≤ γ be constraints, where c and b are positive integer
constants and γ and β denote the remaining linear expressions. Consequently,
β/b is a lower bound on z, and γ/c is an upper bound on z. The new constraint
is obtained by multiplying the lower bound by c and the upper bound by b:

Lower bound Upper bound

β ≤ bz cz ≤ γ
cβ ≤ cbz cbz ≤ bγ

(5.73)

The existence of such a variable z implies

cβ ≤ bγ . (5.74)

Example 5.14. Consider the following set of constraints:
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2y ≤ x
8y ≥ 2 +x
2y ≤ 3 −x .

(5.75)

The triangle spanned by these constraints is depicted in Fig. 5.5. Assume that
we decide to eliminate x. In this case, the combination of the two constraints
2y ≤ x and 8y ≥ 2 + x results in 8y − 2 ≥ 2y, which simplifies to y ≥ 1/3.
The two constraints 2y ≤ x and 2y ≤ 3− x combine into 2y ≤ 3− 2y, which
simplifies to y ≤ 3/4. Thus, 1/3 ≤ y ≤ 3/4 must hold, which has no integer
solution. The set of constraints is therefore unsatisfiable.

0.5 1 1.5 2 2.5 3
x

�0.25

0.25
0.5

0.75
1

1.25
1.5

y

2 y � x 2 y � 3 � x

8 y � 2 � x

0.5 1 1.5 2 2.5 3
x

�0.25

0.25
0.5

0.75
1

1.25
1.5

y

Fig. 5.5. Computing the real shadow: eliminating x

The converse of this observation does not hold, i.e., if we find an integer
solution within the real shadow, this does not guarantee that the original
set of constraints has an integer solution. This is illustrated by the following
example.

Example 5.15. Consider the same set of constraints as in Example 5.14.
This time, eliminate y instead of x. This projection is depicted in Fig. 5.6.
We obtain 2/3 ≤ x ≤ 2, which has two integer solutions. The triangle, on the
other hand, contains no integer solution.

The real shadow is an overapproximating projection, as it contains more
solutions than does the original problem. The next step in the Omega test is
to compute an underapproximating projection, i.e., if that projection contains
an integer solution, so does the original problem. This projection is called the
dark shadow.

Checking the Dark Shadow

The name dark shadow is motivated by optics. Assume that the object we
are projecting is partially translucent. Places that are “thicker” will project
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Fig. 5.6. Computing the real shadow: eliminating y

a darker shadow. In particular, a dark area in the shadow where the object is
thicker than 1 must have at least one integer above it.

After the first phase of the algorithm, we know that there is a solution
to the real shadow, i.e., cβ ≤ bγ. We now aim at determining if there is an
integer z such that cβ ≤ cbz ≤ bγ, which is equivalent to

∃z ∈ Z.
β

b
≤ z ≤ γ

c
. (5.76)

Assume that (5.76) does not hold. Let i denote �β/b�, i.e., the largest integer
that is smaller than β/b. Since we have assumed that there is no integer
between β/b and γ/c,

i <
β

b
≤ γ

c
< i+ 1 (5.77)

holds. This situation is illustrated in Fig. 5.7.

︸ ︷︷ ︸ i+ 1γ
c

β
b

i ︸ ︷︷ ︸
≥ 1

c
≥ 1

b

Fig. 5.7. Computing the dark shadow

Since β/b and γ/c are not integers themselves, the distances from these
points to the closest integer are greater than the fractions 1/b and 1/c, respec-
tively:
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β

b
− i ≥ 1

b
, (5.78)

i+ 1− γ

c
≥ 1

c
. (5.79)

The proof is left as an exercise (Problem 5.11). By summing (5.78) and (5.79),
we obtain

β

b
+ 1− γ

c
≥ 1

c
+

1

b
, (5.80)

which is equivalent to

cβ − bγ ≥ −cb+ c+ b . (5.81)

By multiplying this inequality by −1, we obtain

bγ − cβ ≤ cb− c− b . (5.82)

In order to show a contradiction to our assumption, we need to show the
negation of (5.82). Exploiting the fact that c, b are integers, the negation of
(5.82) is

bγ − cβ ≥ cb− c− b+ 1 , (5.83)

or simply

bγ − cβ ≥ (c− 1)(b− 1) . (5.84)

Thus, if (5.84) holds, our assumption is wrong, which means that we have a
guarantee that there exists an integer solution.

Observe that, if either c = 1 or b = 1, the formula (5.84) is identical to the
real shadow (5.74), i.e., the dark and real shadow are the same. In this case,
the projection is exact, and it is sufficient to check the real shadow. When
choosing variables to eliminate, preference should be given to variables that
result in an exact projection, that is, to variables with coefficient 1.

Checking the Gray Shadow

We know that any integer solution must also be in the real shadow. Let R
�� ��R

denote this area. Now assume that we have found no integer in the dark
shadow. Let D denote the area of the dark shadow.

�� ��D
Thus, if R and D do not coincide, there is only one remaining area in

which an integer solution can be found: an area around the dark shadow,
which, staying within the optical analogy, is called the gray shadow.

Any solution must satisfy

cβ ≤ cbz ≤ bγ . (5.85)
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Furthermore, we already know that the dark shadow does not contain an
integer, and thus we can exclude this area from the search. Therefore, be-
sides (5.85), any solution has to satisfy (5.82):

cβ ≤ cbz ≤ bγ ∧ bγ − cβ ≤ cb− c− b . (5.86)

This is equivalent to

cβ ≤ cbz ≤ bγ ∧ bγ ≤ cb− c− b+ cβ , (5.87)

which implies
cβ ≤ cbz ≤ cb− c− b+ cβ . (5.88)

Dividing by c, we obtain

β ≤ bz ≤ β +
cb− c− b

c
. (5.89)

The Omega test proceeds by simply trying possible values of bz between these
two bounds. Thus, a new constraint

bz = β + i (5.90)

is formed and combined with the original problem for each integer i in the
range 0, . . . , (cb − c − b)/c. If any one of the resulting new problems has a
solution, so does the original problem.

The number of subproblems can be reduced by determining the largest
coefficient c of z in any upper bound for z. The new constraints generated for
the other upper bounds are already covered by the constraints generated for
the upper bound with the largest c.

5.6 Preprocessing

In this section, we examine several simple preprocessing steps for both linear
and integer linear systems without objective functions. Preprocessing the set
of constraints can be done regardless of the decision procedure chosen.

5.6.1 Preprocessing of Linear Systems

Two simple preprocessing steps for linear systems are the following:

1. Consider the set of constraints

x1 + x2 ≤ 2, x1 ≤ 1, x2 ≤ 1 . (5.91)

The first constraint is redundant. In general, for a set
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S =

a0x0 +

n∑
j=1

ajxj ≤ b, lj ≤ xj ≤ uj for j = 0, . . . , n

 , (5.92)

the constraint

a0x0 +

n∑
j=1

ajxj ≤ b (5.93)

is redundant if ∑
j|aj>0

ajuj +
∑
j|aj<0

aj lj ≤ b . (5.94)

To put this in words, a “≤” constraint in the above form is redundant if
assigning values equal to their upper bounds to all of its variables that
have a positive coefficient, and assigning values equal to their lower bounds
to all of its variables that have a negative coefficient, results in a value less
than or equal to b, the constant on the right-hand side of the inequality.

2. Consider the following set of constraints:

2x1 + x2 ≤ 2, x2 ≥ 4, x1 ≤ 3 . (5.95)

From the first and second constraints, x1 ≤ −1 can be derived, which
means that the bound x1 ≤ 3 can be tightened. In general, if a0 > 0, then

x0 ≤

b− ∑
j|j>0,aj>0

aj lj −
∑
j|aj<0

ajuj

 /a0 , (5.96)

and if a0 < 0, then

x0 ≥

b− ∑
j|aj>0

aj lj −
∑

j|j>0,aj<0

ajuj

 /a0 . (5.97)

5.6.2 Preprocessing of Integer Linear Systems

The following preprocessing steps are applicable to integer linear systems:

1. Multiply every constraint by the smallest common multiple of the coeffi-
cients and constants in this constraint, in order to obtain a system with
integer coefficients.4

2. After the previous preprocessing has been applied, strict inequalities can
be transformed into nonstrict inequalities as follows:

4 This assumes that the coefficients and constants in the system are rational. The
case in which the coefficients can be nonrational is of little value and is rarely
considered in the literature.
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1≤i≤n

aixi < b (5.98)

is replaced with ∑
1≤i≤n

aixi ≤ b− 1 . (5.99)

The case in which b is fractional is handled by the previous preprocessing
step.

For the special case of 0–1 linear systems (integer linear systems in
which all the variables are constrained to be either 0 or 1), some preprocessing
steps are illustrated by the following examples:

1. Consider the constraint
5x1 − 3x2 ≤ 4 , (5.100)

from which we can conclude that

x1 = 1 =⇒ x2 = 1 . (5.101)

Hence, the constraint
x1 ≤ x2 (5.102)

can be added.
2. From

x1 + x2 ≤ 1, x2 ≥ 1 , (5.103)

we can conclude x1 = 0.

Generalization of these examples is left for Problem 5.8.

5.7 Difference Logic

5.7.1 Introduction

A popular fragment of linear arithmetic is called difference logic.

Definition 5.16 (difference logic). The syntax of a formula in difference
logic is defined by the following rules:

formula : formula ∧ formula | atom

atom : identifier − identifier op constant

op : ≤ | <

Here, we consider the case in which the variables are defined over Q, the
rationals. A similar definition exists for the case in which the variables are de-
fined over Z (see Problem 5.18). Solving both variants is polynomial, whereas,
recall, linear arithmetic over Z is NP-complete.

Some other convenient operands can be modeled with the grammar above:
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• x− y = c is the same as x− y ≤ c ∧ y − x ≤ −c.
• x− y ≥ c is the same as y − x ≤ −c.
• x− y > c is the same as y − x < −c.
• A constraint with one variable such as x < 5 can be rewritten as x−x0 < 5,

where x0 is a special variable not used so far in the formula, called the
“zero variable”. In any satisfying assignment, its value must be 0.

As an example,
x < y + 5 ∧ y ≤ 4 ∧ x = z − 1 (5.104)

can be rewritten in difference logic as

x− y < 5 ∧ y − x0 ≤ 4 ∧ x− z ≤ −1 ∧ z − x ≤ 1. (5.105)

A more important variant, however, is one in which an arbitrary Boolean
structure is permitted. We describe one application of this variant by the
following example.

Example 5.17. We are given a finite set of n jobs, each of which consists of
a chain of operations. There is a finite set of m machines, each of which can
handle at most one operation at a time. Each operation needs to be performed
during an uninterrupted period of given length on a given machine. The job-
shop scheduling problem is to find a schedule, that is, an allocation of the
operations to time intervals on the machines that has a minimal total length.

More formally, given a set of machines

M = {m1, . . . ,mm} , (5.106)

job J i with i ∈ {1, . . . , n} is a sequence of ni pairs of the form (machine,
duration):

J i = (mi
1, d

i
1), . . . , (mi

ni
, dini

) , (5.107)

such that mi
1, . . . ,m

i
ni

are elements of M . The durations can be assumed to
be rational numbers. We denote by O the multiset of all operations from all
jobs. For an operation v ∈ O, we denote its machine by M(v) and its duration
by τ(v).

A schedule is a function that defines, for each operation v, its starting time
S(v) on its specified machine M(v). A schedule S is feasible if the following
three constraints hold:

1. First, the starting time of all operations is greater than or equal to 0:

∀v ∈ O. S(v) ≥ 0 . (5.108)

2. Second, for every pair of consecutive operations vi, vj ∈ O in the same
job, the second operation does not start before the first ends:

S(vi) + τ(vi) ≤ S(vj) . (5.109)



128 5 Linear Arithmetic

3. Finally, every pair of different operations vi, vj ∈ O scheduled on the same
machine (M(vi) = M(vj)) is mutually exclusive:

S(vi) + τ(vi) ≤ S(vj) ∨ S(vj) + τ(vj) ≤ S(vi) . (5.110)

The length of the schedule S is defined as

max
v∈O

S(v) + τ(v) . (5.111)

The objective is to find a feasible schedule S that minimizes this length. As
usual, we can define the decision problem associated with this optimization
problem by removing the objective function and adding a constraint that
forces the value of this function to be smaller than some constant.

It should be clear that a job-shop scheduling problem can be formulated
with difference logic. Note the disjunction in (5.110).

5.7.2 A Decision Procedure for Difference Logic

Recall that in this chapter we present only decision procedures for conjunctive
fragments. The Boolean structure is dealt with by DPLL(T ), as described in
Chap. 3.

Definition 5.18 (inequality graph for nonstrict inequalities). Let S
be a set of difference predicates and let the inequality graph G(V,E) be the
graph comprising one edge (x, y) with weight c for every constraint of the form
x− y ≤ c in S.

Given a difference logic formula ϕ with nonstrict inequalities only, the in-
equality graph corresponding to the set of difference predicates in ϕ can be
used for deciding ϕ, on the basis of the following theorem:

Theorem 5.19. Let ϕ be a conjunction of difference constraints, and let G
be the corresponding inequality graph. Then ϕ is satisfiable if and only if there
is no negative cycle in G.

The proof of this theorem is left as an exercise (Problem 5.15). The ex-
tension of Definition 5.18 and Theorem 5.19 to general difference logic (which
includes both strict and nonstrict inequalities) is left as an exercise as well
(see Problem 5.16).

By Theorem 5.19, deciding a difference logic formula amounts to search-
ing for a negative cycle in a graph. This can be done with the Bellman–
Ford algorithm [82] for finding the single-source shortest paths in a directed
weighted graph, in time O(|V | · |E|) (to make the graph single-source, we in-
troduce a new node and add an edge with weight 0 from this node to each
of the roots of the original graph). Although finding the shortest paths is not
our goal, we exploit a side-effect of this algorithm: if there exists a negative
cycle in the graph, the algorithm finds it and aborts.
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5.8 Problems

5.8.1 Warm-up Exercises

Problem 5.1 (linear systems). Consider the following linear system, which
we denote by S:

x1 ≥ −x2 + 11
5

x1 ≤ x2 + 1
2

x1 ≥ 3x2 −3 .

(5.112)

(a) Check with Simplex whether S is satisfiable, as described in Sect. 5.2.
(b) Using the Fourier–Motzkin procedure, compute the range within which

x2 has to lie in a satisfying assignment.
(c) Consider a problem S′, similar to S, but where the variables are forced

to be integer. Check with branch and bound whether S′ is satisfiable. To
solve the relaxed problem, you can use a Simplex implementation (there
are many of these on the Web).

5.8.2 The Simplex Method

Problem 5.2 (Simplex). Compute a satisfying assignment for the following
problem using the general Simplex method:

2x1 +2x2 +2x3 +2x4 ≤ 2
4x1 +x2 +x3 −4x4 ≤ −2
x1 +2x2 +4x3 +2x4 = 4 .

(5.113)

Problem 5.3 (complexity). Give a conjunction of linear constraints over
reals with n variables (that is, the size of the instance is parameterized) such
that the number of iterations of the general Simplex algorithm is exponential
in n.

Problem 5.4 (difference logic with Simplex). What is the worst-case run
time of the general Simplex algorithm if applied to a conjunction of difference
logic constraints?

Problem 5.5 (strict inequalities with Simplex). Extend the general Sim-
plex algorithm with strict inequalities.

Problem 5.6 (soundness). Assume that the general Simplex algorithm re-
turns “UNSAT”. Show a method for deriving a proof of unsatisfiability.
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5.8.3 Integer Linear Systems

Problem 5.7 (complexity of ILP-feasibility). Prove that the feasibility
problem for integer linear programming is NP-hard.5

Problem 5.8 (0–1 ILP). A 0–1 integer linear system is an integer linear
system in which all variables are constrained to be either 0 or 1. Show how
a 0–1 integer linear system can be translated to a Boolean formula. What is
the complexity of the translation?

Problem 5.9 (simplifications for 0–1 ILP). Generalize the simplification
demonstrated in (5.100)–(5.103).

Problem 5.10 (Gomory cuts). Find Gomory cuts corresponding to the
following results from the general Simplex algorithm:

1. x4 = x1 − 2.5x2 + 2x3 where α := {x4 7→ 3.25, x1 7→ 1, x2 7→ −0.5, x3 7→
0.5}, x2 and x3 are at their upper bound, and x1 is at its lower bound.

2. x4 = −0.5x1−2x2+3.5x3 where α := {x4 7→ 0.25, x1 7→ 1, x2 7→ 0.5, x3 7→
0.5}, x1 and x3 are at their lower bound, and x2 is at its upper bound.

5.8.4 Omega Test

Problem 5.11 (integer fractions). Recall the definition i = bβb c in
Sect. 5.5.3. Show that

• β
b − i ≥

1
b , and

• i+ 1− γ

c
≥ 1

c

Recall that all coefficients are assumed to be integers.

Problem 5.12 (eliminating equalities). Show that

a m̂od b =

{
a mod b : a mod b < b/2
(a mod b)− b : otherwise

(5.114)

holds. Use the fact that

a/b = ba/bc+
a mod b

b
.

Problem 5.13 (eliminating equalities). Show that the absolute values of
the coefficients of the variables xi are reduced to at most 5/6 of their previous
values after substituting σ:

5 In fact it is NP-complete, but membership in NP is more difficult to prove. The
proof makes use of a small-model-property argument.



5.9 Bibliographic Notes 131

|bai/m+ 1/2c+ (ai m̂odm)| ≤ 5/6|ai| . (5.115)

Problem 5.14 (eliminating equalities). The elimination of xn relies on
the fact that the coefficient of xn in the newly added constraint is −1. Let an
denote the coefficient of xn in the original constraint. Let m = an + 1, and

assume that an ≥ 2. Show that an m̂odm = −1.

5.8.5 Difference Logic

Problem 5.15 (difference logic). Prove Theorem 5.19.

Problem 5.16 (inequality graphs for difference logic). Extend Defini-
tion 5.18 and Theorem 5.19 to general difference logic formulas (i.e., where
both strong and weak inequalities are allowed).

Problem 5.17 (difference logic). Give a reduction of difference logic to
SAT. What is the complexity of the reduction?

Problem 5.18 (integer difference logic). Show a reduction from the prob-
lem of integer difference logic to difference logic.

Problem 5.19 (theory propagation for difference logic). Recall the no-
tion of exhaustive theory propagation that was studied in Sect. 3.4.2. Suggest
an efficient procedure that performs exhaustive theory propagation for the
case of difference logic (difference logic is presented in Sect. 5.7).

5.9 Bibliographic Notes

The Fourier–Motzkin variable elimination algorithm is the earliest docu-
mented method for solving linear inequalities. It was discovered in 1826 by
Fourier, and rediscovered by Motzkin in 1936. A somewhat more efficient way
to eliminate variables called virtual substitution was suggested by Loos
and Weispfenning [183].

The Simplex method was introduced by Dantzig in 1947 [84]. There are
several variations of and improvements on this method, most notably the re-
vised Simplex method, which most industrial implementations use. This vari-
ant has an apparent advantage on large and sparse LP problems, which seem
to characterize LP problems in practice. The variant of the general Simplex
algorithm that we presented in Sect. 5.2 was proposed by Dutertre and de
Moura [108] in the context of DPLL(T ), a technique that we saw in Chap. 3.
Its main advantage is that it works efficiently with incremental operations,
i.e., constraints can be added and removed with little effort.

Linear programs are a very popular modeling formalism for solving a wide
range of problems in science and engineering, finance, logistics, and so on.
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Consider, for example, how LP is used for computing an optimal placement
of gates in an integrated circuit [152]. The popularity of this method led to a
large industry of LP solvers, some of which are sold for tens of thousands of
dollars per copy. A classical reference to linear and integer linear programming
is the book by Schrijver [252]. Other resources on the subject that we found
useful include publications by Wolsey [288], Hillier and Lieberman [142], and
Vanderbei [278].

Gomory cutting planes are due to a paper published by Ralph Gomory
in 1963 [134]. For many years, the operations research community considered
Gomory cuts impractical for large problems. There were several refinements
of the original method and empirical studies that revived this technique, es-
pecially in the context of the related optimization problem. See, for example,
the work of Balas et al. [11]. The variant we described is suitable for working
with the general Simplex algorithm, and its description here is based on [109].

The Omega test was introduced by Pugh as a method for deciding integer
linear arithmetic within an optimizing compiler [233]. It is an extension of the
Fourier–Motzkin variable elimination. For an example of an application of the
Omega test inside a Fortran compiler, see [2]. A much earlier work following
similar lines to those of the Omega test is by Paul Williams [283]. Williams’
work, in turn, is inspired by Presburger’s paper from 1929 [232].

Difference logic was recognized as an interesting fragment of linear arith-
metic by Pratt [231]. He considered “separation theory”, which is the conjunc-
tive fragment of what we call difference logic. He observed that most inequali-
ties in verification conditions are of this form. Disjunctive difference logic was
studied in M. Mahfoudh’s PhD thesis [185] and in [186], among other places.
A reduction of difference logic to SAT was studied in [267] (in this particular
paper and some later papers, this theory fragment is called “separation logic”,
after Pratt’s separation theory—not to be confused with the separation logic
that is discussed in Chap. 8). The main reason for the renewed interest in this
fragment is due to interest in timed automata: the verification conditions
arising in this problem domain are difference logic formulas.

In general, the amount of research and writing on linear systems is im-
mense, and in fact most universities offer courses dedicated to this subject.
Most of the research was and still is conducted in the operations research
community.
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5.10 Glossary

The following symbols were used in this chapter:

First used
Symbol Refers to . . . on page . . .

li, ui Constants bounding the i-th variable from below and
above

99

m The number of linear constraints in the original prob-
lem formulation

99

n The number of variables in the original problem for-
mulation

100

A Coefficient matrix 100

x The vector of the variables in the original problem
formulation

101

B, N The sets of basic and nonbasic variables, respectively 102

α A full assignment (to both basic and nonbasic vari-
ables)

102

θ See (5.13) 104

βi Upper or lower bound 114

m̂od Symmetric modulo 117



6.1 Bit-Vector Arithmetic

The design of computer systems is error-prone, and, thus, decision procedures
for reasoning about such systems are highly desirable. A computer system uses
bit vectors to encode information, for example, numbers. Owing to the finite
domain of these bit vectors, the semantics of operations such as addition no
longer matches what we are used to when reasoning about unbounded types,
for example, the natural numbers.

6.1.1 Syntax

The subset of bit-vector arithmetic that we consider is defined by the following
grammar:

formula : formula ∧ formula | ¬formula | ( formula ) | atom

atom : term rel term | Boolean-Identifier | term[ constant ]

rel : < | =

term : term op term | identifier | ∼ term | constant | atom?term:term |
term[ constant : constant ] | ext( term )

op : + | − | · | / | << | >> | & | | | ⊕ | ◦

As usual, other useful operators such as “∨”, “ 6=”, and “≥” can be obtained us-
ing Boolean combinations of the operators that appear in the grammar. Most
operators have a straightforward meaning, but a few operators are unique to
bit-vector arithmetic. The unary operator “∼” denotes bitwise negation. The
function ext denotes sign and zero extension (the meanings of these operators
are explained in Sect. 6.1.3). The ternary operator c?a:b is a case-split: the
operator evaluates to a if c holds, and to b otherwise. The operators “<<”
and “>>” denote left and right shifts, respectively. The operator “⊕” denotes
bitwise XOR. The binary operator “◦” denotes concatenation of bit vectors.

6

Bit Vectors
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Motivation

As an example to describe our motivation, the following formula obviously
holds over the integers:

(x− y > 0) ⇐⇒ (x > y) . (6.1)

If x and y are interpreted as finite-width bit vectors, however, this equivalence
no longer holds, owing to possible overflow of the subtraction operation. As
another example, consider the following small C program:

unsigned char number = 200 ;
number = number + 100 ;
p r i n t f ( ”Sum: %d\n” , number ) ;

This program may return a surprising result, as most architectures use eight
bits to represent variables with type unsigned char:

11001000 = 200
+ 01100100 = 100

= 00101100 = 44

When represented with eight bits by a computer, 200 is stored as 11001000.
Adding 100 results in an overflow, as the ninth bit of the result is discarded.

The meaning of operators such as “+” is therefore defined by means of
modular arithmetic. However, the problem of reasoning about bit vectors ex-
tends beyond that of overflow and modular arithmetic. For efficiency reasons,
programmers use bit-level operators to encode as much information as possible
into the number of bits available.

As an example, consider the implementation of a propositional SAT solver.
Recall the definition of a literal (Definition 1.11): a literal is a variable or its
negation. Propositional SAT solvers that operate on formulas in CNF have to
store a large number of such literals. We assume that we have numbered the
variables that occur in the formula, and denote the variables by x1, x2, . . ..

The DIMACS standard for CNF uses signed numbers to encode a literal,
e.g., the literal ¬x3 is represented as −3. The fact that we use signed numbers
for the encoding avoids the use of one bit vector to store the sign. On the
other hand, it reduces the possible number of variables to 231 − 1 (the index
0 cannot be used any more), but this is still more than sufficient for any
practical purpose.

In order to extract the index of a variable, we have to perform a case-split
on the sign of the bit vector, for example, as follows:

unsigned v a r i a b l e i n d e x ( int l i t e r a l ) {
i f ( l i t e r a l < 0)

return − l i t e r a l ;
else

return l i t e r a l ;
}
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The branch needed to implement the if statement in the program above slows
down the execution of the program, as it is hard to predict for the branch
prediction mechanisms of modern processors. Most SAT solvers therefore use
a different encoding: the least significant bit of the bit vector is used to encode
the sign of the literal, and the remaining bits encode the variable. The index
of the variable can then be extracted by means of a bit-vector right-shift
operation:

unsigned v a r i a b l e i n d e x ( unsigned l i t e r a l ) {
return l i t e r a l >> 1 ;

}

Similarly, the sign can be obtained by means of a bitwise AND operation:

bool l i t e r a l s i g n ( unsigned l i t e r a l ) {
return l i t e r a l & 1 ;

}

The bitwise right-shift operation and the bitwise AND are implemented in
most microprocessors, and both can be executed efficiently. Such bitwise oper-
ators also frequently occur in hardware design. Reasoning about such artifacts
requires bit-vector arithmetic.

6.1.2 Notation

We use a simple variant of Church’s λ-notation in order to define vectors
easily. A lambda expression for a bit vector with l bits has the form

λi ∈ {0, . . . , l − 1}. f(i) , (6.2)

where f(i) is an expression that denotes the value of the i-th bit.
The use of the λ-operator to denote bit vectors is best explained by an

example.

Example 6.1. Consider the following expressions:

• The expression
λi ∈ {0, . . . , l − 1}. 0 (6.3)

denotes the l-bit bit vector that consists only of zeros.
• A λ-expression is simply another way of defining a function without giving

it a name. Thus, instead of defining a function z with

z(i)
.
= 0 , (6.4)

we can simply write λi ∈ {0, . . . , l − 1}. 0 for z.
• The expression

λi ∈ {0, . . . , 7}.
{

0 : i is even
1 : otherwise

(6.5)

denotes the bit vector 10101010.
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︸ ︷︷ ︸
l bits

b0b1b2bl−1 bl−2

Fig. 6.1. A bit vector b with l bits. The bit number i is denoted by bi

• The expression
λi ∈ {0, . . . , l − 1}.¬xi (6.6)

denotes the bitwise negation of the vector x.

We omit the domain of i from the lambda expression if the number of bits
is clear from the context.

6.1.3 Semantics

We now give a formal definition of the meaning of a bit-vector arithmetic
formula. We first clarify what a bit vector is.

Definition 6.2 (bit vector). A bit vector b is a vector of bits with a given
length l (or dimension):

b : {0, . . . , l − 1} −→ {0, 1} . (6.7)

The set of all 2l bit vectors of length l is denoted by bvecl. The i-th bit of the
�� ��bvecl

bit vector b is denoted by bi (Fig. 6.1).

The meaning of a bit-vector formula obviously depends on the width of the
bit-vector variables in it. This applies even if no arithmetic is used. As an
example,

x 6= y ∧ x 6= z ∧ y 6= z (6.8)

is unsatisfiable for bit vectors x, y, and z that are one bit wide, but satisfiable
for larger widths.

We sometimes use bit vectors that encode positive numbers only (unsigned
bit vectors), and also bit vectors that encode both positive and negative num-
bers (signed bit vectors). Thus, each expression is associated with a type.
The type of a bit-vector expression is

1. the width of the expression in bits, and
2. whether it is signed or unsigned.

We restrict the presentation to bit vectors that have a fixed, given length,
as bit-vector arithmetic becomes undecidable as soon as arbitrary-width bit
vectors are permitted. The width is known in most problems that arise in
practice.



6.1 Bit-Vector Arithmetic 139

In order to clarify the type of an expression, we add indices in square
brackets to the operator and operands in order to denote the bit width (this
is not to be confused with bl, which denotes bit l of b). As an example, a[32] ·[32]
b[32] denotes the multiplication of a and b. Both the result and the operands
are 32 bits wide, and the remaining 32 bits of the result are discarded. The
expression a[8] ◦[24] b[16] denotes the concatenation of a and b and is in total 24
bits wide. In most cases, the width is clear from the context, and we therefore
usually omit the subscript.

Bitwise Operators

The meanings of bitwise operators can be defined through the bit vectors
that they yield. The binary bitwise operators take two l-bit bit vectors as
arguments and return an l-bit bit vector. As an example, the signature of the
bitwise OR operator “|” is

|[l] : (bvecl × bvecl) −→ bvecl . (6.9)

Using the λ-notation, the bitwise OR operator is defined as follows:

a | b .= λi. (ai ∨ bi) . (6.10)

All the other bitwise operators are defined in a similar manner. In the follow-
ing, we typically provide both the signature and the definition together.

Arithmetic Operators

The meaning of a bit-vector formula with arithmetic operators depends on
the interpretation of the bit vectors that it contains. There are many ways
to encode numbers using bit vectors. The most commonly used encodings for
integers are the binary encoding for unsigned integers and two’s comple-
ment for signed integers.

Definition 6.3 (binary encoding). Let x denote a natural number, and
b ∈ bvecl a bit vector. We call b a binary encoding of x iff

x = 〈b〉U , (6.11)

where 〈b〉U is defined as follows:
�� ��〈·〉U

〈·〉U : bvecl −→ {0, . . . , 2l − 1} ,
〈b〉U

.
=
∑l−1
i=0 bi · 2i.

(6.12)

The bit b0 is called the least significant bit, and the bit bl−1 is called the
most significant bit.
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Binary encoding can be used to represent nonnegative integers only. One way
of encoding negative numbers as well is to use one of the bits as a sign bit.

A naive way of using a sign bit is to simply negate the number if a des-
ignated bit is set, for example, the most significant bit. As an example, 1001
could be interpreted as −1 instead of 1. This encoding is hardly ever used
in practice.1 Instead, most microprocessor architectures implement the two’s
complement encoding.

Definition 6.4 (two’s complement). Let x denote a natural number, and
b ∈ bvecl a bit vector. We call b the two’s complement of x iff

x = 〈b〉S , (6.13)

where 〈b〉S is defined as follows:
�� ��〈·〉S

〈·〉S : bvecl −→ {−2l−1, . . . , 2l−1 − 1} ,
〈b〉S := −2l−1 · bl−1 +

∑l−2
i=0 bi · 2i .

(6.14)

The bit with index l − 1 is called the sign bit of b.

Example 6.5. Some encodings of integers in binary and two’s complement
are

〈11001000〉U = 200 ,
〈11001000〉S = −128 + 64 + 8 = −56 ,
〈01100100〉S = 100 .

Note that the meanings of the relational operators “>”, “<”, “≤”, “≥”, the
multiplicative operators “·”, “/”, and the right-shift operator “>>” depend
on whether a binary encoding or a two’s complement encoding is used for the
operands, which is why the encoding of the bit vectors is part of the type.
We use the subscript U for a binary encoding (unsigned) and the subscript S
for a two’s complement encoding (signed). We may omit this subscript if the
encoding is clear from the context, or if the meaning of the operator does not
depend on the encoding (this is the case for most operators).

As suggested by the example at the beginning of this chapter, arithmetic
on bit vectors has a wraparound effect: if the number of bits required to
represent the result exceeds the number of bits available, the additional bits
of the result are discarded, i.e., the result is truncated. This corresponds to a
modulo operation, where the base is 2l. We write

x = y mod b (6.15)

to denote that x and y are equal modulo b. The use of modulo arithmetic allows
a straightforward definition of the interpretation of all arithmetic operators:

1 The main reason for this is the fact that it makes the implementation of arithmetic
operators such as addition more complicated, and that there are two encodings
for 0, namely 0 and −0.



6.1 Bit-Vector Arithmetic 141

• Addition and subtraction:

a[l] +U b[l] = c[l] ⇐⇒ 〈a〉U + 〈b〉U = 〈c〉U mod 2l , (6.16)

a[l] −U b[l] = c[l] ⇐⇒ 〈a〉U − 〈b〉U = 〈c〉U mod 2l , (6.17)

a[l] +S b[l] = c[l] ⇐⇒ 〈a〉S + 〈b〉S = 〈c〉S mod 2l , (6.18)

a[l] −S b[l] = c[l] ⇐⇒ 〈a〉S − 〈b〉S = 〈c〉S mod 2l . (6.19)

Note that a +U b = a +S b and a −U b = a −S b (see Problem 6.7), and
thus the U/S subscript can be omitted from the addition and subtraction
operands. A semantics for mixed-type expressions is also easily defined, as
shown in the following example:

a[l]U +U b[l]S = c[l]U ⇐⇒ 〈a〉+ 〈b〉S = 〈c〉 mod 2l . (6.20)

• Unary minus:

−a[l] = b[l] ⇐⇒ −〈a〉S = 〈b〉S mod 2l . (6.21)

• Relational operators:

a[l]U < b[l]U ⇐⇒ 〈a〉U < 〈b〉U , (6.22)

a[l]S < b[l]S ⇐⇒ 〈a〉S < 〈b〉S , (6.23)

a[l]U < b[l]S ⇐⇒ 〈a〉U < 〈b〉S , (6.24)

a[l]S < b[l]U ⇐⇒ 〈a〉S < 〈b〉U . (6.25)

The semantics for the other relational operators such as “≥” follows the
same pattern. Note that ANSI-C compilers do not implement the relational
operators on operands with mixed encodings the way they are formalized
above (see Problem 6.6). Instead, the signed operand is converted to an
unsigned operand, which does not preserve the meaning expected by many
programmers.

• Multiplication and division:

a[l] ·U b[l] = c[l] ⇐⇒ 〈a〉U · 〈b〉U = 〈c〉U mod 2l , (6.26)

a[l]/Ub[l] = c[l] ⇐⇒ 〈a〉U/〈b〉U = 〈c〉U mod 2l , (6.27)

a[l] ·S b[l] = c[l] ⇐⇒ 〈a〉S · 〈b〉S = 〈c〉S mod 2l , (6.28)

a[l]/Sb[l] = c[l] ⇐⇒ 〈a〉S/〈b〉S = 〈c〉S mod 2l . (6.29)

The semantics of multiplication is independent of whether the arguments
are interpreted as unsigned or two’s complement (see Problem 6.8), and
thus the U/S subscript can be omitted. This does not hold in the case of
division.
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• The extension operator: converting a bit vector to a bit vector with more
bits is called zero extension in the case of an unsigned bit vector, and
sign extension in the case of a signed bit vector. Let l ≤ m. The value
that is encoded does not change:

ext [m]U (a[l]) = b[m]U ⇐⇒ 〈a〉U = 〈b〉U , (6.30)

ext [m]S(a[l]) = b[m]S ⇐⇒ 〈a〉S = 〈b〉S . (6.31)

• Shifting: the left-shift operator “<<” takes two operands and shifts the
first one to the left as many times as is given by the respective value of
the second operand. The width of the left-hand-side operand is called the
width of the shift, whereas the width of the right-hand-side operator is the
width of the shift distance. The vector is filled up with zeros from the right:

a[l] << bU = λi ∈ {0, . . . , l − 1}.
{
ai−〈b〉U : i ≥ 〈b〉U
0 : otherwise .

(6.32)

See also Problem 6.5. The meaning of the right-shift “>>” operator de-
pends on the encoding of the first operand: if it uses binary encoding
(which, recall, is for unsigned bit vectors), zeros are inserted from the left.
This is called a logical right shift:

a[l]U >> bU = λi ∈ {0, . . . , l − 1}.
{
ai+〈b〉U : i < l − 〈b〉U
0 : otherwise .

(6.33)

If the first operand uses two’s complement encoding, the sign bit of a is
replicated. This is also called an arithmetic right shift:

a[l]S >> bU = λi ∈ {0, . . . , l − 1}.
{
ai+〈b〉U : i < l − 〈b〉U
al−1 : otherwise .

(6.34)

The shift operators are rarely defined for a signed shift distance. An option
could be to flip the direction of the shift in case b is negative; e.g., a left
shift with distance −1 is a right shift with distance 1.

6.2 Deciding Bit-Vector Arithmetic with Flattening

6.2.1 Converting the Skeleton

The most commonly used decision procedure for bit-vector arithmetic is called
flattening.2 Algorithm 6.2.1 implements this technique. For a given bit-vector
arithmetic formula ϕ, the algorithm computes an equisatisfiable propositional
formula B, which is then passed to a SAT solver.

�� ��B
Let At(ϕ) denote the set of atoms in ϕ. As a first step, the algorithm re-�� ��At(ϕ) places the atoms in ϕ with new Boolean variables. We denote the variable that

replaces an atom a ∈ At(ϕ) by e(a), and call this the propositional encoder
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of a. The resulting formula is denoted by e(ϕ). We call it the propositional
�� ��e(ϕ)

skeleton of ϕ. The propositional skeleton is the expression that is assigned
to B initially.

Let T (ϕ) denote the set of terms in ϕ. The algorithm then assigns a vec-
�� ��T (ϕ)

tor of new Boolean variables to each bit-vector term in T (ϕ). We use e(t) to �� ��e(t)denote this vector of variables for a given t ∈ T (ϕ), and e(t)i to denote the
variable for the bit with index i of the term t. The width of e(t) matches the
width of the term t. Note that, so far, we have used e to denote three differ-
ent, but related things: a propositional encoder of an atom, a propositional
formula resulting from replacing all atoms of a formula with their respective
propositional encoders, and a propositional encoder of a term.

The algorithm then iterates over the terms and atoms of ϕ, and computes
a constraint for each of them. The constraint is returned by the function
BV-Constraint, and is added as a conjunct to B.

�

�

�

�

Algorithm 6.2.1: BV-Flattening

Input: A formula ϕ in bit-vector arithmetic
Output: An equisatisfiable Boolean formula B

1. function BV-Flattening
2. B:=e(ϕ); . the propositional skeleton of ϕ
3. for each t[l] ∈ T (ϕ) do
4. for each i ∈ {0, . . . , l − 1} do
5. set e(t)i to a new Boolean variable;
6. for each a ∈ At(ϕ) do
7. B:=B∧ BV-Constraint(e, a);
8. for each t[l] ∈ T (ϕ) do
9. B:=B∧ BV-Constraint(e, t);

10. return B;

The constraint that is needed for a particular atom a or term t depends
on the atom or term, respectively. In the case of a bit vector or a Boolean
variable, no constraint is needed, and BV-Constraint returns true. If t is
a bit-vector constant C[l], the following constraint is generated:

l−1∧
i=0

(Ci ⇐⇒ e(t)i) . (6.35)

Otherwise, t must contain a bit-vector operator. The constraint that is needed
depends on this operator. The constraints for the bitwise operators are

2 In colloquial terms, this technique is sometimes referred to as “bit-blasting”.
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straightforward. As an example, consider bitwise OR, and let t = a |[l]b. The
constraint returned by BV-Constraint is

l−1∧
i=0

((ai ∨ bi) ⇐⇒ e(t)i) . (6.36)

The constraints for the other bitwise operators follow the same pattern.

6.2.2 Arithmetic Operators

The constraints for the arithmetic operators often follow implementations of
these operators as a circuit. There is an abundance of literature on how to
build efficient circuits for various arithmetic operators. However, experiments
with various alternative circuits have shown that the simplest ones usually
burden the SAT solver the least. We begin by defining a one-bit adder, also
called a full adder.

Definition 6.6 (full adder). A full adder is defined using the two functions
carry and sum. Both of these functions take three input bits a, b, and cin as
arguments. The function carry calculates the carry-out bit of the adder, and
the function sum calculates the sum bit:

sum(a, b, cin)
.
= (a⊕ b)⊕ cin , (6.37)

carry(a, b, cin)
.
= (a ∧ b) ∨ ((a⊕ b) ∧ cin) . (6.38)

We can extend this definition to adders for bit vectors of arbitrary length.

Definition 6.7 (carry bits). Let x and y denote two l-bit bit vectors and
cin a single bit. The carry bits c0 to cl are defined recursively as follows:

ci
.
=

{
cin : i = 0
carry(xi−1, yi−1, ci−1) : otherwise .

(6.39)

Definition 6.8 (adder). An l-bit adder maps two l-bit bit vectors x, y and
a carry-in bit cin to their sum and a carry-out bit. Let ci denote the i-th carry
bit as in Definition 6.7. The function add is defined using the carry bits ci:

add(x, y, cin)
.
= 〈result, cout〉 , (6.40)

resulti
.
= sum(xi, yi, ci) for i ∈ {0, . . . , l − 1} , (6.41)

cout
.
= cn . (6.42)

The circuit equivalent of this construction is called a ripple carry adder . One
can easily implement the constraint for t = a+ b using an adder with cin = 0:

l−1∧
i=0

(add(a, b, 0).resulti ⇐⇒ e(t)i) . (6.43)
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One can prove by induction on l that (6.43) holds if and only if 〈a〉U + 〈b〉U =
〈e(t)〉U mod 2l, which shows that the constraint complies with the semantics.

Subtraction, where t = a − b, is implemented with the same circuit by
using the following constraint (recall that ∼b is the bitwise negation of b):

l−1∧
i=0

(add(a,∼b, 1).result i ⇐⇒ e(t)i) . (6.44)

This implementation makes use of the fact that 〈(∼b) + 1〉S = −〈b〉S mod 2l

(see Problem 6.9).

Relational Operators

The equality a =[l] b is implemented using simply a conjunction:

l−1∧
i=0

ai = bi ⇐⇒ e(t) . (6.45)

The relation a < b is transformed into a − b < 0, and an adder is built for
the subtraction, as described above. Thus, b is negated and the carry-in bit
of the adder is set to true. The result of the relation a < b depends on the
encoding. In the case of unsigned operands, a < b holds if the carry-out bit
cout of the adder is false:

〈a〉U < 〈b〉U ⇐⇒ ¬add(a,∼b, 1).cout . (6.46)

In the case of signed operands, a < b holds if and only if (al−1 = bl−1) 6= cout:

〈a〉S < 〈b〉S ⇐⇒ (al−1 ⇐⇒ bl−1)⊕ add(a, b, 1).cout . (6.47)

Comparisons involving mixed encodings are implemented by extending both
operands by one bit, followed by a signed comparison.

Shifts

Recall that we call the width of the left-hand-side operand of a shift (the
vector that is to be shifted) the width of the shift, whereas the width of the
right-hand-side operand is the width of the shift distance.

We restrict the left and right shifts as follows: the width l of the shift must
be a power of two, and the width of the shift distance n must be log2 l.

With this restriction, left and right shifts can be implemented by using the
following construction, which is called the barrel shifter. The shifter is split
into n stages. Stage s can shift the operand by 2s bits or leave it unaltered.
The function ls is defined recursively for s ∈ {−1, . . . , n− 1}:
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ls(a[l], b[n]U ,−1)
.
= a , (6.48)

ls(a[l], b[n]U , s)
.
=

λi ∈ {0, . . . , l − 1}.

 (ls(a, b, s− 1))i−2s : i ≥ 2s ∧ bs
(ls(a, b, s− 1))i : ¬bs
0 : otherwise .

(6.49)

The barrel shifter construction needs only O(n log n) logical operators, in con-
trast to the naive implementation, which requires O(n2) operators.

Multiplication and Division

Multipliers can be implemented following the most simplistic circuit design,
which uses the shift-and-add idea. The function mul is defined recursively for
s ∈ {−1, . . . , n− 1}, where n denotes the width of the second operand:

mul(a, b,−1)
.
= (6.50)

mul(a, b, s)
.
= mul(a, b, s− 1) + (bs?(a << s) : 0) . (6.51)

A division a/Ub is implemented by adding two constraints:

b 6= 0 =⇒ e(t) · b+ r = a , (6.52)

b 6= 0 =⇒ r < b . (6.53)

The variable r is a new bit vector of the same width as b, and contains the
remainder. The signed-division and modulo operations are done in a similar
way.

6.3 Incremental Bit Flattening

6.3.1 Some Operators Are Hard

For some operators, the size of the formula generated by BV-Constraint
may be large. As an example, consider the formula for a single multiplier with
n bits. The table in Fig. 6.2 shows the number of variables and the number
of CNF clauses that are generated from the formula using Tseitin’s encoding
(see Sect. 1.3).

In addition to the sheer size of these formulas, their symmetry and con-
nectivity is a burden on the decision heuristic of state-of-the-art propositional
SAT solvers. As a consequence, formulas with multipliers are often very hard
to solve. Similar observations hold for other arithmetic operators such as di-
vision and modulo.

As an example, consider the following bit-vector formula:

a · b = c ∧ b · a 6= c ∧ x < y ∧ x > y . (6.54)

0,
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n Number of variables Number of clauses

8 313 1001
16 1265 4177
24 2857 9529
32 5089 17057
64 20417 68929

Fig. 6.2. The size of the constraint for an n-bit multiplier expression after Tseitin’s
transformation

When this formula is encoded into CNF, a SAT instance with about 11 000
variables is generated for a width of 32 bits. This formula is obviously unsat-
isfiable. There are two reasons for this: the first two conjuncts are inconsis-
tent, and independently, the last two conjuncts are inconsistent. The decision
heuristics of most SAT solvers (see Chap. 2) are biased towards splitting first
on variables that are used frequently, and thus favor decisions on a, b, and
c. Consequently, they attempt to show unsatisfiability of the formula on the
hard part, which includes the two multipliers. The “easy” part of the formula,
which contains only two relational operators, is ignored. Most propositional
SAT solvers cannot solve this formula in a reasonable amount of time.

In many cases, it is therefore beneficial to build the flattened formula B
incrementally. Algorithm 6.3.1 is a realization of this idea: as before, we start
with the propositional skeleton of ϕ. We then add constraints for the “inex-
pensive” operators, and omit the constraints for the “expensive” operators.
The bitwise operators are typically inexpensive, whereas arithmetic operators
are expensive. The encodings with missing constraints can be considered an
abstraction of ϕ, and thus the algorithm is an instance of the abstraction–
refinement procedure introduced in Sect. 4.4.

The current flattening B is passed to a propositional SAT solver. If B is
unsatisfiable, so is the original formula ϕ. Recall the formula (6.54): as soon
as the constraints for the second half of the formula are added to B, the en-
coding becomes unsatisfiable, and we may conclude that (6.54) is unsatisfiable
without considering the multipliers.

On the other hand, if B is satisfiable, one of two cases applies:

1. The original formula ϕ is unsatisfiable, but one (or more) of the omitted
constraints is needed to show this.

2. The original formula ϕ is satisfiable.

In order to distinguish between these two cases, we can check whether the
satisfying assignment produced by the SAT solver satisfies the constraints
that we have omitted. As we might have removed variables, the satisfying
assignment might have to be extended by setting the missing values to some
constant, for example, zero. If this assignment satisfies all constraints, the
second case applies, and the algorithm terminates.
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Algorithm 6.3.1: Incremental-BV-Flattening

Input: A formula ϕ in bit-vector logic
Output: “Satisfiable” if the formula is satisfiable, and “Unsatisfiable”

otherwise

1. function Incremental-BV-Flattening(ϕ)
2. B := e(ϕ); . propositional skeleton of ϕ
3. for each t[l] ∈ T (ϕ) do
4. for each i ∈ {0, . . . , l − 1} do
5. set e(t)i to a new Boolean variable;
6. while (true) do
7. α := SAT-Solver(B);
8. if α=“Unsatisfiable” then
9. return “Unsatisfiable”;

10. else
11. Let I ⊆ T (ϕ) be the set of terms that are inconsistent with the

satisfying assignment;
12. if I = ∅ then
13. return “Satisfiable”;
14. else
15. Select “easy” F ′ ⊆ I;
16. for each t[l] ∈ F ′ do
17. B:=B ∧ BV-Constraint(e, t);

If this is not so, one or more of the terms for which the constraints were
omitted is inconsistent with the assignment provided by the SAT solver. We
denote this set of terms by I. The algorithm proceeds by selecting some of
these terms, adding their constraints to B, and reiterating. The algorithm
terminates, as we strictly add more constraints with each iteration. In the
worst case, all constraints from T (ϕ) are added to the encoding.

6.3.2 Abstraction with Uninterpreted Functions

In many cases, omitting constraints for particular operators may result in a
flattened formula that is too weak, and thus is satisfied by too many spurious
models. On the other hand, the full constraint may burden the SAT solver too
much. A compromise between the maximum strength of the full constraint and
omitting the constraint altogether is to replace functions over bit vectors by
uninterpreted functions (see Sect. 4.2). This technique is particularly effective
when one is checking the equivalence of two models.

For example, let a1 op b1 and a2 op b2 be two terms, where op is some binary
operator (for simplicity, assume that these are the only terms in the input
formula that use op). Replace op with a new uninterpreted-function symbol G
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to obtain instead G(a1, b1) and G(a2, b2). The resulting formula is abstract,
and does not contain constraints that correspond to the flattening of op.

6.4 Fixed-Point Arithmetic

6.4.1 Semantics

Many applications, for example, in scientific computing, require arithmetic
on numbers with a fractional part. High-end microprocessors offer support for
floating-point arithmetic for this purpose. However, fully featured floating-
point arithmetic is too heavyweight for many applications, such as control
software embedded in vehicles, and computer graphics. In these domains,
fixed-point arithmetic is a reasonable compromise between accuracy and
complexity. Fixed-point arithmetic is also commonly supported by database
systems, for example, to represent amounts of currency.

In fixed-point arithmetic, the representation of a number is partitioned
into two parts, the integer part (also called the magnitude) and the fractional
part (Fig. 6.3). The number of digits in the fractional part is fixed—hence the
name “fixed point arithmetic”. The number 1.980, for example, is a fixed-point
number with a three-digit fractional part.

︸ ︷︷ ︸
l bits

bkbk+1bl−1 bk−2bk−1 b1 b0

j bits︷ ︸︸ ︷ k bits︷ ︸︸ ︷
bl−2

Fig. 6.3. A fixed-point bit vector b with a total of j + k = l bits. The dot is called
the radix point. The j bits before the dot represent the magnitude (the integer part),
whereas the k bits after the dot represent the fractional part

The same principle can be applied to binary arithmetic, as captured by
the following definition. Recall the definition of 〈·〉S (two’s complement) from
Sect. 6.1.3.

Definition 6.9. Given two bit vectors M and F with m and f bits, respec-
tively, we define the rational number that is represented by M.F as follows
and denote it by 〈M.F 〉:

〈·〉 : {0, 1}m+f −→ Q ,

〈M.F 〉 :=
〈M ◦ F 〉S

2f
.

Example 6.10. Some encodings of rational numbers as fixed-point numbers
with base 2 are
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〈0.10〉 = 0.5 ,
〈0.01〉 = 0.25 ,
〈01.1〉 = 1.5 ,

〈11111111.1〉 = −0.5 .

Some rational numbers are not precisely representable using fixed-point arith-
metic in base 2: they can only be approximated. As an example, for m = f = 4,
the two numbers that are closest to 1/3 are

〈0000.0101〉 = 0.3125 ,
〈0000.0110〉 = 0.375 .

Definition 6.9 gives us the semantics of fixed-point arithmetic. For example,
the meaning of addition on bit vectors that encode fixed-point numbers can
be defined as follows:

aM .aF + bM .bF = cM .cF ⇐⇒
〈aM .aF 〉 · 2f + 〈bM .bF 〉 · 2f = 〈cM .cF 〉 · 2f mod 2m+f .

There are variants of fixed-point arithmetic that implement saturation
instead of overflow semantics, that is, instead of wrapping around, the result
remains at the highest or lowest number that can be represented with the given
precision. Both the semantics and the flattening procedure are straightforward
for this case.

6.4.2 Flattening

Fixed-point arithmetic can be flattened just as well as arithmetic using binary
encoding or two’s complement. We assume that the numbers on the left- and
right-hand sides of a binary operator have the same numbers of bits, before
and after the radix point. If this is not so, missing bits after the radix point
can be added by padding the fractional part with zeros from the right. Missing
bits before the radix point can be added from the left using sign extension.

The operators are encoded as follows:

• The bitwise operators are encoded exactly as in the case of binary numbers.
Addition, subtraction, and the relational operators can also be encoded as
in the case of binary numbers.

• Multiplication requires an alignment. The result of a multiplication of two
numbers with f1 and f2 bits in the fractional part, respectively, is a number
with f1 + f2 bits in the fractional part. Note that, most commonly, fewer
bits are needed, and thus, the extra bits of the result have to be rounded
off using a separate rounding step.
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Example 6.11. Addition and subtraction are straight-forward, but note the
need for sign-extension in the second sum:

〈00.1〉+ 〈00.1〉 = 〈01.0〉
〈000.0〉+ 〈1.0〉 = 〈111.0〉

The following examples illustrate multiplication without any subsequent
rounding:

〈0.1〉 · 〈1.1〉 = 〈0.11〉
〈1.10〉 · 〈1.1〉 = 〈10.010〉

If needed, rounding towards zero, towards the next even number, or towards
±∞ can be applied in order to reduce the size of the fractional part; see
Problem 6.10.

There are many other encodings of numbers, which we do not cover here,
e.g., binary-coded decimals (BCDs), or fixed-point formats with sign bit.

6.5 Problems

6.5.1 Semantics

Problem 6.1 (operators that depend on the encoding). Provide an
example (with values of operands) that illustrates that the semantics depend
on the encoding (signed vs. unsigned) for each of the following three operators:
>, /, and >>.

Problem 6.2 (λ-notation). Define the meaning of al ◦ bl using the λ-
notation.

Problem 6.3 (negation). What is −10000000S if the operand of the unary
minus is a bit-vector constant?

Problem 6.4 (λ-notation). Define the meaning of a[l]U >>[l]U b[m]S and
a[l]S >>[l]S b[m]S using modular arithmetic. Prove these definitions to be
equivalent to the definition given in Sect. 6.1.3.

Problem 6.5 (shifts in hardware). What semantics of the left shift does
the processor in your computer implement? You can use a program to test
this, or refer to the specification of the CPU. Formalize the semantics.

Problem 6.6 (relations in hardware). What semantics of the < operator
does the processor in your computer implement if a signed integer is compared
with an unsigned integer? Try this for the ANSI-C types int, unsigned,
char, and unsigned char. Formalize the semantics, and specify the vendor
and model of the CPU.

Problem 6.7 (two’s complement addition). Prove
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a[l] +U b[l] = a[l] +S b[l]. (6.55)

Problem 6.8 (two’s complement multiplication). Prove

a[l] ·U b[l] = a[l] ·S b[l]. (6.56)

6.5.2 Bit-Level Encodings of Bit-Vector Arithmetic

Problem 6.9 (negation). Prove 〈(∼ b) + 1〉S = −〈b〉S mod 2l.

Problem 6.10 (relational operators). Prove the correctness of the flat-
tening for “<” as given in Sect. 6.2, for:

(a) Unsigned operands
(b) Signed operands
(c) An unsigned and a signed operand

Problem 6.11 (rounding for fixed-point arithmetic). Formally specify
the operator for rounding a fixed-point number with a fractional part of size
f1 to a fractional part of size f2 < f1 for the following cases:

(a) Rounding to zero
(b) Rounding to −∞
(c) Rounding to the nearest even number

Problem 6.12 (flattening fixed-point arithmetic). Provide a flattening
for the three rounding operators above.

6.5.3 Using Solvers for Linear Arithmetic

We introduced decision procedures for linear arithmetic in Chap. 5. A re-
stricted subset of bit-vector arithmetic can be translated into linear arithmetic
over the integers. As preparation, we perform a number of transformations on
the terms contained in a. We write JbK for the result of the transformation of

�� ��JbK
any bit-vector arithmetic term b.

• Let b >> d denote a bitwise right-shift term that is contained in a, where
b is a term and d is a constant. It is replaced by JbK/2〈d〉, i.e.,

Jb >> dK .
= JbK/2〈d〉 . (6.57)

Bitwise left shifts are handled in a similar manner.
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• The bitwise negation of a term b is replaced by −JbK− 1:

J∼bK .
= −JbK− 1 . (6.58)

• A bitwise AND term b[l]&1, where b is any term, is replaced by a new
integer variable x subject to the following constraints over x and a second
new integer variable σ:

0 ≤ x ≤ 1 ∧ JbK = 2σ + x ∧ 0 ≤ σ < 2l−1 . (6.59)

A bitwise AND with other constants can be replaced using shifts. This
can be optimized further by joining together groups of adjacent one-bits
in the constant on the right-hand side.

• The bitwise OR is replaced with bitwise negation and bitwise AND.

We are now left with addition, subtraction, multiplication by a constant, and
division by a constant.

As the next step, the division operators are removed from the constraints.
As an example, the constraint a/[32]3 = b becomes a = b ·[34] 3. Note that the
bit width of the multiplication has to be increased in order to take overflow
into account. The operands a and b are sign-extended if signed, and zero-
extended if unsigned. After this preparation, we can assume the following
form of the atoms without loss of generality:

c1 · t1 +[l] c2 · t2 rel b , (6.60)

where rel is one of the relational operators as defined in Sect. 6.1, c1, c2, and
b are constants, and t1 and t2 are bit-vector identifiers with l bits. Sums with
more than two addends can be handled in a similar way.

As we can handle additions efficiently, all scalar multiplications c ·[l] a with
a small constant c are replaced by c additions. For example, 3 · a becomes
a+ a+ a.

At this point, we are left with predicates of the following form:

t1 +[l] t2 rel b . (6.61)

Given that t1 and t2 are l-bit unsigned vectors, we have t1 ∈ {0, . . . , 2l − 1}
and t2 ∈ {0, . . . , 2l− 1}, and, thus, t1 + t2 ∈ {0, . . . , 2l+1− 2}. Recall that the
bit-vector addition in (6.61) will overflow if t1 + t2 is larger than 2l − 1. We
use a case split to adjust the value of the sum in the case of an overflow and
transform (6.61) into

((t1 + t2 ≤ 2l − 1) ? t1 + t2 : (t1 + t2 − 2l)) op b . (6.62)

Based on this description, answer the following questions:
Problem 6.13 (translation to integer arithmetic). Translate the follow-
ing bit-vector formula into a formula over integers:
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x[8] +[8] 100 ≤ 10[8] . (6.63)

Problem 6.14 (bitwise AND). Give a translation of

x[32]U = y[32]U&0xffff0000 (6.64)

into disjunctive integer linear arithmetic that is more efficient than that sug-
gested by (6.59).

Problem 6.15 (scalar multiplications). Rewriting scalar multiplications
c ·[l] a into c additions is inefficient if c is large owing to the cost of the
subsequent splitting. Suggest an alternative that uses a new variable.

Problem 6.16 (addition without splitting). Can you propose a different
translation for addition that does not use case splitting but uses a new integer
variable instead?

Problem 6.17 (removing the conditional operator). Our grammar for
integer linear arithmetic does not permit the conditional operator. Propose a
linear-time method for removing them. Note that the conditional operators
may be nested.

6.6 Bibliographic Notes

Tools and Applications

Bit-vector arithmetic was identified as an important logic for verification and
equivalence checking in the hardware industry in [263]. The notation we use
to annotate the type of the bit-vector expressions is taken from [50].

Early decision procedures for bit-vector arithmetic can be found in tools
such as SVC [16] and ICS [113]. ICS used BDDs in order to decide prop-
erties of arithmetic operators, whereas SVC was based on a combination of
a canonizer and a solver [18]. SVC has been superseded by CVC, and then
CVC-Lite [14] and STP, both of which use a propositional SAT solver to
decide the satisfiability of a circuit-based flattening of a bit-vector formula.
ICS was superseded by Yices, which also uses flattening and a SAT solver.

Bit-vector arithmetic is now primarily used to model the semantics of
programming languages. Cogent [75] decides the validity of ANSI-C expres-
sions. ANSI-C expressions are drawn from a fragment of bit-vector arithmetic,
extended with pointer logic (see Chap. 8). Cogent and related procedures
have many applications besides checking verification conditions. As an exam-
ple, see [37, 38] for an application of Cogent to database testing. In addition
to deciding the validity of ANSI-C expressions, C32SAT [51], developed by
Brummayer and Biere, is also able to determine if an expression always has a
well-defined meaning according to the ANSI-C standard.
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Bounded model checking (BMC) is a common source of bit-vector arith-
metic decision problems [33]. BMC was designed originally for synchronous
models, as frequently found in the hardware domain, for example. BMC has
been adopted in other domains that result in bit-vector formulas, for exam-
ple, software programs given in ANSI-C [72]. Further applications for decision
procedures for bit-vector arithmetic are discussed in Chap. 12.

Translation to Integer Linear Arithmetic

Translations to integer linear arithmetic as described in Sect. 6.5.3 have been
used for bit-vector decision problems found in the hardware verification do-
main. Brinkmann and Drechsler [50] translated a fragment of bit-vector arith-
metic into ILP and used the Omega test as a decision procedure for the ILP
problem. However, the work in [50] was aimed only at the data paths, and thus
did not allow a Boolean part within the original formula. This was mended
by Parthasarathy et al. [218] using an incremental encoding similar to the one
described in Chap. 3.

IEEE Floating-Point Arithmetic

Decision procedures for IEEE floating-point arithmetic are useful for gener-
ating tests for software that uses such arithmetic. A semantics for formulas
using IEEE binary floating-point arithmetic is given in the definition of the
SMT-LIB FPA theory. IEEE floating-point arithmetic can be flattened into
propositional logic by using circuits that implement floating-point units. Be-
yond flattening, approaches based on incremental refinement [49] and interval
arithmetic [45] have been proposed. A theory for SMT solvers is proposed
in [47].

State-of-the-Art Solvers

Current state-of-the-art decision procedures for bit-vector arithmetic apply
heavy preprocessing to the formula, but ultimately rely on flattening a for-
mula to propositional SAT [54, 189, 136]. The preprocessing is especially ben-
eficial if the formula also contains large arrays, for example, for modeling
memories [118, 188], or very expensive bit-vector operators such as multipli-
cation or division. A method for generating encodings that are particularly
well-suited for BCP is explained in [46]. The bit-vector category in the 2015
SMT competition was won by Boolector [52], which features an efficient
decision procedure for the combination of bit-vector arithmetic with arrays.
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6.7 Glossary

The following symbols were used in this chapter:

First used
Symbol Refers to . . . on page . . .

c?a : b Case split on condition c 135

λ Lambda expressions 137

bvecl Set of bit vectors with l bits 138

〈·〉U Number encoded by binary encoding 139

〈·〉S Number encoded by two’s complement 140

A(ϕ) Set of atoms in ϕ 142

T (ϕ) Set of terms in ϕ 143

ci Carry bit i 144

JbK Result of translation of bit-vector term b into linear
arithmetic
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7.1 Introduction

The array is a basic datatype that is supported by most programming lan-
guages, and is consequently prevalent in software. It is also used for modeling
the memory components of hardware. It is clear, then, that analysis of software
or hardware requires the ability to decide formulas that contain arrays. This
chapter introduces an array theory and two decision procedures for specific
fragments thereof.

Let us begin with an example that illustrates the use of array theory for
verifying an invariant of a loop.

Example 7.1. Consider the pseudocode fragment in Fig. 7.1. The main step
of the correctness argument is to show that the assertion in line 7 follows from
the assertion in line 5 when executing the assignment in line 6. A common way
to do so is to generate verification conditions, e.g., using Hoare’s axiom
system. We obtain the following verification condition for the claim:

(∀x ∈ N0. x < i =⇒ a[x] = 0)
∧ a′ = a{i← 0}

=⇒ (∀x ∈ N0. x ≤ i =⇒ a′[x] = 0) .
(7.1)

The formula above contains two symbols that are specific to arrays: the array
index operator a[x] and the array update operator a{i← 0}. We will explain
the meaning of these operators later. The validity of (7.1) implies that the loop
invariant is maintained. Our goal is to prove such formulas automatically, and
indeed later in this chapter we will show how this can be done.

The array theory permits expressions over arrays, which are formalized as
maps from an index type to an element type. We denote the index type by TI ,

�� ��TI
and the element type by TE . The type of the arrays themselves is denoted by �� ��TETA, which is a shorthand for TI −→ TE , i.e., the set of functions that map an �� ��TA
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1 a: array 0..99 of integer;
2 i: integer;
3
4 for i:=0 to 99 do
5 assert(∀x ∈ N0. x < i =⇒ a[x] = 0);
6 a[i]:=0;
7 assert(∀x ∈ N0. x ≤ i =⇒ a[x] = 0);
8 done;
9 assert(∀x ∈ N0. x ≤ 99 =⇒ a[x] = 0);

Fig. 7.1. Pseudocode fragment that initializes an array of size 100 with zeros,
annotated with assertions

element of TI to an element of TE . Note that neither the set of indices nor
the set of elements are required to be finite.

Let a ∈ TA denote an array. There are two basic operations on arrays:

1. Reading an element with index i ∈ TI from a. The value of the element
that has index i is denoted by a[i]. This operator is called the array index

�� ��a[i]
operator.

2. Writing an element with index i ∈ TI . Let e ∈ TE denote the value to be
written. The array a where element i has been replaced by e is denoted by
a{i← e}. This operator is called the array update or array store operator.

�� ��a{i← e}

We call the theories used to reason about the indices and the elements the
index theory and the element theory, respectively. The array theory is param-
eterized with the index and element theories. We can obtain multidimensional
arrays by recursively defining TA(n) for n-dimensional arrays. For n ≥ 2, we
simply add TA(n− 1) to the element type of TA(n).

The choice of the index and element theories will affect the expressiveness
of the resulting array theory. As an instance, the index theory needs to permit
existential and universal quantification in order to model properties such as
“there exists an array element that is zero” or “all elements of the array
are greater than zero”. An example of a suitable index theory is Presburger
arithmetic, i.e., linear arithmetic over integers (Chap. 5) with quantification
(Chap. 9).

We start with a very general definition of the array theory. This theory is
in general not decidable, however, and we therefore consider restrictions later
on in order to obtain decision procedures.

7.1.1 Syntax

We define the syntax of the array theory as an extension to the combination
of the index and element theories. Let termI and termE denote a term in
these two theories, respectively. We begin by defining an array term termA:

termA : array-identifier | termA{termI ← termE} .
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Next, we extend element terms to include array elements, i.e.,

termE : termA [ termI ] | (previous rules) ,

where previous rules denote the grammatical rules that define termE before
this extension. Finally, we extend the possible predicates in the formula by
allowing equalities between array terms:

formula : termA = termA | (previous rules) ,

where here previous rules refer to the grammatical rules defining formula
before this extension. The extension of the grammar with explicit equality
between arrays is redundant if the index theory includes quantification, since
a1 = a2 for arrays a1 and a2 can also be written as ∀i. a1[i] = a2[i].

7.1.2 Semantics

The meaning of the new atoms and terms in the array theory is given using
three axioms.

The first axiom gives the obvious meaning to the array index operator.
Two array index terms have the same value if the array is the same and if the
index is the same.

∀a1 ∈ TA. ∀a2. ∈ TA. ∀i ∈ TI . ∀j ∈ TI . (a1 = a2 ∧ i = j) =⇒ a1[i] = a2[j] .
(7.2)

The axiom used to define the meaning of the array update operator is the
read-over-write axiom: after the value e has been written into array a at
index i, the value of this array at index i is e. The value at any index j 6= i
matches that in the array before the write operation at index j:

∀a ∈ TA. ∀e ∈ TE . ∀i ∈ TI . ∀j ∈ TI . a{i← e}[j] =

{
e : i = j
a[j] : otherwise .

(7.3)

This axiom is necessary, for example, for proving (7.1).
Finally, we give the obvious meaning to equality over arrays with the

extensionality rule:

∀a1 ∈ TA. ∀a2 ∈ TA. (∀i ∈ TI . a1[i] = a2[i]) =⇒ a1 = a2 . (7.4)

The array theory that includes the rule above is called the extensional the-
ory of arrays.

7.2 Eliminating the Array Terms

We now present a method to translate a formula in the array theory into a
formula that is a combination of the index theory and the element theory.
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Aside: Array Bounds Checking in Programs
While the array theory uses arrays of unbounded size, array data structures
in programs are of bounded size. If an index variable exceeds the size of an
array in a program, the value returned may be undefined or a crash might
occur. This situation is called an array bounds violation. In the case of a
write operation, other data might be overwritten, which is often exploitable to
gain control over a computer system from a remote location over a network.
Checking that a program never violates any of its array bounds is therefore
highly desirable.

Note, however, that checking array bounds in programs does not require
the array theory; the question of whether an array index is within the bounds
of a finite-size array requires one only to keep track of the size of the array,
not of its contents.

As an example, consider the following program fragment, which is meant
to move the elements of an array:

int a[N];

for(int i=0; i<N; i++)
a[i]=a[i+1];

Despite the fact that the program contains an array, the verification condition
for the array-bounds property does not require the array theory:

i < N =⇒ (i < N ∧ i+ 1 < N) . (7.5)

The translation is applicable if this combined theory includes uninterpreted
functions and quantifiers over indices.

Consider Axiom (7.2), which defines the semantics of the array index op-
erator. Now recall the definition of functional consistency, which we saw in
Sect. 4.2.1. Informally, functional consistency requires that two applications
of the same function must yield an equal result if their arguments are the
same. It is evident that Axiom (7.2) is simply a special case of functional
consistency.

We can therefore replace the array index operator by an uninterpreted
function, as illustrated in the following example:

Example 7.2. Consider the following array theory formula, where a is an
array with element type char:

(i = j ∧ a[j] = ’z’) =⇒ a[i] = ’z’ . (7.6)

The character constant ’z’ is a member of the element type. Let Fa denote
the uninterpreted function introduced for the array a:

(i = j ∧ Fa(j) = ’z’) =⇒ Fa(i) = ’z’ . (7.7)
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This formula can be shown to be valid with a decision procedure for equality
and uninterpreted functions (Chap. 4).

What about the array update operator? One way to model the array up-
date is to replace each expression of the form a{i ← e} by a fresh variable
a′ of type array. We then add two constraints that correspond directly to the
two cases of the read-over-write axiom:

1. a′[i] = e for the value that is written,
2. ∀j 6= i. a′[j] = a[j] for the values that are unchanged.

This is called the write rule, and is an equivalence-preserving transformation
on array theory formulas.

Example 7.3. The formula

a{i← e}[i] ≥ e (7.8)

is transformed by introducing a new array identifier a′ to replace a{i ← e}.
Additionally, we add the constraint a′[i] = e, and obtain

a′[i] = e =⇒ a′[i] ≥ e , (7.9)

which shows the validity of (7.8). The second part of the read-over-write axiom
is needed to show the validity of a formula such as

a[0] = 10 =⇒ a{1← 20}[0] = 10 . (7.10)

As before, the formula is transformed by replacing a{1 ← 20} with a new
identifier a′ and adding the two constraints described above:

(a[0] = 10 ∧ a′[1] = 20 ∧ (∀j 6= 1. a′[j] = a[j])) =⇒ a′[0] = 10 . (7.11)

Again as before, we transform this formula by replacing a and a′ with
uninterpreted-function symbols Fa and Fa′ :

(Fa(0) = 10 ∧ Fa′(1) = 20 ∧ (∀j 6= 1. Fa′(j) = Fa(j))) =⇒ Fa′(0) = 10 .

This simple example shows that array theory can be reduced to combinations
of the index theory and uninterpreted functions, provided that the index the-
ory offers quantifiers. The problem is that this combination is not necessarily
decidable. A convenient index theory with quantifiers is Presburger arith-
metic, and indeed its combination with uninterpreted functions is known to
be undecidable. As mentioned above, the array theory is undecidable even
if the combination of the index theory and the element theory is decidable
(see Problem 7.2). We therefore need to restrict the set of formulas that we
consider in order to obtain a decision procedure. This is the approach used
by the reduction algorithm in the following section.
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7.3 A Reduction Algorithm for a Fragment of the Array
Theory

7.3.1 Array Properties

We define here a restricted class of array theory formulas in order to obtain
decidability. We consider formulas that are Boolean combinations of array
properties.

Definition 7.4 (array property). An array theory formula is called an ar-
ray property if and only if it is of the form

∀i1 . . . ∀ik ∈ TI . φI(i1, . . . , ik) =⇒ φV (i1, . . . , ik) , (7.12)

and satisfies the following conditions:
�� ��φI�� ��φV

1. The predicate φI , called the index guard, must follow the grammar

iguard : iguard ∧ iguard | iguard ∨ iguard | iterm ≤ iterm | iterm = iterm

iterm : i1 | . . . | ik | term

term : integer-constant | integer-constant · index-identifier | term + term

The “index-identifier” used in “term” must not be one of i1, . . . , ik.
2. The index variables i1, . . . , ik can only be used in array read expressions

of the form a[ij ].

The predicate φV is called the value constraint.

Example 7.5. Recall Axiom (7.4), which defines the equality of two arrays
a1 and a2 as element-wise equality. Extensionality is an array property:

∀i. a1[i] = a2[i] . (7.13)

The index guard is simply true in this case.
Recall the array theory formula (7.1). The first and the third conjunct are

obviously array properties, but recall the second conjunct,

a′ = a{i← 0} . (7.14)

Is this an array property as well? As illustrated in Example 7.3, an array
update expression can be replaced by adding two constraints. In our example,
the first constraint is a′[i] = 0, which is obviously an array property. The
second constraint is

∀j 6= i. a′[j] = a[j] , (7.15)

which does not comply with the syntax constraints for index guards as given
in Definition 7.4. However, it can be rewritten as

∀j. (j ≤ i− 1 ∨ i+ 1 ≤ j) =⇒ a′[j] = a[j] (7.16)

to match the syntactic constraints.
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7.3.2 The Reduction Algorithm

We now describe an algorithm that accepts a formula from the array property
fragment of array theory and reduces it to an equisatisfiable formula that uses
the element and index theories combined with equalities and uninterpreted
functions. Techniques for uninterpreted functions are given in Chap. 4.

Algorithm 7.3.1 takes an array theory formula from the array property
fragment as input. Note that the transformation of array properties to NNF
may turn a universal quantification over the indices into an existential quan-
tification. The formula does not contain explicit quantifier alternations, owing
to the syntactic restrictions.

As a first step, the algorithm applies the write rule (see Sect. 7.2) to remove
all array update operators. The resulting formula contains quantification over
indices, array reads, and subformulas from the element and index theories.

As the formula is in NNF, an existential quantification can be replaced
by a new variable (which is implicitly existentially quantified). The universal
quantifiers ∀i ∈ TI . P (i) are replaced by the conjunction

∧
i∈I(φ) P (i), where

the set I(φ) denotes the index expressions that i might possibly be equal to
�� ��I(φ)

in the formula φ. This set contains the following elements:

1. All expressions used as an array index in φ that are not quantified vari-
ables.

2. All expressions used inside index guards in φ that are not quantified vari-
ables.

3. If φ contains none of the above, I(φ) is {0} in order to obtain a nonempty
set of index expressions.

Finally, the array read operators are replaced by uninterpreted functions, as
described in Sect. 7.2.

Example 7.6. In order to illustrate Algorithm 7.3.1, we continue the intro-
ductory example by proving the validity of (7.1):

(∀x ∈ N0. x < i =⇒ a[x] = 0)
∧ a′ = a{i← 0}

=⇒ (∀x ∈ N0. x ≤ i =⇒ a′[x] = 0) .

That is, we aim to show unsatisfiability of

(∀x ∈ N0. x < i =⇒ a[x] = 0)
∧ a′ = a{i← 0}
∧ (∃x ∈ N0. x ≤ i ∧ a′[x] 6= 0) .

(7.17)

By applying the write rule, we obtain

(∀x ∈ N0. x < i =⇒ a[x] = 0)
∧ a′[i] = 0 ∧ ∀j 6= i. a′[j] = a[j]
∧ (∃x ∈ N0. x ≤ i ∧ a′[x] 6= 0) .

(7.18)
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Algorithm 7.3.1: Array-Reduction

Input: An array property formula φA in NNF
Output: A formula φUF in the index and element theories with unin-

terpreted functions

1. Apply the write rule to remove all array updates from φA.
2. Replace all existential quantifications of the form ∃i ∈ TI . P (i) by P (j),

where j is a fresh variable.
3. Replace all universal quantifications of the form ∀i ∈ TI . P (i) by∧

i∈I(φ)

P (i) .

4. Replace the array read operators by uninterpreted functions and obtain
φUF ;

5. return φUF ;

In the second step of Algorithm 7.3.1, we instantiate the existential quantifier
with a new variable z ∈ N0:

(∀x ∈ N0. x < i =⇒ a[x] = 0)
∧ a′[i] = 0 ∧ ∀j 6= i. a′[j] = a[j]
∧ z ≤ i ∧ a′[z] 6= 0 .

(7.19)

The set I for our example is {i, z}. We therefore replace the two universal
quantifications as follows:

(i < i =⇒ a[i] = 0) ∧ (z < i =⇒ a[z] = 0)
∧ a′[i] = 0 ∧ (i 6= i =⇒ a′[i] = a[i]) ∧ (z 6= i =⇒ a′[z] = a[z])
∧ z ≤ i ∧ a′[z] 6= 0 .

(7.20)

Let us remove the trivially satisfied conjuncts to obtain

(z < i =⇒ a[z] = 0)
∧ a′[i] = 0 ∧ (z 6= i =⇒ a′[z] = a[z])
∧ z ≤ i ∧ a′[z] 6= 0 .

(7.21)

We now replace the two arrays a and a′ by uninterpreted functions Fa and
Fa′ and obtain

(z < i =⇒ Fa(z) = 0)
∧ Fa′(i) = 0 ∧ (z 6= i =⇒ Fa′(z) = Fa(z))
∧ z ≤ i ∧ Fa′(z) 6= 0 .

(7.22)

By distinguishing the three cases z < i, z = i, and z > i, it is easy to see that
this formula is unsatisfiable.



7.4 A Lazy Encoding Procedure 165

7.4 A Lazy Encoding Procedure

7.4.1 Incremental Encoding with DPLL(T )

The reduction procedure given in the previous section performs an encod-
ing from the array theory into the underlying index and element theories. In
essence, it does so by adding instances of the read-over-write rule and the
extensionality rule. In practice, most of the instances that the algorithm gen-
erates are unnecessary, which increases the computational cost of the decision
problem.

In this section, we discuss a procedure that generates the instances of
the read-over-write (7.3) and extensionality (7.4) rules incrementally, which
typically results in far fewer constraints. The algorithm we describe in this
section follows [70] and is designed for integration into the DPLL(T ) procedure
(Chap. 3). It performs a lazy encoding of the array formula into equality logic
with uninterpreted functions (Chap. 4). The algorithm assumes that the index
theory is quantifier-free, but does permit equalities between arrays.

Preprocessing

We perform a preprocessing step before the main phase of the algorithm. The
preprocessing step instantiates the first half of (7.3) exhaustively, i.e., for all
expressions a{i← e} present in the formula, add the constraint

a{i← e}[i] = e . (7.23)

This generates a linear number of constraints. The axiom given as (7.2) is han-
dled using the encoding into uninterpreted functions that we have explained
in the previous section. The second case of (7.3) and the extensionality rule
will be implemented incrementally.

Before we discuss the details of the incremental encoding we will briefly
recall the basic principle of DPLL(T ), as described in Chap. 3. In DPLL(T ),
a propositional SAT solver is used to obtain a (possibly partial) truth assign-
ment to the theory atoms in the formula. This assignment is passed to the
theory solver, which determines whether the assignment is T -consistent. The
theory solver can pass additional propositional constraints back to the SAT
solver in order to implement theory propagation and theory learning. These
constraints are added to the clause database maintained by the SAT solver.
Afterwards, the procedure reiterates, either determining that the formula is
UNSAT or generating a new (possibly partial) truth assignment.

7.4.2 Lazy Instantiation of the Read-Over-Write Axiom

Algorithm 7.4.1 takes as input a set of array formula literals (array theory

atoms or their negation). The conjunction of the literals is denoted by T̂ h. The

algorithm returns true if T̂ h is consistent in the array theory; otherwise, it
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returns a formula t that is valid in the array theory and blocks the assignment
T̂ h. The formula t is initialized with true, and then strengthened as the
algorithm proceeds.

In line 2 the equivalence classes of the terms mentioned in T̂ h are com-
puted. In Sect. 4.3 we described the congruence closure algorithm for com-
puting such classes. We denote by t1 ≈ t2 the fact that terms t1 and t2 are in

�� ��≈
the same equivalence class.

�

�

�

�

Algorithm 7.4.1: Array-Encoding-Procedure

Input: A conjunction of array literals T̂ h

Output: true, or a valid array formula t that blocks T̂ h

1. t := true;
2. Compute equivalence classes of terms in T̂ h;
3. Construct the weak equivalence graph G from T̂ h;
4. for a, b, i, j such that a[i] and b[j] are terms in T̂ h do
5. if i ≈ j then
6. if a[i] 6≈ b[j] then
7. for each simple path p ∈ G from a to b do
8. if each label l on p’s edges satisfies l 6≈ i then
9. t := t ∧ ((i = j ∧ Cond i(p)) =⇒ a[i] = b[j]);

10. return t;

In line 3 we construct a labeled undirected graph G(V,E) called the weak

equivalence graph. The vertices V correspond to the array terms in T̂ h.
The edges have an optional label, and are added as follows:

1. For each equality a = b between array terms, add an unlabeled edge
between a and b.

2. For each array term a and an update of that term a{i← v}, add an edge
labeled with i between their vertices.

Example 7.7. Consider the formula

T̂ h
.
= i 6= j ∧ i 6= k ∧ a{j ← v} = b ∧ a{k ← w} = c ∧ b[i] 6= c[i] . (7.24)

The weak equivalence graph corresponding to T̂ h is

b a{j ← v} a a{k ← w} c
j k

Two arrays a and b are called weakly equivalent whenever there is a path
from a to b in G. This means that they are equal on all array elements except,
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possibly, those that are updated on the path. Arrays a, b, and c in the example
above are all weakly equivalent.

Lines 4–9 generate constraints that enforce equality of array elements.
This is relevant for any pair of array element terms a[i] and b[j] in T̂ h where
the index terms i and j are forced to be equal, according to the equivalence
classes, but a[i] and b[j] are not. The idea is to determine whether the arrays
a and b are connected by a chain of array updates where the index i is not
used. If there is a chain with this property, then a[i] must be equal to b[j].

We will check whether this chain exists using our weak equivalence graph G
as follows. We will consider all paths p from a to b. The path can be discarded
if any of its edge labels has an index that is equal to i according to our
equivalence classes. Otherwise, we have found the desired chain, and add

(i = j ∧ Cond i(p)) =⇒ a[i] = b[j] (7.25)

as a constraint to t. The expression Cond i(p) is a conjunction of the following
�� ��Cond i(p)

constraints:

1. For an unlabeled edge from a to b, add the constraint a = b.
2. For an edge labeled with k, add the constraint i 6= k.

Example 7.8. Continuing Example 7.7, we have two nontrivial equivalence
classes: {a{j ← v}, b} and {a{k ← w}, c}. Hence the terms b[i], c[i] satisfy
b[i] 6≈ c[i] and their index is trivially equal. There is one path p from b to c
on the graph G, and none of its edges is labeled with an index in the same
equivalence class as i, i.e., j 6≈ i, k 6≈ i. For this path p, we obtain

Cond i(p) = i 6= j ∧ i 6= k (7.26)

and subsequently update t in line 9 to

t := (i = i ∧ i 6= j ∧ i 6= k) =⇒ b[i] = c[i] . (7.27)

Now t is added to (7.24). The left-hand side of t holds trivially, and thus, we
obtain a contradiction to b[i] 6= c[i]. Hence, we proved that (7.24) is unsatis-
fiable.

Note that the constraint returned by Algorithm 7.4.1 is true when no chain
is found. In this case, T̂ h is satisfiable in the array theory. Otherwise t is
a blocking clause, i.e., its propositional skeleton is inconsistent with the
propositional skeleton of T̂ h. This ensures progress in the propositional part
of the DPLL(T ) procedure.

7.4.3 Lazy Instantiation of the Extensionality Rule

The constraints generated by Algorithm 7.4.1 are sufficient to imply the re-
quired equalities between individual array elements. In order to obtain a com-
plete decision procedure for the extensional array theory, we need to add
constraints that imply equalities between entire arrays.
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Algorithm 7.4.2 is intended to be executed in addition to Algorithm 7.4.1.
It generates further constraints that imply the equality of array terms.

�

�

�

�

Algorithm 7.4.2: Extensional-Array-Encoding

Input: A conjunction of array literals T̂ h

Output: true, or a valid array formula t that blocks T̂ h

1. t := true;
2. Compute equivalence classes of terms in T̂ h;
3. Construct the weak equivalence graph G from T̂ h;
4. for a, b such that a and b are array terms in T̂ h do
5. if a 6≈ b then
6. for each simple path p ∈ G from a to b do
7. Let S be the set of edge labels of p;
8. t := t ∧ (

∧
i∈S Condui (p) =⇒ a = b);

9. return t;

An equality between two array terms is deduced as follows: Consider all
pairs a, b of array terms in T̂ h that are not equal and any chain of equalities
between a and b. Choose one such chain, which we call p, and let S be the

�� ��S
set of all distinct indices that are used in array updates in the chain. For all
indices i ∈ S, do the following:

1. Find the array term just before the first edge on p labeled with i or with
an index j such that j ≈ i. Denote this term by first , and denote the
prefix of p up to the edge with p′.

2. Find the array term just after the last update on p labeled with i or with
an index k such that k ≈ i. Denote this term by last , and denote the suffix
of the path p after this edge with p′′.

3. Check that first [i] is equal to last [i].

If this holds for all indices, then a must be equal to b. A chain of this kind in
G has the following form:

a . . .︸ ︷︷ ︸
p′

first . . . last . . .︸ ︷︷ ︸
p′′

b
i i

Algorithm 7.4.2 checks whether such a chain exists using our graph G as
follows: It considers all paths p from a to b. For each path p it computes the
set S. It then adds ∧

i∈S
Condui (p) =⇒ a = b (7.28)

as a constraint to t, where Condui (p) is defined as follows: If there is no edge
�� ��Condui (p)
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with an index label that is equal to i in p, then

Condui (p) := Cond i(p) .

Otherwise, it is the condition under which the updates of index i on p satisfy
the constraints explained above, which is formalized as follows:

Condui (p) := Cond i(p
′) ∧ first [i] = last [i] ∧ Cond i(p

′′) . (7.29)

Example 7.9. Consider the following input to Algorithm 7.4.2:

T̂ h := v = w ∧ b = a{i← v} ∧ b 6= a{i← w} , (7.30)

which is inconsistent. The preprocessing step (Sect. 7.4.1) is to add the in-
stances of the first part of the read-over-write axiom (7.3). For the theory

literals in T̂ h, we obtain

a{i← v}[i] = v and a{i← w}[i] = w . (7.31)

Next, we construct the following weak equivalence graph:

b a{i← v} a a{i← w}i i

Algorithm 7.4.2 will, among others, identify b and a{i ← w} as array terms.
There is one path between them, and the set S for this path is the singleton
{i}. The array term first is a{i ← v}, and the array term last is a{i ← w}.
Note that p′ is the path from b to a{i← v} and that p′′ is empty. We obtain

Condui (p) = (a{i← v}[i] = a{i← w}[i]) (7.32)

and subsequently add the constraint

a{i← v}[i] = a{i← w}[i] =⇒ b = a{i← w} (7.33)

to our formula. Recall that we have added the constraints a{i ← v}[i] = v
and a{i ← w}[i] = w and suppose that v = w in all models of the formula.
The decision procedure for equality logic will determine that a{i ← v}[i] =
a{i ← w}[i] holds, and thus, DPLL(T ) will deduce that b = a{i ← w} must

be true in any model of the formula, which contradicts the third literal of T̂ h
in (7.30).

7.5 Problems

Problem 7.1 (manual proofs for array logic). Show the validity of (7.1)
using the read-over-write axiom.

Problem 7.2 (undecidability of array logic). A two-counter machine M
consists of
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• A finite set L of labels for instructions, which includes the two special
labels start and halt

• An instruction for each label, which has one of the following two forms,
where m and n are labels in L:
– ci := ci + 1; goto m
– if ci = 0 then

ci := ci + 1; gotom
else
ci := ci − 1; goton

endif

A configuration of M is a triple 〈`, c1, c2〉 from S := (L × N × N), where `
is the label of the instruction that is to be executed next, and c1 and c2 are
the current values of the two counters. The instructions permitted and their
semantics vary. We will assume that R(s, s′) denotes a predicate that holds
if M can make a transition from state s to state s′. The definition of R is
straightforward. The initial state of M is 〈start , 0, 0〉. We write I(s) if s is the
initial state. A computation of M is any sequence of states that begin in the
initial state and where two adjacent states are related by R. We say that the
machine terminates if there exists a computation that reaches a state in which
the instruction has label halt . The problem of whether a given two-counter
machine M terminates is undecidable in general.

Show that the satisfiability of an array logic formula is undecidable by
performing a reduction of the termination problem for a two-counter machine
to an array logic formula: given a two-counter machine M , generate an array
logic formula ϕ that is valid if M terminates.

Problem 7.3 (quantifiers and NNF). The transformation steps 3 and 4
of Algorithm 7.3.1 rely on the fact that the formula is in NNF. Provide one
example for each of these steps that shows that the step is unsound if the
formula is not in NNF.

7.6 Bibliographic Notes

The read-over-write axiom (7.3) is due to John McCarthy, who used it to
show the correctness of a compiler for arithmetic expressions [191]. The reads
and writes correspond to loads and stores in a computer memory. Hoare and
Wirth introduced the notation (a, i : e) for a{i ← e} and used it to define
the meaning of assignments to array elements in the PASCAL programming
language [145].

Automatic decision procedures for arrays have been found in automatic
theorem provers since the very beginning. In the context of program verifi-
cation, array logic is often combined with application-specific predicates, for
example, to specify properties such as “the array is sorted” or to specify ranges
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of indices [241]. Greg Nelson’s theorem prover Simplify [101] has McCarthy’s
read-over-write axiom and appropriate instantiation heuristics built in.

The reduction of array logic to fragments of Presburger arithmetic with un-
interpreted functions is commonplace [272, 190, 156]. While this combination
is in general undecidable [105], many restrictions of Presburger arithmetic with
uninterpreted functions have been shown to be decidable. Stump et al. [269]
present an algorithm that first eliminates the array update expressions from
the formula by identifying matching writes. The resulting formula can be de-
cided with an EUF decision procedure (Chap. 4). Armando et al. [6] give
a decision procedure for the extensional theory of arrays based on rewriting
techniques and a preprocessing phase to implement extensionality.

Most modern SMT solvers implement a variant of the incremental en-
coding described in Sect. 7.4. Specifically, Brummayer et al. [53] used lazy
introduction of functional consistency constraints in their tool Boolector,
which solves combinations of arrays and bit vectors. Such a lazy procedure
was used in the past also in the context of deciding arrays via quantifier elim-
ination [97], and in the context of translation validation [229]. The definition
of weak equivalence and the construction of the corresponding graph are given
in [70].

The array property fragment that we used in this chapter was identi-
fied by Bradley, Manna, and Sipma [44]. The idea of computing “sufficiently
large” sets of instantiation values is also used in other procedures. For in-
stance, Ghilardi et al. computed such sets separately for the indices and array
elements [126]. In [127], the authors sketch how to integrate the decision pro-
cedure into a state-of-the-art SMT solver. There are also many procedures for
other logics with quantifiers that are based on this approach; some of these
are discussed in Sect. 9.5.

7.7 Glossary

The following symbols were used in this chapter:

First used
Symbol Refers to . . . on page . . .

TI Index type 157

TE Element type 157

TA Array type (a map from TI to TE) 157

a[i] The element with index i of an array a 158

continued on next page
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continued from previous page

First used
Symbol Refers to . . . on page . . .

a{i← e} The array a, where the element with index i has
been replaced by e

158

φI The index guard in an array property 162

φV The value constraint in an array property 162

I(φ) Index set 163

t1 ≈ t2 The terms t1, t2 are in the same equivalence class 166

Cond i(p) A constraint added as part of Algorithm 7.4.1 167

S The set of indices that are used in array updates in
a path

168

Condui (p) A constraint added as part of Algorithm 7.4.2 168



8.1 Introduction

8.1.1 Pointers and Their Applications

This chapter introduces a theory for reasoning about programs that use point-
ers, and describes decision procedures for it. We assume that the reader is
familiar with pointers and their use in programming languages.

A pointer is a program variable whose sole purpose is to refer to some
other program construct. This other construct could be a variable, a procedure
or label, or yet another pointer. Among other things, pointers allow a piece
of code to operate on different sets of data, which avoids inefficient copying
of data.

As an example, consider a program that maintains two arrays of integers,
named A and B, and that both arrays need to be sorted at some point within
the program. Without pointers, the programmer needs to maintain two imple-
mentations of the sorting algorithm, one for A and one for B. Using pointers,
a single implementation of sorting is implemented as a procedure that accepts
a pointer to the first element of an array as an argument. It is called twice,
with the addresses of A and B, respectively, as the argument.

As pointers are a common source of programming errors, most modern
programming languages try to offer alternatives, e.g., in the form of references
or abstract data containers. Nevertheless, low-level programming languages
with explicit pointers are still frequently used, for example, for embedded
systems or operating systems.

The implementation of pointers relies on the fact that the memory cells of
a computer have addresses, i.e., each cell has a unique number. The value of a
pointer is then nothing but such a number. The way the memory cells are ad-
dressed is captured by the concept of the memory model of the architecture
that executes the program.

Definition 8.1 (memory model). A memory model describes the assump-
tions that are made about the way memory cells are addressed. We assume

8
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that the architecture provides a continuous, uniform address space, i.e., the
set of addresses A is a subinterval of the integers {0, . . . , N − 1}. Each ad-

�� ��M , A
dress corresponds to a memory cell that is able to store one data word. The
set of data words is denoted by D. A memory valuation M : A −→ D is a

�� ��D
mapping from a set of addresses A into the domain D of data words.

A variable may require more than one data word to be stored in memory.
For example, this is the case when the variable is of type struct, array, or
double-precision floating point. Let σ(v) with v ∈ V denote the size (in data

�� ��σ
words) of v.

The compiler assigns a particular memory location (address) to each
global, and thus, static variable.1 This mapping is called the memory layout,
and is formalized as follows. Let V denote the set of variables.

�� ��V

Definition 8.2 (memory layout). A memory layout L : V −→ A is a
�� ��L

mapping from each variable v ∈ V to an address a ∈ A. The address of v is
also called the memory location of v.

The memory locations of the statically allocated variables are usually as-
signed such that they are nonoverlapping (we explain later on how to model
dynamically allocated data structures). Note that the memory layout is not
necessarily continuous, i.e., compilers may generate a layout that contains
“holes”.2

Example 8.3. Figure 8.1 illustrates a memory layout for a fragment of an
ANSI-C program. The program has six objects, which are named var_a,
var_b, var_c, S, array, and p. The first five objects either are integer vari-
ables or are composed of integer variables. The object named p is a pointer
variable, which we assume to be as wide as an integer.3 The program initializes
p to the address of the variable var_c, which is denoted by &var_c. Besides
the variable definitions, the program also has a function main(), which sets
the value of the variable pointed to by p to 100.

8.1.2 Dynamic Memory Allocation

Pointers also enable the creation of dynamic data structures . Dynamic data
structures rely on an area of memory that is designated for use by objects that

1 Statically allocated variables are variables that are allocated space during the
entire run time of the program. In contrast, the addresses of dynamically allocated
data such as local variables or data on the heap are determined at run time once
the object has been created.

2 A possible reason for such holes is the need for proper alignment. As an example,
many 64-bit architectures are unable to read double-precision floating-point values
from addresses that are not a multiple of 8.

3 This is not always the case; for example, in the x86 16-bit architecture, integers
have 16 bits, whereas pointers are 32 bits wide. In some 64-bit architectures,
integers have 32 bits, whereas pointers have 64 bits.
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int var_a, var_b, var_c;
struct { int x; int y; } S;
int array[4];
int *p = &var_c;

int main() {

*p=100;
}

var a

var b

var c

S.x

array[2]

array[3]

p

0

1

2

3

4

5

6

7

8

9

array[0]

array[1]

S.y

Fig. 8.1. A fragment of an ANSI-C program and a possible memory layout for it

Aside: Pointers and References in Object-Oriented Programming
Separation of data and algorithms is promoted by the concept of object-
oriented programming (OOP). In modern programming languages such as
Java and C++, the explicit use of pointer variables is deprecated. Instead,
the procedures that are associated with an object (the methods) implicitly
receive a pointer to the data members (the fields) of the object instance as
an argument. In C++, the pointer is accessible using the keyword this. All
accesses to the data members are performed indirectly by means of the this
pointer variable.

References, just like pointers, are program variables that refer to a vari-
able or object. The difference between references and pointers is often only
syntactic. As an example, the fact that dereferencing is performed is usually
hidden. In program analysis, references can be treated just as pointers.

are created at the run time of the program. A run time library maintains a list
of the memory regions that are unused. A function, which is part of this library,
allocates a region of given size and returns a pointer to the beginning (lowest
address) of the region. The memory layout therefore changes during the run
time of the program. Memory allocation may be performed an unbounded
number of times (provided enough space is deallocated as well), and thus,
there is no bound on the number of objects that a program can generate.

The function that performs the allocation is called malloc() in C, and is
provided as an operator called new in C++, C#, and Java. In either case, the
size of the region that is requested is passed as an argument. In order to reuse
memory occupied by data structures that are no longer needed, C program-
mers call free, C++ programmers use delete, while Java and C# provide an
automatic garbage collection mechanism. The lifetime of a dynamic object
is the time between its allocation and its deallocation.
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8.1.3 Analysis of Programs with Pointers

All but trivial programs rely on pointers or references in order to separate
between data and algorithms. Decision procedures that are used for program
analysis therefore often need to include reasoning about pointers.

As a simple example, consider the following program fragment, which com-
putes the sum of an array of size 10:

void f(int *sum) {

*sum = 0;

for(i=0; i<10; i++)

*sum = *sum + array[i];
}

The sum is stored in an integer variable that is pointed to by a pointer called
sum. Any analysis method that aims at validating the correctness of this frag-
ment has to take the value of the pointer into account. In particular, the
program is likely to fail if the address held by sum is equal to the address of i.
In this case, we say that *sum is an alias for i. Aliasing that is not anticipated
by the programmer is a common source of problems.

The use of pointers gives rise to program properties that are of high in-
terest. It is well known that many programs fail owing to incorrect use of
pointer variables. A very common problem in programs is dereferencing of
pointer variables that do not point to a proper object. The value 0 is typically
reserved as a designated NULL pointer. It is guaranteed that no object, either
statically or dynamically allocated, has this address. This value can therefore
be used to indicate special cases, for example, the end of a linked list. However,
if such a pointer is—by mistake—dereferenced, modern architectures typically
generate an exception, which terminates the program.

Programming languages that offer explicit deallocation face another prob-
lem. In the following program fragment, an array-type object is allocated and
deallocated:

int *p, *q;

p = new int[10];
q = &p[3];
delete p;

*q = 2;

Note that the address of the fourth element of the array is stored in q, and that
this pointer is dereferenced after the deallocation of the array. In a variant of
the program above, the library that manages the dynamically allocated mem-
ory may have reassigned the space used for the array by that time, and thus
another object might be overwritten by writing to *q. Such errors are hard
to reproduce, as they depend on the exact memory layout of the architecture.
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They often remain undetected despite extensive testing. The detection of such
errors is therefore an important application for static program analysis tools.

Aside: Alias Analysis
Alias analysis has a significant role in pointer-related reasoning about soft-
ware, such as the analysis performed by optimizing compilers. Alias analysis
may be performed at various levels of precision. For example, alias analysis
may be field sensitive or insensitive, interprocedural or intraprocedural, and
may or may not be sensitive to the control flow. Alias analysis is a special
case of static analysis , and is typically performed as a may-analysis, that is,
it determines the set of variables that a given pointer may point to — this is
called the “points-to” set. In other words, variables that are not in this set
cannot be pointed to by this pointer. For example, given an instruction such
as

*p=0;

may-analysis permits us to conclude that any variable that is not in the points-
to set of p is also not modified by this assignment. In the case of an optimizing
compiler, this permits us to determine the set of variables that can be cached
safely in processor registers.

Alias analysis is performed by maintaining a points-to set for each pointer
(and, if desired, for each program location), and updating these sets accord-
ing to the program statements. The algorithm terminates once the sets have
saturated, i.e., do not change anymore.

As an example, consider a control-flow-insensitive analysis of a program
with three statements:

p=q;
q=&i;
p=&j;

The points-to sets of p and q are initially empty. Processing the first statement
results in no change. The second statement adds i to the points-to set of q,
and the third adds j to the points-to set of p. Owing to the first statement,
the set of q is added to that of p and, thereafter, the two sets are saturated.

8.2 A Simple Pointer Logic

8.2.1 Syntax

There are many variants of pointer logic, each with a different syntax and
meaning. The more complex ones are often undecidable. We define a simple
logic here, with the goal of making the problem of deciding formulas in this
logic easier to solve.
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Definition 8.4 (pointer logic). The syntax of a formula in pointer logic is
defined by the following rules:

formula : formula ∧ formula | ¬formula | (formula) | atom

atom : pointer = pointer | term = term |
pointer < pointer | term < term

pointer : pointer-identifier | pointer + term | (pointer) |
&identifier | & ∗ pointer | ∗ pointer | NULL

term : identifier | ∗ pointer | term op term | (term) |
integer-constant | identifier [ term ]

op : + | −

The variables represented by pointer-identifier are assumed to be of pointer
type, whereas the variables represented by identifier are assumed to be integers
or an array of integers.4 Note that the grammar allows pointer arithmetic,
whereas it prohibits a direct conversion of an integer into a pointer or vice
versa. This is motivated by the fact that the conversion of a pointer to an
integer may actually fail in a number of architectures, owing to the fact that
pointers are wider than the standard integer type.5

Example 8.5. Let p, q denote pointer identifiers, and let i, j denote integer
identifiers. The following expressions are well formed according to the gram-
mar above:

• ∗(p+ i) = 1,
• ∗(p+ ∗p) = 0,
• p = q ∧ ∗p = 5,
• ∗ ∗ ∗ ∗ ∗p = 1,
• p < q.

The following expressions are not permitted by the grammar:

• p+ i,
• p = i,
• ∗(p+ q),
• ∗1 = 1,
• p < i.

Note that the grammar above encompasses all of integer linear arithmetic
(Chap. 5) and also a fragment of array logic (Chap. 7). In practice, a logic for
pointers is typically combined with a logic for the program expressions, such
as bit-vector arithmetic.
4 The syntax is clearly inspired by that of ANSI-C. Note, however, that we deviate

from the ANSI-C syntax in a few points. As an example, in ANSI-C, an array
identifier is synonymous with its address.

5 Much as in C/C++, an indirect conversion by means of the dereferencing operator
is still possible.
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8.2.2 Semantics

There are numerous ways to assign a meaning to the expressions defined
above. We define the semantics by referring to a specific memory layout L
(Definition 8.2) and a specific memory valuation M (Definition 8.1), that is,
pointer logic formulas are predicates on M,L pairs. The definition uses a
reduction to integer arithmetic and array logic, and thus we treat M and L
as array types. We also assume that D (the set of data words) is contained in
the set of integers.

Definition 8.6 (semantics of pointer logic). As before let L denote a
memory layout and let M denote a valuation of the memory. Let LP denote
the set of pointer logic expressions, and let LD denote the set of expressions
permitted by the logic for the data words. We define a meaning for e ∈ LP
using the function J·K : LP −→ LD. The function JeK is defined recursively as
given in Fig. 8.2. The expression e ∈ LP is valid if and only if JeK is valid.

Jf1 ∧ f2K
.
= Jf1K ∧ Jf2K

J¬fK .
= ¬JfK

Jp1 = p2K
.
= Jp1K = Jp2K where p1, p2 are pointer expressions

Jp1 < p2K
.
= Jp1K < Jp2K where p1, p2 are pointer expressions

Jt1 = t2K
.
= Jt1K = Jt2K where t1, t2 are terms

Jt1 < t2K
.
= Jt1K < Jt2K where t1, t2 are terms

JpK .
= M [L[p]] where p is a pointer identifier

Jp+ tK .
= JpK + JtK where p is a pointer expression, and t is a term

J&vK .
= L[v] where v ∈ V is a variable

J& ∗ pK .
= JpK where p is a pointer expression

JNULLK .
= 0

JvK .
= M [L[v]] where v ∈ V is a variable

J∗pK .
= M [JpK] where p is a pointer expression

Jt1 op t2K
.
= Jt1K op Jt2K where t1, t2 are terms

JcK .
= c where c is an integer constant

Jv[t]K .
= M [L[v] + JtK] where v is an array identifier, and t is a term

Fig. 8.2. Semantics of pointer expressions

Observe that a pointer p points to a variable x if M [L[p]] = L[x], that is, the
value of p is equal to the address of x. As a shorthand, we write p ↪→ z to

�� ��p ↪→ z
mean that p points to some memory cell such that ∗p = z. Observe also that
the meaning of pointer arithmetic, for example, p+ i, does not depend on the
type of object that p points to.6

6 In contrast, the semantics of ANSI-C requires that an integer that is added to a
pointer p is multiplied by the size of the type that p points to.
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Example 8.7. Consider the following expression, where a is an array identi-
fier:

∗ ((&a) + 1) = a[1] . (8.1)

The semantic definition of (8.1) expands as follows:

J∗((&a) + 1) = a[1]K ⇐⇒ J∗((&a) + 1)K = Ja[1]K (8.2)

⇐⇒ M [J(&a) + 1K] = M [L[a] + J1K] (8.3)

⇐⇒ M [J&aK + J1K] = M [L[a] + 1] (8.4)

⇐⇒ M [L[a] + 1] = M [L[a] + 1] (8.5)

Equation (8.5) is obviously valid, and thus, so is (8.1). Note that the translated
formula must evaluate to true for any L and M and, thus, the following
formula is not valid:

∗ p = 1 =⇒ x = 1 . (8.6)

For p 6= &x, this formula evaluates to false.

8.2.3 Axiomatization of the Memory Model

Formulas in pointer logic may exploit assumptions made about the memory
model. The set of these assumptions depends highly on the architecture. Here,
we formalize properties that most architectures comply with, and thus that
many programs rely on.

On most architectures, the following two formulas are valid, and hence can
be safely assumed by programmers:

&x 6= NULL , (8.7)

&x 6= &y . (8.8)

Equation (8.7) translates into L[x] 6= 0 and relies on the fact that no object
has address 0. Equation (8.8) relies on the fact that the memory layout assigns
nonoverlapping addresses to the objects. We define a series of memory model
axioms in order to formalize these properties.

Memory Model Axiom 1 (“No object has address 0”) The fact “no
object has address 0” is easily formalized:7

∀v ∈ V. L[v] 6= 0 . (8.9)

7 Note that the ANSI-C standard does not actually guarantee that the symbolic
constant NULL is represented by a bit vector consisting of zeros; however, it guar-
antees that the NULL pointer compares to the integer zero and can be obtained
by converting the integer zero to a pointer type.
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The easiest way to ensure that (8.8) is valid is to assume that ∀v1, v2 ∈ V. v1 6=
v2 =⇒ L[v1] 6= L[v2]. However, this assumption is often not strong enough,
as objects with size greater or equal to two may still overlap. We therefore
assume the following two conditions, which together are stronger:

Memory Model Axiom 2 (“Objects have size at least one”) The fact
“an object has size at least one” is easily captured by

∀v ∈ V. σ(v) ≥ 1 . (8.10)

Memory Model Axiom 3 (“Objects do not overlap”) Different objects
do not share any addresses:

∀v1, v2 ∈ V. v1 6= v2 =⇒ {L[v1], . . . , L[v1] + σ(v1)− 1}∩
{L[v2], . . . , L[v2] + σ(v2)− 1} = ∅ . (8.11)

Program analysis tools that are applied to code that relies on additional,
architecture-specific guarantees may require a larger set of memory model
axioms. Examples are byte ordering and endianness , and specific assumptions
about alignment.

8.2.4 Adding Structure Types

Structure types are a convenient way to implement data structures. Structure
types can be added to our pointer logic as a purely syntactic extension, as we
shall soon see. We assume that the fields of the structure types are named,
and write s.f to denote the value of the field f in the structure s.

Formally, we can view structure types as “syntactic sugar” for array types,
and record the following shorthands. Each field of the structure is assigned
a unique offset. Let o(f) denote the offset of field f . We then define the

�� ��o(f)
meaning of s.f as follows: �� ��s.f

s.f
.
= ∗((&s) + o(f)) . (8.12)

For convenience, we introduce two additional shorthands. Following the PAS-
CAL and ANSI-C syntax, we write p->f for (∗p).f (this shorthand is not to

�� ��p->f
be confused with logical implication or with p ↪→ a). Adopting some notation
from separation logic (see the aside on separation logic on p. 184), we also
extend the p ↪→ a notation by introducing p ↪→ a, b, c, . . . as a shorthand for

∗(p+ 0) = a ∧
∗(p+ 1) = b ∧
∗(p+ 2) = c . . . .

(8.13)
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8.3 Modeling Heap-Allocated Data Structures

8.3.1 Lists

Heap-allocated data structures play an important role in programs, and are
prone to pointer-related errors. We now illustrate how to model a number of
commonly used data structures using pointer logic.

After the array, the simplest dynamically allocated data structure is the
linked list . It is typically realized by means of a structure type that contains
fields for a next pointer and the data that are to be stored in the list.

As an example, consider the following list: The first field is named a and is
an ASCII character, serving as the “payload”, and the second field is named
n, and is the pointer to the next element of the list. Following ANSI-C syntax,
we use ’x’ to denote the integer that represents the ASCII character “x”:

. . .

p ’e’ ’x’ ’t’

0

’t’

The list is terminated by a NULL pointer, which is denoted by “0” in the
diagram above. A way of modeling this list is to use the following formula:

p ↪→ ’t’, p1
∧ p1 ↪→ ’e’, p2
∧ p2 ↪→ ’x’, p3
∧ p3 ↪→ ’t’, NULL .

(8.14)

This way of specifying lists is cumbersome, however. Therefore, disregard-
ing the payload field, we first introduce a recursive shorthand for the i-th
member of a list:8

list-elem(p, 0)
.
= p ,

list-elem(p, i)
.
= list-elem(p, i− 1)->n for i ≥ 1 .

(8.15)

We now define the shorthand list(p, l) to denote a predicate that is true if p
�� ��list

points to a NULL-terminated acyclic list of length l:

list(p, l) .
= list-elem(p, l) = NULL . (8.16)

A linked list is cyclic if the pointer of the last element points to the first one:

. . . .

’e’ ’x’ ’t’’t’p

Consider the following variant my-list(p, l), intended to capture the fact
that p points to such a cyclic list of length l ≥ 1:

8 Note that recursive definitions of this form are, in general, only embeddable into
our pointer logic if the second argument is a constant.
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my-list(p, l) .
= list-elem(p, l) = p . (8.17)

Does this definition capture the concept properly? The list in the dia-
gram above satisfies my-list(p, 4). Unfortunately, the following list satisfies
my-list(p, 4) just as well:

.

’t’p

This is due to the fact that our definition does not preclude sharing of elements
of the list, despite the fact that we had certainly intended to specify that
there are l disjoint list elements. Properties of this kind are often referred to
as separation properties. A way to assert that the list elements are disjoint is
to define a shorthand overlap as follows:

overlap(p, q)
.
= p = q ∨ p+ 1 = q ∨ p = q + 1 . (8.18)

This shorthand is then used to state that all list elements are pairwise disjoint:

list-disjoint(p, 0)
.
= true ,

list-disjoint(p, l) .
= list-disjoint(p, l − 1)∧

∀0 ≤ i < l − 1. ¬overlap(list-elem(p, i), list-elem(p, l − 1)) .
(8.19)

Note that the size of this formula grows quadratically in l. As separation
properties are frequently needed, more concise notations have been developed
for this concept, for example, separation logic (see the aside on that topic).
Separation logic can express such properties with formulas of linear size.

8.3.2 Trees

We can implement a binary tree by adding another pointer field to each el-
ement of the data structure (see Fig. 8.3). We denote the pointer to the
left-hand child node by l, and the pointer to the right-hand child by r.

In order to illustrate a pointer logic formula for trees, consider the tree in
Fig. 8.3, which has one integer x as payload. Observe that the integers are
arranged in a particular fashion: the integer of the left-hand child of any node
n is always smaller than the integer of the node n itself, whereas the integer of
the right-hand child of node n is always larger than the integer of the node n.
This property permits lookup of elements with a given integer value in time
O(h), where h is the height of the tree. The property can be formalized as
follows:

(n.l 6= NULL =⇒ n.l->x < n.x)
∧ (n.r 6= NULL =⇒ n.r->x > n.x) .

(8.22)

Unfortunately, (8.22) is not strong enough to imply lookup in time O(h). For
this, we need to establish the ordering over the integers of an entire subtree.
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Aside: Separation Logic
Theories for dynamic data structures are frequently used for proving that
memory cells do not alias. While it is possible to model the statement that
a given object does not alias with other objects with pairwise comparison,
reasoning about such formulation scales poorly. It requires enumeration of all
heap-allocated objects, which makes it difficult to reason about a program in
a local manner.

John Reynolds’ separation logic [242] addresses both problems by introduc-
ing a new binary operator “∗”, as in “P ∗ Q”, which is called a separating
conjunction. The meaning of ∗ is similar to the standard Boolean conjunc-
tion, i.e., P ∧ Q, but it also asserts that P and Q reason about separate,
nonoverlapping portions of the heap. As an example, consider the following
variant of the list predicate:

list(p, 0)
.
= p = NULL

list(p, l) .
= ∃q. p ↪→ z, q ∧ list(q, l − 1) for l ≥ 1 .

(8.20)

Like our previous definition, the definition above suffers from the fact that
some memory cells of the elements of the list might overlap. This can be
mended by replacing the standard conjunction in the definition above by a
separating conjunction:

list(p, l) .
= ∃q. p ↪→ z, q ∗ list(q, l − 1) . (8.21)

This new list predicate also asserts that the memory cells of all list elements
are pairwise disjoint. Separation logic, in its generic form, is not decidable,
but a variety of decidable fragments have been identified.

..

83

5

1 4

. .
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0 0 0 0

0 0

Fig. 8.3. A binary tree that represents a set of integers
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We define a predicate tree-reach(p, q), which holds if q is reachable from p in
one step:

tree-reach(p, q)
.
= p 6= NULL ∧ q 6= NULL∧

(p = q ∨ p->l = q ∨ p->r = q) .
(8.23)

In order to obtain a predicate that holds if and only if q is reachable from
p in any number of steps, we define the transitive closure of a given binary
relation R.

Definition 8.8 (transitive closure). Given a binary relation R, the tran-
sitive closure TCR relates x and y if there are z1, z2, . . . , zn such that

xRz1 ∧ z1Rz2 ∧ . . . ∧ znRy .

Formally, transitive closure can be defined inductively as follows:

TC1
R(p, q)

.
= R(p, q) ,

TCiR(p, q)
.
= ∃p′. TCi−1R (p, p′) ∧R(p′, q) ,

TC(p, q)
.
= ∃i. TCiR(p, q) .

(8.24)

Using the transitive closure of our tree-reach relation, we obtain a new relation
tree-reach*(p, q) that holds if and only if q is reachable from p in any number
of steps:

tree-reach*(p, q) ⇐⇒ TCtree-reach(p, q) . (8.25)

Using tree-reach*, it is easy to strengthen (8.22) appropriately:

(∀p. tree-reach*(n.l, p) =⇒ p->x < n.x)
∧ (∀p. tree-reach*(n.r, p) =⇒ p->x > n.x) .

(8.26)

Unfortunately, the addition of the transitive closure operator can make even
simple logics undecidable, and thus, while convenient for modeling, it is a bur-
den for automated reasoning. We restrict the presentation below to decidable
cases by considering only special cases.

8.4 A Decision Procedure

8.4.1 Applying the Semantic Translation

The semantic translation introduced in Sect. 8.2.2 not only assigns meaning
to the pointer formulas, but also gives rise to a simple decision procedure. The
formulas generated by this semantic translation contain array read operators
and linear arithmetic over the type that is used for the indices. This may
be the set of integers (Chap. 5) or the set of bit vectors (Chap. 6). It also
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contains at least equalities over the type that is used to model the contents of
the memory cells. We assume that this is the same type as the index type. As
we have seen in Chap. 7, such a logic is decidable. Care has to be taken when
extending the pointer logic with quantification, as array logic with arbitrary
quantification is undecidable.

A straightforward decision procedure for pointer logic therefore first ap-
plies the semantic translation to a pointer formula ϕ to obtain a formula ϕ′

in the combined logic of linear arithmetic over integers and arrays of integers.
The formula ϕ′ is then passed to the decision procedure for the combined
logic. As the formulas ϕ and ϕ′ are equisatisfiable (by definition), the result
returned for ϕ′ is also the correct result for ϕ.

Example 8.9. Consider the following pointer logic formula, where x is a vari-
able, and p identifies a pointer:

p = &x ∧ x = 1 =⇒ ∗p = 1 . (8.27)

The semantic definition of this formula expands as follows:

Jp = &x ∧ x = 1 =⇒ ∗p = 1K
⇐⇒ Jp = &xK ∧ Jx = 1K =⇒ J∗p = 1K
⇐⇒ JpK = J&xK ∧ JxK = 1 =⇒ J∗pK = 1
⇐⇒ M [L[p]] = L[x] ∧M [L[x]] = 1 =⇒ M [M [L[p]]] = 1 .

(8.28)

A decision procedure for array logic and equality logic easily concludes that
the formula above is valid, and thus, so is (8.27).

As an example of an invalid formula, consider

p ↪→ x =⇒ p = &x . (8.29)

The semantic definition of this formula expands as follows:

Jp ↪→ x =⇒ p = &xK
⇐⇒ Jp ↪→ xK =⇒ Jp = &xK
⇐⇒ J∗p = xK =⇒ JpK = J&xK
⇐⇒ J∗pK = JxK =⇒ M [L[p]] = L[x]
⇐⇒ M [M [L[p]]] = M [L[x]] =⇒ M [L[p]] = L[x]

(8.30)

A counterexample to this formula is the following:

L[p] = 1, L[x] = 2, M [1] = 3, M [2] = 10, M [3] = 10 . (8.31)

The values of M and L in the counterexample are best illustrated with a
picture:

1

3 1010

0 2 3

p x
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Applying the Memory Model Axioms

A formula may rely on one of the memory model axioms defined in Sect. 8.2.3.
As an example, consider the following formula:

σ(x) = 2 =⇒ &y 6= &x+ 1 . (8.32)

The semantic translation yields

σ(x) = 2 =⇒ L[y] 6= L[x] + 1 . (8.33)

This formula can be shown to be valid by instantiating Memory Model Ax-
iom 3. After instantiating v1 with x and v2 with y, we obtain

{L[x], . . . , L[x] + σ(x)− 1} ∩ {L[y], . . . , L[y] + σ(y)− 1} = ∅ . (8.34)

We can transform the set expressions in (8.34) into linear arithmetic over the
integers as follows:

(L[x] + σ(x)− 1 < L[y]) ∨ (L[x] > L[y] + σ(y)− 1) . (8.35)

Using σ(x) = 2 and σ(y) ≥ 1 (Memory Model Axiom 2), we can conclude,
furthermore, that

(L[x] + 1 < L[y]) ∨ (L[x] > L[y]) . (8.36)

Equation (8.36) is strong enough to imply L[y] 6= L[x] + 1, which proves that
Eq. (8.32) is valid.

8.4.2 Pure Variables

The semantic translation of a pointer formula results in a formula that we
can decide using the procedures described in this book. However, semantic
translation down to memory valuations places an undue burden on the un-
derlying decision procedure, as illustrated by the following example (symmetry
of equality):

Jx = y =⇒ y = xK (8.37)

⇐⇒ Jx = yK =⇒ Jy = xK (8.38)

⇐⇒ M [L[x]] = M [L[y]] =⇒ M [L[y]] = M [L[x]] . (8.39)

A decision procedure for array logic and equality logic is certainly able to
deduce that (8.39) is valid. Nevertheless, the steps required for solving (8.39)
obviously exceed the effort required to decide

x = y =⇒ y = x . (8.40)

In particular, the semantic translation does not exploit the fact that x and
y do not actually interact with any pointers. A straightforward optimization
is therefore the following: if the address of a variable x is not referred to, we
translate it to a new variable Υx instead of M [L[x]]. A formalization of this
idea requires the following definition:
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Definition 8.10 (pure variables). Given a formula ϕ with a set of variables
V , let P(ϕ) ⊆ V denote the subset of ϕ’s variables that are not used within
an argument of the “ &” operator within ϕ. These variables are called pure.

As an example, P(&x = y) is {y}. We now define a new translation function
J·KP . The definition of JeKP is identical to the definition of JeK unless e denotes
a variable in P(ϕ). The new definition is:

JvKP .
= Υv for v ∈ P(ϕ)

JvKP .
= M [L[v]] for v ∈ V \ P(ϕ)

Theorem 8.11. The translation using pure variables is equisatisfiable with
the semantic translation:

JϕKP ⇐⇒ JϕK .

Example 8.12. Equation (8.38) is now translated as follows without referring
to a memory valuation, and thus no longer burdens the decision procedure for
array logic:

Jx = y =⇒ y = xKP (8.41)

⇐⇒ Jx = y =⇒ y = xKP (8.42)

⇐⇒ Jx = yKP =⇒ Jy = xKP (8.43)

⇐⇒ Υx = Υy =⇒ Υy = Υx . (8.44)

8.4.3 Partitioning the Memory

The translation procedure can be optimized further using the following ob-
servation: the run time of a decision procedure for array logic depends on the
number of different expressions that are used to index a particular array (see
Chap. 7). As an example, consider the pointer logic formula

∗ p = 1 ∧ ∗q = 1 , (8.45)

which—using our optimized translation—is reduced to

M [Υp] = 1 ∧M [Υq] = 1 . (8.46)

The pointers p and q might alias, but there is no reason why they have to.
Without loss of generality, we can therefore safely assume that they do not
alias and, thus, we partition M into M1 and M2:

M1[Υp] = 1 ∧M2[Υq] = 1 . (8.47)

While this has increased the number of array variables, the number of different
indices per array has decreased. Typically, this improves the performance of
a decision procedure for array logic.
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This transformation cannot always be applied, illustrated by the following
example:

p = q =⇒ ∗p = ∗q . (8.48)

This formula is obviously valid, but if we partition as before, the translated
formula is no longer valid:

Υp = Υq =⇒ M1[Υp] = M2[Υq] . (8.49)

Unfortunately, deciding if the optimization is applicable is in general as hard
as deciding ϕ itself. We therefore settle for an approximation based on a
syntactic test. This approximation is conservative, i.e., sound, while it may
not result in the best partitioning that is possible in theory.

Definition 8.13. We say that two pointer expressions p and q are related
directly by a formula ϕ if both p and q are used inside the same relational
expression in ϕ and that the expressions are related transitively if there is a
pointer expression p′ that relates to p and relates to q. We write p ≈ q if p

�� ��p ≈ q
and q are related directly or transitively.

The relation ≈ induces a partitioning of the pointer expressions in ϕ. We
number these partitions 1, . . . , n. Let I(p) ∈ {1, . . . , n} denote the index of
the partition that p is in. We now define a new translation J·K≈, in which we use
a separate memory valuation MI(p) when p is dereferenced. The definition of
JeK≈ is identical to the definition of JeKP unless e is a dereferencing expression.
In this case, we use the following definition:

J∗pK≈ .
= MI(p)(JpK≈) .

Theorem 8.14. Translation using memory partitioning results in a formula
that is equisatisfiable with the result of the semantic translation:

∃α1. α1 |= JϕK≈ ⇐⇒ ∃α2. α2 |= JϕK .

Note that the theorem relies on the fact that our grammar does not permit
explicit restrictions on the memory layout L. The theorem no longer holds as
soon as this restriction is lifted (see Problem 8.5).

8.5 Rule-Based Decision Procedures

With pointer logics expressive enough to model interesting data structures,
one often settles for incomplete, rule-based procedures. The basic idea of such
procedures is to define a fragment of pointer logic enriched with predicates
for specific types of data structures (e.g., lists or trees) together with a set of
proof rules that are sufficient to prove a wide range of verification conditions
that arise in practice. The soundness of these proof rules is usually shown
with respect to the definitions of the predicates, which implies soundness of
the decision procedure. There are only a few known proof systems that are
provably complete.
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8.5.1 A Reachability Predicate for Linked Structures

As a simple example of this approach, we present a variant of a calculus for
reachability predicates introduced by Greg Nelson [204]. Further rule-based
reasoning systems are discussed in the bibliographic notes at the end of this
chapter.

We first generalize the list-elem shorthand used before for specifying linked
lists by parameterizing it with the name of the field that holds the pointer
to the “next” element. Suppose that f is a field of a structure and holds a
pointer. The shorthand followfn(q) stands for the pointer that is obtained by
starting from q and following the field f , n times:

followf0 (p)
.
= p

followfn(p)
.
= followfn−1(p)->f .

(8.50)

If followfn(p) = q holds, then q is reachable in n steps from p by following f .
We say that q is reachable from p by following f if there exists such n. Using
this shorthand, we enrich the logic with just a single predicate for list-like
data structures, denoted by

p
f
→
x
q , (8.51)

which is called a reachability predicate. It is read as “q is reachable from
p following f , while avoiding x”. It holds if two conditions are fulfilled:

1. There exists some n such that q is reachable from p by following f n times.
2. x is not reachable in fewer than n steps from p following f .

This can be formalized using follow() as follows:

p
f
→
x
q ⇐⇒ ∃n.(followfn(p) = q ∧ ∀m < n.followfm(p) 6= x) . (8.52)

We say that a formula is a reachability predicate formula if it contains
the reachability predicate.

Example 8.15. Consider the following software verification problem. The fol-
lowing program fragment iterates over an acyclic list and searches for a list
entry with payload a:

struct S { struct S *nxt; int payload; } *list;

...
bool find(int a) {
for(struct S *p=list; p!=0; p=p->nxt)
if(p->payload==a) return true;

return false;
}
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We can specify the correctness of the result returned by this procedure using
the following formula:

find(a) ⇐⇒ ∃p′.(list
nxt
→
0
p′ ∧ p′->payload = a) . (8.53)

Thus, find(a) is true if the following conditions hold:

1. There is a list element that is reachable from list by following nxt without
passing through a NULL pointer.

2. The payload of this list element is equal to a.

We annotate the beginning of the loop body in the program above with the
following loop invariant, denoted by INV:

INV := list
nxt
→
0
p ∧ (∀q 6= p. list

nxt
→
p
q =⇒ q->payload 6= a) . (8.54)

Informally, we make the following argument: first, we show that the program
maintains the loop invariant INV; then, we show that INV implies our property.

Formally, this is shown by means of four verification conditions. The
validity of all of these verification conditions implies the property. We use the
notation e[x/y] to denote the expression e in which x is replaced by y.

IND-BASE := p = list =⇒ INV (8.55)

IND-STEP := (INV ∧ p->payload 6= a) =⇒ INV[p/p->nxt ] (8.56)

VC-P1 := (INV ∧ p->payload = a)

=⇒ ∃p′.(list
nxt
→
0
p′ ∧ p′->payload = a)

(8.57)

VC-P2 := (INV ∧ p = 0) =⇒ ¬∃p′.(list
nxt
→
0
p′ ∧ p′->payload = a) (8.58)

The first verification condition, IND-BASE, corresponds to the induction base
of the inductive proof. It states that INV holds upon entering the loop, because
at that point p = list . The formula IND-STEP corresponds to the induction
step: it states that the loop invariant is maintained if another loop iteration
is executed (i.e., p->payload 6= a).

The formulas VC-P1 and VC-P2 correspond to the two cases of leaving
the find function: VC-P1 establishes the property if true is returned, and
VC-P2 establishes the property if false is returned. Proving these verification
conditions therefore shows that the program satisfies the required property.

8.5.2 Deciding Reachability Predicate Formulas

As before, we can simply expand the definition above and obtain a semantic
reduction. As an example, consider the verification condition labeled IND-
BASE in Sect. 8.5.1:
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p = list =⇒ INV (8.59)

⇐⇒ p = list =⇒ list
nxt
→
0
p ∧ ∀q 6= p. list

nxt
→
p
q =⇒ q->payload 6= a (8.60)

⇐⇒ list
nxt
→
0

list ∧ ∀q 6= list . (list
nxt
→
list

q =⇒ q->payload 6= a) (8.61)

⇐⇒ (∃n. follownxt
n (list) = list ∧ ∀m < n. follownxt

m (list) 6= list)∧
(∀q 6= list . ((∃n. follownxt

n (list) = q ∧ ∀m < n. follownxt
m (list) 6= list)

=⇒ q->payload 6= a)) . (8.62)

Equation (8.62) is argued to be valid as follows: In the first conjunction,
instantiate n with 0. In the second conjunct, observe that q 6= list , and thus
any n satisfying ∃n. follownxt

n (list) = q must be greater than 0. Finally, observe
that follownxt

m (list) 6= list is invalid for m = 0, and thus the left-hand side of
the implication is false.

However, note that the formulas above contain many existential and uni-
versal quantifiers over natural numbers and pointers. Applying the semantic
reduction therefore does not result in a formula that is in the array prop-
erty fragment defined in Chap. 7. Thus, the decidability result shown in that
chapter does not apply here. How can such complex reachability predicate
formulas be solved?

Using Rules

In such situations, the following technique is frequently applied: rules are de-
rived from the semantic definition of the predicate, and then they are applied
to simplify the formula.

p
f
→
x
q ⇐⇒ (p = q ∨ (p 6= x ∧ p->f f

→
x
q)) (A1)

(p
f
→
x
q ∧ q f→

x
r) =⇒ p

f
→
x
r (A2)

p
f
→
x
q =⇒ p

f
→
q
q (A3)

(p
f
→
y
x ∧ p f

→
z
y) =⇒ p

f
→
z
x (A4)

(p
f
→
x
x ∨ p f

→
y
y) =⇒ (p

f
→
y
x ∨ p f

→
x
y) (A5)

(p
f
→
y
x ∧ p f

→
z
y) =⇒ x

f
→
z
y (A6)

p->f
f
→
q
q ⇐⇒ p->f

f
→
p
q (A7)

Fig. 8.4. Rules for the reachability predicate
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The rules provided in [204] for our reachability predicate are given in
Fig. 8.4. The first rule (A1) corresponds to a program fragment that follows
field f once. If q is reachable from p, avoiding x, then either p = q (we are
already there) or p 6= x, and we can follow f from p to get to a node from
which q is reachable, avoiding x. We now prove the correctness of this rule.

Proof. We first expand the definition of our reachability predicate:

p
f
→
x
q ⇐⇒ ∃n. (followfn(p) = q ∧ ∀m < n. followfm(p) 6= x) . (8.63)

Observe that for any natural n, n = 0 ∨ n > 0 holds, which we can therefore
add as a conjunct:

⇐⇒ ∃n. ((n = 0 ∨ n > 0)∧
followfn(p) = q ∧ ∀m < n. followfm(p) 6= x) .

(8.64)

This simplifies as follows:

⇐⇒ ∃n. p = q ∨ (n > 0 ∧ followfn(p) = q ∧ ∀m < n. followfm(p) 6= x) (8.65)

⇐⇒ p = q ∨ ∃n > 0. (followfn(p) = q ∧ ∀m < n. followfm(p) 6= x) . (8.66)

We replace n by n′ + 1 for natural n′:

⇐⇒ p = q ∨ ∃n′. (followfn′+1(p) = q ∧ ∀m < n′ + 1. followfm(p) 6= x) . (8.67)

As followfn′+1(p) = followfn′(p->f), this simplifies to

⇐⇒ p = q ∨ ∃n′. (followfn′(p->f) = q ∧ ∀m < n′ + 1. followfm(p) 6= x) .(8.68)

By splitting the universal quantification into the two parts m = 0 and m ≥ 1,
we obtain

⇐⇒ p = q ∨ ∃n′. (followfn′(p->f) = q ∧
p 6= x ∧ ∀1 ≤ m < n′ + 1. followfm(p) 6= x) .

(8.69)

The universal quantification is rewritten:

⇐⇒ p = q ∨ ∃n′. (followfn′(p->f) = q ∧
p 6= x ∧ ∀m < n′. followfm(p->f) 6= x) .

(8.70)

As the first and the third conjunct are equivalent to the definition of p->f
f
→
x
q,

the claim is shown.

There are two simple consequences of rule (A1):

p
f
→
x
p and p

f
→
p
q ⇐⇒ p = q . (8.71)

In the following example we use these consequences to prove (8.61), the reach-
ability predicate formula for our first verification condition.
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Example 8.16. Recall (8.61):

list
nxt
→
0

list ∧ ∀q 6= list . (list
nxt
→
list

q =⇒ q->payload 6= a) . (8.72)

The first conjunct is a trivial instance of the first consequence. To show the
second conjunct, we introduce a Skolem variable9 q′ for the universal quan-
tifier:

(q′ 6= list ∧ list
nxt
→
list

q′) =⇒ q′->payload 6= a . (8.73)

By the second consequence, the left-hand side of the implication is false.

Even when the axioms are used, however, reasoning about a reachabil-
ity predicate remains tedious. The goal is therefore to devise an automatic
decision procedure for a logic that includes a reachability predicate. We men-
tion several decision procedures for logics with reachability predicates in the
bibliographical notes.

8.6 Problems

8.6.1 Pointer Formulas

Problem 8.1 (semantics of pointer formulas). Determine if the following
pointer logic formulas are valid using the semantic translation:

1. x = y =⇒ &x = &y .
2. &x 6= x .
3. &x 6= &y + i .
4. p ↪→ x =⇒ ∗p = x .
5. p ↪→ x =⇒ p->f = x .
6. (p1 ↪→ p2, x1 ∧ p2 ↪→ NULL, x2) =⇒ p1 6= p2 .

Problem 8.2 (modeling dynamically allocated data structures).

1. tt data structure is modeled by my-ds(q, l) in the following? Draw an
example.

c(q, 0)
.
= (∗q).p = NULL

c(q, i)
.
= (∗list-elem(q, i)).p = list-elem(q, i− 1) for i ≥ 1

my-ds(q, l)
.
= list-elem(q, l) = NULL ∧ ∀0 ≤ i < l. c(q, i)

2. Write a recursive shorthand DAG(p) to denote that p points to the root
of a directed acyclic graph.

9 A Skolem variable is a ground variable introduced to eliminate a quantifier, i.e.,
∀x.P (x) is valid iff P (x′) is valid for a new variable x′. This is a special case of
Skolemization, which is named after Thoralf Skolem.
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3. Write a recursive shorthand tree(p) to denote that p points to the root of
a tree.

4. Write a shorthand hashtbl(p) to denote that p points to an array of lists.

Problem 8.3 (extensions of the pointer logic). Consider a pointer logic
that only permits a conjunction of predicates of the following form, where p
is a pointer, and fi, gi are field identifiers:

∀p. p->f1->f2->f3 . . . = p->g1->g2->g3 . . .

Show that this logic is Turing complete.

Problem 8.4 (axiomatization of the memory model). Define a set of
memory model axioms for an architecture that uses 32-bit integers and little-
endian byte ordering (this means that the least-significant byte has the lowest
address in the word).

Problem 8.5 (partitioning the memory). Suppose that a pointer logic
permits restrictions on L, the memory layout. Give a counterexample to The-
orem 8.14.

8.6.2 Reachability Predicates

Problem 8.6 (semantics of reachability predicates). Determine the sat-
isfiability of the following reachability predicate formulas:

1. p
f
→
p
q ∧ p 6= q .

2. p
f
→
x
q ∧ p f→

q
x .

3. p
f
→
q
q ∧ q f→

p
p .

4. ¬(p
f
→
q
q) ∧ ¬(q

f
→
p
p) .

Problem 8.7 (modeling). Try to write reachability predicate formulas for
the following scenarios:

1. p points to a cyclic list where the next field is nxt .
2. p points to a NULL-terminated, doubly linked list.
3. p points to the root of a binary tree. The names of the fields for the left

and right subtrees are l and r, respectively.
4. p points to the root of a binary tree as above, and the leaves are connected

to a cyclic list.
5. p and q point to NULL-terminated singly linked lists that do not share

cells.
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Problem 8.8 (decision procedures). Build a decision procedure for a con-

junction of atoms that have the form p
f
→
q
q (or its negation).

Problem 8.9 (program verification). Write a code fragment that removes
an element from a singly linked list, and provide the verification conditions
using reachability predicate formulas.
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abstraction tool that implements lazy abstraction with shape analysis [28].
Podelski and Wies propose Boolean heaps as an abstract model for heap-
manipulating programs [230]. Here, the abstract domain is spanned by a vec-
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8.8 Glossary

The following symbols were used in this chapter:

First used
Symbol Refers to . . . on page . . .

A Set of addresses 174

D Set of data words 174

M Map from addresses to data words 174

L Memory layout 174

σ(v) The size of v 174

V Set of variables 174

J·K Semantics of pointer expressions 179

p ↪→ z p points to a variable with value z 179

p->f Shorthand for (∗p).f 181

list(p, l) p points to a list of length l 182



9.1 Introduction

Quantification allows us to specify the extent of validity of a predicate, or
in other words the domain (range of values) in which the predicate should
hold. The syntactic element used in the logic for specifying quantification is
called a quantifier. The most commonly used quantifiers are the universal
quantifier , denoted by “∀”, and the existential quantifier , denoted by “∃”.

�� ��∀�� ��∃These two quantifiers are interchangeable using the following equivalence:

∀x. ϕ ⇐⇒ ¬∃x. ¬ϕ . (9.1)

Some examples of quantified statements are:

• For any integer x, there is an integer y smaller than x:

∀x ∈ Z. ∃y ∈ Z. y < x . (9.2)

• There exists an integer y such that, for any integer x, x is greater than y:

∃y ∈ Z. ∀x ∈ Z. x > y . (9.3)

• (Bertrand’s postulate) For any natural number n greater than 1, there is
a prime number p such that n < p < 2n:

∀n ∈ N. ∃p ∈ N. n > 1 =⇒ (isprime(p) ∧ n < p < 2n) . (9.4)

In these three examples, there is quantifier alternation between the
universal and existential quantifiers. In fact, the satisfiability and validity
problems that we considered in earlier chapters can be cast as decision prob-
lems for formulas with nonalternating quantifiers. When we ask whether the
propositional formula

x ∨ y (9.5)

9
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200 9 Quantified Formulas

is satisfiable, we can equivalently ask whether there exists a truth assignment
to x, y that satisfies this formula.1 And when we ask whether

x > y ∨ x < y (9.6)

is valid for x, y ∈ N, we can equivalently ask whether this formula holds for
all naturals x and y. The formulations of these two decision problems are,
respectively,

∃x ∈ B. ∃y ∈ B. (x ∨ y) (9.7)

and
∀x ∈ N. ∀y ∈ N. x > y ∨ x < y . (9.8)

We omit the domain of each quantified variable from now on when it is not
essential for the discussion.

An important characteristic of quantifiers is the scope in which they are
applied, called the binding scope. For example, in the following formula, the
existential quantification over x overrides the external universal quantification
over x:

∀x. ((x < 0) ∧ ∃y.

scope of ∃y︷ ︸︸ ︷
(y > x ∧ (y ≥ 0 ∨ ∃x. (y = x+ 1)︸ ︷︷ ︸

scope of ∃x

)))

︸ ︷︷ ︸
scope of ∀x

. (9.9)

Within the scope of the second existential quantifier, all occurrences of x refer
to the variable bound by the existential quantifier. It is impossible within this
scope to refer directly to the variable x bound by the universal quantifier.
A possible solution is to rename x in the inner scope: clearly, this does not
change the validity of the formula. After this renaming, we can assume that
every occurrence of a variable is bound at most once.

Definition 9.1 (free variable). A variable is called free in a given formula
if at least one of its occurrences is not bound by any quantifier.

Definition 9.2 (sentence). A formula Q is called a sentence (or closed) if
none of its variables are free.

In this chapter we only focus on sentences.
Arbitrary first-order theories with quantifiers are undecidable. We re-

strict the discussion in this chapter to decidable theories only (other than
in Sect. 9.5), and begin with two examples.

1 As explained in Sect. 1.4.1, the difference between the two formulations, namely
with no quantifiers and with nonalternating quantifiers, is that in the former all
variables are free (unquantified), and hence a satisfying structure (a model) for
such formulas includes an assignment to these variables. Since such assignments
are necessary in many applications, this book uses the former formulation.
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9.1.1 Example: Quantified Boolean Formulas

Quantified propositional logic is propositional logic enhanced with quan-
tifiers. Sentences in quantified propositional logic are better known as quan-
tified Boolean formulas (QBFs). The set of sentences permitted by the
logic is defined by the following grammar:

formula : formula ∧ formula | ¬formula | (formula) |
identifier | ∃ identifier . formula

Other symbols such as “∨”, “∀”, and “⇐⇒” can be constructed using elements
of the formal grammar. Examples of quantified Boolean formulas are

• ∀x. (x ∨ ∃y. (y ∨ ¬x)) ,
• ∀x. (∃y. ((x ∨ ¬y) ∧ (¬x ∨ y)) ∧ ∃y. ((¬y ∨ ¬x) ∧ (x ∨ y))) .

Complexity

The validity problem of QBF is PSPACE-complete, which means that it is
theoretically harder to solve than SAT, which is “only” NP-complete.2 Both
of these problems (SAT and the QBF problem) are frequently presented as
the quintessential problems of their respective complexity classes. The known
algorithms for both problems are exponential.

Usage Example: Chess

The following is an example of the use of QBF.

Example 9.3. QBF is a convenient way of modeling many finite two-player
games. As an example, consider the problem of determining whether there
is a winning strategy for a chess player in k steps, i.e., given a state of a
board and assuming white goes first, can white take the black king in k steps,
regardless of black’s moves? This problem can be modeled as QBF rather
naturally, because what we ask is whether there exists a move of white such
that for all possible moves of black that follow there exists a move of white
such that for all possible moves of black... and so forth, k times, such that
the goal of eliminating the black king is achieved. The number of steps k has
to be an odd natural, as white plays both the first and last move.

2 The difference between these two classes is that problems in NP are known to
have nondeterministic algorithms that solve them in polynomial time. It has not
been proven that these two classes are indeed different, but it is widely suspected
that this is the case.
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This is a classical planning problem. Planning is a popular field of study
in artificial intelligence. To formulate the chess problem in QBF,3 we use the
notation in Fig. 9.1. Every piece of each player has a unique index. Each
location on the board has a unique index as well, and the location 0 of a piece
indicates that it is outside the board. The size of the board is s (normally
s = 8), and hence there are s2 + 1 locations and 4s pieces.

Symbol Meaning

x{m,n,i} Piece m is at location n in step i, for 1 ≤ m ≤ 4s, 0 ≤ n ≤ s2, and
0 ≤ i ≤ k

I0 A set of clauses over the x{m,n,0} variables that represent the initial
state of the board

Twi A set of clauses over the x{m,n,i}, x{m,n,i+1} variables that represent
the valid moves by white at step i

T bi A set of clauses over the x{m,n,i}, x{m,n,i+1} variables that represent
the valid moves by black at step i

Gk A set of clauses over the x{m,n,k} variables that represent the goal,
i.e., in step k the black king is off the board and the white king is
on the board

Fig. 9.1. Notation used in Example 9.3

We use the following convention: we write {x{m,n,i}} to represent the set
of variables {x{m,n,i} | m,n, i in their respective ranges}. Let us begin with
the following attempt to formulate the problem:

∃{x{m,n,0}}∃{x{m,n,1}}∀{x{m,n,2}}∃{x{m,n,3}} · · · ∀{x{m,n,k−1}}∃{x{m,n,k}}.
I0 ∧ (Tw0 ∧ Tw2 ∧ · · · ∧ Twk−1) ∧ (T b1 ∧ T b3 ∧ · · · ∧ T bk−2) ∧Gk .

(9.10)
This formulation includes the necessary restrictions on the initial and goal

states, as well as on the allowed transitions. The problem is that this formula
is not valid even when there is a winning strategy for white, because black
can make an illegal move—such as moving two pieces at once—which falsifies
the formula (it contradicts the subformula Ti for some odd i).

The formula needs to be weakened, as it is sufficient to find a white move
for the legal moves of black:

3 Classical formulations of planning problems distinguish between actions (moves
in this case) and states. Here we choose to present a formulation based on states
only.
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∃{x{m,n,0}}∃{x{m,n,1}}∀{x{m,n,2}}∃{x{m,n,3}} · · · ∀{x{m,n,k−1}}∃{x{m,n,k}}.
I0 ∧ ((T b1 ∧ T b3 ∧ · · · ∧ T bk−2) =⇒ (Tw0 ∧ Tw2 ∧ · · · ∧ Twk−1 ∧Gk)) .

(9.11)
Is this formula a faithful representation of the chess problem? Unfortunately
not yet, because of the possibility of a stalemate: there could be a situation
in which black is not able to make a valid move, which results in a draw. In
such a case (9.11) is valid although it should not be. A possible solution for
this problem is to ban white from making moves that result in such a state
by modifying Tw appropriately.

9.1.2 Example: Quantified Disjunctive Linear Arithmetic

The syntax of quantified disjunctive linear arithmetic (QDLA) is defined
by the following grammar:

formula : formula ∧ formula | ¬formula | (formula) |
predicate | ∀ identifier . formula

predicate : Σiaixi ≤ c

where c and ai are constants, and xi are variables of type real, for all i. As
before, other symbols such as “∨”, “∃”, and “=” can be defined using the
formal grammar.

Aside: Presburger Arithmetic
Presburger arithmetic has the same grammar as quantified disjunctive linear
arithmetic, but is defined over the natural numbers rather than over the reals.
Presburger arithmetic is decidable and, as proven by Fischer and Rabin [114],
there is a lower bound of 22c·n on the worst-case run-time complexity of a deci-
sion procedure for this theory, where n is the length of the input formula and c
is a positive constant. This theory is named after Mojzesz Presburger, who in-
troduced it in 1929 and proved its decidability. Replacing the Fourier–Motzkin
procedure with the Omega test (see Sect. 5.5) in the procedure described in
this section gives a decision procedure for this theory. Other decision proce-
dures for Presburger arithmetic are mentioned in the bibliographic notes at
the end of this chapter.

As an example, the following is a QDLA formula:

∀x. ∃y. ∃z. ((y + 1 ≤ x ∨ z + 1 ≤ y) ∧ 2x+ 1 ≤ z) . (9.12)

9.2 Quantifier Elimination

9.2.1 Prenex Normal Form

We begin by defining a normal form for quantified formulas.
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Definition 9.4 (prenex normal form). A formula is said to be in prenex
normal form (PNF) if it is in the form

Q[n]V [n] . . . Q[1]V [1]. 〈quantifier-free formula〉 , (9.13)

where for all i ∈ {1, . . . , n}, Q[i] ∈ {∀, ∃} and V [i] is a variable.

We call the quantification string on the left of the formula the quantification
prefix, and call the quantifier-free formula to the right of the quantification
prefix the quantification suffix (also called the matrix ).

Lemma 9.5. For every quantified formula Q there exists a formula Q′ in
prenex normal form such that Q is valid if and only if Q′ is valid.

Algorithm 9.2.1 transforms an input formula into prenex normal form.

�

�

�

�

Algorithm 9.2.1: Prenex

Input: A quantified formula
Output: A formula in prenex normal form

1. Eliminate Boolean connectives other than ∨, ∧, and ¬.
2. Push negations to the right across all quantifiers, using De Morgan’s rules

(see Sect. 1.3) and (9.1).
3. If there are name conflicts across scopes, solve by renaming: give each

variable in each scope a unique name.
4. Move quantifiers out by using equivalences such as

φ1 ∧Qx. φ2(x) ⇐⇒ Qx. (φ1 ∧ φ2(x)) ,
φ1 ∨Qx. φ2(x) ⇐⇒ Qx. (φ1 ∨ φ2(x)) ,
Q1y. φ1(y) ∧Q2x. φ2(x) ⇐⇒ Q1y. Q2x. (φ1(y) ∧ φ2(x)) ,
Q1y. φ1(y) ∨Q2x. φ2(x) ⇐⇒ Q1y. Q2x. (φ1(y) ∨ φ2(x)) ,

where Q,Q1, Q2 ∈ {∀, ∃} are quantifiers, x 6∈ var(φ1), and y 6∈ var(φ2).

Example 9.6. We demonstrate Algorithm 9.2.1 with the following formula:

Q := ¬∃x. ¬(∃y. ((y =⇒ x)∧(¬x∨y))∧¬∀y. ((y∧x)∨(¬x∧¬y))) . (9.14)

In steps 1 and 2, eliminate “ =⇒ ” and push negations inside:

∀x. (∃y. ((¬y ∨ x) ∧ (¬x ∨ y)) ∧ ∃y. ((¬y ∨ ¬x) ∧ (x ∨ y))) . (9.15)

In step 3, rename y as there are two quantifications over this variable:
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∀x. (∃y1. ((¬y1 ∨ x) ∧ (¬x ∨ y1)) ∧ ∃y2. ((¬y2 ∨ ¬x) ∧ (x ∨ y2))) . (9.16)

Finally, in step 4, move quantifiers to the left of the formula:

∀x. ∃y1. ∃y2. (¬y1 ∨ x) ∧ (¬x ∨ y1) ∧ (¬y2 ∨ ¬x) ∧ (x ∨ y2) . (9.17)

We assume from here on that the input formula is given in prenex normal
form.4

9.2.2 Quantifier Elimination Algorithms

A quantifier elimination algorithm transforms a quantified formula into an
equivalent formula without quantifiers. Not every theory has a quantifier elim-
ination algorithm. In fact, the existence of a quantifier elimination algorithm
typically implies the decidability of the logic, and not all theories are decid-
able.

It is sufficient to show that there exists a procedure for eliminating an
existential quantifier. Universal quantifiers can be eliminated by making use
of (9.1). For this purpose we define a general notion of projection, which has
to be concretized for each individual theory.

Definition 9.7 (projection). A projection of a variable x from a quantified
formula in prenex normal form with n quantifiers,

�� ��n
Q1 = Q[n]V [n] . . . Q[2]V [2]. ∃x. φ , (9.18)

is a formula
Q2 = Q[n]V [n] . . . Q[2]V [2]. φ′ (9.19)

(where both φ and φ′ are quantifier-free), such that x 6∈ var(φ′), and Q1 and
Q2 are logically equivalent.

Given a projection algorithm Project, Algorithm 9.2.2 eliminates all quan-
tifiers. Assuming that we begin with a sentence (see Definition 9.2), the re-
maining formula is over constants and easily solvable.

4 Whereas the method in the following section relies on this form, there are alter-
natives that do not. The process of pushing quantifiers inwards is called mini-
scoping. A good example of miniscoping for solving QBF can be found in [9].
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Algorithm 9.2.2: Quantifier-Elimination

Input: A sentence Q[n]V [n] . . . Q[1]V [1]. φ, where φ is quanti-
fier-free

Output: A (quantifier-free) formula over constants φ′, which is
valid if and only if φ is valid

1. φ′ := φ;
2. for i := 1, . . . , n do
3. if Q[i] = ∃ then
4. φ′ := Project( φ′, V [i]);
5. else
6. φ′ := ¬Project(¬φ′, V [i]);
7. Return φ′;

We now give two examples of projection procedures and their use in quan-
tifier elimination.

9.2.3 Quantifier Elimination for Quantified Boolean Formulas

Eliminating an existential quantifier over a conjunction of Boolean literals is
trivial: if x appears with both phases in the conjunction, then the formula is
unsatisfiable; otherwise, x can be removed. For example,

∃y. ∃x. x ∧ ¬x ∧ y = false ,
∃y. ∃x. x ∧ y = ∃y. y = true .

(9.20)

This observation can be used if we first convert the quantification suffix to
DNF and then apply projection to each term separately. This is justified by
the following equivalence:

∃x.
∨
i

∧
j

lij ⇐⇒
∨
i

∃x.
∧
j

lij , (9.21)

where lij are literals. But since converting formulas to DNF can result in
an exponential growth in the formula size (see Sect. 1.16), it is preferable
to have a projection that works directly on the CNF, or better yet, on a
general Boolean formula. We consider two techniques: binary resolution (see
Definition 2.11), which works directly on CNF formulas, and expansion.

Projection with Binary Resolution

Resolution gives us a method to eliminate a variable x from a pair of clauses in
which x appears with opposite phases. To eliminate x from a CNF formula by
projection (Definition 9.7), we need to apply resolution to all pairs of clauses
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where x appears with opposite phases. This eliminates x together with its
quantifier. For example, given the formula

∃y. ∃z. ∃x. (y ∨ x) ∧ (z ∨ ¬x) ∧ (y ∨ ¬z ∨ ¬x) ∧ (¬y ∨ z) , (9.22)

we can eliminate x together with ∃x by applying resolution on x to the first
and second clause, and to the first and third clause, resulting in

∃y. ∃z. (y ∨ z) ∧ (y ∨ ¬z) ∧ (¬y ∨ z) . (9.23)

What about universal quantifiers? Relying on (9.1), in the case of CNF formu-
las, results in a surprisingly easy shortcut to eliminating universal quantifiers:
simply erase them from the formula. For example, eliminating x and ∀x from

∃y. ∃z. ∀x. (y ∨ x) ∧ (z ∨ ¬x) ∧ (y ∨ ¬z ∨ ¬x) ∧ (¬y ∨ z) (9.24)

results in
∃y. ∃z. (y) ∧ (z) ∧ (y ∨ ¬z) ∧ (¬y ∨ z) . (9.25)

This step is called forall reduction. It should be applied only after removing
tautology clauses (clauses in which a literal appears with both phases). We
leave the proof of correctness of this step to Problem 9.4. Intuitively, however,
it is easy to see why this is correct: if the formula is evaluated to true for
all values of x, this means that we cannot satisfy a clause while relying on a
specific value of x.

Example 9.8. In this example, we show how to use resolution on both uni-
versal and existential quantifiers. Consider the following formula:

∀u1. ∀u2. ∃e1. ∀u3. ∃e3. ∃e2.
(u1 ∨ ¬e1) ∧ (¬u1 ∨ ¬e2 ∨ e3) ∧ (u2 ∨ ¬u3 ∨ ¬e1) ∧ (e1 ∨ e2) ∧ (e1 ∨ ¬e3) .

(9.26)
By resolving the second and fourth clause on e2, we obtain

∀u1. ∀u2. ∃e1. ∀u3. ∃e3.
(u1 ∨ ¬e1) ∧ (¬u1 ∨ e1 ∨ e3) ∧ (u2 ∨ ¬u3 ∨ ¬e1) ∧ (e1 ∨ ¬e3) .

(9.27)

By resolving the second and fourth clause on e3, we obtain

∀u1. ∀u2. ∃e1. ∀u3. (u1 ∨ ¬e1) ∧ (¬u1 ∨ e1) ∧ (u2 ∨ ¬u3 ∨ ¬e1) . (9.28)

By eliminating u3, we obtain

∀u1. ∀u2. ∃e1. (u1 ∨ ¬e1) ∧ (¬u1 ∨ e1) ∧ (u2 ∨ ¬e1) . (9.29)

By resolving the first and second clause on e1, and the second and third clause
on e1, we obtain

∀u1. ∀u2. (u1 ∨ ¬u1) ∧ (¬u1 ∨ u2) . (9.30)

The first clause is a tautology and hence is removed. Next, u1 and u2 are
removed, which leaves us with the empty clause. The formula, therefore, is
not valid.
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What is the complexity of this procedure? Consider the elimination of
a quantifier ∃x, and let n,m denote the number of quantifiers and clauses,
respectively. In the worst case, half of the clauses contain x and half ¬x.
Since we create a new clause from each pair of the two types of clauses, this
results in O(m2) new clauses, while we erase the m old clauses that contain
x. Repeating this process n times, once for each quantifier, results in O(m2n)
clauses.

This seems to imply that the complexity of projection with binary reso-
lution is doubly exponential. This, in fact, is only true if we do not prevent
duplicate clauses. Observe that there cannot be more than 3N distinct clauses,
where N is the total number of variables. The reason is that each variable can

�� ��N
appear positively, negatively, or not at all in a clause. This implies that, if we
add each clause at most once, the number of clauses is only singly exponential
in n (assuming N is not exponentially larger than n).

Expansion-Based Quantifier Elimination

The following quantifier elimination technique is based on Shannon expansion,
which is summarized by the following equivalences:

∃x. ϕ = ϕ|x=0 ∨ ϕ|x=1 , (9.31)

∀x. ϕ = ϕ|x=0 ∧ ϕ|x=1 . (9.32)

The notation ϕ|x=0 simply means that x is replaced with 0 (false) in ϕ. Note
that (9.32) can be derived from (9.31) by using (9.1).

Projections using expansion result in formulas that grow to O(m · 2n)
clauses in the worst case, where, as before, m is the number of clauses in the
original formula. This technique can be applied directly to non-CNF formulas,
in contrast to resolution, as the following example shows:

Example 9.9. Consider the following formula:

∃y. ∀z. ∃x. (y ∨ (x ∧ z)) . (9.33)

Applying (9.31) to ∃x results in

∃y. ∀z. (y ∨ (x ∧ z))|x=0 ∨ (y ∨ (x ∧ z))|x=1 , (9.34)

which simplifies to
∃y. ∀z. (y ∨ z) . (9.35)

Applying (9.32) yields

∃y. (y ∨ z)|z=0 ∧ (y ∨ z)|z=1 , (9.36)

which simplifies to
∃y. (y) , (9.37)

which is obviously valid. Hence, (9.33) is valid.
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Competitive QBF solvers apply expansion to all but the last level of quan-
tifiers. Since most QBF formulas that are found in practice have only one
quantifier alternation (a fragment called 2-QBF), this means that only one
level has to be expanded. If the last (most external) level consists of the “∃”
quantifier, they run a SAT solver on the remaining formula. Otherwise, they
negate the formula and do the same thing. Näıve expansion as described above
works only if the formulas are relatively small. To improve scalability one may
apply simplification after each expansion step, which removes false literals,
clauses with true literals, and clauses that are subsumed by other clauses.

Since we can reduce QBF to SAT via expansion, what does this tell us
about the expressive power of QBF? That it is not more expressive than
propositional logic. It only offers a more succinct representation, in fact ex-
ponentially more succinct, which explains why QBF is not in NP.

9.2.4 Quantifier Elimination for Quantified Disjunctive Linear
Arithmetic

Once again we need a projection method. We use the Fourier–Motzkin elimina-
tion, which was described in Sect. 5.4. This technique resembles the resolution
method introduced in Sect. 9.2.3, and has a worst-case complexity of O(m2n).
It can be applied directly to a conjunction of linear atoms and, consequently,
if the input formula has an arbitrary structure, it has to be converted first to
DNF.

Let us briefly recall the Fourier–Motzkin elimination method. In order to
eliminate a variable xn from a formula with variables x1, . . . , xn, for every two
conjoined constraints of the form

n−1∑
i=1

a′i · xi < xn <

n−1∑
i=1

ai · xi , (9.38)

where for i ∈ {1, . . . , n − 1}, ai and a′i are constants, we generate a new
constraint

n−1∑
i=1

a′i · xi <
n−1∑
i=1

ai · xi . (9.39)

After generating all such constraints for xn, we remove all constraints that
involve xn from the formula.

Example 9.10. Consider the following formula:

∀x. ∃y. ∃z. (y + 1 ≤ x ∧ z + 1 ≤ y ∧ 2x+ 1 ≤ z) . (9.40)

By eliminating z, we obtain

∀x. ∃y. (y + 1 ≤ x ∧ 2x+ 1 ≤ y − 1) . (9.41)
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By eliminating y, we obtain

∀x. (2x+ 2 ≤ x− 1) . (9.42)

Using (9.1), we obtain

¬∃x. ¬(2x+ 2 ≤ x− 1) , (9.43)

or, equivalently,
¬∃x. x > −3 , (9.44)

which is obviously not valid.

Several alternative quantifier elimination procedures are cited in the biblio-
graphic notes at the end of this chapter.

9.3 Search-Based Algorithms for Quantified Boolean
Formulas

Most competitive QBF solvers are based on an adaptation of CDCL solvers.
The adaptation that we consider here is naive, in that it resembles the basic
CDCL algorithm without the more advanced features such as learning and
nonchronological backtracking (see Chap. 2 for details on the CDCL algorith-
mic framework).

The key difference between SAT and the QBF problem is that the latter
requires handling of quantifier alternation. The binary search tree now has
to distinguish between universal nodes and existential nodes. Universal
nodes are labeled with a symbol “∀”, as can be seen in the right-hand drawing
in Fig. 9.2.

∀

Fig. 9.2. An existential node (left) and a universal node (right) in a QBF search
tree

A QBF binary search tree corresponding to a QBF Q, is defined as follows:

Definition 9.11 (QBF search tree corresponding to a quantified Bool-
ean formula). Given a QBF Q in prenex normal form and an ordering of its
variables (say, x1, . . . , xn), a QBF search tree corresponding to Q is a binary
labeled tree of height n + 1 with two types of internal nodes, universal and
existential, in which:
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• The root node is labeled with Q and associated with depth 0.
• One of the children of each node at level i, 0 ≤ i < n, is marked with xi+1,

and the other with ¬xi+1.
• A node in level i, 0 ≤ i < n, is universal if the variable in level i + 1 is

universally quantified.
• A node in level i, 0 ≤ i < n, is existential if the variable in level i + 1 is

existentially quantified.

The validity of a QBF tree is defined recursively, as follows:

Definition 9.12 (validity of a QBF tree). A QBF tree is valid if its root
is satisfied. This is determined recursively according to the following rules:

• A leaf in a QBF binary tree corresponding to a QBF Q is satisfied if the
assignment corresponding to the path to this leaf satisfies the quantification
suffix of Q.

• A universal node is satisfied if both of its children are satisfied.
• An existential node is satisfied if at least one of its children is satisfied.

Example 9.13. Consider the formula

Q := ∃e. ∀u. (e ∨ u) ∧ (¬e ∨ ¬u) . (9.45)

The corresponding QBF tree appears in Fig. 9.3.

¬e

¬u

∀

u¬uu

∀

Q

e

Fig. 9.3. A QBF search tree for the formula Q of (9.45)

The second and third u nodes are the only nodes that are satisfied (since
(e,¬u) and (¬e, u) are the only assignments that satisfy the suffix). Their
parent nodes, e and ¬e, are not satisfied, because they are universal nodes
and only one of their child nodes is satisfied. In particular, the root node,
representing Q, is not satisfied and hence Q is not valid.

A naive implementation based on these ideas is described in Algorithm 9.3.1.
More sophisticated algorithms exist [296, 297], in which techniques such as
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�
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Algorithm 9.3.1: Search-based-decision-of-QBF

Input: A QBF Q in PNF Q[n]V [n] . . . Q[1]V [1]. φ, where φ is in
CNF

Output: “Valid” if Q is valid, and “Not valid” otherwise

1. function main(QBF formula Q)
2. if QBF(Q, ∅, n) then return “Valid”;
3. else return “Not valid”;
4.
5. function QBF(Q, assignment set v̂, level ∈ N0)
6. if (φ|v̂ simplifies to false) then return false;
7. if (level = 0) then return true;
8. if (Q[level ] = ∀) then

9. return

(
QBF(Q, v̂ ∪ ¬V [level ], level − 1) ∧
QBF(Q, v̂ ∪ V [level ], level − 1)

)
;

10. else

11. return

(
QBF(Q, v̂ ∪ ¬V [level ], level − 1) ∨
QBF(Q, v̂ ∪ V [level ], level − 1)

)
;

nonchronological backtracking and learning are applied: as in SAT, in the QBF
problem we are not interested in searching the whole search space defined by
the graph above, but rather in pruning it as much as possible.

The notation φ|v̂ in line 6 refers to the simplification of φ resulting from
�� ��φ|v̂

the assignments in the assignment set v̂. For example, let v̂ := {x 7→ 0, y 7→ 1}.
Then

(x ∨ (y ∧ z))|v̂ = (z) . (9.46)

Example 9.14. Consider (9.45) once again:

Q := ∃e. ∀u. (e ∨ u) ∧ (¬e ∨ ¬u) .

The progress of Algorithm 9.3.1 when applied to this formula, with the vari-
able ordering u, e, is shown in Fig. 9.4.

9.4 Effectively Propositional Logic

Many problems can be modeled with a fragment of first-order logic known by
the name Effectively Propositional (EPR) (the ‘R’ is sometimes attributed
to “Reasoning” and sometimes to the second letter in “Propositional”). EPR
formulas are of the form

∃x∀y. ϕ(x,y) , (9.47)
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Recursion level Line Comment

0 2 QBF(Q, ∅, 2) is called.
0 6,7 The conditions in these lines do not hold.
0 8 Q[2] = ∃ .
0 11 QBF(Q, {e = 0}, 1) is called first.
1 6 φ|e=0 = (u) .
1 8 Q[1] = ∀ .
1 9 QBF(Q, {e = 0, u = 0}, 0) is called first.
2 6 φ|e=0,u=0 = false. return false.
1 9 return false.
0 11 QBF(Q, {e = 1}, 1) is called second.
1 6 φ|e=1 = (¬u) .
1 8 Q[1] = ∀ .
1 9 QBF(Q, {e = 1, u = 0}, 0) is called first.
2 6 φ|e=1,u=0 = true.
2 7 return true.
1 9 QBF(Q, {e = 1, u = 1}, 0) is called second.
2 6 φ|e=1,u=1 = false; return false.
1 9 return false.
0 11 return false.
0 3 return “Not valid”.

Fig. 9.4. A trace of Algorithm 9.3.1 when applied to (9.45)

where x,y are sets of variables, and ϕ is a quantifier-free formula without
function symbols (uninterpreted predicate symbols are allowed). For simplicity
we assume there are no free variables.

It turns out that satisfiability of such formulas can be reduced to proposi-
tional SAT—hence the name—although it may lead to an exponential growth
in the size of the formula (EPR is a NEXPTIME problem). After the trans-
formation, we can apply a propositional SAT solver, as discussed in Chap. 2,
in order to decide the satisfiability of the original formula.

A basic decision procedure for such formulas has several steps. We will use
the following formula to demonstrate them:

∃e1∃e2∀a1∀a2. p(e1, a1) ∨ q(e2, a2) . (9.48)

1. Remove the existential quantifiers.5 This results in

∀a1∀a2. p(e1, a1) ∨ q(e2, a2) . (9.49)

5 This step is typically described in the literature as Skolemization, which we will
only cover later in Definition 9.15. Since in EPR formulas the existential quan-
tifiers are not in the scope of any universal quantifier, Skolemization results in
functions without parameters, which are called symbolic constants. We avoid here
this additional jargon by working directly with the existentially quantified vari-
ables as if they were such constants.
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2. Grounding: eliminate each universal quantifier by forming a conjunction
of instantiations of the suffix ϕ with every possible variable that was
originally existentially quantified. In our example, this results in

(p(e1, e1) ∨ q(e2, e1)) ∧
(p(e1, e1) ∨ q(e2, e2)) ∧
(p(e1, e2) ∨ q(e2, e1)) ∧
(p(e1, e2) ∨ q(e2, e2)) .

(9.50)

Given n existentially and m universally quantified variables, this step
results in nm conjuncts.

3. Encoding: at this point we are left with a Boolean combination of unin-
terpreted predicates. It is left to check whether we can assign a Boolean
value to each such predicate under the constraint that two instances of
the same predicate that are invoked with an identical vector of parameters
are assigned the same value. The simplest way to do this is to encode each
predicate with a propositional variable that corresponds to the signature
of its parameters. For example, the predicate p(e1, e2) is encoded with a
propositional variable p12. This leaves us with the propositional formula

(p11 ∨ q21) ∧
(p11 ∨ q22) ∧
(p12 ∨ q21) ∧
(p12 ∨ q22) .

(9.51)

4. SAT: invoke a propositional SAT solver. The formula obtained by the
transformation above is equisatisfiable with the original formula. Our ex-
ample is clearly satisfiable.

EPR is a natural formalism for modeling decision problems over relations.
In particular, decision problems in set theory can be decided this way, since
sets can be modeled with unary predicates. For example, suppose we want to
check whether the following is satisfiable for arbitrary sets A, B, and C:

(A ∩B 6= ∅) ∧ (B ∩ C 6= ∅) ∧ (A ∩ C 6= ∅) ∧ (A ∩B ∩ C = ∅) . (9.52)

A unary predicate modeling a set variable is true if its argument belongs
to the original set. For sets A,B,C, . . . we will denote by PA, PB , PC unary
predicates that represent them respectively, e.g., PA(x) = true ⇐⇒ x ∈ A.
Intersection is modeled with conjunction. Hence, the above formula can be
reformulated in EPR as follows:

(∃x1. PA(x1) ∧ PB(x1)) ∧ (∃x2. PB(x2) ∧ PC(x2)) ∧ (∃x3. PA(x3) ∧ PC(x3))
∧ (∀x4. ¬PA(x4) ∨ ¬PB(x4) ∨ ¬PC(x4)) .

(9.53)
Transforming (9.53) to prenex normal form (see Sect. 9.2.1) reveals that it is
an EPR formula, and following the procedure described above shows that it
is satisfiable.
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It is not hard to see that other set operations can also be modeled with
Boolean operations between their respective predicates, e.g., union is mod-
eled with disjunction, complementation with negation, and subtraction with
a combination of intersection and complementation based on the equivalence
A \ B = A ∩ Bc. A relation such as A ⊆ B can be modeled with a universal
quantifier: ∀x. PA(x) =⇒ PB(x). For a list of other uses of EPR the reader
is referred to [224].

9.5 General Quantification

So far we have considered three special cases of quantified formulas for which
the validity problem can be decided. In the case of QBF the decision proce-
dure is based on splitting or on quantifier elimination, in the case of linear
arithmetic it is based on quantifier elimination, and in the case of EPR it is
based on a reduction to propositional logic. More generally, as long as the
domain of the quantified variable is finite, or otherwise if there is a quantifier
elimination algorithm, then the problem is decidable.

In this section we consider the general case, where enumeration and quan-
tifier elimination are either impossible or just too computationally expensive.
This is the only section in this book in which we consider a problem which
is in general undecidable. Undecidability implies that there is no general al-
gorithm that solves all cases. The best we can hope for is an algorithm that
solves many useful cases. In fact general quantification is a key component in
first-order theorem proving and as such receives a massive amount of at-
tention in the literature. Automated first-order theorem provers have existed
from the 1970s and continue to be developed and supported today—see the
bibliographic notes in Sect. 9.7.

Since all the theories discussed in this book are first-order axiomatizable
(i.e., the predicates in their signatures such as equality and inequality can
be defined via axioms such as (1.35)), it follows that a general quantifier
elimination algorithm, if it exists, can decide all of them. In other words,
if there was a general and computationally competitive way to solve such
formulas there would not be a need for the specialized decision procedures
described thus far. For example, given an equality formula such as x = y ∧ y =
z ∧ x 6= z, rather than invoking the congruence closure algorithm of Sect. 4.3,
we would instead solve the same formula in conjunction with the equality
axioms (1.35). Similarly, if the formula also contains uninterpreted functions
we would add the congruence axiom (4.2). Such a universal mechanism does
not exist, but there are heuristics that are effective in many cases.

The first step in attempting to solve general quantified formulas is trans-
formation to the following normal form:

Definition 9.15 (Skolem normal form). A formula is in Skolem normal
form if it is in prenex normal form (see Sect. 9.2.1) and has only universal
quantifiers.
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Every first-order formula ϕ can be converted into this form in linear time
while not changing its satisfiability. This requires a procedure called Skolem-
ization. Let ψ = ∃x. P be a subformula in ϕ. Let y1, . . . , yn be universally
quantified variables such that ψ is in their scope. To Skolemize, i.e., eliminate
the existential quantification over x:

1. Remove the quantifier ∃x from ψ.
2. Replace occurrences of x in P with fx(y1, . . . , yn), where fx is a new func-

tion symbol. It is sufficient to include those y variables that are actually
used in P .

A special case occurs when x is not in the scope of any universally quantified
variable, and hence n = 0. In this case replace x with a new “symbolic”
constant cx.

Example 9.16. Consider the formula

∀y1. ∀y2. f(y1, y2) ∧ ∃x. (f(x, y2) ∧ x < 0) . (9.54)

After Skolemization, we have

∀y1. ∀y2. f(y1, y2) ∧ (f(fx(y1, y2), y2) ∧ fx(y1, y2) < 0) . (9.55)

Assuming we begin with a formula in prenex normal form, Skolemization is
repeated for each existentially quantified subformula, which leaves us with
a formula in Skolem normal form that includes new uninterpreted function
symbols.

Instantiation

A typical scenario is one in which we attempt to prove the validity of a ground
formula (i.e., unquantified formula) G based on sentences that represent ax-

�� ��G
ioms. Assuming the axioms are in Skolem normal form (in fact, typically
axioms only use universal quantifiers to begin with), to prove G we can try to
instantiate the universally quantified variables in order to reach a contradic-
tion with ¬G. The instantiation, namely the choice of atoms to add, is based
on heuristics. Consider for example the problem of proving that

G︷ ︸︸ ︷
f(h(a), b) = f(b, h(a)) (9.56)

is implied by
∀x. ∀y. f(x, y) = f(y, x) . (9.57)

Presenting this as a satisfiability problem, we need to show that the following
formula is unsatisfiable:
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(∀x. ∀y. f(x, y) = f(y, x)) ∧ f(h(a), b) 6= f(b, h(a)) . (9.58)

It is obvious that we need to instantiate x with h(a) and y with b in order to
reach a contradiction. This gives us the unsatisfiable ground formula

f(h(a), b) = f(b, h(a)) ∧ f(h(a), b) 6= f(b, h(a)) . (9.59)

In this case the terms with which we instantiated x and y already appeared
in G. Furthermore, the single quantified atom was strong enough to give us
exactly the predicate that we needed for the proof. Verification conditions
that arise in practice can contain hundreds of sentences to choose from, and
the ground formula G can be several megabytes in size. Hence we need to
choose which quantified formulas to instantiate and what to instantiate them
with, while keeping in mind that the goal is to derive ground terms that are
most likely to contradict G. After each instantiation, we still need to check
the ground formula. For this we can use the DPLL(T ) framework that was
studied in Chap. 3. Hence, the instantiation heuristic can be thought of as a
wrapper around DPLL(T ), invoking it with a different formula each time.

Let (∀x̄. ψ) ∧ G be the formula that we attempt to prove to be un-
satisfiable, where as before G denotes a ground formula. A naive approach
is to instantiate x̄ with all the ground terms in G of the same type. Such an
approach leads to an exponential number in |x̄| of added ground terms. For ex-
ample, if we consider once again (9.56) and (9.57), instantiating each of {x, y}
with a, b, h(a), f(h(a), b), and f(b, h(a)) yields 25 new predicates. Other than
for the simplest of formulas this exponential growth makes it impractical. In
the following we will describe a better heuristic that was implemented in a
tool called Simplify [101], which was considered the state-of-the-art solver
for many years. Modern solvers such as Z3 [92, 96] and CVC [121] use various
optimizations over the basic techniques described here.

A typical instantiation heuristic attempts to generate predicates that refer
to existing terms in G (a syntactic test), or to terms that are known to be equal
to one of them (a semantic test). Most provers, Simplify included, use the
congruence closure algorithm (see Sect. 4.3) for reasoning about equalities,
and accordingly maintain a union-find data structure which represents the
currently known equalities. This is called the E-graph in Simplify. A ground
term is considered as relevant if it is represented as a node in this graph.

We will attempt to instantiate each variable in x̄ with a ground term s such
that at least one of the terms in ψ becomes relevant. More formally, we search
for a sequence of ground terms s̄ such that |x̄| = |s̄| and ψ[x̄← s̄] contains at
least one term in the E-graph. A more sophisticated algorithm may prioritize
the substitutions by the number of such terms. Note that matching is not
always possible. For example, no substitution s̄ exists that can bring us from
a subformula such as g(x, y) or f(x, 2) to the ground term f(h(a), b).

Let us begin with a simple strategy:

• For each quantified formula of the form ∀x̄.ψ, identify those subterms in
ψ that contain references to all the variables in x̄. These are called the
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triggers. For example, in (9.57), both f(x, y) and f(y, x) can be triggers,
as they contain all the quantified variables. If no single term contains all
variables, then choose a set of terms that cover all quantified variables.
Such terms are known as multitriggers.

• Try to match each trigger tr to an existing ground term gr in G. A
�� ��tr�� ��gr trigger can be thought of as a pattern that has to be instantiated in order

to reach an existing ground term. In the example above, matching f(x, y)
to f(h(a), b) yields the substitution s̄ = {x 7→ h(a), y 7→ b}. We will later
present an algorithm for performing such matches.

• Given a substitution s̄, assign G := G ∧ ψ[x̄ ← s̄] and check the satisfia-
bility of G.

Example 9.17. Consider

G := (b = c =⇒ f(h(a), g(c)) = f(g(b), h(a))) , (9.60)

which we need to validate under the assumption that f is commutative, i.e.,

∀x. ∀y. f(x, y) = f(y, x) . (9.61)

Cast in terms of satisfiability, we need to prove the unsatisfiability of

(∀x. ∀y. f(x, y) = f(y, x)) ∧ b = c ∧ f(h(a), g(c)) 6= f(g(b), h(a)) . (9.62)

In the first step we identify the triggers: f(x, y), f(y, x). Since in this case
the triggers are symmetric we will focus only on the first one. We can match
f(x, y) to f(h(a), g(c)) with the substitution {x 7→ h(a), y 7→ g(c)} or to
f(g(b), h(a)) with {x 7→ g(b), y 7→ h(a)}. Now we check the satisfiability of

(b = c ∧ f(h(a), g(c)) 6= f(g(b), h(a)))
∧ f(h(a), g(c)) = f(g(c), h(a))
∧ f(g(b), h(a)) = f(h(a), g(b)) .

(9.63)

This formula is unsatisfiable, which means that the instantiation was suc-
cessful. In fact the first substitution is sufficient in this case, which raises
the question of whether we should add all terms together or do it gradually.
Different solvers may use different strategies in this respect.

Frequently, however, the predicates necessary for proving unsatisfiability
are not based on terms in the existing formula. Simplify has a more flexi-
ble matching algorithm, which exploits its current knowledge on equivalences
among various terms, which is called E-matching. This technique is described
next.

The E-Matching Algorithm

A simple matching algorithm of formulas is based on the syntactic similarity
of a trigger (the pattern) tr and a ground term gr. More specifically, tr and
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gr have to be equivalent except in the locations of the quantified variables.
For example, it can match a trigger f(x, g(y)) to a ground term f(a, g(h(b))).
E-matching is more flexible than this, as at each point in the matching process
it considers not only a given subterm of gr, but also any ground term that is
known to be equivalent to it and matches the pattern.

The E-matching algorithm appears in Algorithm 9.5.1. Its input is a 3-
tuple 〈tr, gr, sub〉, where tr is a trigger, gr is a term to which we try to match
tr, and sub is the current set of possible substitutions (initially empty). The
output of this algorithm is a set of substitutions, each of which brings us from
tr to gr, possibly by using congruence closure. More formally, if E denotes

�� ��E
the equalities, then for each possible substitution α ∈ sub, it holds that E |=
α(tr) = gr, where α(tr) denotes the substitution α applied to the trigger tr.
For example, for tr

.
= f(x) and gr

.
= f(a), if E

.
= {a = b}, the value of sub at

the end of the algorithm will be {x 7→ a, x 7→ b}.
When reading the algorithm, recall that sub is a set of substitutions, where

a substitution is a mapping between some of the quantified variables and
terms. The algorithm progresses by either adding new substitutions or aug-
menting existing ones with mappings of additional variables. The algorithm
calls three auxiliary functions:

• dom(α) is the domain of the substitution α. For example, dom({x 7→
a, y 7→ b}) = {x, y}.

The other two functions, find and class , are part of the standard interface of
a congruence closure algorithm that is implemented with union-find:

• find(gr) returns the representative element of the class of gr. If two terms
gr1, gr2 are such that find(gr1) = find(gr2) then it means that they are
equivalent.

• class(gr) returns the equivalence class of gr.

We now explain the algorithm line by line. In line 3 we handle the case
in which tr is a variable x, by examining separately each element in the
substitution set sub. The set returned is a union of two sets, depending on the
element α ∈ sub that we examine. To understand these sets, consider these
two illustrations:

• Let α
.
= {y 7→ c, z 7→ d} be a substitution in sub. We add the substitution

{y 7→ c, z 7→ d, x 7→ c} to the returned set. In other words, we augment α
with a mapping of x. We perform this augmentation only if x 6∈ dom(α),
where in this case dom(α) = {y, z}.

• Let α
.
= {y 7→ c, x 7→ d} be a substitution in sub and let gr be a term. The

returned set is the same substitution α, but only if E |= d = gr, i.e., d is
an expression that is logically equivalent to gr, according to E. Otherwise
α is discarded, since we do not want to have x mapped to two terms that
are not known to be equal.
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In line 4 we handle the case in which tr is a constant c. This case is simple:
either the term to which we try to match is equivalent to c, or we return the
empty set in the case where there is no match.

In line 7 we handle the case in which tr is a function with n terms
f(p1, . . . , pn). First consider a simple case in which gr is a term with the same
pattern, e.g., f(gr1, . . . , grn). In this case the returned set is constructed re-
cursively, by applying match to each pair of arguments pi, gri for i ∈ [1..n].
Since we are doing E-matching and not just matching, we need to consider
terms that are known to be logically equivalent to gr that also have this pat-
tern, regardless of whether gr itself has this pattern. This is the reason for the
union in the last line of the algorithm. Although not explicitly stated in the
algorithm, if matching one or more of the arguments fails (match returns the
empty set for this argument), then whatever match has found for the other
arguments is discarded from the result.�

�

�

�

Algorithm 9.5.1: E-Matching

Input: Trigger tr, term gr, current substitution set sub
Output: Substitution set sub such that for each α ∈ sub, E |=

α(tr) = gr.

1. function match(tr, gr, sub)
2. if tr is a variable x then
3. return

{α ∪ {x 7→ gr} | α ∈ sub, x 6∈ dom(α)} ∪
{α | α ∈ sub, find(α(x)) = find(gr)}

4. if tr is a constant c then
5. if c ∈ class(gr) then return sub
6. else return ∅
7. if tr is of the form f(p1, . . . , pn) then return

⋃
f(gr1,...,grn)∈class(gr)

match(pn, grn,
match(pn−1, grn−1,. . .

match(p1, gr1, sub) . . .))

Example 9.18. Consider the formula

(∀x. f(x) = x)∧(∀y1. ∀y2. g(g(y1, y2), y2) = y2)∧g(f(g(a, b)), b) 6= b . (9.64)

The triggers are f(x) and g(g(y1, y2), y2). To match the first of those we run

match(f(x), g(f(g(a, b)), b) 6= b, ∅) .

Since f(x) is a function application we invoke line 7. The only relevant subterm
in gr is f(g(a, b)), and the computation is
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match(x, g(a, b), ∅) line 7
= {x 7→ g(a, b)} line 3

At this point the equivalence f(g(a, b)) = g(a, b) is added to E. We now invoke
E-matching on the second trigger g(g(y1, y2), y2). In line 7 we find that the
candidate ground terms for the matching are g(a, b) and g(f(g(a, b)), b), as
both are applications of the g function and are terms in gr. We leave the
reader to run the algorithm in the case of the first candidate and conclude
that it fails. As for the second term, the computation is:

= match(y2, b,match(g(y1, y2), f(g(a, b)), ∅)) line 7
= match(y2, b,match(g(y1, y2), g(a, b), ∅)) line 7
= match(y2, b,match(y2, b,match(y1, a, ∅))) line 7
= match(y2, b,match(y2, b, {y1 7→ a})) line 3
= match(y2, b, {y1 7→ a, y2 7→ b}) line 3
= {y1 7→ a, y2 7→ b} line 3 .

Note the switch between f(g(a, b)) and g(a, b): it happens in line 7, because
these two terms are in the same equivalence class according to the E-graph.

Example 9.19. Consider a trigger tr
.
= f(x, y, x). Let gr

.
= g(a) be a term

that according to E is equivalent to f(a, b, a) and to f(c, d, e). We call match
with (tr, gr, ∅). The recursive computation of match appears below.

match(tr, gr, ∅)
= match(x, a,match(y, b,match(x, a, ∅))) ∪

match(x, e,match(y, d,match(x, c, ∅)))
= match(x, a,match(y, b, {x 7→ a})) ∪ match(x, e,match(y, d, {x 7→ c}))
= match(x, a, {x 7→ a, y 7→ b}) ∪ match(x, e, {x 7→ c, y 7→ d})
= {x 7→ a, y 7→ b} ∪ ∅
= {x 7→ a, y 7→ b} .

As expected, the term f(c, d, e) does not contribute a substitution, because c
and e, the terms to which x is supposed to be mapped, are not known to be
equivalent in E.

Beyond the Congruence Closure

The E-matching algorithm searches for terms in the congruence closure of
the terms, but clearly this is not always sufficient for a proof. Consider, for
example, the following formula:

(∀x. f(2x− x) < x) ∧ (f(a) ≥ a) . (9.65)

Even if we refer to the minus sign as any other function symbol when run-
ning the matching algorithm, without knowing that 2x − x = x it will get
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stuck, not finding a ground term to which it can match. Owing to complex-
ity considerations, most theorem provers that handle quantifiers refrain from
considering anything beyond the congruence closure when matching. The lat-
ter is relatively easy to do, because most provers use the congruence closure
algorithm (see Sect. 4.3) and accordingly maintain a union-find data structure
which represents the currently known equalities. Hence they can solve (9.64),
but not (9.65). The solver Z3 mentioned earlier can, in fact, solve the above
formula because it applies basic simplifications to expressions. Hence 2x − x
will be simplified to x before matching begins. More complicated cases are
still beyond its reach.

The story does not end here, although the chapter does. There are other
complications that we refrain from describing here in detail. For example, note
that instantiation may run into an infinite loop: matching will add predicates,
and the terms in these new predicates create more matching opportunities,
and there is no guarantee of convergence. Problem 9.12 shows an example of
a formula that triggers this phenomenon. Theorem provers such as Simplify
employ a cycle detection technique to prevent such cases, as well as various
heuristics that order the triggers in a way that will make such cycles less
frequent. Another technique worth mentioning is that of user assistance. Many
provers can now read markings on terms inserted by the user, which guides
the prover in choosing the right triggers. This can be helpful when without it
the solver diverges and cannot find the right triggers to activate.

9.6 Problems

9.6.1 Warm-up Exercises

Problem 9.1 (example of forall reduction). Show that the equivalence

∃e. ∃f. ∀u.(e ∨ f ∨ u) ≡ ∃e. ∃f. (e ∨ f) (9.66)

holds.

Problem 9.2 (expansion-based quantifier elimination). Is the following
formula valid? Check by eliminating all quantifiers with expansion. Perform
simplifications when possible.

Q := ∀x1. ∀x2. ∀x3. ∃x4.
(x1 =⇒ (x2 =⇒ x3)) =⇒ ((x1 ∧ x2 =⇒ x3) ∧ (x4 ∨ x1)) .

(9.67)

Problem 9.3 (EPR). Based on the procedure in Sect. 9.4,

1. Prove that ∃x∀y. p(x) 6↔ p(y) is unsatisfiable.
2. Solve to completion Eq. (9.52).
3. Prove the validity of A ∪ B ⊆ C ∧ B \ A 6= ∅ =⇒ A ⊂ C for arbitrary

sets A, B, and C.
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9.6.2 QBF

Problem 9.4 (eliminating universal quantifiers from CNF). Let

Q := Q[n]V [n] . . . Q[2]V [2]. ∀x. φ , (9.68)

where φ is a CNF formula. Let

Q′ := Q[n]V [n] . . . Q[2]V [2]. φ′ , (9.69)

where φ′ is the same as φ except that x and ¬x are erased from all clauses.

1. Prove that Q and Q′ are logically equivalent if φ does not contain tautol-
ogy clauses.

2. Show an example where Q and Q′ are not logically equivalent if φ contains
tautology clauses.

Problem 9.5 (modeling: the diameter problem). QBFs can be used for
finding the longest shortest path of any state from an initial state in a finite
state machine. More formally, what we would like to find is defined as follows:

Definition 9.20 (initialized diameter of a finite state machine). The
initialized diameter of a state machine is the smallest k ∈ N for which every
node reachable in k + 1 steps can also be reached in k steps or fewer.

Our assumption is that the finite state machine is too large to represent
or explore explicitly: instead, it is given to us implicitly in the form of a
transition system, in a similar fashion to the chess problem that was described
in Sect. 9.1.1.

For the purpose of this problem, a finite transition system is a tuple
〈S, I, T 〉, where S is a finite set of states, each of which is a valuation of
a finite set of variables (V ∪ V ′ ∪ In). V is the set of state variables and V ′ is
the corresponding set of next-state variables. In is the set of input variables. I
is a predicate over V defining the initial states, and T is a transition function
that maps each variable v ∈ V ′ to a predicate over V ∪ I.

An example of a class of state machines that are typically represented in
this manner is digital circuits. The initialized diameter of a circuit is important
in the context of formal verification: it represents the largest depth to which
one needs to search for an error state.

Given a transition system M and a natural k, formulate with QBF the
problem of whether k is the diameter of the graph represented by M . Intro-
duce proper notation in the style of the chess problem that was described in
Sect. 9.1.1.

Problem 9.6 (search-based QBFs). Apply Algorithm 9.3.1 to the formula

Q := ∀u. ∃e. (e ∨ u)(¬e ∨ ¬u) . (9.70)
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Show a trace of the algorithm as in Fig. 9.4.

Problem 9.7 (QBFs and resolution). Using resolution, check whether the
formula

Q := ∀u. ∃e. (e ∨ u)(¬e ∨ ¬u) (9.71)

is valid.

Problem 9.8 (projection by resolution). Show that the pairwise resolu-
tion suggested in Sect. 9.2.3 results in a projection as defined in Definition 9.7.

Problem 9.9 (QBF refutations). Let

Q = Q[n]V [n] . . . Q[1]V [1]. φ , (9.72)

where φ is in CNF and Q is false, i.e., Q is not valid. Propose a proof format
for such QBFs that is generally applicable, i.e., allows us to give a proof for
any QBF that is not valid (similarly to the way that binary-resolution proofs
provide a proof format for propositional logic).

Problem 9.10 (QBF models). Let

Q = Q[n]V [n] . . . Q[1]V [1]. φ , (9.73)

where φ is in CNF and Q is true, i.e., Q is valid. In contrast to the quantifier-
free SAT problem, we cannot provide a satisfying assignment to all variables
that convinces us of the validity of Q.

(a) Propose a proof format for valid QBFs.
(b) Provide a proof for the formula in Problem 9.7 using your proof format.
(c) Provide a proof for the following formula:

∀u. ∃e. (u ∨ ¬e)(¬u ∨ e) .

9.6.3 EPR

Problem 9.11 (direct reduction to propositional logic). We saw how
set logic can be decided with EPR. Show a fragment of this logic that can be
decided by a straight mapping of the set variables (A,B, . . .) to propositional
variables, i.e., without instantiation.

9.6.4 General Quantification

Problem 9.12 (quantification loop). Consider the formula

(∀x. f(x) = f(g(x))) ∧ f(g(a)) = a . (9.74)
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Assume that we choose f(x) as a trigger. Show how this may lead to a loop
in which new terms are added indefinitely.

Problem 9.13 (instantiating the congruence axiom). While assuming
the congruence axiom (4.2), prove the validity of (11.3) with quantifier instan-
tiation. Note that (4.2) introduces an implication, which means that either
case splitting or other standard inference rules for propositional logic may be
necessary.

Problem 9.14 (simple matching). Prove that (9.64) is unsatisfiable with
simple matching (not e-matching).
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9.8 Glossary

The following symbols were used in this chapter:

First used
Symbol Refers to . . . on page . . .

∀, ∃ The universal and existential quantification symbols 199

n The number of quantifiers 205

N The total number of variables (not only those exis-
tentially quantified)

208

φ|v̂ A simplification of φ based on the assignments in v̂ 212

G A ground formula whose validity we attempt to prove 216

tr A trigger: a subformula with universally quantified
variables

218

gr A ground term that we attempt to match with a
trigger

218

E A set of equivalences assumed by the solver 219



10.1 Introduction

The decision procedures that we have studied so far focus on one specific
theory. Verification conditions that arise in practice, however, frequently mix
expressions from several theories. Consider the following examples:

• A combination of linear arithmetic and uninterpreted functions:

(x2 ≥ x1) ∧ (x1 − x3 ≥ x2) ∧ (x3 ≥ 0) ∧ f(f(x1)− f(x2)) 6= f(x3) (10.1)

• A combination of bit vectors and uninterpreted functions:

f(a[32], b[1]) = f(b[32], a[1]) ∧ a[32] = b[32] (10.2)

• A combination of arrays and linear arithmetic:

x = v{i←− e}[j] ∧ y = v[j] ∧ x > e ∧ x > y (10.3)

In this chapter, we cover the popular Nelson–Oppen combination method.
This method assumes that we have a decision procedure for each of the the-
ories involved. The Nelson–Oppen combination method permits the decision
procedures to communicate information with one another in a way that guar-
antees a sound and complete decision procedure for the combined theory.

10.2 Preliminaries

Let us recall several basic definitions and conventions that should be covered
in any basic course on mathematical logic (see also Sect. 1.4). We assume a
basic familiarity with first-order logic here.

First-order logic is a baseline for defining various restrictions thereof, which
are called theories. It includes:
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• Variables
• Logical symbols that are shared by all theories, such as the Boolean

operators (∧, ∨, . . .), quantifiers (∀, ∃), and parentheses
• Nonlogical symbols, namely function and predicate symbols, that are

uniquely specified for each theory
• Syntax

It is common to consider the equality sign as a logical symbol rather than
a predicate that is specific to a theory, since first-order theories without this
symbol are rarely considered. We follow this convention in this chapter.

A first-order theory is defined by a set of sentences (first-order formulas
in which all variables are quantified). It is common to represent such sets
by a set of axioms, with the implicit meaning that the theory is the set of
sentences that are derivable from these axioms. In such a case, we can talk
about the “axioms of the theory”. Axioms that define a theory are called the
nonlogical axioms, and they come in addition to the axioms that define the
logical symbols, which, correspondingly, are called the logical axioms.

A theory is defined over a signature Σ, which is a set of nonlogical symbols
�� ��Σ

(i.e., function and predicate symbols). If T is such a theory, we say it is a Σ-
theory. Let T be a Σ-theory. A Σ-formula ϕ is T -satisfiable if there exists an
interpretation that satisfies both ϕ and T . A Σ-formula ϕ is T -valid, denoted
T |= ϕ, if all interpretations that satisfy T also satisfy ϕ. In other words, such

�� ��T |= ϕ
a formula is T -valid if it can be derived from the T axioms and the logical
axioms.

Definition 10.1 (theory combination). Given two theories T1 and T2 with
signatures Σ1 and Σ2, respectively, the theory combination T1⊕T2 is a (Σ1∪

�� ��⊕
Σ2)-theory defined by the axiom set T1 ∪ T2.

The generalization of this definition to n theories rather than two theories is
straightforward.

Definition 10.2 (the theory combination problem). Let ϕ be a Σ1 ∪Σ2

formula. The theory combination problem is to decide whether ϕ is T1 ⊕ T2-
valid. Equivalently, the problem is to decide whether the following holds:

T1 ⊕ T2 |= ϕ . (10.4)

The theory combination problem is undecidable for arbitrary theories T1 and
T2, even if T1 and T2 themselves are decidable. Under certain restrictions on
the combined theories, however, the problem becomes decidable. We discuss
these restrictions later on.

An important notion required in this chapter is that of a convex theory.

Definition 10.3 (convex theory). A Σ-theory T is convex if for every con-
junctive Σ-formula ϕ
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(ϕ =⇒
∨n
i=1 xi = yi) is T -valid for some finite n > 1 =⇒

(ϕ =⇒ xi = yi) is T -valid for some i ∈ {1, . . . , n} , (10.5)

where xi, yi, for i ∈ {1, . . . , n}, are some variables.

In other words, in a convex theory T , if a formula T -implies a disjunction of
equalities, it also T -implies at least one of these equalities separately.

Example 10.4. Examples of convex and nonconvex theories include:

• Linear arithmetic over R is convex. A conjunction of linear arithmetic
predicates defines a set of values which can be empty, a singleton, as in

x ≤ 3 ∧ x ≥ 3 =⇒ x = 3 , (10.6)

or infinitely large, and hence it implies an infinite disjunction. In all three
cases, it fits the definition of convexity.

• Linear arithmetic over Z is not convex. For example, while

x1 = 1 ∧ x2 = 2 ∧ 1 ≤ x3 ∧ x3 ≤ 2 =⇒ (x3 = x1 ∨ x3 = x2) (10.7)

holds, neither

x1 = 1 ∧ x2 = 2 ∧ 1 ≤ x3 ∧ x3 ≤ 2 =⇒ x3 = x1 (10.8)

nor
x1 = 1 ∧ x2 = 2 ∧ 1 ≤ x3 ∧ x3 ≤ 2 =⇒ x3 = x2 (10.9)

holds.
• The conjunctive fragment of equality logic is convex. A conjunction of

equalities and disequalities defines sets of variables that are equal (equality
sets) and sets of variables that are different. Hence, it implies any equality
between variables in the same equality set separately. Convexity follows.

Many theories used in practice are in fact nonconvex, which, as we shall
soon see, makes them computationally harder to combine with other theories.

10.3 The Nelson–Oppen Combination Procedure

10.3.1 Combining Convex Theories

The Nelson–Oppen combination procedure solves the theory combination
problem (see Definition 10.2) for theories that comply with several restric-
tions.

Definition 10.5 (Nelson–Oppen restrictions). In order for the Nelson–
Oppen procedure to be applicable, the theories T1, . . . , Tn should comply with
the following restrictions:
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1. T1, . . . , Tn are quantifier-free first-order theories with equality.
2. There is a decision procedure for each of the theories T1, . . . , Tn.
3. The signatures are disjoint, i.e., for all 1 ≤ i < j ≤ n, Σi ∩Σj = ∅.
4. T1, . . . , Tn are theories that are interpreted over an infinite domain (e.g.,

linear arithmetic over R, but not the theory of finite-width bit vectors).

There are extensions to the basic Nelson–Oppen procedure that overcome each
of these restrictions, some of which are covered in the bibliographic notes at
the end of this chapter.

Algorithm 10.3.1 is the Nelson–Oppen procedure for combinations of con-
vex theories. It accepts a formula ϕ, which must be a conjunction of literals, as
input. In general, adding disjunction to a convex theory makes it nonconvex.
Extensions of convex theories with disjunctions can be supported with the ex-
tension to nonconvex theories that we present later on or, alternatively, with
the methods described in Chap. 3, which are based on combining a decision
procedure for the theory with a SAT solver.

The first step of Algorithm 10.3.1 relies on the idea of purification. Purifi-
cation is a satisfiability-preserving transformation of the formula, after which
each atom is from a specific theory. In this case, we say that all the atoms are
pure. More specifically, given a formula ϕ, purification generates an equisat-
isfiable formula ϕ′ as follows:

1. Let ϕ′ := ϕ.
2. For each “alien” subexpression φ in ϕ′:

(a) Replace φ with a new auxiliary variable aφ
(b) Constrain ϕ′ with aφ = φ

Example 10.6. Given the formula

ϕ := x1 ≤ f(x1) , (10.10)

which mixes arithmetic and uninterpreted functions, purification results in

ϕ′ := x1 ≤ a ∧ a = f(x1) . (10.11)

In ϕ′, all atoms are pure: x1 ≤ a is an arithmetic formula, and a = f(x1)
belongs to the theory of equalities with uninterpreted functions.

After purification, we are left with a set of pure expressions F1, . . . , Fn
such that:

�� ��Fi

1. For all i, Fi belongs to theory Ti and is a conjunction of Ti-literals.
2. Shared variables are allowed, i.e., it is possible that for some i, j, 1 ≤ i <
j ≤ n, var(Fi) ∩ var(Fj) 6= ∅.

3. The formula ϕ is satisfiable in the combined theory if and only if
∧n
i=1 Fi

is satisfiable in the combined theory.
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Algorithm 10.3.1: Nelson–Oppen-for-Convex-Theories

Input: A convex formula ϕ that mixes convex theories, with
restrictions as specified in Definition 10.5

Output: “Satisfiable” if ϕ is satisfiable, and “Unsatisfiable” oth-
erwise

1. Purification: Purify ϕ into F1, . . . , Fn.
2. Apply the decision procedure for Ti to Fi. If there exists i such that
Fi is unsatisfiable in Ti, return “Unsatisfiable”.

3. Equality propagation: If there exist i, j such that Fi Ti-implies an
equality between variables of ϕ that is not Tj-implied by Fj , add
this equality to Fj and go to step 2.

4. Return “Satisfiable”.

Example 10.7. Consider the formula

(f(x1, 0) ≥ x3) ∧ (f(x2, 0) ≤ x3)∧
(x1 ≥ x2) ∧ (x2 ≥ x1)∧

(x3 − f(x1, 0) ≥ 1) ,
(10.12)

which mixes linear arithmetic and uninterpreted functions. Purification results
in

(a1 ≥ x3) ∧ (a2 ≤ x3) ∧ (x1 ≥ x2) ∧ (x2 ≥ x1) ∧ (x3 − a1 ≥ 1)∧
(a0 = 0)∧
(a1 = f(x1, a0))∧
(a2 = f(x2, a0)) .

(10.13)

In fact, we applied a small optimization here, assigning both instances of the
constant “0” to the same auxiliary variable a0. Similarly, both instances of
the term f(x1, 0) have been mapped to a1 (purification, as described earlier,
assigns them to separate auxiliary variables).

The top part of Table 10.1 shows the formula (10.13) divided into the two
pure formulas F1 and F2. The first is a linear arithmetic formula, whereas the
second is a formula in the theory of equalities with uninterpreted functions
(EUF). Neither F1 nor F2 is independently contradictory, and hence we pro-
ceed to step 3. With a decision procedure for linear arithmetic over the reals,
we infer x1 = x2 from F1, and propagate this fact to the other theory (i.e.,
we add this equality to F2). We can now deduce a1 = a2 in T2, and propagate
this equality to F1. From this equality, we conclude a1 = x3 in T1, which is a
contradiction to x3 − a1 ≥ 1 in T1.

Example 10.8. Consider the following formula, which mixes linear arith-
metic and uninterpreted functions:
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F1 (arithmetic over R) F2 (EUF)

a1 ≥ x3 a1 = f(x1, a0)
a2 ≤ x3 a2 = f(x2, a0)
x1 ≥ x2
x2 ≥ x1
x3 − a1 ≥ 1
a0 = 0

? x1 = x2 x1 = x2
a1 = a2 ? a1 = a2

? a1 = x3
? false

Table 10.1. Progress of the Nelson–Oppen combination procedure starting from
the purified formula (10.13). The equalities beneath the middle horizontal line result
from step 3 of Algorithm 10.3.1. An equality is marked with a “?” if it was inferred
within the respective theory

(x2 ≥ x1)∧ (x1− x3 ≥ x2)∧ (x3 ≥ 0)∧ (f(f(x1)− f(x2)) 6= f(x3)) . (10.14)

Purification results in

(x2 ≥ x1) ∧ (x1 − x3 ≥ x2) ∧ (x3 ≥ 0) ∧ (f(a1) 6= f(x3))∧
(a1 = a2 − a3)∧
(a2 = f(x1))∧
(a3 = f(x2)) .

(10.15)

The progress of the equality propagation step, until the detection of a contra-
diction, is shown in Table 10.2.

10.3.2 Combining Nonconvex Theories

Next, we consider the combination of nonconvex theories (or of convex theo-
ries together with theories that are nonconvex). First, consider the following
example, which illustrates that Algorithm 10.3.1 may fail if one of the theories
is not convex:

(1 ≤ x) ∧ (x ≤ 2) ∧ p(x) ∧ ¬p(1) ∧ ¬p(2) , (10.16)

where x ∈ Z.
Equation (10.16) mixes linear arithmetic over the integers and equalities

with uninterpreted predicates. Linear arithmetic over the integers, as demon-
strated in Example 10.4, is not convex. Purification results in

1 ≤ x ∧ x ≤ 2 ∧ p(x) ∧ ¬p(a1) ∧ ¬p(a2)∧
a1 = 1∧
a2 = 2

(10.17)
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F1 (arithmetic over R) F2 (EUF)

x2 ≥ x1 f(a1) 6= f(x3)
x1 − x3 ≥ x2 a2 = f(x1)
x3 ≥ 0 a3 = f(x2)
a1 = a2 − a3

? x3 = 0
? x1 = x2 x1 = x2
a2 = a3 ? a2 = a3

? a1 = 0
? a1 = x3 a1 = x3

false

Table 10.2. Progress of the Nelson–Oppen combination procedure starting from
the purified formula (10.15)

F1 (arithmetic over Z) F2 (EUF)

1 ≤ x p(x)
x ≤ 2 ¬p(a1)
a1 = 1 ¬p(a2)
a2 = 2

Table 10.3. The two pure formulas corresponding to (10.16) are independently
satisfiable and do not imply any equalities. Hence, Algorithm 10.3.1 returns “Satis-
fiable”

Table 10.3 shows the partitioning of the predicates in the formula (10.17) into
the two pure formulas F1 and F2. Note that both F1 and F2 are individually
satisfiable, and neither implies any equalities in its respective theory. Hence,
Algorithm 10.3.1 returns “Satisfiable” even though the original formula is
unsatisfiable in the combined theory.

The remedy to this problem is to consider not only implied equalities, but
also implied disjunctions of equalities. Recall that there is a finite number of
variables, and hence of equalities and disjunctions of equalities, which means
that computing these implications is feasible. Given such a disjunction, the
problem is split into as many parts as there are disjuncts, and the procedure is
called recursively. For example, in the case of the formula (10.16), F1 implies
x = 1∨ x = 2. We can therefore split the problem into two, considering sepa-
rately the case in which x = 1 and the case in which x = 2. Algorithm 10.3.2
merely adds one step (step 4) to Algorithm 10.3.1: the step that performs this
split.
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Algorithm 10.3.2: Nelson–Oppen

Input: A formula ϕ that mixes theories, with restrictions as specified
in Definition 10.5

Output: “Satisfiable” if ϕ is satisfiable, and “Unsatisfiable” otherwise

1. Purification: Purify ϕ into ϕ′ := F1, . . . , Fn.
2. Apply the decision procedure for Ti to Fi. If there exists i such that Fi is

unsatisfiable, return “Unsatisfiable”.
3. Equality propagation: If there exist i, j such that Fi Ti-implies an equality

between variables of ϕ that is not Tj-implied by Fj , add this equality to
Fj and go to step 2.

4. Splitting: If there exists i such that

• Fi =⇒ (x1 = y1 ∨ · · · ∨ xk = yk) and
• ∀j ∈ {1, . . . , k}. Fi 6=⇒ xj = yj ,

then apply Nelson–Oppen recursively to

ϕ′ ∧ x1 = y1, . . . , ϕ
′ ∧ xk = yk .

If any of these subproblems is satisfiable, return “Satisfiable”. Otherwise,
return “Unsatisfiable”.

5. Return “Satisfiable”.

F1 (arithmetic over Z) F2 (EUF)

1 ≤ x p(x)
x ≤ 2 ¬p(a1)
a1 = 1 ¬p(a2)
a2 = 2

? x = 1 ∨ x = 2

Table 10.4. The disjunction of equalities x = a1 ∨ x = a2 is implied by F1. Al-
gorithm 10.3.2 splits the problem into the subproblems described in Tables 10.5
and 10.6, both of which return “Unsatisfiable”

Example 10.9. Consider the formula (10.16) again. Algorithm 10.3.2 infers
(x = 1 ∨ x = 2) from F1, and splits the problem into two subproblems, as
illustrated in Tables 10.4–10.6.
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F1 (arithmetic over Z) F2 (EUF)

1 ≤ x p(x)
x ≤ 2 ¬p(a1)
a1 = 1 ¬p(a2)
a2 = 2

x = 1
? x = a1 x = a1

false

Table 10.5. The case x = a1 after the splitting of the problem in Table 10.4

F1 (arithmetic over Z) F2 (EUF)

1 ≤ x p(x)
x ≤ 2 ¬p(a1)
a1 = 1 ¬p(a2)
a2 = 2

x = 2
? x = a2 x = a2

false

Table 10.6. The case x = a2 after the splitting of the problem in Table 10.4

10.3.3 Proof of Correctness of the Nelson–Oppen Procedure

We now prove the correctness of Algorithm 10.3.1 for convex theories and for
conjunctions of theory literals. The generalization to Algorithm 10.3.2 is not
hard. Without proof, we rely on the fact that

∧
i Fi is equisatisfiable with ϕ.

Theorem 10.10. Algorithm 10.3.1 returns “Unsatisfiable” if and only if its
input formula ϕ is unsatisfiable in the combined theory.

Proof. Without loss of generality, we can restrict the proof to the combination
of two theories T1 and T2.

(⇒, Soundness) Assume that ϕ is satisfiable in the combined theory. We
are going to show that this contradicts the possibility that Algorithm 10.3.2
returns “Unsatisfiable”. Let α be a satisfying assignment of ϕ. Let A be the
set of auxiliary variables added as a result of the purification step (step 1).
As
∧
i Fi and ϕ are equisatisfiable in the combined theory, we can extend α

to an assignment α′ that includes also the variables A.

Lemma 10.11. Let ϕ be satisfiable. After each loop iteration,
∧
i Fi is satis-

fiable in the combined theory.
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Proof. The proof is by induction on the number of loop iterations. Denote by
F ji the formula Fi after iteration j.

Base case. For j = 0, we have F ji = Fi, and, thus, a satisfying assignment
can be constructed as described above.

Induction step. Assume that the claim holds up to iteration j. We shall
show the correctness of the claim for iteration j + 1. For any equality x = y
that is added in step 3, there exists an i such that F ji =⇒ x = y in Ti. Since

α′ |= F ji in Ti by the hypothesis, clearly, α′ |= x = y in Ti. Since for all i it

holds that α′ |= F ji in Ti, then for all i it holds that α′ |= Fi ∧ x = y in Ti.
Hence, in step 2, the algorithm will not return “Unsatisfiable”.

(⇐, Completeness) First, observe that Algorithm 10.3.1 always terminates,
as there are only finitely many equalities over the variables in the formula. It
is left to show that the algorithm gives the answer “Unsatisfiable”. We now
record a few observations about Algorithm 10.3.1. The following observation
is simple to see:

Lemma 10.12. Let F ′i denote the formula Fi upon termination of Algori-
�� ��F ′i

thm 10.3.1. Upon termination with the answer “Satisfiable”, any equality be-
tween ϕ’s variables that is implied by any of the F ′i is also implied by all F ′j
for any j.

We need to show that, if ϕ is unsatisfiable, Algorithm 10.3.1 returns “Unsat-
isfiable”. Assume falsely that it returns “Satisfiable”.

Let E1, . . . , Em be a set of equivalence classes of the variables in ϕ such
that x and y are in the same class if and only if F ′1 implies x = y in T1. Owing
to Lemma 10.12, x, y ∈ Ei for some i if and only if x = y is T2-implied by F ′2.

For i ∈ {1, . . . ,m}, let ri be an element of Ei (a representative of that set).
We now define a constraint ∆ that forces all variables that are not implied to

�� ��∆
be equal to be different:

∆
.
=
∧
i 6=j

ri 6= rj . (10.18)

Lemma 10.13. Given that both T1 and T2 have an infinite domain and are
convex, ∆ is T1-consistent with F ′1 and T2-consistent with F ′2.

Informally, this lemma can be shown to be correct as follows: Let x and y
be two variables that are not implied to be equal. Owing to convexity, they
do not have to be equal to satisfy F ′i . As the domain is infinite, there are
always values left in the domain that we can choose in order to make x and y
different.

Using Lemma 10.13, we argue that there are satisfying assignments α1 and
α2 for F ′1 ∧∆ and F ′2 ∧∆ in T1 and T2, respectively. These assignments are
maximally diverse, i.e., any two variables that are assigned equal values by
either α1 or α2 must be equal.
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Given this property, it is easy to build a mapping M (an isomorphism)
from domain elements to domain elements such that α2(x) is mapped to α1(x)
for any variable x (this is not necessarily possible unless the assignments are
maximally diverse).

As an example, let F1 be x = y and F2 be F (x) = G(y). The only equality
implied is x = y, by F1. This equality is propagated to T2, and thus both
F ′1 and F ′2 imply this equality. Possible variable assignments for F ′1 ∧∆ and
F ′2 ∧∆ are

α1 = {x 7→ D1, y 7→ D1} ,
α2 = {x 7→ D2, y 7→ D2} ,

(10.19)

where D1 and D2 are some elements from the domain. This results in an
isomorphism M such that M(D1) = D2.

Using the mapping M , we can obtain a model α′ for F ′1∧F ′2 in the combined
theory by adjusting the interpretation of the symbols in F ′2 appropriately. This
is always possible, as T1 and T2 do not share any nonlogical symbols.

Continuing our example, we construct the following interpretation for the
nonlogical symbols F and G:

F (D1) = D3 , G(D1) = D3 . (10.20)

As F ′i implies Fi in Ti, α
′ is also a model for F1 ∧ F2 in the combined theory,

which contradicts our assumption that ϕ is unsatisfiable.

Note that, without the restriction to infinite domains, Algorithm 10.3.1
may fail. The original description of the algorithm lacked such a restriction.
The algorithm was later amended by adding the requirement that the theories
are stably infinite, which is a generalization of the requirement in our presenta-
tion. The following example, given by Tinelli and Zarba in [276], demonstrates
why this restriction is important.

Example 10.14. Let T1 be a theory over signature Σ1 = {f}, where f is a
function symbol, and axioms that enforce solutions with no more than two
distinct values. Let T2 be a theory over signature Σ2 = {g}, where g is a
function symbol.

Recall that the combined theory T1⊕T2 contains the union of the axioms.
Hence, the solution to any formula ϕ ∈ T1 ⊕ T2 cannot have more than two
distinct values.

Now, consider the following formula:

f(x1) 6= f(x2) ∧ g(x1) 6= g(x3) ∧ g(x2) 6= g(x3) . (10.21)

This formula is unsatisfiable in T1 ⊕ T2 because any assignment satisfying it
must use three different values for x1, x2, and x3. However, this fact is not
revealed by Algorithm 10.3.2, as illustrated in Table 10.7.
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F1 (a Σ1-formula) F2 (a Σ2-formula)

f(x1) 6= f(x2) g(x1) 6= g(x3)
g(x2) 6= g(x3)

Table 10.7. No equalities are propagated by Algorithm 10.3.2 when checking the
formula (10.21). This results in an error: although F1 ∧ F2 is unsatisfiable, both F1

and F2 are satisfiable in their respective theories

An extension to the Nelson–Oppen combination procedure for nonstably
infinite theories was given in [276], although the details of the procedure are
beyond the scope of this book. The main idea is to compute, for each nonsta-
bly infinite theory Ti, a lower bound Ni on the size of the domain in which
satisfiable formulas in this theory must be satisfied (it is not always possible
to compute this bound). Then, the algorithm propagates this information be-
tween the theories along with the equalities. When it checks for consistency of
an individual theory, it does so under the restrictions on the domain defined
by the other theories. Fj is declared unsatisfiable if it does not have a solution
within the bound Ni for all i.

10.4 Problems

Problem 10.1 (using the Nelson–Oppen procedure). Prove that the
following formula is unsatisfiable using the Nelson–Oppen procedure, where
the variables are interpreted over the integers:

g(f(x1 − 2)) = x1 + 2 ∧ g(f(x2)) = x2 − 2 ∧ (x2 + 1 = x1 − 1) .

Problem 10.2 (an improvement to the Nelson–Oppen procedure).
A simple improvement to Algorithm 10.3.1 is to restrict the propagation of
equalities in step 3 as follows. We call a variable local if it appears only in a
single theory. Then, if an equality vi = vj is implied by Fi and not by Fj , we
propagate it to Fj only if vi, vj are not local to Fi. Prove the correctness of
this improvement.

Problem 10.3 (proof of correctness of Algorithm 10.3.2 for the
Nelson–Oppen procedure). Prove the correctness of Algorithm 10.3.2 by
generalizing the proof of Algorithm 10.3.1 given in Sect. 10.3.3.

10.5 Bibliographic Notes

The theory combination problem (Definition 10.2) was shown to be unde-
cidable in [40], hence combination methods must impose restrictions on the
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Aside: An Abstract Version of the Nelson–Oppen Procedure
Let V be the set of variables used in F1, . . . , Fn. A partition P of V induces
equivalence classes, in which variables are in the same class if and only if they
are in the same partition as defined by P . (Every assignment to V ’s variables
induces such a partition.) Denote by R the equivalence relation corresponding
to these classes. The arrangement corresponding to P is defined by

ar(P )
.
=

∧
vi Rvj ,i<j

vi = vj ∧
∧

¬(viRvj),i<j

vi 6= vj . (10.22)

In words, the arrangement ar(P ) is a conjunction of all equalities and dise-
qualities corresponding to P , modulo reflexivity and symmetry. For example,
if V := {x1, x2, x3} and P := {{x1, x2}, {x3}}, then

ar(P ) := x1 = x2 ∧ x1 6= x3 ∧ x2 6= x3 . (10.23)

Now, consider the following abstract version of the Nelson–Oppen proce-
dure:

1. Choose nondeterministically a partition P of V ’s variables.
2. If one of Fi ∧ ar(P ) with i ∈ {1, . . . , n} is unsatisfiable, return “Unsatis-

fiable”. Otherwise, return “Satisfiable”.

We have:

• Termination. The procedure terminates, since there is a finite number of
partitions.

• Soundness and completeness. If the procedure returns “Unsatisfiable”,
then the input formula is unsatisfiable. Indeed, if there is a satisfying
assignment to the combined theory, this assignment corresponds to some
arrangement; testing this arrangement leads to a termination with the re-
sult “Satisfiable”. Proving the other direction is harder, but also possible.
See [275] for more details.

The nondeterministic step can be replaced with a deterministic one, by try-
ing all such partitions possible. Hence, now it is clear that the requirement
in the Nelson–Oppen procedure for sharing implied equalities can be under-
stood as an optimization over an exhaustive search, rather than a necessity
for correctness.

More generally, abstract decision procedures such as the one presented
here are quite common in the literature. They are convenient for theoretical
reasons, and can even help in designing concrete procedures in a more modular
way. Abstracting some implementation details—typically by using nondeter-
minism—can be helpful for various reasons, such as clarity and generality,
simplicity of proving an upper bound on the complexity, and simplicity of the
correctness argument, as demonstrated above.
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theories. There is a rich literature on combining decision procedures for first-
order theories, starting with seminal papers by Nelson and Oppen [206] and
by Shostak [259]. The presentation of the algorithm in this chapter is based
on the former. The original presentation in [206] was not entirely correct,
however, because it referred to general theories, although it is correct only
for theories that are stably infinite. One year later, Oppen fixed this problem
by adding this restriction, but without presenting a revised proof [215]. A
full, model-theoretic proof was provided only in 1996 by Tinelli and Harandi
in [275], which also serves as a basis for the (simplified) proof in Sect. 10.3.3.
Several publications since then have extended the basic algorithms in order to
combine theories with fewer restrictions. In Sect. 10.3.3, we mentioned Tinelli
and Zarba’s extension to the combination of nonstably infinite theories [276].
In [238] Ranise, Ringeissen, and Zarba identify a class of theories (called po-
lite theories) that can be combined with nonstably infinite theories. Several
extensions of these ideas were published by Jovanovic and Barrett [158].

Nelson and Oppen’s combination procedure in its original form, as de-
scribed in this chapter, can be optimized. Several optimizations have been
suggested, including a method for avoiding the purification step [20]. There is
empirical evidence showing that the computation of the implied equalities can
become a bottleneck when one is combining, for example, linear arithmetic
on the basis of the Simplex method [96].

Shostak’s combination procedure [259] was considered to be an alterna-
tive to the Nelson–Oppen procedure for many years. However, Ruess and
Shankar [246] showed in 2001 that it was in fact flawed in the general case
(it was incomplete and not necessarily terminating), but is correct under cer-
tain restrictions. At the time several prominent theorem provers were using
it. Currently (2015) only the theorem provers PVS and Alt-Ergo use some
variation of Shostak’s procedure, for cases where it is known to be correct.
Here is N. Shankar’s description of Shostak’s method:

“Shostak’s combination method is based on a far-reaching generalization
of Gaussian elimination. He showed that many theories actually support a
canonizer and a solver. A canonizer is an algorithm that transforms logi-
cally equivalent formulas to a syntactically identical representation. Given an
equation of the form a = b (where a, b are Σ-terms, Σ being the signature
of the theory), a solver transforms it into an equivalent form solve(a = b).
The operation solve(a = b) returns s, which is equisatisfiable to a = b. When
the equation is unsolvable s = ⊥, and otherwise s is a solution of the form
x1 = e1, . . . , xn = en, where for 1 ≤ i ≤ n, xi is a variable in the equation
(a = b) and ei is a Σ-term.

A canonizer σ for a theory can be used to decide that the equality c = d is
valid by applying the σ to c and d, respectively, to see if the canonical forms
σ(c) and σ(d) are identical. A theory with such a solver and canonizer is called
a Shostak theory.

Shostak’s method uses the combination of a solver and canonizer to verify
a1 = b1, ..., an = bn ` c = d by successively placing the antecedent equations
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into a solution set S, with S0 = ∅ (the empty substitution), Si = solve(S(ai =
bi)) for 1 ≤ i ≤ n, and S = Sn. The claim can then be checked by verifying
that either some Si is ⊥ for 1 ≤ i ≤ n, or σ(S(c)) and σ(S(d)) are identical
canonical forms.

Though Shostak’s ideas are deep, his original algorithm and proof had a
number of flaws. He incorrectly claimed that solvers and canonizers for disjoint
theories could be combined into a solver and canonizer for the union of these
theories. The basic combination of a single Shostak theory with equality over
uninterpreted functions was presented and proved correct in [246]. Ganzinger
showed in [119] that a basic combination could be constructed solely with the
solver and without needing a canonizer—the use of a canonizer can be seen
as an optimization. Shankar and Ruess show in [257] a method for extending
the basic combination to disjoint unions of Shostak theories without requiring
the combination of solvers and canonizers.”

The lazy approach, as described in Chap. 3, opens up new opportuni-
ties with regard to implementing the Nelson–Oppen combination procedure.
A contribution by Bozzano et al. [41] suggests a technique called delayed
theory combination. Each pair of shared variables is encoded with a new
Boolean variable (resulting in a quadratic increase in the number of variables).
After all the other encoding variables have been assigned, the SAT solver be-
gins to assign values (arbitrary at first) to the new variables, and continues
as usual, i.e., after every such assignment, the current partial assignment is
sent to a theory solver. If any one of the theory solvers “objects” to the ar-
rangement implied by this assignment (i.e., it finds a conflict with the current
assignment to the other literals), this leads to a conflict and backtracking.
Otherwise, the formula is declared satisfiable. This way, each theory can be
solved separately, without passing information about equalities. Empirically,
this method is very effective, both because the individual theory solvers need
not worry about propagating equalities, and because only a small amount of
information has to be shared between the theory solvers in practice—far less,
on average, than is passed during the normal execution of the Nelson–Oppen
procedure. In [159], Jovanovic and Barrett showed how many pairs of shared
variables can be ignored, when they have no effect on the individual theories.

A different approach has been proposed by de Moura and Bjørner [91].
These authors also make the equalities part of the model, but instead of letting
the SAT solver decide on their values, they attempt to compute a consistent
assignment to the theory variables that is as diverse as possible. The equalities
are then decided upon by following the assignment to the theory variables.
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10.6 Glossary

The following symbols were used in this chapter:

First used
Symbol Refers to . . . on page . . .

Σ The signature of a theory, i.e., its set of nonlogical
predicates and function symbols and their respective
arities (i.e., those symbols that are not common to
all first-order theories)

230

T |= ϕ ϕ is T -valid 230

T1 ⊕ T2 Denotes the theory obtained from combining the the-
ories T1 and T2, i.e., a theory over Σ1 ∪ Σ2 defined
by the set of axioms T1 ∪ T2

230

Fi The pure (theory-specific) formulas in Algo-
rithm 10.3.1

232

F ′i The formula Fi upon termination of Algorithm 10.3.1 238

∆ A constraint that forces all variables that are not
implied to be equal to be different

238



11.1 Lazy vs. Eager Encodings

The DPLL(T ) method that was described in Chap. 3 is based on an interplay
between a SAT solver and a theory solver for a conjunction of terms. This
method is frequently called “lazy”, emphasizing the fact that the theory solver
is invoked only as needed, namely to check the consistency of a set of theory
literals.

In this chapter we consider a different approach, which does not rely on
alternations between SAT and a theory solver. Instead it is based on perform-
ing a full reduction of a T -formula to an equisatisfiable propositional formula.
This approach is sometimes called “eager” because in contrast to the lazy
approach, it performs a reduction to propositional logic in one step. A single
run of the SAT solver on the propositional formula is then sufficient to decide
the original formula.

The eager approach should be tailored for each theory T , although there
exists a general strategy [171]. In this chapter we only demonstrate it for the
case of equalities and uninterpreted functions, which were presented already
in Chap. 4. There is some work in the literature on eager encoding for linear
arithmetic [266], but we are not aware of literature on handling other theories
this way. Generally the eager approach is less developed in the literature
compared with the lazy one, and fewer tools support it.

We begin by considering two methods for eliminating uninterpreted func-
tions, via a reduction to equality logic constraints. We will then show graph-
based methods for an eager encoding of equality logic formulas into proposi-
tional logic.

11.2 From Uninterpreted Functions to Equality Logic

Luckily, we do not need to examine all possible interpretations of an unin-
terpreted function in a given EUF formula in order to know whether it is

11
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valid. Instead, we rely on the strongest property that is common to all func-
tions, namely functional consistency (see p. 80). Relying on this property, we
can reduce the decision problem of EUF formulas to that of deciding equal-
ity logic. We shall see two possible reductions, Ackermann’s reduction
and Bryant’s reduction, both of which enforce functional consistency by
adding constraints. The size of the resulting formula in both cases may grow
quadratically in the number of function instances. Ackermann’s reduction is
somewhat more intuitive to understand, but also imposes certain restrictions
on the decision procedures that can be used to solve it. The implications of
the differences between the two methods are explained in Sect. 11.7.

In the discussion that follows, for the sake of simplicity, we make several
assumptions regarding the input formula: it has a single uninterpreted func-
tion, with a single argument, and no two instances of this function have the
same argument. The generalization of the reductions is rather straightforward,
as the examples later on demonstrate.

11.2.1 Ackermann’s Reduction

Ackermann’s reduction (Algorithm 11.2.1) adds explicit constraints to the for-
mula in order to enforce the functional consistency requirement stated above.
The algorithm reads an EUF formula ϕUF that we wish to validate, and trans-
forms it to an equality logic formula ϕE of the form

ϕE := FCE =⇒ flatE , (11.1)

where FCE is a conjunction of functional-consistency constraints, and flatE is
a flattening of ϕUF, i.e., a formula in which each unique function instance is
replaced with a corresponding new variable.

Example 11.1. Consider the formula

(x1 6= x2) ∨ (F (x1) = F (x2)) ∨ (F (x1) 6= F (x3)) , (11.2)

which we wish to reduce to equality logic using Algorithm 11.2.1.
After assigning indices to the instances of F (for this example, we assume

that this is done from left to right), we compute flatE and FCE accordingly:

flatE := (x1 6= x2) ∨ (f1 = f2) ∨ (f1 6= f3) , (11.3)

FCE := (x1 = x2 =⇒ f1 = f2) ∧
(x1 = x3 =⇒ f1 = f3) ∧
(x2 = x3 =⇒ f2 = f3) .

(11.4)

Equation (11.2) is valid if and only if the resulting equality formula ϕE, as
prescribed in (11.1), is valid.

In the next example, we go back to our running example for this chapter,
and transform it to equality logic.
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Algorithm 11.2.1: Ackermann’s-Reduction

Input: An EUF formula ϕUF with m instances of an uninterpreted
function F

Output: An equality logic formula ϕE such that ϕE is valid if and only
if ϕUF is valid

�� ��m

1. Assign indices to the uninterpreted-function instances from subexpressions �� ��Fi
outwards. Denote by Fi the instance of F that is given the index i, and
by arg(Fi) its single argument.

�� ��arg(Fi)
2. Let flatE .

= T (ϕUF), where T is a function that takes an EUF formula �� ��flatE�� ��T
(or term) as input and transforms it to an equality formula (or term,
respectively) by replacing each uninterpreted-function instance Fi with a
new term-variable fi (in the case of nested functions, only the variable
corresponding to the most external instance remains).

3. Let FCE denote the following conjunction of functional-consistency con-
�� ��FCE

straints:

FCE :=

m−1∧
i=1

m∧
j=i+1

(T (arg(Fi)) = T (arg(Fj))) =⇒ fi = fj .

4. Let
ϕE := FCE =⇒ flatE .

Return ϕE.

Example 11.2. We now use Ackermann’s reduction to solve the problem
stated in Sect. 4.2.2, which the reader is advised to revisit before continuing.
Fig. 11.1 is simply a replica of Fig. 4.3 of that section.

Our example has four instances of the uninterpreted function G,

G(out0 a, in), G(out1 a, in), G(in, in), and G(G(in, in), in) ,

which we number in this order. On the basis of (4.5), we compute flatE,
replacing each uninterpreted-function symbol with the corresponding variable:

flatE :=

 out0 a = in ∧
out1 a = g1 ∧
out2 a = g2

 ∧ out0 b = g4

 =⇒ out2 a = out0 b . (11.5)

The functional-consistency constraints are given by
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Aside: Checking the Satisfiability of ϕUF

Ackermann’s reduction was defined above for checking the validity of ϕUF.
It tells us that we need to check for the validity of ϕE := FCE =⇒ flatE

or, equivalently, check that ¬ϕE := FCE ∧ ¬flatE is unsatisfiable. This is
important in our case, because all the algorithms that we shall see later check
for satisfiability of formulas, not for their validity. Thus, as a first step we
need to negate ϕE.

What if we want to check for the satisfiability of ϕUF? The short answer
is that we need to check for the satisfiability of

ϕE := FCE ∧ flatE .

This is interesting. Normally, if we check for the satisfiability or validity of a
formula, this corresponds to checking for the satisfiability of the formula or
of its negation, respectively. Thus, we could expect that checking the satisfi-
ability of ϕUF is equivalent to checking the satisfiability of (FCE =⇒ flatE).
However, this is not the same as the above equation. So what has happened
here? The reason for the difference is that we check the satisfiability of ϕUF

before the reduction. This means that we can use Ackermann’s reduction to
check the validity of ¬ϕUF. The functional-consistency constraints FCE re-
main unchanged whether we check ϕUF or its negation ¬ϕUF. Thus, we need
to check the validity of FCE =⇒ ¬flatE, which is the same as checking the
satisfiability of FCE ∧ flatE, as stated above.

out0 a = in ∧
out1 a = G(out0 a, in) ∧
out2 a = G(out1 a, in)

out0 b = G(G(in, in), in)

(ϕUF
a ) (ϕUF

b )

Fig. 11.1. After replacing “∗” with the uninterpreted function G

FCE := ((out0 a = out1 a ∧ in = in) =⇒ g1 = g2) ∧
((out0 a = in ∧ in = in) =⇒ g1 = g3) ∧
((out0 a = g3 ∧ in = in) =⇒ g1 = g4) ∧
((out1 a = in ∧ in = in) =⇒ g2 = g3) ∧
((out1 a = g3 ∧ in = in) =⇒ g2 = g4) ∧
((in = g3 ∧ in = in) =⇒ g3 = g4) .

(11.6)

The resulting equality formula is FCE =⇒ flatE, which we need to validate.
This example demonstrates how to generalize the reduction to functions

with several arguments: only if all arguments of a pair of function instances
are the same (pairwise) is the return value of the function forced to be the
same.

The reader may observe that most of these constraints are in fact redun-
dant. The validity of the formula depends on G(out0 a, in) being equal to
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G(in, in), and G(out1 a, in) being equal to G(G(in, in), in). Hence, only the
second and fifth constraints in (11.6) are necessary. In practice, such observa-
tions are important because the quadratic growth in the number of functional-
consistency constraints may become a bottleneck. When comparing two sys-
tems, as in this case, it is frequently possible to detect in polynomial time
large sets of constraints that can be removed without affecting the validity of
the formula. More details of this technique can be found in [229].

Finally, we consider the case in which there is more than one function
symbol.

Example 11.3. Consider now the following formula, which we wish to vali-
date:

x1 = x2 =⇒ F (F (

g1︷ ︸︸ ︷
G(x1))︸ ︷︷ ︸
f1︸ ︷︷ ︸

f2

) = F (F (

g2︷ ︸︸ ︷
G(x2))︸ ︷︷ ︸
f3

)

︸ ︷︷ ︸
f4

. (11.7)

We index the function instances from the inside out (from subexpressions
outwards) and compute the following:

flatE := x1 = x2 =⇒ f2 = f4 , (11.8)

FCE := x1 = x2 =⇒ g1 = g2 ∧
g1 = f1 =⇒ f1 = f2 ∧
g1 = g2 =⇒ f1 = f3 ∧
g1 = f3 =⇒ f1 = f4 ∧
f1 = g2 =⇒ f2 = f3 ∧
f1 = f3 =⇒ f2 = f4 ∧
g2 = f3 =⇒ f3 = f4 .

(11.9)

Then, again,
ϕE := FCE =⇒ flatE . (11.10)

From these examples, it is clear how to generalize Algorithm 11.2.1 to
multiple uninterpreted functions. We leave this and other extensions as an
exercise (Problem 11.2).

11.2.2 Bryant’s Reduction

Bryant’s reduction (Algorithm 11.2.2) has the same goal as Ackermann’s re-
duction: to transform EUF formulas to equality logic formulas, such that they
are equisatisfiable. To check the satisfiability of ϕUF rather than the validity,
we return FCE ∧ flatE in the last step.

The semantics of the case expression used in step 3 is such that its value
is determined by the first condition that is evaluated to true. Its translation
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Algorithm 11.2.2: Bryant’s-Reduction

Input: An EUF formula ϕUF with m instances of an uninterpreted
function F

Output: An equality logic formula ϕE such that ϕE is valid if and only
if ϕUF is valid

1. Assign indices to the uninterpreted-function instances from subexpressions
outwards. Denote by Fi the instance of F that is given the index i, and
by arg(Fi) its single argument.

2. Let flatE = T ?(ϕUF), where T ? is a function that takes an EUF formula
�� ��flatE�� ��T ?

(or term) as input and transforms it to an equality formula (or term,
respectively) by replacing each uninterpreted-function instance Fi with a
new term-variable F ?i (in the case of nested functions, only the variable�� ��F ?i corresponding to the most external instance remains).

3. For i ∈ {1, . . . ,m}, let fi be a new variable, and let F ?i be defined as
follows:

F ?i :=


case T ?(arg(F ?1 )) = T ?(arg(F ?i )) : f1

...
...

T ?(arg(F ?i−1)) = T ?(arg(F ?i )) : fi−1

true : fi

 . (11.11)

Finally, let

FCE :=
m∧
i=1

F ?i . (11.12)

4. Let
ϕE := FCE =⇒ flatE . (11.13)

Return ϕE.

to an equality logic formula, assuming that the argument of Fi is a variable
xi for all i, is given by

i∨
j=1

(F ?i = fj ∧ (xj = xi) ∧
j−1∧
k=1

(xk 6= xi)) . (11.14)

Example 11.4. Given the case expression

F ?3 =

 case x1 = x3 : f1
x2 = x3 : f2
true : f3

 , (11.15)

its equivalent equality logic formula is given by
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(F ?3 = f1 ∧ x1 = x3) ∨
(F ?3 = f2 ∧ x2 = x3 ∧ x1 6= x3) ∨
(F ?3 = f3 ∧ x1 6= x3 ∧ x2 6= x3) .

(11.16)

The differences between the two reduction schemes are:

1. Step 1 in Bryant’s reduction requires a certain order when indices are as-
signed to function instances. Such an order is not required in Ackermann’s
reduction.

2. Step 2 in Bryant’s reduction replaces function instances with F ? variables
rather than with f variables. The F ? variables should be thought of simply
as macros, or placeholders, which means that they are used only for sim-
plifying the writing of the formula. We can do without them if we remove
FCE from the formula altogether and substitute them in flatE with their
definitions. The reason that we retain them is to make the presentation
more readable and to retain a structure similar to that of Ackermann’s
reduction.

3. The definition of FCE, which enforces functional consistency, relies on
case expressions rather than on a pairwise enforcing of consistency.

The generalization of Algorithm 11.2.2 to functions with multiple arguments
is straightforward, as we shall soon see in the examples.

Example 11.5. Let us return to our main example of this chapter, the prob-
lem of proving the equivalence of programs (a) and (b) in Fig. 4.1. We continue
from Fig. 4.3, where the logical formulas corresponding to these programs are
given, with the use of the uninterpreted function G. On the basis of (4.5), we
compute flatE, replacing each uninterpreted-function symbol with the corre-
sponding variable:

flatE :=

 out0 a = in ∧
out1 a = G?1 ∧
out2 a = G?2

 ∧ (out0 b = G?4)

 =⇒ out2 a = out0 b .

(11.17)
Not surprisingly, this looks very similar to (11.5). The only difference is that,
instead of the gi variables, we now have the G?i macros, for 1 ≤ i ≤ 4.
Recall their origin: the function instances are G(out0 a, in), G(out1 a, in),
G(in, in), and G(G(in, in), in), which we number in this order. The corre-
sponding functional-consistency constraints are
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FCE :=

G?1 = g1 ∧

G?2 =

(
case out0 a = out1 a ∧ in = in : g1

true : g2

)
∧

G?3 =

 case out0 a = in ∧ in = in : g1
out1 a = in ∧ in = in : g2
true : g3

 ∧

G?4 =


case out0 a = G?3 ∧ in = in : g1

out1 a = G?3 ∧ in = in : g2
in = G?3 ∧ in = in : g3
true : g4

 ,

(11.18)

and since we are checking for validity, the formula to be checked is

ϕE := FCE =⇒ flatE . (11.19)

Example 11.6. If there are multiple uninterpreted-function symbols, the re-
duction is applied to each of them separately, as demonstrated in the following
example, in which we consider the formula of Example 11.3 again:

x1 = x2 =⇒ F (F (

G?
1︷ ︸︸ ︷

G(x1))︸ ︷︷ ︸
F?

1

)

︸ ︷︷ ︸
F?

2

= F (F (

G?
2︷ ︸︸ ︷

G(x2))︸ ︷︷ ︸
F?

3

)

︸ ︷︷ ︸
F?

4

. (11.20)

As before, we number the function instances of each of the uninterpreted-
function symbols F and G from the inside out (this order is required in
Bryant’s reduction). Applying Bryant’s reduction, we obtain

flatE := (x1 = x2 =⇒ F ?2 = F ?4 ) , (11.21)

FCE := F ?1 = f1 ∧

F ?2 =

(
case G?1 = F ?1 : f1

true : f2

)
∧

F ?3 =

 case G?1 = G?2 : f1
F ?1 = G?2 : f2
true : f3

 ∧
F ?4 =


case G?1 = F ?3 : f1

F ?1 = F ?3 : f2
G?2 = F ?3 : f3
true : f4

 ∧
G?1 = g1 ∧

G?2 =

(
case x1 = x2 : g1

true : g2

)
,

(11.22)
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and
ϕE := FCE =⇒ flatE . (11.23)

Note that, in any satisfying assignment that satisfies x1 = x2 (the premise
of (11.20)), F ?1 and F ?3 are equal to f1, while F ?2 and F ?4 are equal to f2.

The difference between Ackermann’s and Bryant’s reductions is not just
syntactic, as was hinted earlier. It has implications for the decision procedure
that one can use when solving the resulting formula. We discuss this point
further in Sect. 11.7.

11.3 The Equality Graph

In this section, we present several basic terms that are used later in the chap-
ter. We assume from here on that uninterpreted functions have already been
eliminated with one of the reduction methods described in Sect. 11.2, i.e.,
that we are solving the satisfiability problem for equality logic without un-
interpreted functions. Recall that we are also assuming that the formula is
given to us in NNF and without constants. Recall further that an atom in
such formulas is an equality predicate, and a literal is either an atom or its
negation (see Definition 1.11). Given an equality logic formula ϕE, we denote
the set of atoms of ϕE by At(ϕE).

�� ��At(ϕE)

Definition 11.7 (equality and disequality literals sets). The equality
literals set E= of an equality logic formula ϕE is the set of positive literals in

�� ��E=

ϕE. The disequality literals set E 6= of an equality logic formula ϕE is the set �� ��E 6=of disequality literals in ϕE.

It is possible, of course, that an equality may appear in the equality literals
set and its negation in the disequality literals set.

Example 11.8. Consider the formula

(u1 = F (x1, y1) ∧ u2 = F (x2, y2) ∧ z = G(u1, u2))
=⇒ z = G(F (x1, y1), F (x2, y2))

(11.24)

(this is the same formula as (4.22)).
Next, we apply Ackermann’s reduction (Algorithm 11.2.1):

ϕE :=

 (x1 = x2 ∧ y1 = y2 =⇒ f1 = f2) ∧
(u1 = f1 ∧ u2 = f2 =⇒ g1 = g2)

 =⇒

((u1 = f1 ∧ u2 = f2 ∧ z = g1) =⇒ z = g2) ,
(11.25)

which we can rewrite as

ϕE :=

 (x1 = x2 ∧ y1 = y2 =⇒ f1 = f2) ∧
(u1 = f1 ∧ u2 = f2 =⇒ g1 = g2) ∧
u1 = f1 ∧ u2 = f2 ∧ z = g1

 =⇒ z = g2 . (11.26)
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The negation normal form of ¬ϕE is

¬ϕE :=

 (x1 6= x2 ∨ y1 6= y2 ∨ f1 = f2) ∧
(u1 6= f1 ∨ u2 6= f2 ∨ g1 = g2) ∧
(u1 = f1 ∧ u2 = f2 ∧ z = g1)

 ∧ z 6= g2 . (11.27)

We therefore have

E= := {(f1 = f2), (g1 = g2), (u1 = f1), (u2 = f2), (z = g1)}
E 6= := {(x1 6= x2), (y1 6= y2), (u1 6= f1), (u2 6= f2), (z 6= g2)} . (11.28)

Definition 11.9 (equality graph). Given an equality logic formula ϕE in
NNF, the equality graph that corresponds to ϕE, denoted by GE(ϕE), is an

�� ��GE

undirected graph (V,E=, E 6=) where the nodes in V correspond to the variables
in ϕE, the edges in E= correspond to the predicates in the equality literals set
of ϕE, and the edges in E 6= correspond to the predicates in the disequality
literals set of ϕE.

Note that we overload the symbols E= and E 6= so that each represents
both the literals sets and the edges that represent them in the equality graph.
Similarly, when we say that an assignment “satisfies an edge”, we mean that
it satisfies the literal represented by that edge.

We may write simply GE for an equality graph when the formula it cor-
responds to is clear from the context. Graphically, equality literals are repre-
sented as dashed edges and disequality literals as solid edges, as illustrated in
Fig. 11.2.

x2

x5

x1

x4 x3

Fig. 11.2. An equality graph. Dashed edges represent E= literals (equalities), and
solid edges represent E 6= literals (disequalities)

It is important to note that the equality graph GE(ϕE) represents an ab-
straction of ϕE: more specifically, it represents all the equality logic formulas
that have the same literal sets as ϕE. Since it disregards the Boolean con-
nectives, it can represent both a satisfiable and an unsatisfiable formula. For
example, although x1 = x2 ∧ x1 6= x2 is unsatisfiable and x1 = x2 ∨ x1 6= x2
is satisfiable, both formulas are represented by the same equality graph.

Definition 11.10 (equality path). An equality path in an equality graph
GE is a path consisting of E= edges. We denote by x =∗ y the fact that there

�� ��x =∗ y
exists an equality path from x to y in GE, where x, y ∈ V .
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Definition 11.11 (disequality path). A disequality path in an equality
graph GE is a path consisting of E= edges and a single E 6= edge. We de-
note by x 6=∗ y the fact that there exists a disequality path from x to y in GE,

�� ��x 6=∗ y
where x, y ∈ V .

Similarly, we use the terms simple equality path and simple disequality path
when the path is required to be loop-free.

Consider Fig. 11.2 and observe, for example, that x2 =∗ x4 owing to the
path x2, x5, x4, and x2 6=∗ x4 owing to the path x2, x5, x1, x4. In this case,
both paths are simple. Intuitively, if x =∗ y in GE(ϕE), then it might be
necessary to assign the two variables equal values in order to satisfy ϕE. We
say “might” because, once again, the equality graph obscures details about
ϕE, as it disregards the Boolean structure of ϕE. The only fact that we know
from x =∗ y is that there exist formulas whose equality graph is GE(ϕE) and
that, in any assignment satisfying them, x = y. However, we do not know
whether ϕE is one of them. A disequality path x 6=∗ y in GE(ϕE) implies the
opposite: it might be necessary to assign different values to x and y in order
to satisfy ϕE.

The case in which both x =∗ y and x 6=∗ y hold in GE(ϕE) requires special
attention. We say that the graph, in this case, contains a contradictory cycle.

Definition 11.12 (contradictory cycle). In an equality graph, a contra-
dictory cycle is a cycle with exactly one disequality edge.

For every pair of nodes x, y in a contradictory cycle, it holds that x =∗ y and
x 6=∗ y.

Contradictory cycles are of special interest to us because the conjunction of
the literals corresponding to their edges is unsatisfiable. Furthermore, since we
have assumed that there are no constants in the formula, these are the only
topologies that have this property. Consider, for example, a contradictory
cycle with nodes x1, . . . , xk in which (x1, xk) is the disequality edge. The
conjunction

x1 = x2 ∧ . . . ∧ xk−1 = xk ∧ xk 6= x1 (11.29)

is clearly unsatisfiable.
All the decision procedures that we consider refer explicitly or implicitly

to contradictory cycles. For most algorithms we can further simplify this def-
inition by considering only simple contradictory cycles . A cycle is simple if it
is represented by a path in which none of the vertices is repeated, other than
the starting and ending vertices.

11.4 Simplifications of the Formula

Regardless of the algorithm that is used for deciding the satisfiability of a
given equality logic formula ϕE, it is almost always the case that ϕE can
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be simplified significantly before the algorithm is invoked. Algorithm 11.4.1
presents such a simplification.

�

�

�

�

Algorithm 11.4.1: Simplify-Equality-Formula

Input: An equality formula ϕE

Output: An equality formula ϕE′ equisatisfiable with ϕE, with
size less than or equal to the length of ϕE

1. Let ϕE′ := ϕE.
2. Construct the equality graph GE(ϕE′).
3. Replace each pure literal in ϕE′ whose corresponding edge is not part

of a simple contradictory cycle with true.
4. Simplify ϕE′ with respect to the Boolean constants true and false

(e.g., replace true ∨ φ with true, and false ∧ φ with false).
5. If any rewriting has occurred in the previous two steps, go to step 2.
6. Return ϕE′.

The following example illustrates the steps of Algorithm 11.4.1.

Example 11.13. Consider (11.27). Figure 11.3 illustrates GE(ϕE), the equal-
ity graph corresponding to ϕE.

g2

y1 y2

f1 f2 u2

x1 x2

u1

z

g1

Fig. 11.3. The equality graph corresponding to Example 11.13. The edges f1 = f2,
x1 6= x2, and y1 6= y2 are not part of any contradictory cycle, and hence their
respective predicates in the formula can be replaced with true

In this case, the edges f1 = f2, x1 6= x2 and y1 6= y2 are not part of any
simple contradictory cycle and can therefore be substituted by true. This
results in

ϕE′ :=

 (true ∨ true ∨ true) ∧
(u1 6= f1 ∨ u2 6= f2 ∨ g1 = g2) ∧
(u1 = f1 ∧ u2 = f2 ∧ z = g1 ∧ z 6= g2)

 , (11.30)

which, after simplification according to step 4, is equal to
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ϕE′ :=

 (u1 6= f1 ∨ u2 6= f2 ∨ g1 = g2) ∧
(u1 = f1 ∧ u2 = f2 ∧ z = g1 ∧ z 6= g2)

 . (11.31)

Reconstructing the equality graph after this simplification does not yield any
more simplifications, and the algorithm terminates.

Now, consider a similar formula in which the predicates x1 6= x2 and
u1 6= f1 are swapped. This results in the formula

ϕE :=

 (u1 6= f1 ∨ y1 6= y2 ∨ f1 = f2) ∧
(x1 6= x2 ∨ u2 6= f2 ∨ g1 = g2) ∧
(u1 = f1 ∧ u2 = f2 ∧ z = g1 ∧ z 6= g2)

 . (11.32)

Although we start from exactly the same graph, the simplification algorithm
is now much more effective. After the first step we have

ϕE′ :=

 (u1 6= f1 ∨ true ∨ true) ∧
(true ∨ u2 6= f2 ∨ g1 = g2) ∧
(u1 = f1 ∧ u2 = f2 ∧ z = g1 ∧ z 6= g2)

 , (11.33)

which, after step 4, simplifies to

ϕE′ :=
 (u1 = f1 ∧ u2 = f2 ∧ z = g1 ∧ z 6= g2)

 . (11.34)

The graph corresponding to ϕE′ after this step appears in Fig. 11.4.

g2u1

z

f1 f2 u2 g1

Fig. 11.4. An equality graph corresponding to (11.34), showing the first iteration
of step 4

Clearly, no edges in ϕE′ belong to a contradictory cycle after this step,
which implies that we can replace all the remaining predicates by true. Hence,
in this case, simplification alone proves that the formula is satisfiable, without
invoking a decision procedure.

Although we leave the formal proof of the correctness of Algorithm 11.4.1
as an exercise (Problem 11.6), let us now consider what such a proof may
look like. Correctness can be shown by proving that steps 3 and 4 maintain
satisfiability (as these are the only steps in which the formula is changed). The
simplifications in step 4 trivially maintain satisfiability, so the main problem
is step 3.
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Let ϕE
1 and ϕE

2 be the equality formulas before and after step 3, respectively.
We need to show that these formulas are equisatisfiable.

(⇒) If ϕE
1 is satisfiable, then so is ϕE

2 . This is implied by the monotonicity
of NNF formulas (see Theorem 1.14) and the fact that only pure literals are
replaced by true.

(⇐) If ϕE
2 is satisfiable, then so is ϕE

1 . Only a proof sketch and an example
will be given here. The idea is to construct a satisfying assignment α1 for ϕE

1

while relying on the existence of a satisfying assignment α2 for ϕE
2 . Specif-

ically, α1 should satisfy exactly the same predicates as are satisfied by α2,
but also satisfy all those predicates that were replaced by true. The follow-
ing simple observation can be helpful in this construction: given a satisfying
assignment to an equality formula, shifting the values in the assignment uni-
formly maintains satisfaction (because the values of the equality predicates
remain the same). The same observation applies to an assignment of some
of the variables, as long as none of the predicates that refer to one of these
variables becomes false owing to the new assignment.

Consider, for example, (11.32) and (11.33), which correspond to ϕE
1 and

ϕE
2 , respectively, in our argument. An example of a satisfying assignment to

the latter is

α2 := {u1 7→ 0, f1 7→ 0, f2 7→ 1, u2 7→ 1, z 7→ 0, g1 7→ 0, g2 7→ 1} . (11.35)

First, α1 is set equal to α2. Second, we need to extend α1 with an assign-
ment of those variables not assigned by α2. The variables in this category are
x1, x2, y1, and y2, which can be trivially satisfied because they are not part
of any equality predicate. Hence, assigning a unique value to each of them is
sufficient. For example, we can now have

α1 := α1 ∪ {x1 7→ 2, x2 7→ 3, y1 7→ 4, y2 7→ 5} . (11.36)

Third, we need to consider predicates that are replaced by true in step 3 but
are not satisfied by α1. In our example, f1 = f2 is such a predicate. To solve
this problem, we simply shift the assignment to f2 and u2 so that the predicate
f1 = f2 is satisfied (a shift by minus 1 in this case). This clearly maintains
the satisfaction of the predicate u2 = f2. The assignment that satisfies ϕE

1 is
thus

α1 := {u1 7→ 0, f1 7→ 0, f2 7→ 0, u2 7→ 0, z 7→ 0, g1 7→ 0, g2 7→ 1,
x1 7→ 2, x2 7→ 3, y1 7→ 4, y2 7→ 5} . (11.37)

A formal proof based on this argument should include a precise definition of
these shifts, i.e., which vertices they apply to, and an argument as to why no
circularity can occur. Circularity can affect the termination of the procedure
that constructs α1.
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11.5 A Graph-Based Reduction to Propositional Logic

We now consider a decision procedure for equality logic that is based on a
reduction to propositional logic. This procedure was originally presented by
Bryant and Velev in [57] (under the name of the sparse method). Several
definitions and observations are necessary.

Definition 11.14 (nonpolar equality graph). Given an equality logic
formula ϕE, the nonpolar equality graph corresponding to ϕE, denoted by
GE

NP(ϕE), is an undirected graph (V,E) where the nodes in V correspond to
�� ��GE

NP

the variables in ϕE, and the edges in E correspond to At(ϕE), i.e., the equality
predicates in ϕE.

A nonpolar equality graph represents a degenerate version of an equality graph
(Definition 11.9), since it disregards the polarity of the equality predicates.

Given an equality logic formula ϕE, the procedure generates two proposi-
tional formulas e(ϕE) and Btrans , such that

�� ��e(ϕE)�� ��BtransϕE is satisfiable⇐⇒ e(ϕE) ∧ Btrans is satisfiable. (11.38)

The formulas e(ϕE) and Btrans are defined as follows:

• The formula e(ϕE) is the propositional skeleton of ϕE, which means
that every equality predicate of the form xi = xj in ϕE is replaced with a
new Boolean variable ei,j .

1 For example, let

ϕE := x1 = x2 ∧ (((x2 = x3) ∧ (x1 6= x3)) ∨ (x1 6= x2)) . (11.39)

Then,
e(ϕE) := e1,2 ∧ ((e2,3 ∧ ¬e1,3) ∨ ¬e1,2) . (11.40)

It is not hard to see that, if ϕE is satisfiable, then so is e(ϕE). The other di-
rection, however, does not hold. For example, while (11.39) is unsatisfiable,
its encoding in (11.40) is satisfiable. To maintain an equisatisfiability re-
lation, we need to add constraints that impose the transitivity of equality,
which was lost in the encoding. This is the role of Btrans .

• The formula Btrans is a conjunction of implications, which are called tran-
sitivity constraints. Each such implication is associated with a cycle in the
nonpolar equality graph. For a cycle with n edges, Btrans forbids an as-
signment false to one of the edges when all the other edges are assigned
true. Imposing this constraint for each of the edges in each one of the
cycles is sufficient to satisfy the condition stated in (11.38).

1 To avoid introducing dual variables such as ei,j and ej,i, we can assume that all
equality predicates in ϕE appear in such a way that the left variable precedes the
right one in some predefined order.
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Example 11.15. The atoms x1 = x2, x2 = x3, x1 = x3 form a cycle of size
3 in the nonpolar equality graph. The following constraint is sufficient for
maintaining the condition stated in (11.38):

Btrans =

 (e1,2 ∧ e2,3 =⇒ e1,3)∧
(e1,2 ∧ e1,3 =⇒ e2,3)∧
(e2,3 ∧ e1,3 =⇒ e1,2)

 . (11.41)

Adding n constraints for each cycle is not very practical, however, because
there can be an exponential number of cycles in a given undirected graph.

Definition 11.16 (chord). A chord of a cycle is an edge connecting two
nonadjacent nodes of the cycle. If a cycle has no chords in a given graph, it
is called a chord-free cycle.

Bryant and Velev proved the following theorem:

Theorem 11.17. It is sufficient to add transitivity constraints over simple
chord-free cycles in order to maintain (11.38).

For a formal proof, see [57]. The following example may be helpful for devel-
oping an intuition as to why this theorem is correct.

Example 11.18. Consider the cycle (x3, x4, x8, x7) in one of the two graphs
in Fig. 11.5. It contains the chord (x3, x8) and, hence, is not chord-free. Now
assume that we wish to assign true to all edges in this cycle other than
(x3, x4). If (x3, x8) is assigned true, then the assignment to the simple chord-
free cycle (x3, x4, x8) contradicts transitivity. If (x3, x8) is assigned false,
then the assignment to the simple chord-free cycle (x3, x7, x8) contradicts
transitivity. Thus, the constraints over the chord-free cycles are sufficient for
preventing the transitivity-violating assignment to the cycle that includes a
chord.

The number of simple chord-free cycles in a graph can still be exponential
in the number of vertices. Hence, building Btrans such that it directly con-
strains every such cycle can make the size of this formula exponential in the
number of variables. Luckily, we have:

Definition 11.19 (chordal graphs). A chordal graph is an undirected graph
in which no cycle of size 4 or more is chord-free.

Every graph can be made chordal in a time polynomial in the number of
vertices.2 Since the only chord-free cycles in a chordal graph are triangles,
this implies that applying Theorem 11.17 to such a graph results in a formula

2 We simply remove all vertices from the graph one by one, each time connecting
the neighbors of the eliminated vertex if they were not already connected. The
original graph plus the edges added in this process is a chordal graph.
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of size not more than cubic in the number of variables (three constraints for
each triangle in the graph). The newly added chords are represented by new
variables that appear in Btrans but not in e(ϕE). Algorithm 11.5.1 summarizes
the steps of this method.

x2 x4x3

x5 x6 x7

x2x1 x4x3

x5 x6 x7 x8x8

x1

Fig. 11.5. A nonchordal nonpolar equality graph corresponding to ϕE (left), and a
possible chordal version of it (right)

�

�

�

�

Algorithm 11.5.1: Equality-Logic-to-Propositional-Logic

Input: An equality formula ϕE

Output: A propositional formula equisatisfiable with ϕE

1. Construct a Boolean formula e(ϕE) by replacing each atom of the form
xi = xj in ϕE with a Boolean variable ei,j .

2. Construct the nonpolar equality graph GE
NP(ϕE).

3. Make GE
NP(ϕE) chordal.

4. Btrans := true.
5. For each triangle (ei,j , ej,k, ei,k) in GE

NP(ϕE),

Btrans := Btrans ∧
(ei,j ∧ ej,k =⇒ ei,k) ∧
(ei,j ∧ ei,k =⇒ ej,k) ∧
(ei,k ∧ ej,k =⇒ ei,j) .

(11.42)

6. Return e(ϕE) ∧ Btrans .

Example 11.20. Figure 11.5 depicts a nonpolar equality graph before and
after making it chordal. We use solid edges, but note that these should not
be confused with the solid edges in (polar) equality graphs, where they denote
disequalities. After the graph has been made chordal, it contains four trian-
gles and, hence, Btrans conjoins 12 constraints. For example, for the triangle
(x1, x2, x5), the constraints are
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e1,2 ∧ e2,5 =⇒ e1,5 ,
e1,5 ∧ e2,5 =⇒ e1,2 ,
e1,2 ∧ e1,5 =⇒ e2,5 .

(11.43)

The added edge e2,5 corresponds to a new auxiliary variable e2,5 that appears
in Btrans but not in e(ϕE).

There exists a version of this algorithm that is based on the (polar) equal-
ity graph, and generates a smaller number of transitivity constraints. See
Problem 11.7 for more details.

11.6 Equalities and Small-Domain Instantiations

In this section, we show a method for solving equality logic formulas by relying
on the small-model property that this logic has. This means that every
satisfiable formula in this logic has a model (a satisfying interpretation) of
finite size. Furthermore, in equality logic there is a computable bound on
the size of such a model. We use the following definitions in the rest of the
discussion.

Definition 11.21 (adequacy of a domain for a formula). A domain is
adequate for a formula if the formula either is unsatisfiable or has a model
within this domain.

Definition 11.22 (adequacy of a domain for a set of formulas). A
domain is adequate for a set of formulas if it is adequate for each formula in
the set.

In the case of equality logic, each set of formulas with the same number of
variables has an easily computable adequate finite domain, as we shall soon
see. The existence of such a domain immediately suggests a decision procedure:
simply enumerate all assignments within this domain and check whether one
of them satisfies the formula. Our solution strategy, therefore, for checking
whether a given equality formula ϕE is satisfiable, can be summarized as
follows:

1. Determine, in polynomial time, a domain allocation

D : var(ϕE) 7→ 2N (11.44)

(where var(ϕE) denotes the set of variables of ϕE), by mapping each vari-
�� ��var�� ��D

able xi ∈ var(ϕE) into a finite set of integers D(xi), such that ϕE is�� ��D(xi)

satisfiable if and only if it is satisfiable within D (i.e., there exists a sat-
isfying assignment in which each variable xi is assigned an integer from
D(xi)).
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2. Encode each variable xi as an enumerated type over its finite domain
D(xi). Construct a propositional formula representing ϕE under this finite
domain, and use SAT to check if this formula is satisfiable.

This strategy is called small-domain instantiation, since we instantiate
the variables with a finite set of values from the domain computed, each time
checking whether it satisfies the formula. The number of instantiations in
the worst case is what we call the size of the state space spanned by a
domain. The size of the state space of a domain D, denoted by |D|, is equal

�� ��|D|
to the product of the numbers of elements in the domains of the individual
variables. Clearly, the success of this method depends on its ability to find
domain allocations with small state spaces.

11.6.1 Some Simple Bounds

We now show several bounds on the number of elements in an adequate do-
main. Let Φn be the (infinite) set of all equality logic formulas with n variables

�� ��Φn
and without constants.

Theorem 11.23 (folk theorem). The uniform domain allocation {1, . . . , n}
for all n variables is adequate for Φn.

Proof. Let ϕE ∈ Φn be a satisfiable equality logic formula. Every satisfying
assignment α to ϕE reflects a partition of its variables into equivalence classes.
That is, two variables are in the same equivalence class if and only if they are
assigned the same value by α. Since there are only equalities and disequalities
in ϕE, every assignment which reflects the same equivalence classes satisfies
exactly the same predicates as α. Since all partitions into equivalence classes
over n variables are possible in the domain 1, . . . , n, this domain is adequate
for ϕE.

This bound, although not yet tight, implies that we can encode each vari-
able in a Φn formula with no more than dlog ne bits, and with a total of
ndlog ne bits for the entire formula in the worst case. This is very encour-
aging, because it is already better than the worst-case complexity of Algo-
rithm 11.5.1, which requires n · (n − 1)/2 bits (one bit per pair of variables)
in the worst case.

The domain 1, . . . , n, as suggested above, results in a state space of size
nn. We can do better if we do not insist on a uniform domain allocation, which
allocates the same domain to all variables.

Theorem 11.24. Assume for each formula ϕE ∈ Φn, var(ϕE) = {x1, . . . , xn}.
The domain allocation D := {xi 7→ {1, . . . , i} | 1 ≤ i ≤ n} is adequate for Φn.

Proof. As argued in the proof of Theorem 11.23, every satisfying assignment
α to ϕE ∈ Φn reflects a partition of the variables into equivalence classes. We
construct an assignment α′ as follows:

For each equivalence class C:
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Aside: The Complexity Gap
Why is there a complexity gap between domain allocation and the encod-
ing method that we described in Sect. 11.5? Where is the wasted work
in Equality-Logic-to-Propositional-Logic? Both algorithms merely
partition the variables into classes of equal variables, but they do it in a
different way. Instead of asking “which subset of {v1, . . . , vn} is each variable
equal to?”, with the domain-allocation technique we ask instead “which value
in the range {1, . . . , n} is each variable equal to?”. For each variable, rather
than exploring the range of subsets of {v1, . . . , vn} to which it may be equal,
we instead explore the range of values {1, . . . , n}. The former requires one bit
per element in this set, or a total of n bits, while the latter requires only log n
bits.

• Let xi be the variable with the lowest index in C.
• Assign i to all the variables in C.

Since all the other variables in C have indices higher than i, i is in their
domain, and hence this assignment is feasible. Since each variable appears in
exactly one equivalence class, every class of variables is assigned a different
value, which means that α′ satisfies the same equality predicates as α. This
implies that α′ satisfies ϕE.

The adequate domain suggested in Theorem 11.24 has a smaller state
space, of size n!. In fact, it is conjectured that n! is also a lower bound on the
size of domain allocations adequate for this class of formulas.

Let us now consider the case in which the formula contains constants.

Theorem 11.25. Let Φn,k be the set of equality logic formulas with n vari-
�� ��Φn,k

ables and k constants. Assume, without loss of generality, that the constants
are c1 < · · · < ck. The domain allocation

D := {xi 7→ {c1, . . . , ck, ck + 1, . . . , ck + i} | 1 ≤ i ≤ n} (11.45)

is adequate for Φn,k.

The proof is left as an exercise (Problem 11.8).
The adequate domain suggested in Theorem 11.25 results in a state space

of size (k + n)!/k!. As stated in Sect. 4.1.3, constants can be eliminated by
adding more variables and constraints (k variables in this case), but note that
this would result in a larger state space.

The next few sections are dedicated to an algorithm that reduces the
allocated domain further, based on an analysis of the equality graph associated
with the input formula.

— — —

Sects. 11.6.2, 11.6.3, and 11.6.4 cover advanced topics.
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11.6.2 Graph-Based Domain Allocation

The formula sets Φn and Φn,k utilize only a simple structural characteristic
common to all of their members, namely the number of variables and con-
stants. As a result, they group together many formulas of radically different
nature. It is not surprising that the best size of adequate domain allocation
for the whole set is so high. By paying attention to additional structural sim-
ilarities of formulas, we can form smaller sets of formulas and obtain much
smaller adequate domain allocations.

As before, we assume that ϕE is given in negation normal form. Let e
denote a set of equality literals and Φ(e) the set of all equality logic formulas

�� ��Φ(e)
whose literals set is equal to e. Let E(ϕE) denote the set of ϕE’s literals. Thus, �� ��E(ϕE)
Φ(E(ϕE)) is the set of all equality logic formulas that have the same set of
literals as ϕE. Obviously, ϕE ∈ Φ(E(ϕE)). Note that Φ(e) can include both
satisfiable and unsatisfiable formulas. For example, let e be the set

{x1 = x2, x1 6= x2} . (11.46)

Then Φ(e) includes both the satisfiable formula

x1=x2 ∨ x1 6=x2 (11.47)

and the unsatisfiable formula

x1=x2 ∧ x1 6=x2 . (11.48)

An adequate domain, recall, is concerned only with the satisfiable formulas
that can be constructed from literals in the set. Thus, we should not worry
about (11.48). We should, however, be able to satisfy (11.47), as well as for-
mulas such as x1 = x2 ∧ (true ∨ x1 6= x2) and x1 6= x2 ∧ (true ∨ x1 = x2).
One adequate domain for the set Φ(e) is

D := {x1 7→ {0}, x2 7→ {0, 1}} . (11.49)

It is not hard to see that this domain is minimal, i.e., there is no adequate
domain with a state space smaller than 2 for Φ(e).

How do we know, then, which subsets of the literals in E(ϕE) we need to
be able to satisfy within the domain D, in order for D to be adequate for
Φ(E(ϕE))? The answer is that we need only to be able to satisfy consistent
subsets of literals, i.e., subsets for which the conjunction of literals in each of
them is satisfiable.

A set e of equality literals is consistent if and only if it does not contain
one of the following two patterns:

1. A chain of the form x1 = x2, x2 = x3, . . . , xr−1 = xr together with the
formula x1 6= xr.

2. A chain of the form c1 = x2, x2 = x3, . . . , xr−1 = cr where c1 and cr
represent different constants.
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In the equality graph corresponding to e, the first pattern appears as a con-
tradictory cycle (Definition 11.12) and the second as an equality path (Defi-
nition 11.10) between two constants.

To summarize, a domain allocation D is adequate for Φ(E(ϕE)) if every
consistent subset e ⊆ E(ϕE) is satisfiable within D. Hence, finding an adequate
domain for Φ(E(ϕE)) is reduced to the following problem:

Associate with each variable xi a set of integers D(xi) such that every
consistent subset e ∈ E(ϕE) can be satisfied with an assignment from
these sets.

We wish to find sets of this kind that are as small as possible, in polynomial
time.

11.6.3 The Domain Allocation Algorithm

Let GE(ϕE) be the equality graph (see Definition 11.9) corresponding to ϕE,
defined by (V,E=, E 6=). Let GE

= and GE

6= denote two subgraphs of GE(ϕE),
�� ��GE

=�� ��GE

6=

defined by (V,E=) and (V,E 6=), respectively. As before, we use dashed edges
to represent GE

= edges and solid edges to represent GE

6= edges. A vertex is
called mixed if it is adjacent to edges in both GE

= and GE

6=.
On the basis of the definitions above, Algorithm 11.6.1 computes an eco-

nomical domain allocation D for the variables in a given equality formula ϕE.
The algorithm receives as input the equality graph GE(ϕE), and returns as out-
put a domain which is adequate for the set Φ(E(ϕE)). Since ϕE ∈ Φ(E(ϕE)),
this domain is adequate for ϕE.

We refer to the values that were added in steps I.A.2, I.C, II.A.1, and
II.B as the characteristic values of these vertices. We write char(xi) = ui
and char(xk) = uC=

. Note that every vertex is assigned a single character-
�� ��char

istic value. Vertices that are assigned their characteristic values in steps I.C
and II.A.1 are called individually assigned vertices, whereas the vertices as-
signed characteristic values in step II.B are called communally assigned ver-
tices. We assume that new values are assigned in ascending order, so that
char(xi) < char(xj) implies that xi was assigned its characteristic value be-
fore xj . Consequently, we require that all new values are larger than the largest
constant Cmax . This assumption is necessary only for simplifying the proof in
later sections.

The description of the algorithm presented above leaves open the order in
which vertices are chosen in step II.A.1. This order has a strong impact on
the size of the resulting state space. Since the values given in this step are
distributed on the graph GE

= in step II.A.2, we would like to keep this set as
small as possible. Furthermore, we would like to partition the graph quickly,
in order to limit this distribution. A rather simple yet effective heuristic for
this purpose is to choose vertices according to a greedy criterion, where mixed
vertices are chosen in descending order of their degree in GE

6=. We denote the
set of vertices chosen in step II.A.1 by MV, to remind ourselves that they are

�� ��MV
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Algorithm 11.6.1: Domain-Allocation-for-Equalities

Input: An equality graph GE

Output: An adequate domain (in the form of a set of integers for each
variable-vertex) for the set of formulas over literals that are
represented by GE edges

I. Eliminating constants and preprocessing

Initially, D(xi) = ∅ for all vertices xi ∈ GE.
A. For each constant-vertex ci in GE, do:

1. (Empty item, for the sake of symmetry with step II.A.)
2. Assign D(xj) := D(xj) ∪ {ci} for each vertex xj , such that there is an

equality path from ci to xj not through any other constant-vertex.
3. Remove ci and its adjacent edges from the graph.

B. Remove all GE
6= edges that do not lie on a contradictory cycle.

C. For every singleton vertex (a vertex comprising a connected component by
itself) xi, add to D(xi) a new value ui. Remove xi and its adjacent edges
from the graph.

II. Value allocation

A. While there are mixed vertices in GE do:

1. Choose a mixed vertex xi. Add ui, a new value, to D(xi).
2. Assign D(xj) := D(xj)∪ {ui} for each vertex xj , such that there is an

equality path from xi to xj .
3. Remove xi and its adjacent edges from the graph.

B. For each (remaining) connected GE
= component C=, add a common new

value uC= to D(xk), for every xk ∈ C=.

Return D.

mixed vertices.

Example 11.26. We wish to check whether (11.27), replicated below, is sat-
isfiable:

¬ϕE :=

 (x1 6= x2 ∨ y1 6= y2 ∨ f1 = f2) ∧
(u1 6= f1 ∨ u2 6= f2 ∨ g1 = g2) ∧
u1 = f1 ∧ u2 = f2 ∧ z = g1

 ∧ z 6= g2 . (11.50)

The sets E= and E 6= are

E= := {(f1 = f2), (g1 = g2), (u1 = f1), (u2 = f2), (z = g1)}
E 6= := {(x1 6= x2), (y1 6= y2), (u1 6= f1), (u2 6= f2), (z 6= g2)} , (11.51)

and the corresponding equality graph GE(¬ϕE) reappears in Fig. 11.6.
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g2

y1 y2

f1 f2 u2

x1 x2

u1

z

g1

Fig. 11.6. The equality graph GE(¬ϕE)

We refrain in this example from applying preprocessing, in order to make
the demonstration of the algorithm more informative and interesting. This
example results in a state space of size 1111 if we use the domain {1, . . . , n}
as suggested in Theorem 11.23, and a state space of size 11! (≈ 4× 107) if we
use the domain suggested in Theorem 11.24. Applying Algorithm 11.6.1, on
the other hand, results in an adequate domain spanning a state space of size
48, as can be seen in Fig. 11.7.

Step x1 x2 y1 y2 u1 f1 f2 u2 g2 z g1 Removed

I.B edges
(x1 − x2),
(y1 − y2)

I.C 0 1 2 3 x1, x2, y1, y2

II.A 4 4 4 4 f1

II.A 5 5 f2

II.A 6 6 6 g2

II.B 7

II.B 8

II.B 9 9

Final State space
D-sets 0 1 2 3 4, 7 4 4, 5 4, 5, 8 6 6, 9 6, 9 = 48

Fig. 11.7. Application of Algorithm 11.6.1 to (11.50)

Using a small improvement concerning the new values allocated in step
II.A.1, this allocation can be reduced further, down to a domain of size 16.
This improvement is the subject of Problem 11.12.

For demonstration purposes, consider a formula ϕE where g1 is replaced by
the constant “3”. In this case the component (z, g1, g2) is handled as follows:
In step I.A, “3” is added to D(g2) and D(z). The edge (z, g2), now no longer
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part of a contradictory cycle, is then removed in step I.B and a distinct new
value is added to each of these variables in step I.C.

Algorithm 11.6.1 is polynomial in the size of the input graph: steps I.A
and II.A are iterated a number of times not more than the number of vertices
in the graph; step I.B is iterated not more than the number of edges in GE

6=;
steps I.A.2, I.B, II.A.2, and II.B can be implemented with depth-first search
(DFS).

11.6.4 A Proof of Soundness

In this section, we argue for the soundness of Algorithm 11.6.1. We begin
by describing a procedure which, given the allocation D produced by this
algorithm and a consistent subset e, assigns to each variable xi ∈ GE an inte-
ger value ae(xi) ∈ D(xi). We then continue by proving that this assignment

�� ��ae
satisfies the literals in e.

An Assignment Procedure

Given a consistent subset of literals e and its corresponding equality graph
GE(e), assign to each variable-vertex xi ∈ GE(e) a value ae(xi) ∈ D(xi),
according to the following rules:

R1 If xi is connected by a (possibly empty) GE
=(e)-path to an individually

assigned vertex xj , assign to xi the minimal value of char(xj) among
such xj ’s.

R2 Otherwise, assign to xi its communally assigned value char(xi).

To see why all vertices are assigned a value by this procedure, observe that
every vertex is allocated a characteristic value before it is removed. This can
be an individual characteristic value allocated in steps I.C and II.A.1, or a
communal value allocated in step II.B. Every vertex xi that has an individual
characteristic value can be assigned a value ae(xi) by R1, because it has
at least the empty equality path leading to an individually allocated vertex,
namely itself. All other vertices are allocated a communal value that makes
them eligible for a value assignment by R2.

Example 11.27. Consider the D-sets in Fig. 11.7. Let us apply the above as-
signment procedure to a consistent subset e that contains all edges, excluding
the two edges between u1 and f1, the dashed edge between g1 and g2, and the
solid edge between f2 and u2 (see Fig. 11.8).

The assignment is as follows:

• By R1, x1, x2, y1, and y2 are assigned the characteristic values “0”, “1”,
“2”, and “3”, respectively, which they received in step I.C.

• By R1, f1, f2, and u2 are assigned the value char(f1) =“4”, because f1
was the first mixed vertex in the subgraph {f1, f2, u2} that was removed
in step II.A, and consequently it has the minimal characteristic value.



270 11 Propositional Encodings

2 3 9

4 4 47 9 6

10

x2

u1

z

g1 g2

y1 y2

f1 f2 u2

x1

Fig. 11.8. The consistent set of edges e considered in Example 11.27 and the values
assigned by the assignment procedure

• By R1, g2 is assigned the value char(g2) =“6”, which it received in step
II.A.

• By R2, z and g1 are assigned the value “9”, which they received in step
II.B.

• By R2, u1 is assigned the value “7”, which it received in step II.B.

Theorem 11.28. The assignment procedure is feasible (i.e., the value as-
signed to a node by the procedure belongs to its D-set).

Proof. Consider first the two classes of vertices that are assigned a value
by R1. The first class includes vertices that are removed in step I.C. These
vertices have only one (empty) GE

=(e)-path to themselves, and are therefore
assigned the characteristic value that they received in that step. The second
class includes vertices that have a (possibly empty) GE

=(e)-path to a vertex
from MV . Let xi denote such a vertex, and let xj be the vertex with the
minimal characteristic value that xi can reach on GE

=(e). Since xi and all the
vertices on this path were still part of the graph when xj was removed in step
II.A, then char(xj) was added to D(xi) according to step II.A.2. Thus, the
assignment of char(xj) to xi is feasible.

Next, consider the vertices that are assigned a value by R2. Every vertex
that was removed in step I.C or II.A is clearly assigned a value by R1. All the
other vertices were communally assigned a value in step II.B. In particular,
the vertices that do not have a path to an individually assigned vertex were
assigned such a value. Thus, the two steps of the assignment procedure are
feasible.

Theorem 11.29. If e is a consistent set, then the assignment ae satisfies all
the literals in e.

Proof. Consider first the case of two variables xi and xj that are connected
by a GE

=(e)-edge. We have to show that ae(xi) = ae(xj). Since xi and xj
are GE

=(e)-connected, they belong to the same GE
=(e)-connected component.

If they were both assigned a value by R1, then they were assigned the min-
imal value of an individually assigned vertex to which they are both GE

=(e)-
connected. If, on the other hand, they were both assigned a value by R2,
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then they were assigned the communal value assigned to the GE
= component

to which they both belong. Thus, in both cases they are assigned the same
value.

Next, consider the case of two variables xi and xj that are connected by
a GE

6=(e)-edge. To show that ae(xi) 6= ae(xj), we distinguish three cases:

• If both xi and xj were assigned values by R1, they must have inherited
their values from two distinct individually assigned vertices, because, oth-
erwise, they are both connected by a GE

=(e)-path to a common vertex,
which together with the (xi, xj) G

E

6=(e)-edge closes a contradictory cycle,
excluded by the assumption that e is consistent.

• If one of xi, xj was assigned a value by R1 and the other acquired its value
from R2, then since any communal value is distinct from any individually
assigned value, ae(xi) must differ from ae(xj).

• The remaining case is when both xi and xj were assigned values by R2.
The fact that they were not assigned values in R1 implies that their char-
acteristic values are not individually allocated, but communally allocated.
Assume falsely that ae(xi) = ae(xj). This means that xi and xj were al-
located their communal values in the same step, II.B, of the allocation
algorithm, which implies that they had an equality path between them
(moreover, this path was still part of the graph at the beginning of step
II.B). Hence, xi and xj belong to a contradictory cycle, and the solid edge
(xi, xj) was therefore still part of GE

=(e) at the beginning of step II.A.
According to the loop condition of this step, at the end of this step there
are no mixed vertices left, which rules out the possibility that (xi, xj) was
still part of the graph at that stage. Thus, at least one of these vertices
was individually assigned a value in step II.A.1, and, consequently, the
component that it belongs to is assigned a value by R1, in contradiction
to our assumption.

Theorem 11.30. The formula ϕE is satisfiable if and only if ϕE is satisfiable
over D.

Proof. By Theorems 11.28 and 11.29, D is adequate for E= ∪ E 6=. Conse-
quently, D is adequate for Φ(At(ϕE)), and in particular D is adequate for
ϕE. Thus, by the definition of adequacy, ϕE is satisfiable if and only if ϕE is
satisfiable over D.

11.6.5 Summary

To summarize Sect. 11.6, the domain allocation method can be used as the
first stage of a decision procedure for equality logic. In the second stage, the
allocated domains can be enumerated by a standard BDD or by a SAT-based
tool. Domain allocation has the advantage of not changing (in particular,
not increasing) the original formula, unlike the algorithm that we studied
in Sect. 11.5. Moreover, Algorithm 11.6.1 is highly effective in practice in
allocating very small domains.
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11.7 Ackermann’s vs. Bryant’s Reduction: Where Does
It Matter?

We conclude this chapter by demonstrating how the two reductions lead to
different equality graphs and hence change the result of applying any of the
algorithms studied in this chapter that are based on this equality graph.

Example 11.31. Suppose that we want to check the satisfiability of the fol-
lowing (satisfiable) formula:

ϕUF := x1 = x2 ∨ (F (x1) 6= F (x2) ∧ false) . (11.52)

With Ackermann’s reduction, we obtain

ϕE := (x1 = x2 =⇒ f1 = f2) ∧ (x1 = x2 ∨ (f1 6= f2 ∧ false)) . (11.53)

With Bryant’s reduction, we obtain

flatE := x1 = x2 ∨ (F ?1 6= F ?2 ∧ false) , (11.54)

FCE := F ?1 = f1 ∧

F ?2 =

(
case x1 = x2 : f1

true : f2

)
,

(11.55)

and, as always,
ϕE := FCE ∧ flatE . (11.56)

The equality graphs corresponding to the two reductions appear in Fig. 11.9.
Clearly, the allocation for the right graph (due to Bryant’s reduction) is
smaller.

x2

f1 f2 f1 f2

x1 x2 x1

Fig. 11.9. The equality graph corresponding to Example 11.31 obtained with Ack-
ermann’s reduction (left) and with Bryant’s reduction (right)

Indeed, an adequate range for the graph on the right is

D := {x1 7→ {0}, x2 7→ {0, 1}, f1 7→ {2}, f2 7→ {3}} . (11.57)

These domains are adequate for (11.56), since we can choose the satisfying
assignment
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{x1 7→ 0, x2 7→ 0, f1 7→ 2, f2 7→ 3} . (11.58)

On the other hand, this domain is not adequate for (11.53).
In order to satisfy (11.53), it must hold that x1 = x2, which implies that

f1 = f2 must hold as well. But the domains allocated in (11.57) do not allow
an assignment in which f1 is equal to f2, which means that the graph on the
right of Fig. 11.9 is not adequate for (11.53).

So what has happened here? Why does Ackermann’s reduction require a
larger range?

The reason is that, when two function instances F (x1) and F (x2) have
equal arguments, in Ackermann’s reduction the two variables representing
the functions, say f1 and f2, are constrained to be equal. But if we force
f1 and f2 to be different (by giving them a singleton domain composed of a
unique constant), this forces FCE to be false, and, consequently ϕE to be
false. On the other hand, in Bryant’s reduction, if the arguments x1 and x2
are equal, the terms F ?1 and F ?2 that represent the two functions are both
assigned the value of f1. Thus, even if f2 6= f1, this does not necessarily make
FCE false.

In the bibliographic notes of this chapter, we mention several publications
that exploit this property of Bryant’s reduction for reducing the allocated
range and even constructing smaller equality graphs. It turns out that not all
of the edges that are associated with the functional-consistency constraints
are necessary, which, in turn, results in a smaller allocated range.

11.8 Problems

Problem 11.1 (practicing Ackermann’s and Bryant’s reductions).
Given the formula

F (F (x1)) 6= F (x1) ∧
F (F (x1)) 6= F (x2) ∧
x2 = F (x1) ,

(11.59)

reduce its validity problem to a validity problem of an equality logic formula
through Ackermann’s reduction and Bryant’s reduction.

Problem 11.2 (Ackermann’s reduction). Extend Algorithm 11.2.1 to
multiple function symbols and to functions with multiple arguments.

Problem 11.3 (Bryant’s reduction). Suppose that, in Algorithm 11.2.2,
the definition of Fi is replaced by

F ?i =


case T ?(arg(F ?1 )) = T ?(arg(F ?i )) : F ?1

...
T ?(arg(F ?i−1)) = T ?(arg(F ?i )) : F ?i−1
true : fi

 , (11.60)
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the difference being that the terms on the right refer to the F ?j variables,
1 ≤ j < i, rather than to the fj variables. Does this change the value of F ?i ?
Prove a negative answer or give an example.

Problem 11.4 (abstraction/refinement). Frequently, the functional-consi-
stency constraints become the bottleneck in the verification procedure, as their
number is quadratic in the number of function instances. In such cases, even
solving the first iteration of Algorithm 4.4.1 is too hard.

Show an abstraction/refinement algorithm that begins with flatE and grad-
ually adds functional-consistency constraints.

Hint : note that, given an assignment α′ that satisfies a formula with only
some of the functional-consistency constraints, checking whether α′ respects
functional consistency is not trivial. This is because α′ does not necessarily
refer to all variables (if the formula contains nested functions, some may disap-
pear in the process of abstraction). Hence α′ cannot be tested directly against
a version of the formula that contains all functional-consistency constraints.

Problem 11.5 (eager encodings for linear arithmetic). (Based on [266])
In Sect. 11.5 we saw eager encoding of equality logic, based on the proposi-
tional skeleton and additional constraints to enforce transitivity of equality.
It is possible to extend this principle to linear arithmetic, based on Fourier–
Motzkin elimination, which was described in Sect. 5.4. The idea is the follow-
ing, given a propositional combination of linear constraints ϕ:

• Compute the propositional skeleton e(ϕ).
• Apply Fourier–Motzkin elimination to the set of predicates in ϕ until all

variables are eliminated (i.e., do not stop upon reaching a contradiction).
Each time a predicate p is derived from a pair of predicates pi, pj , add
the constraint e(pi) ∧ e(pj) =⇒ e(p). As a special case, if pi, pj are
contradictory, then e(p) is the constant false.

The resulting formula is satisfiable if and only if ϕ is.

1. Apply this algorithm to the following formula:

ϕ := (2x1 − x2 ≤ 0) ∧
((2x2 − 4x3 ≤ 0) ∨ (x3 − x1 ≤ −1) ∨ ((0 ≤ x3) ∧ (x2 ≤ 1))) .

(11.61)
Check that the resulting formula is indeed equisatisfiable with ϕ.

2. What is the complexity of solving (disjunctive) linear arithmetic this way,
given that the input formula has n variables and m linear predicates?

11.8.1 Reductions

Problem 11.6 (correctness of the simplification step). Prove the cor-
rectness of Algorithm 11.4.1. You may use the proof strategy suggested in
Sect. 11.4.
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Problem 11.7 (reduced transitivity constraints). (Based on [194, 247].)
Consider the equality graph in Fig. 11.10. The sparse method generates Btrans
with three transitivity constraints (recall that it generates three constraints
for each triangle in the graph, regardless of the polarity of the edges). Now
consider the following claim: the single transitivity constraint Brtc = (e0,2 ∧
e1,2 =⇒ e0,1) is sufficient (the subscript rtc stands for “reduced transitivity
constraints”).

x1

x2

x0

αrtc αtrans

e0,1 true true
e1,2 true true
e0,2 false true

Fig. 11.10. Taking polarity into account allows us to construct a less constrained
formula. For this graph, the constraint Brtc = (e0,2 ∧ e1,2 =⇒ e0,1) is sufficient.
An assignment αrtc that satisfies Brtc but breaks transitivity can always be “fixed”
so that it does satisfy transitivity, while still satisfying the propositional skeleton
e(ϕE). The assignment αtrans demonstrates such a “fixed” version of the satisfying
assignment

To justify this claim, it is sufficient to show that, for every assignment
αrtc that satisfies e(ϕE)∧Brtc , there exists an assignment αtrans that satisfies
e(ϕE) ∧ Btrans . Since this, in turn, implies that ϕE is satisfiable as well, we
obtain the result that ϕE is satisfiable if and only if e(ϕE)∧Brtc is satisfiable.

We are able to construct such an assignment αtrans because of the mono-
tonicity of NNF (see Theorem 1.14, and recall that the polarity of the edges
in the equality graph is defined according to their polarity in the NNF rep-
resentation of ϕE). There are only two satisfying assignments to Brtc that do
not satisfy Btrans . One of these assignments is shown in the αrtc column in the
table to the right of the drawing. The second column shows a corresponding
assignment αtrans , which clearly satisfies Btrans .

However, we still need to prove that every formula e(ϕE) that corresponds
to the above graph is still satisfied by αtrans if it is satisfied by αrtc . For
example, for e(ϕE) = (¬e0,1 ∨ e1,2 ∨ e0,2), both αrtc |= e(ϕE) ∧ Brtc and
αtrans |= e(ϕE) ∧ Btrans . Intuitively, this is guaranteed to be true because
αtrans is derived from αrtc by flipping an assignment of a positive (unnegated)
predicate (e0,2) from false to true. We can equivalently flip an assignment
to a negated predicate (e0,1 in this case) from true to false.

1. Generalize this example into a claim: given a (polar) equality graph, which
transitivity constraints are necessary and sufficient?

2. Show an algorithm that computes the constraints that you suggest in the
item above. What is the complexity of your algorithm? (Hint : there exists
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a polynomial algorithm, which is hard to find. An exponential algorithm
will suffice as an answer to this question).

11.8.2 Domain Allocation

Problem 11.8 (adequate domain for Φn,k). Prove Theorem 11.25.

Problem 11.9 (small-domain allocation). Prove the following lemma:

Lemma 11.32. If a domain D is adequate for Φ(e) and e′ ⊆ e, then D is
adequate for φ(e′).

Problem 11.10 (small-domain allocation: an adequate domain).
Prove the following theorem:

Theorem 11.33. If all the subsets of E(ϕE) are consistent, then there exists
an allocation R such that |R| = 1.

Problem 11.11 (formulation of the graph-theoretic problem). Give
a self-contained formal definition of the following decision problem: given an
equality graph G and a domain allocation D, is D adequate for G?

Problem 11.12 (small-domain allocation: an improvement to the
allocation heuristic). Step II.A.1 of Algorithm 11.6.1 calls for allocation
of distinct characteristic values to the mixed vertices. The following example
proves that this is not always necessary:

Consider the subgraph {u1, f1, f2, u2} of the graph in Fig. 11.3. Appli-
cation of the basic algorithm to this subgraph may yield the following allo-
cation, where the characteristic values assigned are underlined: R1 : u1 7→
{0, 2}, f1 7→ {0}, f2 7→ {0, 1}, u2 7→ {0, 1, 3}. This allocation leads to a state
space complexity of 12. By relaxing the requirement that all individually as-
signed characteristic values should be distinct, we can obtain the allocation
R2 : u1 7→ {0, 2}, f1 7→ {0}, f2 7→ {0}, u2 7→ {0, 1} with a state-space com-
plexity of 4. This reduces the size of the state space of the entire graph from
48 to 16.

It is not difficult to see that R2 is adequate for the subgraph considered.
What are the conditions under which it is possible to assign equal val-

ues to mixed variables? Change the basic algorithm so that it includes this
optimization.

11.9 Bibliographic Notes

The following are some bibliographic details about the development of the
eager encoding framework. Lazy encoding frameworks, including DPLL(T ),
are covered in Sect. 3.6.
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Some of the algorithms presented in earlier chapters are in fact eager-
style decision procedures. The reduction methods for equality logic that are
presented in Sect. 11.5 are such algorithms [57, 194]. A similar procedure for
difference logic was suggested by Ofer Strichman, Sanjit Seshia, and Randal
Bryant in [267]. Procedures that are based on small-domain instantiation (see
Sect. 11.6 and a similar procedure for difference logic in [273]) can also be
seen as eager encodings, although the connection is less obvious: the encoding
is based not on the skeleton and additional constraints, but rather on an
encoding of predicates (equalities, inequalities, etc., depending on the theory)
over finite-range variables. The original procedure in [227] used multiterminal
BDDs rather than SAT to solve the resulting propositional formula. We should
also mention that there are hybrid approaches, combining encodings based on
small-domain instantiation and explicit constraints, such as the work by Seshia
et al. on difference logic [256].

The first proof-based reduction corresponding to an eager encoding (from
integer- and real-valued linear arithmetic) was introduced in [266]. The proce-
dure was not presented as part of a more general framework of using deductive
rules as described in this chapter. The proof was generated in an eager manner
using Fourier–Motzkin variable elimination for the reals and the Omega test
for the integers.

There are only a few publicly available, supported decision procedures
based on eager encoding, most notably Uclid [58], which was developed by
Randal Bryant, Shuvendu Lahiri, and Sanjit Seshia. There is little research in
this field, which makes it hard to determine if the eager approach is inherently
inferior to the lazy one or is just not pushed forward as strongly.

We now survey some of the highlights from the history of deciding equality
logic with uninterpreted functions. Please also refer to our survey in Sect. 4.7.

We failed to find an original reference for the fact that the range {1, . . . , n}
is adequate for formulas with n variables. This is usually referred to as a “folk
theorem” in the literature. The work by Hojati, Kuehlmann, German, and
Brayton in [147] and Hojati, Isles, Kirkpatrick, and Brayton in [146] was the
first, as far as we know, where anyone tried to decide equalities with finite
instantiation, while trying to derive a value k, k ≤ n that was adequate as
well, by analyzing the equality graph. The method presented in Sect. 11.6
was the first to consider a different range for each variable and, hence, is
much more effective. It is based on work by Pnueli, Rodeh, Siegel, and Strich-
man in [227, 228]. These papers suggest that Ackermann’s reduction should
be used, which results in large formulas, and, consequently, large equality
graphs and correspondingly large domains (but much smaller than the range
{1, . . . , n}).

In [245, 246], Rodeh and Strichman presented a generalization of posi-
tive equality that enjoys benefits from both worlds: on the one hand, it does
not add all the edges that are associated with the functional-consistency con-
straints (it adds only a small subset of them based on an analysis of the
formula), but on the other hand, it assigns small ranges to all variables as



278 11 Propositional Encodings

in [228] and, in particular, a single value to all the terms that would be as-
signed a single value by the technique of [56]. This method decreases the size
of the equality graph in the presence of uninterpreted functions, and conse-
quently the allocated ranges (for example, it allocates a domain with a state
space of size 2 for the running example in Sect. 11.6.3). Rodeh showed in his
thesis [245] (also see [226]) an extension of range allocation to dynamic range
allocation. This means that each variable is assigned not one of several con-
stants, as prescribed by the allocated domain, but rather one of the variables
that represent an immediate neighbor in GE

=, or a unique constant if it has
one or more neighbors in GE

6=. The size of the state space is thus proportional
to log n, where n is the number of neighbors.

Bryant, German, and Velev suggested in [56] what we refer to as Bryant’s
reduction in Sect. 11.2.2. This technique enabled them to exploit what they
called the positive equality structure in formulas for assigning unique constants
to some of the variables and a full range to the others. Using the terminology
of this chapter, these variables are adjacent only to solid edges in the equality
graph corresponding to the original formula (a graph built without referring to
the functional-consistency constraints, and hence the problem of a large graph
due to Ackermann’s constraints disappears). A more robust version of this
technique, in which a larger set of variables can be replaced with constants,
was later developed by Lahiri, Bryant, Goel, and Talupur [174].

Goel, Sajid, Zhou, Aziz, and Singhal were the first to encode each equality
with a new Boolean variable [132]. They built a BDD corresponding to the en-
coded formula, and then looked for transitivity-preserving paths in the BDD.
Bryant and Velev suggested in [57] that the same encoding should be used but
added explicit transitivity constraints instead. They considered several trans-
lation methods, only the best of which (the sparse method) was presented
in this chapter. One of the other alternatives is to add such a constraint for
every three variables (regardless of the equality graph). A somewhat similar
approach was considered by Zantema and Groote [294]. The sparse method
was later superseded by the method of Meir and Strichman [194] and later
by that of Rozanov and Strichman [247], where the polar equality graph is
considered rather than the nonpolar one, which leads to a smaller number of
transitivity constraints. This direction is mentioned in Problem 11.7.
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11.10 Glossary

The following symbols were used in this chapter:

First used
Symbol Refers to . . . on page . . .

T A function that transforms an input formula or term
by replacing each uninterpreted function Fi with a
new variable fi

247

FCE Functional-consistency constraints 247

flatE Equal to T (ϕUF) in Ackermann’s reduction, and to
T ?(ϕUF) in Bryant’s reduction

247, 250

F ?i In Bryant’s reduction, a macro variable representing
the case expression associated with the function in-
stance Fi() that was substituted by Fi

250

T ? A function similar to T , that replaces each uninter-
preted function Fi with F ?i

250

At(ϕE) The set of atoms in the formula ϕE 253

E=, E 6= Sets of equality and inequality predicates, and also
the edges in the equality graph

253

GE Equality graph 254

x =∗ y There exists an equality path between x and y in the
equality graph

254

x 6=∗ y There exists a disequality path between x and y in
the equality graph

255

e(ϕE) The propositional skeleton of ϕE 259

Btrans The transitivity constraints due to the reduction
from ϕE to Bsat by the sparse method

259

GE
NP Nonpolar equality graph 259

var(ϕE) The set of variables in ϕE 262

D A domain allocation function. See (11.44) 262

continued on next page



280 11 Propositional Encodings

continued from previous page

First used
Symbol Refers to . . . on page . . .

|D| The state space spanned by a domain 263

Φn The (infinite) set of equality logic formulas with n
variables

263

Φn,k The (infinite) set of equality logic formulas with n
variables and k constants

264

φ(e) The (infinite) set of equality formulas with a set of
literals equal to e

265

E(ϕE) The set of literals in ϕE 265

GE
=, G

E

6= The projections of the equality graph on the E= and
E 6= edges, respectively

266

char(v) The characteristic value of a node v in the equality
graph

266

MV The set of mixed vertices that are chosen in step
II.A.1 of Algorithm 11.6.1

266

ae(x) An assignment to a variable x from its allocated do-
main D(x)

269



Sect. 12.1–12.3 were written with the help of Nikolaj Bjørner and Leonardo
de Moura from the research in software engineering (Rise) group in Microsoft
Research Redmond. Section 12.4 was written by Hillel Kugler, from the Bio-
logical Computation Group in Microsoft Research Cambridge.

12.1 Introduction

One cannot overemphasize the importance of eliminating program errors
(“bugs”), and the fact that this problem only gets more acute, given the
growing prevalence of software in business-related and safety-critical systems.

The traditional method to detect and diagnose software defects is to test
the program, i.e., the program is executed using a limited set of inputs. This
method is typically effective, but cannot guarantee the absence of errors. For-
mal verification, on the other hand, has a much more ambitious goal: the goal
is to decide whether for all possible inputs a given specification is satisfied by
the program. As an example, the specification could require that at a given
location in the program no division-by-0 is possible, or that it holds that
x < y for two program variables x and y. These specifications are an instance
of reachability , which is the problem of checking whether a given program
state occurs in any execution of the program. The reachability problem is
undecidable, which means that there cannot exist an algorithm—a decision
procedure—that will always give the correct answer in a finite amount of
time. What makes this problem undecidable? The short answer is unbounded
allocation of memory, because it implies that we cannot bound the number of
states that the program can reach (note the aside on the topic). Consequently,
software verification is undecidable as well.

Like in the case of many other undecidable problems that are sufficiently
important, many partial solutions have been invented through the years, and
many of them are used on a daily basis. By “partial” we mean that the type
of programs that can be handled is restricted; for other programs the solution
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Aside: Verification and Finite Memory
One may take the view that the memory of a computer is finite, which is
obviously correct and theoretically solves the reachability problem. However,
this does not help in practice for automatic reasoning unless it is assumed that
the memory bound is very small. It also restricts the proof to a specific bound
on the size of the memory. Hence, verification techniques for software typically
do not rely on the finiteness of the memory. There is a similar problem with
unbounded recursion even if the recursive function does not allocate heap
memory, because the stack may grow arbitrarily. The discussion regarding
the conditions under which this leads to undecidability is beyond the scope of
this book. Finally, we assume that the arithmetic in the program is performed
within a finite range, e.g., by encoding numbers with a fixed number of bits.

is incomplete (see Definition 1.6), which means that the verification system
may occasionally give up (returning a “don’t-know” answer) or not terminate.
Testing, for example, can be seen as such a partial solution: typically it cannot
declare a program “correct” because it does not try all possible inputs; it can
only declare it to be incorrect if it happens to find a test that violates the
program’s specification.

A key component in many of these solutions (including automated test
generation) is a reasoning engine, and at the core of this engine is a decision
procedure. Modern tools use solvers for Satisfiability Modulo Theories (SMT),
which are decision procedures based on the architecture described in Chap. 3.
A significant industrial application domain for these solvers is the analysis,
verification and testing of programs.

It is not trivial to see the connection between programs and logic. Pro-
grams are dynamic: they execute instructions one at a time, reuse variables,
allocate memory, and so on. Decision procedures for quantifier-free first-order
theories are static: they can only check whether there exists a simultaneous
assignment to the variables that satisfies a given logical formula. Bridging this
gap is one of the topics of this chapter. Whereas our emphasis is on modern
techniques that aim at fully automatic reasoning, we note that the assignment
of logical meaning to programs dates back to seminal works of Floyd [116] and
Hoare [144] from the 1960s, which were focused on manual proofs.

As pointed out earlier, unbounded loops with memory allocation are the
reason for the undecidability of the software verification problem. One way
to avoid undecidability is to impose a bound on the loops by discarding all
executions in which a loop is iterated more than a predetermined number
of times. This means that we examine a new program that underapproxi-
mates the original program. Using such restrictions (or in case the program is
bounded to begin with), it is possible to build a logical formula that represents
the input–output relation of the program. This can be done with the help of
a representation called static single assignment (SSA) form. In Sect. 12.2 we
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will see techniques based on this representation for bridging the gap between
a bounded sequence of instructions and quantifier-free first-order formulas.

We will also study a technique that overapproximates the original program,
by using abstraction. This technique may generate false alarms, but in return
is frequently able to reason about unbounded program executions. We will
present such techniques in Sect. 12.3.

12.2 Bounded Program Analysis

12.2.1 Checking Feasibility of a Single Path

We will begin by describing a basic building block of many program analyzers:
a method to determine whether the program can execute a given path. An
execution path is a sequence of program instructions executed during a run
of a program. The path can be partial, meaning that it does not have to reach
an exit point of the program.

An execution trace is a sequence of states that are observed along an ex-
ecution path. There can be many such traces along a single path, correspond-
ing to different inputs. For each path we can build a formula that represents
it: the satisfying assignments to this formula correspond to traces along this
path. This symbolic representation of traces is critical in many applications,
and techniques that use it are said to be based on (path-based) symbolic
simulation. Popular uses of symbolic simulation include automatic test gen-
eration, detection of dead code, and verification of properties given in the form
of assertions. An assertion is a program instruction that takes a condition
as argument, and if the condition evaluates to false, it reports an error and
aborts. Verifying an assertion means proving that for all inputs the condition
of the assertion evaluates to true.

We will use Program 12.2.1 as a running example of verifying assertions. It
contains the definition of a procedure ReadBlocks. The program is artificial,
but it exemplifies low-level parsing code that is typically used when processing
file formats, such as the media formats JPEG, AVI or MPEG.

The input array data encodes implicitly a sequence of blocks of data. The
first element of each block contains the index of the next block. ReadBlocks
is supposed to process all the data in these blocks, while skipping data that
is equal to the input parameter cookie. We will assume that the variable N
denotes the number of elements in the array.

The example contains two array-bounds errors, which means that the index
is outside of the range 0, . . . , (N−1). In order to detect them, we will generate
an assertion for each access to the array data. In the case of our example
program, we will add assertions that check that the array index is within
range.

For now, assume that the verification tool has some heuristic to choose an
execution path—later we will see that there is no need to focus on a single
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Program 12.2.1 Reading blocks from an array

1 void ReadBlocks(int data[], int cookie)
2 {
3 int i = 0;
4 while (true)
5 {
6 int next;
7 next = data[i];
8 if (!(i < next && next < N)) return;
9 i = i + 1;

10 for (; i < next; i = i + 1) {
11 if (data[i] == cookie)
12 i = i + 1;
13 else
14 Process(data[i]);
15 }
16 }
17 }

path because multiple paths can be checked simultaneously. Suppose, then,
that the heuristic picks the following path:

1. Begin at Line 3.
2. Run through the for loop once, take the else branch, and then exit the

for loop.
3. Exit the while loop during the second iteration in Line 8.

Table 12.1 shows the sequence of instructions that corresponds to this
execution. The line numbers correspond to the original program. In the right-
most column we record the instructions. Every time the “then” branch of
an if statement is taken along the path, we record the guard, which is the
condition of the “if”. If it is the “else” branch that is taken, we record its
negation.

As a second step, we rewrite these instructions and conditions into the
static single assignment (SSA) representation. In SSA we create a “time-
stamped version” of the program variables: every time a variable is written,
a new symbol is introduced for it.

Let us illustrate the idea with the trace given as Table 12.1. We will ignore
the call to the procedure Process, which we here assume does not change
the values of data. The SSA form of the trace is shown as Table 12.2. The
values of the inputs are time-stamped with 0, hence data and cookie are
renamed to data0 and cookie0, respectively. The first executable statement
in ReadBlocks is the initialization of i. The value of i after this assignment
is denoted by i1. Every time a variable is read, we rename it by adding the
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Line Kind Instruction or condition

3 Assignment i = 0;
7 Assignment next = data[i];
8 Branch i < next && next < N
9 Assignment i = i + 1;

10 Branch i < next
11 Branch data[i] != cookie
14 Function call Process(data[i]);
10 Assignment i = i + 1;
10 Branch !(i < next)
7 Assignment next = data[i];
8 Branch !(i < next && next < N)

Table 12.1. Sequence of statements along a path of Program 12.2.1

current timestamp to its identifier. Every time the variable is assigned, we
increment the timestamp by one, and only then rename the variable.

Line Kind Instruction or condition

3 Assignment i1 = 0;
7 Assignment next1 = data0[i1];
8 Branch i1 < next1 && next1 < N0

9 Assignment i2 = i1 + 1;
10 Branch i2 < next1

11 Branch data0 [i2 ] != cookie0

14 Function call Process(data0 [i2 ]);
10 Assignment i3 = i2 + 1;
10 Branch !(i3 < next1 )
7 Assignment next2 = data0 [i3 ];
8 Branch !(i3 < next2 && next2 < N0)

Table 12.2. SSA form of the trace from Table 12.1

The SSA form can now be translated into a logical formula, which is called
the path constraint. We obtain this formula by replacing the assignments
with equalities, and including all branch conditions as conjuncts. The formula
generated in this way is



286 12 Applications in Software Engineering and Computational Biology

ssa ⇐⇒ i1 = 0 ∧
next1 = data0[i1] ∧
(i1 < next1 ∧ next1 < N0) ∧
i2 = i1 + 1 ∧
i2 < next1 ∧
data0[i2] 6= cookie0 ∧
i3 = i2 + 1 ∧
¬(i3 < next1) ∧
next2 = data0[i3] ∧
¬(i3 < next2 ∧ next2 < N0) .

(12.1)

Note that the equality symbol in the formula denotes mathematical equality,
whereas it denotes an assignment in Table 12.2.

All valuations of the inputs data0 and cookie0 that satisfy the formula ssa
above correspond to a trace for the path given in Table 12.1.

Assertion Checking

Now consider a path that leads to an assertion. We can use the corresponding
path constraint for checking whether that assertion can be violated. In order
to do this, we need to add the negation of the assertion to the path constraint.

Consider again Program 12.2.1, and specifically the path that executes
the assignment in Line 3 and then checks that the variable i is within the
required range for the array access in Line 7. The corresponding constraint is

i1 = 0 ∧ ¬(0 ≤ i1 ∧ i1 < N0) . (12.2)

If (12.2) is satisfiable, then the assertion can be violated, and we can decide
whether this is the case by applying an appropriate decision procedure. Since
we are given a C program, i1 is a bit vector and N0 can be modeled with a bit
vector1 as well—we discussed decision procedures for bit vectors in Chap. 6.
This formula is satisfied by the assignment

{i1 7→ 0, N0 7→ 0} ,

i.e., data is an array of length 0, which means that we just found a poten-
tial error. To summarize, we reduced the problem of verifying the correctness
of a path in a program to a problem of checking the satisfiability of a for-
mula. Such a formula is accordingly called the verification condition (VC)
corresponding to our verification problem.

The program has an additional, more subtle error. The path that leads to
this violation is given in Table 12.3.

We now translate this path into a path constraint, and add the negation
of the last assertion on the path:

1 According to the C standard, an array has a bounded number of elements. Fur-
thermore, an index of size size_t (typically 32 or 64 bits) is sufficient to access
all of them.



12.2 Bounded Program Analysis 287

Line Kind Instruction or condition

3 Assignment i = 0;
7 Assignment next = data[i];
8 Branch i < next && next < N
9 Assignment i = i + 1;

10 Branch i < next
11 Branch data[i] = cookie
12 Assignment i = i + 1;
10 Assignment i = i + 1;
10 Branch !(i < next)
7 Assertion 0 <= i && i < N

Table 12.3. A second path in Program 12.2.1

i1 = 0 ∧
next1 = data0[i1] ∧
(i1 < next1 ∧ next1 < N0) ∧
i2 = i1 + 1 ∧
i2 < next1 ∧
data0[i2] = cookie0 ∧
i3 = i2 + 1 ∧
i4 = i3 + 1 ∧
¬(i4 < next1) ∧
¬(0 ≤ i4 ∧ i4 < N0)

(12.3)

This formula includes constraints over the input array, which requires com-
bining the bit-vector decision procedure (Chap. 6) with the array decision
procedure (Chap. 7). The formula is satisfied, for example, by the assignment

{i1 7→ 0, N0 7→ 3, next1 7→ 2, data0 7→ 〈2, 6, 5〉,
i2 7→ 1, cookie0 7→ 6, i3 7→ 2, i4 7→ 3} , (12.4)

and thus we just identified an additional error in the code. The fact that the
array 〈2, 6, 5〉 does not correspond to a legal media format that can be sent
as input to the function—recall that we expect the indices to be increasing
since they represent offsets in a list of blocks — is immaterial since the error
is there regardless of the last element. If we wish to check this function while
enforcing this expectation, we can do so by adding appropriate constraints
to (12.3).

12.2.2 Checking Feasibility of All Paths in a Bounded Program

The number of paths through a program can grow exponentially in the number
of branches. Hence, an exhaustive analysis of a bounded program, in the style
described in the previous section, may require solving an exponential number
of decision problems.
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Instead, we can generate SSA for bounded programs that contain branches
(rather than just for a path). The SSA can subsequently be converted into
a single formula that encodes all possible paths. As a first step, loops are
unfolded k times, where k is specified by the user. The second step is to
assign the condition of each if statement to a new variable; we will use the
variable γ for this purpose. It will serve as a convenient shorthand whenever

�� ��γ
we want to refer to any of the conditions.

Finally, we identify those program locations in which control-flow branches
meet again, i.e., locations at which the control flow reconverges. Then, state-
ments are added that assign the correct value to all those variables that have
been modified in any of the branches. In the compiler literature, these addi-
tional assignments are called φ-instructions.

Let us illustrate this idea with the for loop in Program 12.2.1. The out-
come of unfolding this loop twice (k = 2) is shown on the left-hand side of
Program 12.2.2. Note that the branch that is implicit in the for construct is
now an explicit if statement. The corresponding SSA form appears on the
right. Its construction follows the same principles that we used for individual
paths, except for the way that branches are treated: we now introduce the
assignment of the if condition to the new variable γ. It receives a timestamp
just as the other variables. The variable γ is used in the φ-instructions.

Program 12.2.2 An unfolding of the for loop in Program 12.2.1 and its
SSA form with φ-instructions

1 if (i < next) {
2 if (data[i] == cookie)
3 i = i + 1;
4 else
5 Process(data[i]);
6

7 i = i + 1;
8

9 if (i < next) {
10 if (data[i] == cookie)
11 i = i + 1;
12 else
13 Process(data[i]);
14

15 i = i + 1;
16 }
17 }

1 γ1 = (i0 < next0);
2 γ2 = (data0[i1] == cookie0);
3 i1 = i0 + 1;
4

5

6 i2 = γ2 ? i1 : i0;
7 i3 = i2 + 1;
8

9 γ3 = (i3 < next0);
10 γ4 = (data0[i3] == cookie0);
11 i4 = i3 + 1;
12

13

14 i5 = γ4 ? i4 : i3;
15 i6 = i5 + 1;
16 i7 = γ3 ? i6 : i3;
17 i8 = γ1 ? i7 : i0;

Consider Line 6 in Program 12.2.2 (left), where the two branches of the
second if statement reconverge. The only variable written in either branch
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is i. To define the value of i after the branch, we use the C notation for
a conditional term con ? a : b; this term evaluates to a if c is true and to b
otherwise. The value of i right after the if statement is encoded in Line 6
in SSA form as follows: in case the condition γ2 holds, we assign i1, which
is the value of i after executing the “then” branch. Otherwise, we assign i0,
which encodes the fact that the value of i remains unchanged.

Given the SSA form of the (unfolded) program, we can construct a formula
that captures exactly all the possible traces that it can execute. As before, in
order to check an assertion in the program, we need to add its negation to
the formula. The resulting formula is then finally given to a suitable decision
procedure.

12.3 Unbounded Program Analysis

We now study a technique for verifying unbounded programs. As mentioned
in the introduction to this chapter, this problem is generally undecidable, and
therefore there cannot be a decision procedure that solves it for all programs.
The technique that we will now see may indeed not terminate or may give up,
depending on the details of the implementation. We begin with a very coarse
overapproximation, and then make it more precise.

12.3.1 Overapproximation with Nondeterministic Assignments

In Sect. 12.2.2 we have seen a technique that can translate a program into a
formula by limiting the depth of loops to a given bound. This underapprox-
imates the behavior of the program. It is not possible to conclude that the
assertion holds for executions that exceed this bound.

We now introduce a program transformation that turns a program with
loops into a program that is loop-free but overapproximates the original behav-
ior. When successful, this method enables us to make claims about executions
of arbitrary length. We perform the transformation in three steps:

1. For each loop and each program variable that is modified by the loop, add
an assignment at the beginning of the loop that assigns a nondeterministic
value to the variable.

2. After each loop, add an assumption that the negation of the loop condi-
tion holds. An assumption is a program statement assume(c) that aborts
any path that does not satisfy c.

3. Replace each while loop with an if statement using the condition of the
loop as the condition of the if statement.

We will illustrate this transformation with a simple example. The left-hand
side of Program 12.3.1 gives a small program fragment that includes a while
loop. The loop iterates until the newline character is found in an array. The
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Program 12.3.1 Example of an overapproximating transformation of pro-
gram loops

1 int i=0, j=0;
2

3 while(data[i] != ’\n’)
4 {
5 i++;
6 j=i;
7 }
8

9 assert(i == j);

−→

1 int i=0, j=0;
2

3 if(data[i] != ’\n’)
4 {
5 i=*;
6 j=*;
7 i++;
8 j=i;
9 }

10

11 assume(data[i] == ’\n’);
12

13 assert(i == j);

loop therefore has no bound on the number of iterations that can be known
apriori.

On the right-hand side we see the program after the transformation de-
scribed above has been applied. We can now further translate this program
into an SSA constraint using the technique that we have seen in Sect. 12.2.2.
Note that it is particularly simple to translate the assignments that have a
nondeterministically chosen value on the right-hand side. It suffices to increase
the SSA counter for the variable that is assigned. The assumption in Line 11
is translated by adding the condition as a conjunct. We then conjoin the SSA
constraint with the negation of the assertion and obtain the following formula:

i1 = 0 ∧
j1 = 0 ∧
γ1 = (data0 [i1] 6= ’\n’) ∧
i3 = i2 + 1 ∧
j3 = i3 ∧
i4 = γ1 ? i3 : i1 ∧
j4 = γ1 ? j3 : j1 ∧
data0 [i4] = ’\n’ ∧
i4 6= j4

(12.5)

Note that we use i2 and not i1 in the fourth line, because of the nondetermin-
istic assignment. It is left to pass (12.5) to an appropriate decision procedure,
which determines in this case that the formula is unsatisfiable. This implies
that the assertion holds for an arbitrary number of loop iterations.

While the technique has successfully proven the assertion in this particular
example, this is not possible for arbitrary programs. It worked because the
correctness of the assertion does not depend on the previous iterations of the
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loop. We will next see a program for which the abstraction is too coarse, and
will then discuss a method to refine the abstraction.

12.3.2 The Overapproximation Can Be Too Coarse

Consider the program fragment in Program 12.3.2. It is an excerpt of a typi-
cal Windows device driver. We will use it as an example in which the simple
overapproximation of Sect. 12.3.1 does not work. The example program pro-
cesses a sequence of requests, which are obtained by calling a function named
GetNextRequest. The call is protected by a lock to allow multiple concur-
rent threads to access the queue data structure where requests are stored.
Once a request is dequeued and released, the lock is no longer needed because
the data associated with a specific request is not accessed by more than one
thread. It is important to release the lock before processing the request, as
this can take a long time or acquire different locks. Furthermore, note that it
should not be possible to exit the loop without owning the lock. If it were,
then the call to unlock() right after the loop would release the lock twice.
This violates how locks are to be used: unlock() should never be called by
a thread without that thread owning the lock.

Program 12.3.2 Processing requests using locks

1 do {
2 lock();
3 old_count = count;
4 request = GetNextRequest();
5 if (request != NULL) {
6 ReleaseRequest(request);
7 unlock();
8 ProcessRequest(request);
9 count = count + 1;

10 }
11 }
12 while(old_count != count);
13 unlock();

More generally, the locking policy that we would like to assure is illustrated
with a state diagram in Fig. 12.1: the goal is to never reach the error state.
Thus, the program should alternate strictly between locking and unlocking.

Whereas a locking mechanism only makes sense in a multi-threaded pro-
gram, for the purpose of verification we will look at a single-threaded version
of the program, which is sufficient for checking that this thread does not lock
or unlock twice in a row as specified by the state diagram. We will instrument
this specification into Program 12.3.2 as follows:
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lockunlock

locked

unlock

lock
unlocked

error

Fig. 12.1. The specification of the lock mechanism given as a state machine

1. We add a variable state_of_lock, which reflects the state of the state
machine. The variable is initialized with unlocked.

2. When the program performs an action that affects the state of the
state machine (locking or unlocking), we add assignments to the variable
state_of_lock accordingly.

3. Finally, we add assertions to the program that capture the case that the
state machine transitions to the error state.

The program after these transformations is shown in Program 12.3.3. Our
goal is to check the locking specification, as expressed in the assertions.

Program 12.3.3 Program 12.3.2 after abstracting the locking mechanism;
the locking specification is modeled with assertions

1 state_of_lock = unlocked;
2 do {
3 assert(state_of_lock == unlocked);
4 state_of_lock = locked;
5 old_count = count;
6 request = GetNextRequest();
7 if (request != NULL) {
8 ReleaseRequest(request);
9 assert(state_of_lock == locked);

10 state_of_lock = unlocked;
11 ProcessRequest(request);
12 count = count + 1;
13 }
14 }
15 while (old_count != count);
16 assert(state_of_lock == locked);
17 state_of_lock = unlocked;
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We will now apply the transformation technique described in the previ-
ous section to try to prove the assertions. Program 12.3.4 gives the result
of the transformation. Assume for this example that GetNextRequest()
returns a nondeterministially chosen pointer and that it does not alter the
state of the program. Similarly, assume that both ReleaseRequest and
ProcessRequest do not change any of our variables. We can then trans-
form the program into a formula, and pass it to a decision procedure.

Program 12.3.4 Program 12.3.3 after application of the overapproximating
transformation

1 state_of_lock = unlocked;
2

3 state_of_lock = *;
4 old_count = *;
5 count = *;
6 request = *;
7

8 assert(state_of_lock == unlocked);
9 state_of_lock = locked;

10 old_count = count;
11 request = GetNextRequest();
12 if (request != NULL) {
13 ReleaseRequest(request);
14 assert(state_of_lock == locked);
15 state_of_lock = unlocked;
16 ProcessRequest(request);
17 count = count + 1;
18 }
19

20 assume(old_count == count);
21

22 assert(state_of_lock == locked);
23 state_of_lock = unlocked;

We will, however, find that the obtained formula is satisfiable. In particu-
lar, there is a trivial counterexample to the first assertion, in which the variable
state_of_lock is assigned the value locked in the beginning of the loop,
just before Line 3. Clearly the state cannot be locked in the beginning of
the loop in the concrete (real) program; it is an artifact of the abstraction.
This example shows us that beginning the loop with an arbitrary state is too
coarse an abstraction, as it may lead to false alarms. We need to refine this
abstraction, namely make it closer to the concrete program at hand: this will
remove such spurious states that fail the proof despite the fact that they do
not exist in the concrete program. Next, we consider a strategy for coping
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with this problem. In Sect. 12.3.4 we will show how it solves the verification
problem for our program.

12.3.3 Loop Invariants

A key tool for program analysis is the loop invariant. A loop invariant is any
predicate that holds at the beginning of the body, irrespective of how many
times the loop iterates.

Consider, for example, the following fragment of C code:

1 int i=0;
2

3 while(i != 10) {
4 ...
5 i++;
6 }

The following predicate is an invariant of this loop, because it is true in the
beginning of the loop’s body regardless of which iteration we are at:

0 ≤ i < 10 . (12.6)

How can we prove that a given predicate is a loop invariant? The answer is
that we can use induction. Suppose that our program matches the following
template:

1 A;
2 while(C) {
3 assert(I);
4 B;
5 }

Both code fragments A and B are required to be free of loops, but may
contain branching. The condition C and the candidate invariant I must be
free of side-effects. We prove that I is an invariant by induction:

1. Base case: prove that the loop invariant is satisfied when entering the loop
for the first time.

2. Step case: prove that, beginning in a state that satisfies the invariant, ex-
ecuting the loop body once brings us to a state that satisfies the invariant
as well.

Both parts of the proof must succeed to conclude that the invariant holds.
We will now construct two loop-free programs that check the two conditions
above. The program we need to check for the base case is simple:

1 A;
2 assert(C =⇒ I);
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The program for the induction step first restricts the entry state of the loop
body to one that satisfies both the loop condition and the loop invariant. It
then executes the body once, and asserts that the invariant still holds.

1 assume(C ∧ I);
2 B;
3 assert(C =⇒ I);

As both programs are loop-free and thus trivially bounded, we can use the
techniques described in Sect. 12.2.2 to check whether the assertions in them
hold for all inputs. If so, we have established that I is an invariant for the
loop.

We will illustrate the process using the small while loop given above. To
validate that i >= 0 && i < 10 is indeed an invariant, we first build the
base case program:

1 int i=0;
2 assert(i != 10 =⇒ i >= 0 && i < 10);

The assertion in the base case program passes trivially. We now construct the
program for the induction step case:

1 assume(i != 10 && i >= 0 && i < 10);
2 i++;
3 assert(i != 10 =⇒ i >= 0 && i < 10);

The program above can again be checked by means of a suitable decision
procedure. We will find in this case that the formula is unsatisfiable (i.e., the
assertion passes). Thus, we have established our invariant.

We leave it for the reader to adapt this procedure for Do-While and For
loops (see Problem 12.1).

12.3.4 Refining the Abstraction with Loop Invariants

Let us now improve the precision of the program abstraction procedure ex-
plained in Sect. 12.3.1 with loop invariants. The method permits separate
loop invariants for each loop. Denote the set of loops by L, and the invariant
of loop ` ∈ L by I`. We now add three further steps to the transformation
procedure of Sect. 12.3.1. These steps are performed for each loop ` ∈ L.

4. Add an assertion that I` holds before the nondeterministic assignments
to the loop variables. This establishes the base case.

5. Add an assumption that I` holds after the nondeterministic assignments
to the loop variables. This is the induction hypothesis.

6. Add an assertion that C =⇒ I` holds at the end of the loop body. This
proves the induction step.

Note that the base case and the step case are checked together with just one
program.
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It is time to apply this for verifying the Windows driver excerpt from
Sect. 12.3.2. Recall that our abstraction suffered from the fact that the as-
sertion state_of_lock == unlocked failed when entering the loop. We
therefore guess that this predicate is a potential invariant of the loop. We
then construct a new abstraction using the procedure above. This results in
Program 12.3.5.

Program 12.3.5 Program 12.3.4 after refinement using the candidate loop
invariant state_of_lock == unlocked. The verification fails if this is
not indeed an invariant (Lines 3, 25), or if it is not strong enough to prove
the property (Lines 12, 18, 29)

1 state_of_lock = unlocked;
2

3 assert(state_of_lock == unlocked); // induction base case
4

5 state_of_lock = *;
6 old_count = *;
7 count = *;
8 request = *;
9

10 assume(state_of_lock == unlocked); // induction hypothesis
11

12 assert(state_of_lock == unlocked); // property
13 state_of_lock = locked;
14 old_count = count;
15 request = GetNextRequest();
16 if (request != NULL) {
17 ReleaseRequest(request);
18 assert(state_of_lock == locked); // property
19 state_of_lock = unlocked;
20 ProcessRequest(request);
21 count = count + 1;
22 }
23

24 // induction step case
25 assert(old_count != count =⇒ state_of_lock == unlocked);
26

27 assume(old_count == count);
28

29 assert(state_of_lock == locked); // property
30 state_of_lock = unlocked;



12.4 SMT-Based Methods in Biology 297

The assertions in lines 3, 12, and 18 pass trivially. It is more difficult to
see why the two assertions in Lines 25 and 29 pass. Splitting the analysis into
two cases can help:

• If request != NULL, the program executes the “then” branch of the
if statement in Line 16. As a result, the variable state has the value
unlocked. Thus, the assertion for the induction step case (Line 25)
passes. Furthermore, since count is equal to old_count plus one,
old_count is different from count, which means that the assertion in
Line 29 is not even executed owing to the assumption in Line 27.

• If request == NULL, then the execution skips over the “then”-branch.
The variable old_count is equal to count and state is equal to
locked. As a consequence, both assertions pass trivially.

The challenge is to find an invariant that is strong enough to prove the
property as in the example above (recall that there the invariant was simply
guessed). As an extreme example, the constant “true” is also an invariant,
but it is not helpful for verification: it does not restrict the states that are
explored by the verification engine. Finding suitable loop invariants is an area
of active research. Simple options include choosing predicates that appear in
the program text, or constructing new predicates from the program variables
and the usual relational operators. A heuristic selects candidates and then
uses the decision procedure as described above in an attempt to confirm the
invariant and the properties. In general there is no algorithm that always finds
an invariant that is strong enough to prove a given property.

12.4 SMT-Based Methods in Biology

Computing has contributed to the biological sciences by making it possible
to store and analyze large amounts of experimental data. Recently, the de-
velopment and application of computational methods and models that cap-
ture key biological processes and mechanisms is increasingly utilized towards
helping biologists in gaining a clearer understanding of living systems and im-
proving predictive capabilities. The ability to effectively explore and analyze
such biological models is key to making scientific progress in the field. The
biological modeling applications can be divided into two general areas: 1) en-
gineering biological circuits; and 2) understanding and predicting behavior
of natural biological systems. Broadly speaking, engineering of biological cir-
cuits is a newer emerging field with a smaller community of interdisciplinary
researchers, whereas understanding and prediction in biology has a wider and
more established community with potentially thousands of researchers that
can benefit from using computational modeling tools.
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12.4.1 DNA Computing

A representative domain for the first type of applications is DNA computing,
an emerging field in the area of engineering biological circuits. DNA com-
puting research aims to understand the forms of computation that can be
performed using biological material. A main goal of DNA computing is to
robustly design and build circuits from DNA that can perform specified types
of computation. Complex DNA circuits, composed of basic components can
now be designed and constructed in the lab [234, 235, 69]. A long term goal
is to explore whether biological computers can replace existing computers
in certain areas and applications, based on the massively parallel nature of
biological computation. Engineered biological circuits are also of significant
interest due to their ability to interface with biological material, potentially
opening new areas of applications in material design and medicine. Research
efforts are now also directed towards integrating engineered circuits within
living cells. If these techniques mature, applying formal methods to guarantee
‘correctness’ of circuit designs will be important for any medical application.

Chemical reaction networks (CRNs) is a convenient formalism to model
such circuits. Figure 12.2, for example, shows a CRN of a simple DNA circuit
that implements a logical AND gate. We will come back to this figure a little
later. The encoding of a CRN as a transition system is quite direct. Assume
we have an integer for storing the number of molecules for each species. If a
reaction A+B → C fires, the number of molecules of A and of B is decreased
by one and the number of molecules of C is increased by one, while the number
of molecules of all other species remains unchanged. A precondition for firing
this reaction is that there is at least one molecule of A and at least one
molecule of B. Hence, such behavior can be modeled with a transition system,
and as such it can be analyzed with standard verification techniques in order
to prove safety properties or identify concrete bugs in the design.

Formally, a CRN is defined as a pair (S,R) of species and reactions, where
a reaction r ∈ R is a pair of multisets r = (Rr, Pr) describing the reactants
and products of r with their stoichiometries (the number of participating
molecules of a given species, where non-participating species have value 0).
We formalize the behavior of a CRN as the transition system T = (Q,T )
where

• Q is a set of multisets of species. For q ∈ Q we denote by q(s) the number
of molecules of species s that are available in a state q.

• T ⊆ Q×Q is the transition relation defined as

T (q, q′)↔
∨
r∈R

(on(r, q) ∧
∧
s∈S

q′(s) = q(s)−Rr(s) + Pr(s)) , (12.7)

where on(r, q) is true if in state q there are enough molecules of each
reactant of r for it to fire, meaning that reaction r is enabled in q.
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Fig. 12.2. On the left of the figure, we see a DNA circuit implementing a logical
AND gate. The inputs are DNA strands of species A,B and the output is a DNA
strand of species C. Other species that participate in the computation are aux, auxA,
auxB, auxAB (aux is the prefix of “auxiliary”). For a single molecule of species
aux, the output C is produced at the end of the computation if and only if both A
and B are present, which captures the definition of the AND gate. For each of the
seven species, domains labeled by 1, . . . , 4 represent different DNA sequences, while
complementary sequences are denoted by ∗. The binding of complementary domains
and the subsequent displacement of adjacent complementary sequences determines
the possible chemical reactions between the species. The reactions are shown in the
left side of the figure, using a visual representation introduced in [221]. The notation
⇀,↽ designates that the end of the DNA is on the right or left, respectively. There
are in total six chemical reactions in this circuit. The first two pairs are reversible
ones: aux + A↔ auxA, aux + B↔ auxB. The remaining reactions are irreversible:
auxA+B→ auxAB+C and auxB+A→ auxAB+C. On the right part of the figure, the
DNA circuit is represented as a state machine where a state captures the number of
molecules from each species. The initial state has one molecule for each of the species
(aux,A,B) and 0 molecules for other species and is thus labeled 1, 1, 1, 0, 0, 0, 0. The
computation terminates if it reaches a state in which no additional reactions are
possible. In our example the state 0, 0, 0, 0, 0, 1, 1 is a “sink” state for the system
and will eventually be reached.

From (12.7) it is evident that we can encode CRNs with the theory of
linear integer arithmetic. Integers are needed due to the potentially unbounded
number of molecules. In practice, for many models it is possible to prove upper
bounds on the integer representation, thereby allowing the use of bit-vector
encodings of appropriate size without sacrificing precision [291].

One approach for implementing CRNs, termed DNA strand displacement,
is based on the complementarity of DNA sequences. The binding of DNA
base pairs (A-T and G-C), provides a mechanism for engineering chemical
reaction networks using DNA. In this approach, various single and double-
stranded DNA molecules are designated as chemical species. The binding,
unbinding and displacement reactions possible between the complementary
DNA domains of these species form the desired CRN. Specific computational
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operations can be implemented using such a strategy, resulting in a system
called a DNA circuit.

Figure 12.2 shows a simple DNA circuit implementing a logical AND gate
(see caption). A state of the system captures the number of available molecules
from each DNA species, which change as reactions are fired, leading to the
transition system representation. For such a system we would like to prove that
the computation stabilizes in a given state and the correct result is computed.
Specifically in this case we would like to prove that the result of the AND
operation is, eventually, q(C) = 1. Formally, this means that we want to
check the temporal property

(q0(A) = 1 ∧ q0(B) = 1) =⇒ FG(q(C) = 1) , (12.8)

where q0 is the initial state and F and G are the Eventually and Always
temporal logic operators, respectively. The transition relation is extended to
allow an idling transition in the case where no reaction is enabled. Put in other
words, the property is that if in the initial state the number of molecules in
A and B are 1, then eventually we will reach a state from which the number
of molecules in C is 1 indefinitely. It was demonstrated in [293] that an SMT-
based approach makes it possible to effectively analyze complex systems of
this type and check such properties. A key towards scaling up the analysis
has been identifying invariants of the system that are based on conservation
properties, specifically that the number of basic strands in the system does
not vary, but basic strands can stick together or detach.

12.4.2 Uncovering Gene Regulatory Networks

An important area for understanding and predicting the behavior of natu-
ral biological systems is the study of Gene Regulatory Networks (GRNs) and
how they govern the behavior of cells during development [182]. The cell is a
fundamental unit of biological systems, its activity and function is controlled
by a complex network of interactions specifying patterns of gene expression.
A GRN can be viewed as a biological ‘program’ that activates and represses
the activity of genes, determining the functional behavior of the cell. Computa-
tional modeling of GRNs has been an active area of research and applications
for several decades [89]. The motivation is to synthesize experimental data
into useful predictions.

Figure 12.3 shows a simple GRN with genes A, B, and C. Typical regulation
relationships between genes are activation and repression, e.g., A activates B,
or A represses itself. In a Boolean network the value of genes is modeled using
Boolean variables (A represents A, B represents B, etc), and their regulation
is modeled using predicates. For example in Fig. 12.3 C ′ = A∨B denotes that
the value of gene C is updated to be the logical OR of the values of genes A
and B.

A Boolean network is represented as a pair (G,F) of genes and update
functions. For each gene g in the set of genes G, a state of the system q assigns
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Fig. 12.3. (a) A Boolean network representing three genes A, B, and C. The in-
teractions between genes is represented graphically using pointed arrows (positive
interaction) or �-arrows (negative interaction). An update function for each gene
should be defined, and specifies the logical combination of inputs that determine the
next value of a gene. In this example the next state of genes A, denoted A′, is given
by A′ = ¬A. Similarly for genes B and C we have B′ = A ∧ B and C′ = A ∨ B,
respectively. (b) The Boolean network is represented as a transition system where
all nodes are updated synchronously. This system does not stabilize in a single state
but instead reaches a cycle where the values of genes A and C oscillate, moving be-
tween state 001 to state 100 where each bit in the state name represents the value
of genes A,B,C.

a Boolean value depending whether the gene is on or off, thus q(g) = 1 if g
is on in state q and q(g) = 0 if g is off in state q. Each gene is assigned an
update function fg that defines the value of gene g in the next step given the
current values of all genes in G.

We formalize the behavior of a Boolean Network as the transition system
T = (Q, T ) where

• Q = B|G| and q(g) ∈ B indicates if gene g is On or Off in state q.
• T ⊆ Q×Q is the transition relation defined as

T (q, q′) ↔

⎛⎝∧
g∈G

q′(g) = fg(q)

⎞⎠ . (12.9)

This definition assumes synchronous semantics, where all genes are up-
dated in the same step, and can be extended to the asynchronous case where
only a single gene is updated at each step. Understanding the most adequate
modeling assumptions in terms of synchronous vs. asynchronous semantics
and potential time delays is an area of active research. It appears that in many
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cases even the ‘simpler’ synchronous semantics is a good approximation. This
transition system can naturally be encoded in SMT [291, 292] using the theory
of bit vectors and uninterpreted functions (UFBV).

Such networks turn out to be a useful abstraction, despite the simplifica-
tion of viewing genes as being either on or off, and indeed they are now a
well established formalism. A typical analysis question that is studied in such
networks is: “Does behavior stabilize in a fixed state of gene expression when
starting from a given initial condition?”. In the example in Fig. 12.3 from any
initial state the system eventually oscillates between two states where one of
the genes A and C is on and the other is off. Another question of interest is
identifying all attractors of a GRN, where an attractor is a set of states such
that once it is reached the system remains in them permanently.

SMT solvers are applied to the synthesis of a GRN that satisfies a set of
experimental constraints. The motivation is that experimentalists are aiming
to uncover the GRN controlling a cell’s behavior by performing a set of mea-
surements, including steady-state gene expression measurements and effects
of perturbing certain genes. Reasoning about potential GRNs that can ex-
plain known data becomes extremely challenging as the size of the network
and the number of experiments grows, thus the application of formal analysis
is crucial [216]. A synthesized GRN can be used to predict the dynamics of a
cell under new conditions that have not been measured yet in the lab. In par-
ticular it is also useful to consider the set of all possible models that explain
given data, as this can allow more accurate predictions in a situation where
all models agree on certain outcomes [107, 290].

12.5 Problems

12.5.1 Warm-up Exercises

Problem 12.1 (loop invariants). Similarly to the discussion in Sect. 12.3.3,
show how loop invariants can be checked, where the loop is given in the form
of a do-while template, and when it is given in the form of a for template,
both according to the semantics of the C programming language.

12.5.2 Bounded Symbolic Simulation

Problem 12.2 (static single assignment representation). For the pro-
gram that appears below:

1. Show the SSA form corresponding to an unfolding of the program, and
the corresponding formula. The for loop has to be unfolded three times,
and the Next function should be inlined.

2. Now add an assertion after the exit from the for loop, that y > x, and
rewrite the formula so it is satisfiable if and only if this assertion always
holds. Do you expect the assertion to always hold?
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1 int main(int x, int y)
2 {
3 int result;
4 if (x < y)
5 x = x + y;
6 for (int i = 0; i < 3; ++i) {
7 y = x + Next(y);
8 }
9 result = x + y;

10 return result;
11 }
12

13 int Next(int x) {
14 return x + 1;
15 }

Problem 12.3 (SSA with arrays). Give an example of a program that
writes into an array using an index which is a variable. Give its SSA form,
and the SSA formula that is obtained from it.

Problem 12.4 (SSA with pointers). We have not explained how to con-
struct SSA for programs that dereference pointers. Now consider the following
program:

1 int i;
2

3 void my_function(int *p)
4 {
5 int j = 0, *q = &j;
6

7 j += *p + *q;
8 }

1. Assume that the program only contains variables of type int and int *,
and that dereferenced pointers are only read. Explain how to build SSA
with this restriction. Apply your method to the program above.

2. Repeat the first item, but now allow pointers to pointers, and pointers to
pointers to pointers, and so on. Give an example.

3. Repeat the first item, but now allow assigning to dereferenced pointers,
as a means for writing to integer variables, e.g., *i = 5;.

12.5.3 Overapproximating Programs

Problem 12.5 (pointers and overapproximation). Explain how to over-
approximate programs that use pointers. Demonstrate your approach using
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the following program. Use a loop invariant that is suitable for proving the
assertion in the program.

1 void my_function(int *p) {
2

3 for(*p=0; *p < 10; (*p)++) {
4 ...
5 }
6

7 assert(*p == 10);
8 }

Problem 12.6 (loop invariants). Consider the following program:

1 char mybuf[256];
2

3 void concatenate(
4 char buf1[], unsigned len1,
5 char buf2[], unsigned len2)
6 {
7 if(len1+len2 > 256)
8 return;
9

10 for(unsigned i = 0; i != len1; i++)
11 mybuf[i] = buf1[i];
12

13 for(unsigned i = 0; i != len2; i++)
14 mybuf[len1 + i] = buf2[i];
15 }

1. Annotate the program with assertions that check that the array indices
are within the bounds. You can assume that the size of buf1 is len1 and
that the size of buf2 is len2.

2. Now assume that the type unsigned is the set of unbounded natural
numbers. Under this assumption, prove the assertions you have written
by means of suitable invariants for both loops.

3. In ANSI-C programs, the type unsigned is in fact a bit vector type,
typically with 32 bits. Thus recall the semantics of unsigned bit-vector
arithmetic as introduced in Chap. 6. Do your assertions still hold? Justify
your answer.

12.6 Bibliographic Notes

Formal program verification is a major research area dating back to at least
the 1950s, and we have neither intention nor hope to be able to describe its
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milestones or main contributors here. We will only mention some references
related directly to the material covered in this chapter, namely path-based
symbolic simulation, Bounded Model Checking, and proofs with invariants.

Path-Based Symbolic Simulation

The use of decision procedures and path-based symbolic simulation to generate
test cases for software was already reported in 1974 [165], and since then,
hundreds of publications on this subject have appeared. We will therefore
focus on a few well-known approaches. How is the execution path chosen? In
static symbolic simulation, the execution path can be chosen by extending a
partial path with new conjuncts as long as the resulting formula is satisfiable.
As soon as the formula becomes unsatisfiable, some other path can be explored
by negating one of the branch conditions encountered on the path. By contrast,
in dynamic symbolic simulation, the choice of path is driven by a concrete
execution.

The Java Path Finder (JPF) [280, 163], originally an explicit-state
model checker for multi-threaded Java Bytecode, now features a hybrid state
representation that includes path constraints. JPF instruments the code such
that it builds a symbolic formula when executed. JPF tries to avoid explor-
ing invalid paths by calling the decision procedure to check whether there
exists an execution that follows the path. DART [131] integrates path-based
symbolic execution into a random test generator. It replaces symbolic values
by explicit values in case the solver is unable to handle the symbolic con-
straint. Concurrency is not supported in the DART implementation, but it
is supported in its successor, CUTE [255].

Symbolic execution has recently found significant industrial adoption in
the context of security analysis. The SAGE [130] tool, which is based on
path-based symbolic execution, is used to find most of the bugs identified
by Microsoft’s fuzz-testing infrastructure. It has been used on hundreds of
parsers for various media formats and is administrated in a data-center test
environment. The KLEE tool [62], similarly, has been instrumental in finding
a large number of security vulnerabilities in code deployed on Windows and
Linux. Finally, the Pex [130] tool offers an integration of symbolic execution
with the .NET runtime. It can thus be used on any .NET language, including
C#. Pex lets programmers directly take advantage of the symbolic execution
technology for generating test inputs to .NET code. It offers a sophisticated
integration with the .NET type system that enables it to generate test cases
for complex, structured data. PREfix is used to analyze millions of lines
of Microsoft source code on a routine basis. The Coverity [111] analyzer
contains analogous techniques to PREfix, including bit-precise analysis, as
does GrammaTech’s CodeSonar tool. A common trait of these tools is that
they do not aim to give strong guarantees about absence of runtime errors.
They are bug-hunting tools.
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Symbolic execution remains of interest also for the security community in-
cluding “white”, “blue”, and “black” “hats” (jargon for industrial, legitimate,
and hackers with a shady purpose). Microsoft’s PREfix [61] analysis tool
pioneered a bottom-up analysis of procedures: it summarizes basic (bounded)
procedures as a set of guarded transitions, and then uses these guarded transi-
tions when analyzing procedures that call them. The set of guarded transitions
correspond to an execution path, and include automatic assertions (e.g., no
null dereferences). An SMT solver is used to check whether there are inputs
that drive an execution along the path and violate the assertion.

Bounded Analyzers

Bounded Model Checking (BMC) [34] was originally developed for verifying
logic designs of hardware circuits. It is based on unrolling the design k times,
for a given bound k, and encoding the resulting circuit as a propositional
formula. A constraint representing the negation of the property is added, and
hence the resulting formula is satisfiable if and only if an error trace of length
k or less exists. The adaptation of this idea to software is what is described
in Sect. 12.2. In 2000, Currie et al. proposed this approach in a tool that un-
winds loops in assembly programs running on DSPs [83]. The approach was
extended to ANSI-C programs in 2003 with an application to hardware/soft-
ware co-verification by the CBMC software model checker [170]. CBMC uses
a combination of the array theory with the bit-vector theory (pointers are
represented as pairs of bit vectors, an index of an object, and an offset within
it). It can export the verification condition to external SAT and SMT solvers.
An extension to bounded verification of concurrent software based on an ex-
plicit enumeration of thread interleavings was presented in 2005 [237]. Given
a bound on the number of context switches, thread interleavings can also be
encoded into sequential code [179, 154]. Alternatively, they can be encoded
symbolically, e.g., using constraints given as partial orders [3]. F-SOFT [155]
uses BDD and SAT-based engines to verify bit-accurate models of C programs.
Instances of this approach also include ESBMC [80] and LLBMC [195].

Abstraction-Based Methods

Predicate abstraction was introduced by Susanne Graf and Hassen Säıdi [135]
in the context of interactive theorem proving. It was later used by Microsoft’s
SLAM [12], the tool BLAST [139], and to a limited degree also by Java
Path Finder [280], all of which can be considered the pioneers of software
verifiers that support industrial programming languages. SLAM has evolved
into SDV (for Static Driver Verifier) [13], which is now part of Microsoft’s
Windows Driver Kit. SDV is used to verify device drivers, and is considered
to be the first wide-scale industrial application of formal software verification.
In the decade that followed, at least ten further software verifiers based on
predicate abstraction were introduced. Both Magic [65] and SatAbs [73]
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can also verify concurrent programs. The BFC Model Checker for Boolean
programs can verify the parametric case, i.e., programs in which the number
of concurrent threads is not bounded apriori [161]. With the Windows 8.1
release, SDV now uses Corral as verifier [177, 178], which uses techniques
described in Sect. 12.3.

The annual competition for propositional SAT solvers has resulted in a re-
markable surge in the performance and quality of the solvers. To this end, the
Competition on Software Verification (SV-COMP) was founded in 2012, and
is held annually in association with the conference TACAS. The benchmarks
are split into numerous categories according to particular language features
that are exercised, including “Bit-Vectors”, “Concurrency”, and “HeapMa-
nipulation”.

Beyond Safety Checking

This chapter focuses on methods for checking reachability properties. How-
ever, decision procedures have applications beyond reachability checking in
program analysis, and we will give a few examples. Termination checkers at-
tempt to answer the question “does this program run forever, or will it even-
tually terminate?” Proving program termination is typically done by finding
a ranking function for the program states, and the generation of these ranking
functions relies on a decision procedure for the appropriate theory. Typical
instances use linear arithmetic over the rationals (e.g., [76]) and the bit vec-
tors [74, 86, 68]. A further applications of program analysis that goes beyond
reachability checking is the computation of quantitative properties of pro-
grams, e.g., information leakage [141].



A.1 The Satisfiability-Modulo-Theory Library and
Standard (SMT-LIB)

A bit of history: The growing interest and need for decision procedures such
as those described in this book led to the SMT-LIB initiative (short for
Satisfiability-Modulo-Theory Library). The main purpose of this initiative
was to streamline the research and tool development in the field to which this
book is dedicated. For this purpose, the organizers developed the SMT-LIB
standard [239], which formally specifies the theories that attract enough in-
terest in the research community, and that have a sufficiently large set of
publicly available benchmarks. As a second step, the organizers started col-
lecting benchmarks in this format, and today (2016) the SMT-LIB repository
includes more than 100 000 benchmarks in the SMT-LIB 2.5 format, classified
into dozens of logics. A third step was to initiate SMT-COMP, an annual
competition for SMT solvers, with a separate track for each division.

These three steps have promoted the field dramatically: only a few years
back, it was very hard to get benchmarks, every tool had its own language
standard and hence the benchmarks could not be migrated without trans-
lation, and there was no good way to compare tools and methods.1 These
problems have mostly been solved because of the above initiative, and, con-
sequently, the number of tools and research papers dedicated to this field is
now steadily growing.

The SMT-LIB initiative was born at FroCoS 2002, the fourth Workshop
on Frontiers of Combining Systems, after a proposal by Alessandro Armando.
At the time of writing this appendix, it is co-led by Clark Barrett, Pascal
Fontaine, and Cesare Tinelli. Clark Barrett, Leonardo de Moura, and Cesare
Tinelli currently manage the SMT-LIB benchmark repository.

1 In fact, it was reported in [94] that each tool tended to be the best on its own set
of benchmarks.

A

SMT-LIB: a Brief Tutorial

© Springer-Verlag Berlin Heidelberg 2016
D. Kroening and O. Strichman, Decision Procedures,
Texts in Theoretical Computer Science. An EATCS Series,
DOI 10.1007/978-3-662-50497-0

309



310 A SMT-LIB: a Brief Tutorial

The current state: The current SMT-LIB standard is at version 2.5 (as
of 2015). It supports the theories that are presented in Fig. A.1. The symbols
should be interpreted as follows:

• QF for the restriction to quantifier-free formulas
• A or AX for arrays without or with extensionality
• BV for fixed-size bit-vectors
• FP for Floating-Point
• IA for integer arithmetic
• RA for real arithmetic
• IRA for mixed integer arithmetic
• IDL for integer difference logic
• RDL for rational difference logic
• L before IA, RA, or IRA for the linear fragment of those arithmetics
• N before IA, RA, or IRA for the nonlinear fragment of those arithmetics
• UF for the extension allowing free sort and function symbols

Fig. A.1. The theories supported by the SMT-LIB standard have associated bench-
marks and at least one tool that (attempts to) solve them. An arrow (T1, T2) means
that T1 is a special case of T2. The greyed nodes are theories that are covered in
this book. The figure is copied (with permission) from the SMT-LIB web-site

A.2 The SMT-LIB File Interface

The SMT-LIB standard defines a file format for describing decision problems.
The benefit of a standardized file format is that it is easy to experiment with
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a range of solvers, and to replace the solver used in case better solvers are
developed. The description below refers to ver. 2.0 of the standard, but ver.
2.5 is backward-compatible.

SMT-LIB files are ASCII text files, and as a consequence can be written
with any text editor that can save plain text files. The syntax is derived from
that of Common Lisp’s S-expressions. All popular solvers are able to read
formulas from files or the standard input of the program, which permits the
use of POSIX pipes to communicate with the solver. We will refrain from
giving a formal syntax and semantics for SMT-LIB files, and will instead give
examples for the most important theories.

A.2.1 Propositional Logic

We will begin with an example in propositional logic. Suppose we wanted to
check the satisfiability of

(a ∨ b) ∧ ¬a .
We first need to declare the Boolean variables a and b. The SMT-LIB syn-

tax offers the command declare-fun for declaring functions, i.e., mappings
from some sequence of function arguments to the domain of the function.
Variables are obtained by creating a function without arguments. Thus, we
will write

1 (declare-fun a () Bool)
2 (declare-fun b () Bool)

to obtain two Boolean variables named a and b. Note the empty sequence of
arguments after the name of the variable.

We can now write constraints over these variables. The syntax for the
usual Boolean constants and connectives is as follows:

true true
false false
¬a (not a)
a =⇒ b (=> a b)
a ∧ b (and a b)
a ∨ b (or a b)
a⊕ b (xor a b)

Using the operators in the table, we can write the formula above as follows:

1 (and (or a b) (not a))

Constraints are given to the SMT solver using the command assert. We
can add the formula above as a constraint by writing

1 (assert (and (or a b) (not a)))

As our formula is a conjunction of two constraints, we could have equivalently
written
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1 (assert (or a b))
2 (assert (not a))

After we have passed all constraints to the solver, we can check satisfiability
of the constraint system by issuing the following command:

1 (check-sat)

The solver will reply to this command with unsat or sat, respectively. In
the case of the formula above, we will get the answer sat. To inspect the
satisfying assignment, we issue the get-value command.

1 (get-value (a b))

This command takes a list of variables as argument. This makes it possible
to query the satisfying assignment for any subset of the variables that have
been declared.

A.2.2 Arithmetic

The SMT-LIB format standardizes syntax for arithmetic over integers and
over reals. The type of the variable is also called the sort. The SMT-LIB
syntax has a few constructs that can be used for all sorts. For instance, we
can write (= x y) to denote equality of x and y, provided that x and y have
the same sort. Similarly, we can write (disequal x y) to say that x and
y are different. The operator disequal can be applied to more than two
operands, e.g., as in (disequal a b c). This is equivalent to saying that
all the arguments are different.

The SMT-LIB syntax furthermore offers a trinary if-then-else operator,
which is denoted as (ite c x y). The first operand must be a Boolean
expression, whereas the second and third operands may have any sort as long
as the sort of x matches that of y. The expression evaluates to x if c evaluates
to true, and to y otherwise.

To write arithmetic expressions, SMT-LIB offers predefined sorts called
Real and Int. The obvious function symbols are defined, as given in the
table below.

addition +
subtraction -
unary minus -
multiplication *
division / (reals) div (integers)
remainder mod (integers only)
relations < > <= >=

Many of the operators can be chained, with the obvious meaning, as in, for
example, (+ x y z). The solver will check that the variables in an expression
have the same sort. The nonnegative integer and decimal constant symbols 1,
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2, 3.14, and so on are written in the obvious way. Thus, the expression 2x+ y
is written as (+ (* 2 x) y). To obtain a negative number, one uses the
unary minus operator, as in (- 1). By contrast, -1 is not accepted.

A.2.3 Bit-Vector Arithmetic

The SMT-LIB syntax offers a parametric sort BitVec, where the parameter
indicates the number of bits in the bit vector. The underscore symbol is used
to indicate that BitVec is parametric. As an example, we can define an 8-bit
bit vector a and a 16-bit bit vector b as follows:

1 (declare-fun a () (_ BitVec 8))
2 (declare-fun b () (_ BitVec 16))

Constants can be given in hexadecimal or binary notation, e.g., as follows:

1 (assert (= a #b11110000))
2 (assert (= b #xff00))

The operators are given in the table below. Recall from Chap. 6 that
the semantics of some of the arithmetic operators depend on whether the
bit vector is interpreted as an unsigned integer or as two’s complement. In
particular, the semantics differs for the division and remainder operators, and
the relational operators.

Unsigned Two’s complement

addition bvadd
subtraction bvsub
multiplication bvmul
division bvudiv bvsdiv
remainder bvurem bvsrem
relations bvult, bvugt, bvslt, bvsgt,

bvule, bvuge bvsle, bvsge
left shift bvshl
right shift bvlshr bvashr

Bit vector concatenation is done with concat. A subrange of the bits of a
bit vector can be extracted with (_ extract i j), which extracts the bits
from index j to index i (inclusive).

A.2.4 Arrays

Recall from Chap. 7 that arrays map an index type to an element type. As
an example, we would write

1 (declare-fun a () (Array Int Real))

in SMT-LIB syntax to obtain an array a that maps integers to reals. The
SMT-LIB syntax for a[i] is (select a i), and the syntax for the array
update operator a{i← e} is (store a i e).
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A.2.5 Equalities and Uninterpreted Functions

Equality logic can express equalities and disequalities over variables taken
from some unspecified set. The only assumption is that this set has an infinite
number of elements. To define the variables, we first need to declare the set
itself, i.e., in SMT-LIB terminology, we declare a new sort. The command is
declare-sort. We obtain a new sort my sort and variables a, b, and c of
that sort as follows:

(declare-sort my_sort 0)
(declare-fun a () my_sort)
(declare-fun b () my_sort)
(declare-fun c () my_sort)
(assert (= a b))
(assert (disequal a b c))

The number zero in the declare-sort command is the arity of the sort.
The arity can be used for subtyping, e.g., the arrays from above have arity
two.



B.1 Introduction

A decision procedure is always more than one algorithm. A lot of infrastructure
is required to implement even simple decision procedures. We provide a large
part of this infrastructure in the form of the DPlib library in order to simplify
the development of new procedures. DPlib is available for download,1 and
consists of the following parts:

• A template class for a basic data structure for graphs, described in
Sect. B.2.

• A parser for a simple fragment of first-order logic given in Sect. B.3.
• Code for generating propositional SAT instances in CNF format, shown

in Sect. B.4.
• A template for a decision procedure that performs a lazy encoding, de-

scribed in Sect. B.5.

To begin with, the decision problem (the formula) has to be read as input by
the procedure. The way this is done depends on how the decision procedure
interfaces with the program that generates the decision problem.

In industrial practice, many decision procedures are embedded into larger
programs in the form of a subprocedure. Programs that use a decision proce-
dure are called applications. If the run time of the decision procedure domi-
nates the total run time of the application, solvers for decision problems are
often interfaced to by means of a file interface. This chapter provides the ba-
sic ingredients for building a decision procedure that uses a file interface. We
focus on the C/C++ programming language, as all of the best-performing
decision procedures are written in this language.

The components of a decision procedure with a file interface are shown in
Fig. B.1. The first step is to parse the input file. This means that a sequence
of characters is transformed into a parse tree. The parse tree is subsequently

1 http://www.decision-procedures.org/
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checked for type errors (e.g., adding a Boolean to a real number can be con-
sidered a type error). This step is called type checking . The module of the
program that performs the parsing and type-checking phases is usually called
the front end.

Most of the decision procedures described in this book permit an arbitrary
Boolean structure in the formula, and thus have to reason about propositional
logic. The best method to do so is to use a modern SAT solver. We explain
how to interface to SAT solvers in Sect. B.4. A simple template for a decision
procedure that implements an incremental translation to propositional logic,
as described in Chap. 3, is given in Sect. B.5.

Front end

Parsing
Type

checking
Decision

procedure

Fig. B.1. Components of a decision procedure that implements a file interface

B.2 Graphs and Trees

Graphs are a basic data structure used by many decision procedures, and
can serve as a generalization of many more data structures. As an example,
trees and directed acyclic graphs are obvious special cases of graphs. We have
provided a template class that implements a generic graph container.

This class has the following design goals:

• It provides a numbering of the nodes. Accessing a node by its number is
an O(1) operation. The node numbers are stable, i.e., stay the same even
if the graph is changed or copied.

• The data structure is optimized for sparse graphs, i.e., with few edges.
Inserting or removing edges is an O(log k) operation, where k is the number
of edges. Similarly, determining if a particular edge exists is also O(log k).

• The nodes are stored densely in a vector, i.e., with very little overhead
per node. This permits a large number (millions) of nodes. However, adding
or removing nodes may invalidate references to already existing nodes.

An instance of a graph named G is created as follows:

#include "graph.h"
...
graph<graph_nodet<> > G;
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Initially, the graph is empty. Nodes can be added in two ways: a single node
is added using the method add node(). This method adds one node, and
returns the number of this node. If a larger number of nodes is to be added,
the method resize(i) can be used. This changes the number of nodes to i
by either adding or removing an appropriate number of nodes. Means to erase
individual nodes are not provided.

The class graph can be used for both directed and undirected graphs.
Undirected graphs are simply stored as directed graphs where edges always
exist in both directions. We write a −→ b for a directed edge from a to b, and
a←→ b for an undirected edge between a and b.

Class: graph<T>
Methods: add edge(a, b) adds a −→ b

remove edge(a, b) removes a −→ b, if it exists
add undirected
edge(a, b)

adds a←→ b

remove undirected
edge(a, b)

removes a←→ b

remove in edges(a) removes x −→ a, for any node x
remove out edges(a) removes a −→ x, for any node x
remove edges(a) removes a −→ x and x −→ a, for any node

x

Table B.1. Interface of the template class graph<T>

The methods of this template class are shown in Table B.1. The method
has edge(a, b) returns true if and only if a −→ b is in the graph. The
set of nodes x such that x −→ a is returned by in(a), and the set of nodes
x such that a −→ x is returned by out(a).

The class graph provides an implementation of the following two algo-
rithms:

• The set of nodes that are reachable from a given node a can be com-
puted using the method visit reachable(a). This method sets the
member .visited of all nodes that are reachable from node a to true.
This member can be set for all nodes to false by calling the method
clear visited().

• The shortest path from a given node a to a node b can be computed with
the method shortest path(a, b, p), which takes an object p of type
graph::patht (a list of node numbers) as its third argument, and stores
the shortest path between a and b in there. If b is not reachable from a,
then p is empty.
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B.2.1 Adding “Payload”

Many algorithms that operate on graphs may need to store additional infor-
mation per node or per edge. The container class provides a convenient way
to do so by defining a new class for this data, and using this new class as a
template argument for the template graph. As an example, this can be used
to define a graph that has an additional string member in each node:

#include "graph.h"

class my_nodet {
public:
std::string name;

};
...

graph<my_nodet> G;

Data members can be added to the edges by passing a class type as a
second template argument to the template graph nodet. As an example,
the following fragment allows a weight to be associated with each edge:

#include "graph.h"

class my_edget {
int weight;

my_edget():weight(0) {
}

};

class my_nodet {
};
...

graph<my_nodet, my_edget> G;

Individual edges can be accessed using the method edge(). The following
example sets the weight of edge a −→ b to 10:

G.edge(a, b).weight=10;

B.3 Parsing

B.3.1 A Grammar for First-Order Logic

Many decision problems are stored in a file. The decision procedure is then
passed the name of the file. The first step of the program that implements



B.3 Parsing 319

id : [a-zA-Z $][a-zA-Z0-9 $]+

N-elem : [0-9]+

Q-elem : [0-9]∗.[0-9]+

infix-function-id : + | − | ∗ | / | mod
boolop-id : ∧ | ∨ | ⇔ | =⇒
infix-relop-id : < | > | ≤ | ≥ | =
quantifier : ∀ | ∃
term : id

| N-elem | Q-elem
| id ( term-list )
| term infix-function-id term
| − term
| ( term )

formula : id
| id ( term-list )
| term infix-relop-id term
| quantifier variable-list : formula
| ( formula )
| formula boolop-id formula
| ¬ formula
| true | false

Fig. B.2. Simple BNF grammar for formulas

the decision procedure is therefore to parse the file. The file is assumed to
follow a particular syntax. We have provided a parser for a simple fragment
of first-order logic with quantifiers.

Figure B.2 shows a grammar of this fragment of first-order logic. The
grammar in Fig. B.2 uses mathematical notation. The corresponding ASCII
representations are listed in Table B.2.

All predicates, variables, and functions have identifiers. These identifiers
must be declared before they are used. Declarations of variables come with a
type. These types allow a problem that is in, for example, linear arithmetic
over the integers to be distinguished from a problem in linear arithmetic over
the reals. Figure B.3 lists the types that are predefined. The domain U is used
for types that do not fit into the other categories.

B boolean
N0 natural
Z int
R real
BN unsigned [N]
BN signed [N]
U untyped

Fig. B.3. Supported types and their ASCII representations
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Mathematical symbol Operation ASCII

¬ Negation not, !

∧ Conjunction and, &

∨ Disjunction or, |

⇔ Biimplication <=>
=⇒ Implication =>

< Less than <
> Greater than >
≤ Less than or equal to <=
≥ Greater than or equal to >=
= Equality =

∀ Universal quantification forall
∃ Existential quantification exists

− Unary minus -

· Multiplication *
/ Division /

mod Modulo (remainder) mod

+ Addition +
− Subtraction -

Table B.2. Built-in function symbols

Table B.2 also defines the precedence of the built-in operators: the op-
erators with higher precedence are listed first, and the precedence levels are
separated by horizontal lines. All operators are left-associative.

B.3.2 The Problem File Format

The input files for the parser consist of a sequence of declarations (Fig. B.4
shows an example). All variables, functions, and predicates are declared. The
declarations are separated by semicolons, and the elements in each declaration
are separated by commas. Each variable declaration is followed by a type (as
listed in Fig. B.3), which specifies the type of all variables in that declaration.

A declaration may also define a formula. Formulas are named and tagged.
Each entry starts with the name of the formula, followed by a colon and one
of the keywords theorem, axiom, or formula. The keyword is followed
by a formula. Note that the formulas are not necessarily closed : the formula
simplex contains the unquantified variables i and j. Variables that are not
quantified explicitly are implicitly quantified with a universal quantifier.
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a, b, x, p, n: int;
el: natural;
pi: real;
i, j: real;
u: untyped; -- an untyped variable
abs: function;
prime, divides: predicate;

absolute: axiom forall a: ((a >=0 ==> abs(a) = a) and
(a < 0 ==> abs(a) = -a)) ==>
(exists el: el = abs(a));

divides: axiom (forall a, b: divides (a, b) <=>
exists x: b = a * x);

simplex: formula (i + 5*j <= 3) and
(3*i < 3.7) and
(i > -1) and (j > 0.12)

Fig. B.4. A realistic example

B.3.3 A Class for Storing Identifiers

Decision problems often contain a large set of variables, which are represented
by identifier strings. The main operation on these identifiers is comparison.
We therefore provide a specialized string class that features string comparison
in time O(1). This is implemented by storing all identifiers inside a hash table.
Comparing strings then reduces to comparing indices for that table.

Identifiers are stored in objects of type dstring. This class offers most of
the methods that the other string container classes feature, with the exception
of any method that modifies the string. Instances of type dstring can be
copied, compared, ordered, and destroyed in time O(1), and use as much space
as an integer variable.

B.3.4 The Parse Tree

The parse tree is stored in a graph class ast::astt and is generated from a
file as follows (Fig. B.5):

1. Create an instance of the class ast::astt.
2. Call the method parse(file) with the name of the file as an argument.

The method returns true if an error was encountered during parsing.

The class ast::astt is a specialized form of a graph, and stores nodes of
type ast::nodet. The root node is returned by the method root() of the
class ast::astt. Each node stores the following information:
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#include "parsing/ast.h"

...

ast::astt ast;

if(ast.parse(argv[1])) {
std::cerr << "parsing failed" << std::endl;
exit(1);

}

Fig. B.5. Generating a parse tree

1. Each node has a numeric label (an integer). This is used to distinguish
the operators and the terminal symbols. Table B.3 contains a list of the
symbolic constants that are used for the numeric labels.

2. Nodes that contain identifiers or a numeric constant also have a string
label, which is of type dstring (see Sect. B.3.3). We use strings for the
numeric constants instead of the numeric types offered by C++ in order
to support unbounded numbers.

3. Each node may have up to two child nodes.

As described in Sect. B.2, the nodes of the graph are numbered. In fact,
the ast::nodet class is only a wrapper around these numbers, and thus
can be copied efficiently. The methods it offers are shown in Table B.4. The
methods c1() and c2() return NIL if there is no first or second child node,
respectively.

For convenience, the ast::astt class provides a symbol table, which is a
mapping from the set of identifiers to their types. Given an identifier s, the
method get type node(s) returns the node in the parse tree that corre-
sponds to the type of s.

B.4 CNF and SAT

B.4.1 Generating CNF

The library provides algorithms for converting propositional logic into CNF
using Tseitin’s method (see Sect. 1.3). The resulting clauses can be passed
directly to a propositional SAT solver. Alternatively, they can be written to
disk in the DIMACS format. The interface to both back ends is defined in the
propt base class. This class is used wherever the specific propositional back
end is to be left unspecified. Literals (i.e., variables or their negations) are
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Name Used for

N_IDENTIFIER Identifier
N_INTEGER Integer constant
N_RATIONAL Rational constant
N_INT Integer type
N_REAL Real type
N_BOOLEAN Boolean type
N_UNSIGNED Unsigned type
N_SIGNED Signed type
N_AXIOM Axiom
N_DECLARATION Declaration
N_THEOREM Theorem
N_CONJUNCTION ∧
N_DISJUNCTION ∨
N_NEGATION ¬
N_BIIMPLICATION ⇐⇒
N_IMPLICATION =⇒
N_TRUE True
N_FALSE False
N_ADDITION +
N_SUBTRACTION −
N_MULTIPLICATION ∗
N_DIVISION /
N_MODULO mod
N_UMINUS Unary minus
N_LOWER <
N_GREATER >
N_LOWEREQUAL ≤
N_GREATEREQUAL ≥
N_EQUAL =
N_FORALL ∀
N_EXISTS ∃
N_LIST A list of nodes
N_PREDICATE Predicate
N_FUNCTION Function

Table B.3. Numeric labels of nodes and their meanings
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Class: ast::nodet
Methods: id() Returns the numeric label

string() Returns the string label
c1() Returns the first child node
c2() Returns the second child node
number() Returns the number of the node
is nil() Returns true if the node is NIL

Table B.4. Interface of the class ast::nodet

stored in objects of type literalt. The constants true and false are re-
turned by const literal(true) and const literal(false), respec-
tively.

Class: propt
Methods: land(a, b) Returns a literal l with l ⇐⇒ a ∧ b

land(v) Given a vector v = 〈v1, . . . , vn〉, returns a
literal l with l ⇐⇒

∧
i vi

lor(a, b) Returns a literal l with l ⇐⇒ a ∨ b
lor(v) Given a vector v = 〈v1, . . . , vn〉, returns a

literal l with l ⇐⇒
∨
i vi

lxor(a, b) Returns a literal l with l ⇐⇒ a⊕ b
lnot(a, b) Returns a literal l with l ⇐⇒ ¬a
lnand(a, b) Returns a literal l with l ⇐⇒ ¬(a ∧ b)
lnor(a, b) Returns a literal l with l ⇐⇒ ¬(a ∨ b)
lequal(a, b) Returns a literal l with l ⇐⇒ (a ⇐⇒ b)
limplies(a, b) Returns a literal l with l ⇐⇒ (a =⇒ b)
lselect(a, b, c) Returns a literal l with (a =⇒ (l ⇐⇒

b)) ∧ (¬a =⇒ (l ⇐⇒ c))
set equal(a, b) Adds the constraint a ⇐⇒ b
new variable() Returns a new variable
const literal(c) Returns a literal with a constant Boolean

truth value given by c

Table B.5. Interface of the class propt

The interface of the class propt is specified in Table B.5. The classes
satcheckt and dimacs cnft are derived from this class. An implemen-
tation of a state-of-the-art propositional SAT solver is given by the class
satcheckt. The additional methods it provides are shown in Table B.6.
The class dimacs cnft is used to store the clauses and dump them into a
text file that uses the DIMACS CNF format. Its interface is given in Table B.7.
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Class: satcheckt, derived from propt

Methods: prop solve() Returns P SATISFIABLE if the formula is
SAT

l get(l) Returns the value of l in the satisfying as-
signment

solver text() Returns a string that identifies the solver

Table B.6. Interface of the class satcheckt

Class: dimacs cnft, derived from propt

Methods: write dimacs
cnf(s)

Dumps the formula in DIMACS CNF for-
mat into the stream s

Table B.7. Interface of the class dimacs cnft

B.4.2 Converting the Propositional Skeleton

The propositional skeleton (see Chap. 3) of a parse tree can be generated
using the class skeletont. This offers an operator (), which can be applied
as follows, where root node is the root node of a formula, and prop is an
instance of propt:

#include "sat/skeleton.h"

...

skeletont skeleton;

skeleton(root_node, prop);

Besides converting the propositional part, the method also generates a vector
skeleton.nodes, where each element corresponds to a node in the parse
tree. Each node has two attributes:

• The attribute type is one of PROPOSITIONAL or THEORY, and distin-
guishes the skeleton from the theory atoms.

• In the case of a skeleton node, the attribute l is the literal that encodes
the node.

B.5 A Template for a Lazy Decision Procedure

The library provides two templates for decision procedures that compute a
propositional encoding of a given formula ϕ in the lazy manner. These algo-
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rithms are described in detail under the names Lazy-DPLL (Algorithm 3.3.2)
and DPLL(T ) (Algorithm 3.4.1) in Chap. 3.

We first define a common interface for any kind of decision procedure. This
interface is defined by a class decision proceduret (Table B.8). This class
offers a method is satisfiable(ϕ), which returns true if and only if the
formula ϕ is satisfiable. If so, one may call the methods print assign-
ment(s) and get(n). The method print assignment(s) dumps the en-
tire satisfying assignment into a stream, whereas get(n) permits querying
the value of an individual node n of ϕ.

Class: decision proceduret
Methods: is satisfiable(ϕ) Returns true if the formula ϕ is found to

be SAT
print
assignment(s)

Dumps the satisfying assignment into the
stream s

get(n) Returns the value assigned to node n of ϕ

Table B.8. Interface of the class decision proceduret

Class: lazy dpllt, derived from decision proceduret

Methods: assignment(n, v) This method is called by the SAT solver
for every assignment to a Σ-literal in ϕ.
The node it corresponds to is n; the value
assigned is given by v.

deduce() This method is called once a satisfying as-
signment to the current propositional en-
coding is found.

add clause(c) Called by deduce() to add a clause as
a consequence of a T -inconsistent assign-
ment

Members: f A copy of ϕ
skeleton An instance of skeletont

Table B.9. Interface of the classes lazy dpllt and dpll tt, which are imple-
mentations of Lazy-DPLL (Algorithm 3.3.2) and DPLL(T ) (Algorithm 3.4.1). The
theory T is assumed to be defined over a signature Σ

The templates that we have provided implement two of the algorithms
given in Chap. 3: Lazy-DPLL and DPLL(T ). These templates include the
conversion of the propositional skeleton of ϕ into CNF, and the interface to
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the SAT solver. We provide a common interface to both algorithms, which is
given in Table B.9.

Class: dpll tt, derived from decision proceduret

Methods: deduce() This method is called by the SAT solver
to check a partial assignment for T -
consistency.

add clause(c) Called to add a clause as consequence of
assignment

theory
implication(n,
v)

Called to communicate a T -implication to
the SAT solver: n is the node implied, and
v is the value.

Members: f A copy of ϕ
skeleton An instance of skeletont

Table B.10. Interface of the class dpll tt, an implementation of DPLL(T ) (Al-
gorithm 3.4.1)

The only part that is left open is the interface to the decision procedure for
the conjunction of Σ-literals. In the case of both algorithms, this is the method
deduce(). The assignment to the Σ-literals is passed from the SAT solver
to the deductive engine by means of calls to the method assignment(n,
v), where n is the node and v is the value that is assigned.

The method deduce() inspects this assignment to the Σ-literals. If it is
found to be consistent, deduce() is expected to return true. Otherwise, it
is expected to add appropriate constraints using the method add clause,
and to return false.

In the case of Lazy-DPLL, deduce() is called only for full assignments,
whereas DPLL(T ) may call deduce() for partial assignments.
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Wintersteiger, editors, Satisfiability Modulo Theories (SMT), volume 1163 of
CEUR Workshop Proceedings, pages 39–49, 2014.

71. A. Cimatti, A. Griggio, B. Schaafsma, and R. Sebastiani. The MathSAT5 SMT
solver. In N. Piterman and S. Smolka, editors, Tools and Algorithms for the
Construction and Analysis of Systems (TACAS), volume 7795 of LNCS, pages
93–107. Springer, 2013.

72. E. M. Clarke, D. Kroening, and F. Lerda. A tool for checking ANSI-C pro-
grams. In Tools and Algorithms for the Construction and Analysis of Systems
(TACAS), volume 2988 of LNCS, pages 168–176. Springer, 2004.

73. E. M. Clarke, D. Kroening, N. Sharygina, and K. Yorav. Predicate abstraction
of ANSI-C programs using SAT. Formal Methods in System Design, 25(2-
3):105–127, 2004.
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232. M. Presburger. Über die Vollständigkeit eines gewissen Systems der Arithmetik
ganzer Zahlen, in welchem die Addition als einzige Operation hervortritt. In
Comptes Rendus du I congrès de Mathématiciens des Pays Slaves, pages 92–
101, Warszawa, 1929.

233. W. Pugh. A practical algorithm for exact array dependence analysis. Commun.
ACM, 35(8):102–114, 1992.

234. L. Qian and E. Winfree. Scaling up digital circuit computation with DNA
strand displacement cascades. Science, 332(6034):1196–1201, 2011.

235. L. Qian, E. Winfree, and J. Bruck. Neural network computation with DNA
strand displacement cascades. Nature, 475(7356):368–372, 2011.

236. M. O. Rabin. Decidability of second-order theories and automata on infinite
trees. Transactions of the American Mathematical Society, 141:1–35, July 1969.

237. I. Rabinovitz and O. Grumberg. Bounded model checking of concurrent pro-
grams. In K. Etessami and S. K. Rajamani, editors, Computer Aided Veri-
fication, 17th International Conference (CAV), volume 3576 of LNCS, pages
82–97. Springer, 2005.

238. S. Ranise, C. Ringeissen, and C. G. Zarba. Combining data structures with
nonstably infinite theories using many-sorted logic. In B. Gramlich, editor,
Frontiers of Combining Systems, 5th International Workshop (FroCoS), vol-
ume 3717 of LNCS, pages 48–64. Springer, 2005.

239. S. Ranise and C. Tinelli. The SMT-LIB standard: Version 1.2. Technical report,
Department of Computer Science, The University of Iowa, 2006. Available at
www.SMT-LIB.org.

240. T. W. Reps, S. Sagiv, and R. Wilhelm. Static program analysis via 3-valued
logic. In Computer Aided Verification, 16th International Conference (CAV),
volume 3114 of LNCS, pages 15–30. Springer, 2004.

241. J. C. Reynolds. Reasoning about arrays. Communications of the ACM,
22(5):290–299, 1979.

242. J. C. Reynolds. Separation logic: A logic for shared mutable data structures.
In 17th IEEE Symposium on Logic in Computer Science (LICS), pages 55–74.
IEEE Computer Society, 2002.

243. J. A. Robinson. A machine-oriented logic based on the resolution principle.
Journal of the ACM, 12(1):23–41, January 1965.

244. J. A. Robinson and A. Voronkov, editors. Handbook of Automated Reasoning
(in 2 volumes). Elsevier and MIT Press, 2001.

245. Y. Rodeh. Techniques in Decision Procedures for Equality Logic and Improved
Model Checking Methods. PhD thesis, Weizmann Institute of Science, 2003.

246. Y. Rodeh and O. Shtrichman. Finite instantiations in equivalence logic with
uninterpreted functions. In Computer Aided Verification (CAV), 2001.

247. M. Rozanov and O. Strichman. Generating minimum transitivity constraints
in P-time for deciding equality logic. In Satisfiability Modulo Theories (SMT),
2007.

248. L. Ryan. Efficient algorithms for clause-learning SAT solvers. Master’s thesis,
Simon Fraser University, 2004.

249. V. Ryvchin and O. Strichman. Faster extraction of high-level minimal unsatis-
fiable cores. In K. A. Sakallah and L. Simon, editors, Theory and Applications
of Satisfiability Testing (SAT), volume 6695 of LNCS, pages 174–187. Springer,
2011.



344 References
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General-Simplex, 103, 107
Incremental-BV-Flattening,

148
Last-assigned-literal, 39
Lazy-Basic, 64, 65
Lazy-CDCL, 67, 72
Lazy-DPLL, 326, 327
Nelson–Oppen, 236
Nelson–Oppen-for-Convex-

Theories,
233

Omega-Test, 119
Prenex, 204
Project, 205, 206
Quantifier-Elimination, 206
Remove-Constants, 78
Remove-Constants-

Optimized,
92

Resolve, 39, 40
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Search-based-decision-of-
QBF,
212

Search-integral-solution,
107

Simplify-Equality-Formula,
256

Stop-criterion-met, 39
Variable-of-literal, 39
match, 220, 221



Note that there is a separate index page for tools on page 347, and
a separate index page for algorithms on page 349.

abstract decision procedure, 241
abstraction, 283
abstraction–refinement loop, 87
Ackermann’s reduction, 246
adder, 144

full adder, 144
adequate domain, 262
algorithm, 7
algorithm portfolio, 56
aliasing, 176
antecedent, 3
arithmetic right shift, 142
arrangement, 241
array, 157

bounds violation, 160
index operator, 158
store operator, 158

array property, 162
array theory, 157
assertion, 283
assignment, 5

full, 5
partial, 5

assumption (program
verification), 289

assumptions, 47
atom, 8, 253

automated reasoning, 27
axiom, 3, 80

backdoor variable, 30
BCP, 34, 50, 71
BDD, 57, 154, 226, 271, 277, 278,

306
Bellman–Ford algorithm, 128
Bernays–Schönfinkel class, see

effectively propositional
binary encoding, 139
binary tree, 183
binding scope, 200
bit vector, 138
bit-blasting, 142
bit-vector arithmetic, 137
blocking clause, 62, 65, 167
Boolean constraint propagation,

see BCP
Boolean encoder, 61
bounded model checking, 20, 155,
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case-splitting, 11, 94
semantic, 11
syntactic, 11

CDCL, 30, 32, 52, 55, 66
certificate, 225
chord, 260
chord-free cycle, 260
chordal graph, 260
clause, 12

antecedent, 32
asserting, 36, 37, 68
conflicting, 32, 34, 41
satisfied, 32
unary, 32, 36
unit, 32
unresolved, 32

clause selectors, 48
CNF, 13, 29, 40, 136, 146, 206,

212, 223, 225, 322, 324, 326
2-CNF, 19

colorability, 28
compiler, 97
complete, 68, 69
completeness, 4, 7, 81
concatenation, 139
conflict clause, 35–38, 41, 45, 53,

66, 71
conflict graph, 35, 37, 41
conflict node, 34, 37, 39
conflict-driven backtracking,

36–38, 53
conflict-driven clause learning, see

CDCL
congruence closure, 85, 94, 166

abstract congruence closure, 94
conjunctive fragment, 17
conjunctive normal form, see CNF
consequent, 3
constraint satisfaction problem,

17, 48, 53, 55
constraint solving, 22
contradiction, 5
contradictory cycle, 255, 256

simple, 255
convex theory, 230

CSP, see constraint satisfaction
problem

cube-and-conquer, 56
cut

separating cut, 37
Gomory, see Gomory cut

cutting planes, 108, 132

Davis–Putnam–Loveland–
Logemann, see
DPLL

De Morgan’s rules, 8
decidability, 7, 23, 81
decision level, 31, 34
decision problem, 6
decision procedure, 7
delayed theory combination, 243
derivation tree, 12
difference logic, 126
DIMACS format, 322
disequality literals set, 253
disequality path, 70, 255

simple, 255
disjunctive normal form, see DNF
DNF, 10, 206
domain, 199
domain allocation, 262, 266, 271,

276
DPLL, 31, 55
DPLL(T ), see algorithms index
dynamic data structure, 174

E-graph, 217
E-matching, 218
eager encoding, 245
effectively propositional, 212
ellipsoid method, 99
empirical hardness models, 56
encoder, 61
endianness, 181
EPR, see effectively propositional
equality graph, 60, 254–257, 266,

269
nonpolar, 259, 261

equality literals set, 253
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equality logic, 16, 77
equality path, 92, 254, 267, 269

simple, 255
equality sign, 230
equisatisfiable, 8, 78, 92, 256, 261
EUF, 79
execution path, 283
execution trace, 283
exhaustive theory propagation, 70
existential node, 210
existential quantification, 163
existential quantifier (∃), 199
explanation, 71
expressiveness, 19
extensional theory of arrays, 159
extensionality rule, 159

first UIP, 39
first-order logic, 14, 59
first-order theory, 2
fixed-point arithmetic, 149

saturation, 150
floating-point arithmetic, 149
forall reduction, 207
formal verification, 2
Fourier–Motzkin, 99, 112, 115,

119, 120, 131, 209, 277
fragments, 16
free variable, 16, 200
functional congruence, 80
functional consistency, 80, 160,

246

Gaussian variable elimination, 104
general form, 99
Gomory cut, 109
graph, 316
ground formula, 17, 216
ground level, 32, 36

high-level minimal unsatisfiable
core, 57

Hoare logic, 20

ILP, 98, 130, 155
0–1 linear systems, 126

relaxation, 106
implication graph, 33, 51
incomplete, 81, 282
incremental, 105
incremental satisfiability, 57, 66
induction, 294
inequality graph, 128
inference rule, 3
Binary Resolution, 40, 71
Contradiction, 3, 4
Double-negation, 4
Double-negation-AX, 4
instantiation, 4
M.P., 3, 4

inference system, 3
initialized diameter, 223
inprocessing, 56
integer linear arithmetic, 69
integer linear programming, see

ILP
interpretation, 15

job-shop scheduling, 127

languages, 18
lazy encoding, 245
learning, 11, 35, 36, 49, 52, 210,

212
least significant bit, 139
lemma, 62
lifetime, 175
linear arithmetic, 97
linear programming, 98
linked list, 182
literal, 8, 253

satisfied, 9
local-search, 55
lock, 291
logical axioms, 17, 230
logical gates, 12
logical right shift, 142
logical symbols, 230
loop invariant, 191, 294

match, 218
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mathematical programming, 22
matrix, see quantification suffix
maximally diverse, 238
memory

layout, 174
location, 174
model, 173
valuation, 174

miniscoping, 205
mixed integer programming, 108
model checking, 226
model-theoretic, 3
modular arithmetic, 136
modulo, 140
monadic second-order logic, 196
most significant bit, 139

negation normal form, see NNF
Nelson–Oppen, 229, 231, 232, 240,

243
NNF, 8, 14, 24, 61, 72, 163, 170,

253, 254, 258, 275
nonchronological backtracking,

210, 212
nondeterminism, 241
nonlinear real arithmetic, 226
nonlogical axioms, 230
nonlogical symbols, 230
normal form, 8
NP-complete, 201

Omega test, 99, 115, 277
dark shadow, 121
gray shadow, 123
real shadow, 120

operations research, 22
overflow, 136

parse tree, 315
parsing, 315, 319
partial implication graph, 35
partially interpreted functions, 87
path constraint, 285
Peano arithmetic, 17, 226
phase, 9, 206

phase transition, 57
pigeonhole problem, 41
pivot operation, 104
pivoting, 104
planning problem, 27, 202
plunging, 70
pointer, 173
pointer logic, 178
points-to set, 177
polarity, 9
polite theories, 242
predicate abstraction, 197
predicate logic, see first-order

logic
prenex normal form, 204, 205, 210
Presburger arithmetic, 17, 158,

161, 203, 226
procedure, 7
program analysis, 176
projection, 205
proof-theoretic, 3
propositional encoder, 142
propositional skeleton, 62, 143,

259, 325
PSPACE-complete, 201
pure literal, 9
pure variables, 188
purification, 232

Q-resolution, 225
QBF, see quantified Boolean

formula
QBF search tree, 210
quantification prefix, 204
quantification suffix, 204, 206, 211
quantified Boolean formula, 201

2-QBF, 209
quantified disjunctive linear

arithmetic, 203
quantifier, 199
quantifier alternation, 163, 199
quantifier elimination, 205
quantifier-free fragment, 16

reachability predicate, 190
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reachability predicate formula,
190

reachability problem, 281
read-over-write axiom, 159
reference, 175
resolution, 55

binary resolution, 40, 45, 206,
208

binary resolution graph, 45
hyper-resolution graph, 45
resolution graph, 45, 46
resolution variable, 40
resolvent clause, 40
resolving clauses, 40

restart, 50
rewriting rules, 88, 94
rewriting systems, 88
ripple carry adder, 144
rounding, 150
routing expressions, 196

SAT decision heuristic, 42
Berkmin, 44
CBH, 45
CMTF, 44
conflict-driven, 43
DLIS, 43
Jeroslow–Wang, 42
VSIDS, 43

SAT portfolio, 29
SAT solvers, 29, 277
satisfiability, 5
Satisfiability Modulo Theories, 6,

60, 282
semantics, 6
sentence, 16, 200, 230
separation logic, 132, 184, 197
Shannon expansion, 208, 226
shape analysis, 197
sign bit, 140
sign extension, 142
signature, 16, 59
Simplex, 11, 98

basic variable, 102
nonbasic variable, 102

additional variable, 100
Bland’s rule, 105
general Simplex, 98, 99
pivot column, 104
pivot element, 104
pivot operation, 103
pivoting, 104
problem variable, 100

Skolem normal form, 215
Skolem variable, 194
Skolemization, 194, 213, 216
small-domain instantiation, 263,

277
small-model property, 5, 94, 108,

197, 262
SMT, see Satisfiability Modulo

Theories
SMT solver, 6
SMT-COMP, 309
SMT-LIB, 23, 309
sort, 77
soundness, 4, 7, 81, 269
sparse method, 259
SSA, see static single assignment
state space, 263–266, 268, 276
static analysis, 177
static single assignment, 21, 82,

284, 302
stochastic search, 30
structure in formal logic, 15
structure type, 181
subsumption, 14
symbol table, 322
symbolic access paths, 196
symbolic simulation, 283
symmetric modulo, 117

T -satisfiable, 16, 230
T -valid, 16, 230
tableau, 102
tautology, 5
term, 10
theorem proving, 215, 226
theory, 2, 16, 59, 79
theory combination, 230
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theory of equality, 77
theory propagation, 63, 68, 69,

165
timed automata, 132
total order, 19
transition clause, 54
transitive closure, 185, 196
translation validation, 88, 91
trigger, 218

multitrigger, 218
truth table, 5, 6
Tseitin’s encoding, 12–14, 23, 146
Turing machine, 88
two’s complement, 139, 140, 142
two-counter machine, 169
two-player game, 201
type checking, 316

UIP, 39
unbounded variable, 114
uninterpreted functions, 79–91,

93–95, 148, 216, 229, 232,
233, 245–253, 279

uninterpreted predicates, 79
union–find, 86, 94
unique implication point, see UIP
unit clause rule, 32
universal node, 210
universal quantification, 163
universal quantifier (∀), 199
unsatisfiable core, 46, 71

validity, 5
verification condition, 20, 28, 157,

191, 286
virtual substitution, 131

weak equivalence graph, 166
well formed, 15
winning strategy, 201
write rule, 161

zero extension, 142
λ-notation, 137
Σ-formula, 16
Σ-theory, 16
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