
94 IEEE SOFTWARE  |  PUBLISHED BY THE IEEE COMPUTER SOCIETY  0 7 4 0 - 7 4 5 9 / 1 7 / $ 3 3 . 0 0  ©  2 0 1 7  I E E E

Editor: Gerard J. Holzmann
Nimble Research
gholzmann@acm.org

RELIABLE CODE

Accessible Software 
Verification with Dafny
K. Rustan M. Leino

FOR MOST OF computer science’s 
existence, creating fully reliable soft-
ware has been impossible for all but 
the smallest programs. Principles 
and techniques for ensuring pro-
gram correctness, and the very idea 
of reasoning rigorously about pro-
gram correctness, are many decades 
old. Yet, only in the past decade or 
two have tools become powerful and 
usable enough to make formal soft-
ware verification feasible.

Projects that have taken reli-
ability to unprecedented levels in-
clude the seL4 microkernel,1 the 
CompCert C compiler,2 the FSCQ 
crash-recoverable file system,3 the 
Eiffel-Base2 collections library,4 
and the IronFleet distributed-system 
components.5 To pull this off, these 
projects used formal specifications 
and automated verification tools 
during software development. That’s 
because trying to verify software 
that has already been written is not 
only more difficult but also misses 
the opportunity for the verification 
process to inform the development 
process and thus aid programmers 
(as opposed to being a postdevelop-
ment chore).

Dafny is a modern formal- 
verification system that takes a  
language-based approach.6 Its pro-
gramming language includes the 
necessary specification and proof 

facilities. The idea is to provide de-
velopers with an immersive experi-
ence that feels like programming but 
encourages thinking about program 
correctness every step of the way.

Dafny: Language,  
Verifier, and IDEs
Dafny offers features from both im-
perative programming (for example, 
assignments, loops, and classes with 
dynamically allocated instances) and 
functional programming (for exam-
ple, algebraic datatypes and func-
tions). What sets the Dafny language 
apart is that it was designed with rea-
soning in mind. As such, it builds in 
specification constructs and supports 
proof authoring.

Because the language contains 
specification constructs, program-
mers can write down their intent in 
a machine-checkable way. An im-
portant aspect of Dafny (following 
Eiffel7) is that expressions have the 
same syntax and meaning in specifi-
cations as they do in executable code, 
so users have only one language  
to learn.

The Dafny verifier runs continu-
ously in the IDEs (Visual Studio, 
Emacs, and Visual Studio Code). 
Whenever it can’t verify a proof ob-
ligation, it flags it as an error, much 
like a word processor immediately 
marks dubious spelling or grammar. 

The verifier is automatic but requires 
hints from the user, akin to how au-
tomatic type checkers require users 
to supply some explicit type casts or 
types of variables. Typically, the user 
declares proof ingredients (for exam-
ple, loop invariants or termination 
metrics, and the program itself), and 
the Dafny verifier fills in the proof 
glue. When a proof requires more 
information, the user can write and 
prove lemmas (mathematical theo-
rems), for which the Dafny language 
provides constructs.

Dafny’s approach of putting for-
mal verification into a programming 
environment seems to have worked 
well with systems programmers, as 
evidenced by the Ironclad Apps8 and 
IronFleet projects, which were done 
in Dafny. The approach also seems 
to go well in educational settings, as 
evidenced by several dozen universi-
ties worldwide that have used Dafny 
to teach students to reason about 
programs and learn about proofs. 
For these two kinds of users, the lan-
guage’s streamlined syntax, the veri-
fier’s high degree of automation, and 
the IDEs’ fast turnaround provide an 
enticing experience.

To give a sense of what the Dafny 
language looks like, I’ll give two ex-
amples: a small imperative proce-
dure and a lemma. My goal is not to 
explain all the syntax but to point 



RELIABLE CODE

 NOVEMBER/DECEMBER 2017  |  IEEE SOFTWARE  95

out some of Dafny’s salient features. 
The program text shown also sug-
gests the power of the Dafny verifier 
because the program text is the only 
input to the verifier. Harder to con-
vey in a written article is the expe-
rience of getting the feedback from 
the verifier. To get this experience, 
you can download the tool from its 
open source repository (github.com 
/Microsoft/dafny) or try it in a web 
browser (rise4fun.com).

Verifying an Imperative 
Procedure
The imperative procedure (called a 
method) in Figure 1 computes the 
maximum segment sum of an ar-
ray. The method declaration includes 
a specification with two postcon-
ditions (indicated by the keyword  
ensures). These declare what’s ex-
pected to hold upon the method’s 
termination—something the method 
body must establish and that call-
ers of the method can assume. The 
first postcondition of MaxSegSum says 
that the out-parameters k and m will 
denote a range of indices of a. The 
second postcondition, which uses a 
universal quantifier ( in math no-
tation), says that among all index 
ranges [p..q) of a, none has a sum 
larger than [k..m).

The loop in the method body de-
clares a loop invariant, a list of con-
ditions that hold at the very top of 
every loop iteration. These condi-
tions facilitate reasoning about the 
loop and are like specifications of 
each loop iteration. Being clear in 
your mind about what the loop in-
variant is helps greatly in coding 
the loop correctly. For example, the 
loop invariant in MaxSegSum makes 
manifest that [k..m) is a range of in-
dices among the first n elements of 
the array, that s is the segment sum 
for that index range, and that s is the 

maximum segment sum among the 
first n elements.

The documentation of these de-
sign decisions reduces the task of 
reasoning about the loop to reason-
ing about one arbitrary iteration. 
The verifier checks that the loop 
terminates (which follows from the 
fact that every iteration reduces the 
difference between a.Length and n) 
and reasons that n will equal a.Length 
upon termination. From this, it’s 
clear that the method establishes its 
postconditions.

The method specification and 
loop invariant use the function Sum, 
which is also defined in Figure 1. 
Whereas a method in Dafny denotes 
imperative statements with possible 

side effects, a function denotes an 
expression. Functions behave like 
mathematical functions in that they 
always return the same value given 
the same inputs and they never mu-
tate the program state.

As exemplified in Figure 1, a 
function can have a precondition (in-
dicated by the keyword requires), which 
declares what’s expected to hold upon 
entry to the function—something 
that callers of the function must es-
tablish and that the function body 
can assume. If a function reads the 
program state, it needs to say so in 
a reads clause. The function Sum says 
it may read the array elements of a. 
You can think of reads as adding a 
part of the heap as a parameter to 

FIGURE 1. A Dafny program for computing the maximum segment sum of an array. 

With the specifications and assertions given in this program, the Dafny verifier can 

ascertain the program’s correctness (in a fraction of a second).

// find the index range [k..m) that gives the largest sum of any index range in a
method MaxSegSum(a: array,int.) returns (k: int, m: int)
 ensures 0 ,5 k ,5 m ,5 a.Length
 ensures forall p,q :: 0 ,5 p ,5 q ,5 a.Length 55. Sum(a, p, q) ,5 Sum(a, k, m)
{
 k, m :5 0, 0;
 var s, n, c, t :5 0, 0, 0, 0;
 while n , a.Length
  invariant 0 ,5 k ,5 m ,5 n ,5 a.Length && s 55 Sum(a, k, m)
  invariant forall p,q :: 0 ,5 p ,5 q ,5 n 55. Sum(a, p, q) ,5 s
  invariant 0 ,5 c ,5 n && t 55 Sum(a, c, n)
  invariant forall b :: 0 ,5 b ,5 n 55. Sum(a, b, n) ,5 t
 {
  t, n :5 t 1 a[n], n 1 1;
  if t , 0 {
   c, t :5 n, 0;
  } else if s , t {
   k, m, s :5 c, n, t;
  }
 }
}

// sum of the elements in the index range [m..n)
function Sum(a: array,int., m: int, n: int): int
 requires 0 ,5 m ,5 n ,5 a.Length
 reads a
{
 if m 55 n then 0 else Sum(a, m, n – 1) 1 a[n – 1]
}



RELIABLE CODE

96 IEEE SOFTWARE  |  W W W.COMPUTER.ORG/SOFT WARE   |  @IEEESOFT WARE

the function. (Figure 1 doesn’t show 
it, but a method can also have a pre-
condition and a modifies clause, which 
declares the parts of the program 
state the method may mutate.)

To understand what MaxSegSum 
does, it suffices to inspect its specifi-
cation and the definition of Sum. This 
is simpler than trying to understand 
the MaxSegSum implementation. The 
Dafny verifier automatically checks 
that the implementation satisfies the 
given specification.

Integers
The integers used in my example are 
mathematical (unbounded), so they 
can’t overflow. In some cases, it’s 
better to use restricted subsets of the 

integers. To allow this, Dafny sup-
ports user-defined integer types— 
for instance, a program can de-
clare a type int32 denoting the  
32-bit two’s-complement integers. 
The verifier checks that the pro-
gram’s operations on such a type 
never overflow. The type system 
separates user-defined integer types 
from ordinary integers, and the com-
piler analyzes the type constraints 
when choosing a runtime represen-
tation for the executable code.

Ghost vs. Compiled
In a verified program, some parts 
of the program text are there just 
to help developers reason about  
the program’s behavior. Conversely, 

you could perhaps argue that some 
parts of the program text are there 
just to help the compiler generate 
executable code from the program’s 
specifications.

However you view it, the Dafny 
language distinguishes between these  
parts. Some declarations (includ-
ing variables and functions) can be 
marked as ghost, which means they 
are ignored by the compiler and have 
no runtime representation. Speci-
fication clauses (for example, pre-
conditions and loop invariants) are 
always ghost, so they’re never eval-
uated at runtime. For instance, the 
declaration that introduces Sum in 
Figure 1 designates the function as 
ghost. So, the function doesn’t get 
compiled into code but can be used 
in specifications.

Stating and Proving a Lemma
Commonly, a program’s correct-
ness depends on subtle properties of 
the data structures or functions in-
volved. To convince the verifier of 
one of these properties, you might 
need to state and prove a lemma. A 
lemma in Dafny is a ghost method; it 
takes parameters, has preconditions 
and postconditions, and has a body 
consisting of statements. To obtain 
the property stated by the lemma, 
a program “calls” the lemma where 
the property is needed, just as it 
would call a method.

To illustrate a lemma in Dafny, 
Figure 2 defines the abstract syntax 
tree Expr, representing simple expres-
sions. It also defines a substitution 
function that replaces certain vari-
ables with constant values. This 
lemma proves that substitution is 
idempotent—that applying the same 
substitution twice is no different 
from applying it once.

As defined by the function’s body, 
the value returned by Subst depends on 

FIGURE 2. A lemma in Dafny is really just a ghost method—that is, a method that 

gets erased by the compiler. Proving a lemma thus follows the same rules as proving 

a method.

datatype Op 5 Plus | Times
datatype Expr 5 Const(int) | Var(string) | Node(Op, Expr, Expr)

function Subst(e: Expr, m: map,string,int.): Expr
{
 match e
 case Const(_) 5. e
 case Var(s) 5. if s in m.Keys then Const(m[s]) else e
 case Node(op, a, b) 5. Node(op, Subst(a, m), Subst(b, m))
}

lemma Idempotent(e: Expr, m: map,string,int.)
 ensures Subst(Subst(e, m), m) 55 Subst(e, m)
{
 match e
 case Const(_) 5.

 case Var(s) 5.

 case Node(op, a, b) 5.

  calc {
   Subst(Subst(Node(op, a, b), m), m);
  55 // def. Subst on Node
   Subst(Node(op, Subst(a, m), Subst(b, m)), m);
  55 // def. Subst on Node
   Node(op, Subst(Subst(a, m), m), Subst(Subst(b, m), m));
  55 { Idempotent(a, m); Idempotent(b, m); }
   Node(op, Subst(a, m), Subst(b, m));
  }
}



RELIABLE CODE

 NOVEMBER/DECEMBER 2017  |  IEEE SOFTWARE  97

the form of parameter e. For example, 
the third case in Figure 2 says that if e 
has the form Node(op, a, b), the value re-
turned is a Node whose subexpressions 
come from recursive calls to Subst.

The lemma in Figure 2 uses a 
postcondition (indicated by ensures, 
just like the method in Figure 1) to 
state the condition to be proven. Ob-
taining a proof of the lemma means 
convincing the verifier that every 
control path through the lemma’s 
body leads to the postcondition. The 
body of Idempotent is broken up into 
three cases that depend on the form 
of e. The first two are handled auto-
matically by the Dafny verifier and 
require no further assistance.

The third case illustrates a typical 
way to write a proof in Dafny. The 
verified calculation (indicated by the 
keyword calc) in Figure 2 starts with 
the left-hand side of the proof goal 
(the equality in the postcondition) and 
shows, through a series of equality- 
preserving steps, that the proof 
goal’s left-hand side equals its right-
hand side.9 The calculation’s first 
two steps simply rewrite Subst(Node(...)) 
using the definition of Subst. The 
third step holds on account of what’s 
usually called the induction hypoth-
esis of the lemma to be proved. In 
Dafny, the induction hypothesis cor-
responds to the information gained 
from a recursive call of the lemma. 
This example requires two recursive 
calls: one for each subexpression a 
and b. The recursive calls are given 
in a hint to Dafny (in braces) to ex-
plain why the calculation step holds. 
In contrast, the first two calculation 
steps are simple enough that the veri-
fier needs no formal hint.

The typical proof in Figure 2 is 
actually more elaborate than nec-
essary. A shorter way to write it 
would be to replace the calc statement 
with just the two recursive calls to 

Idempotent. In fact, Dafny tries to in-
voke the induction hypothesis auto-
matically.10 So, for this example, even 
these two recursive calls can be omit-
ted, and the Dafny verifier can prove 
the lemma even if the entire lemma 
body is replaced by the empty body, {}.

F ormal software verifica-
tion includes specifications, 
tools, and interactivity with 

the developer. By combining these 
key components into a programming 
language and a familiar program-
ming environment with high auto-
mation, Dafny makes verification 
more easily accessible to program-
mers and students.

Program safely!

References
1. G. Klein et al., “seL4: Formal Verifi-

cation of an OS Kernel,” Proc. ACM 

SIGOPS 22nd Symp. Operating 

Systems Principles (SOSP 09), 2009, 

pp. 207–220.

2. X. Leroy, “Formal Verification of a 

Realistic Compiler,” Comm. ACM, 

vol. 52, no. 7, 2009, pp. 107–115.

3. H. Chen et al., “Using Crash Hoare 

Logic for Certifying the FSCQ File 

System,” Proc. 25th Symp. Operating 

Systems Principles (SOSP 15), 2015, 

pp. 18–37.

4. N. Polikarpova, J. Tschannen, 

and C.A. Furia, “A Fully Verified 

Container Library,” Proc. 20th Int’l 

Symp. Formal Methods (FM 15), 

LNCS 9109, Springer, 2015, pp. 

414–434.

5. C. Hawblitzel et al., “IronFleet: 

Proving Practical Distributed Systems 

Correct,” Proc. 25th Symp. Operat-

ing Systems Principles (SOSP 15), 

2015, pp. 1–17.

6. K.R.M. Leino, “Dafny: An Auto-

matic Program Verifier for Func-

tional Correctness,” Proc. 16th Int’l 

Conf. Logic for Programming, Ar-

tificial Intelligence, and Reasoning 

(LPAR 16), LNCS 6355, Springer, 

2010, pp. 348–370.

7. B. Meyer, Object-Oriented Software 

Construction, Prentice-Hall Int’l, 1988.

8. C. Hawblitzel et al., “Ironclad Apps: 

End-to-End Security via Automated 

Full-System Verification,” Proc. 11th 

USENIX Symp. Operating Systems 

Design and Implementation (OSDI 

14), 2014, pp. 165–181.

9. K.R.M. Leino and N. Polikarpova, 

“Verified Calculations,” Proc. 

5th Int’l Conf. Verified Software: 

Theories, Tools, and Experiments 

(VSTTE 13), LNCS 8164, Springer, 

2014, pp. 170–190.

10. K.R.M. Leino, “Automating  

Induction with an SMT Solver,” 

Proc. 13th Int’l Conf. Verification, 

Model Checking, and Abstract  

Interpretation (VMCAI 12),  

LNCS 7148, Springer, 2012,  

pp. 315–331.

ABOUT THE AUTHOR

K. RUSTAN M. LEINO is a principal researcher in the Research in Soft-

ware Engineering group at Microsoft Research and a visiting professor in 

Imperial College London’s Department of Computing. Contact him at leino@

acm.org.


