Deductive verification

—_

. Partial and total correctness calculus (Hoare logics).

2. Weak-preconditions and verification condition generators.

3. Tools for the specification, verification and certification programs: Dafny
4

. Correction of imperative and object orient programs with Dafny

Origines

Hoare logics are the base of deductive verification of programs (1969, An Awxio-
matic base for Computer Programming, Tony Hoare)

Tony Hoare
Inventor also of the Quick Sort and has a Turing award from 1980.

Robert Floyd

Some ideas from the 1967 paper Assigning Meaning to Programs.

Automatic program verification

Consider the following program to compute 2;321 m:

x <+ 0;

y< L

while y! =101 do
T 4T+,
y<y+1L

100

e How can we prove that when the program stops we have z = "~

2
m L.

We could execute the program using an operational semantics.

e But if we change the while condition to y!=c, for any c ?

To execute for several values of ¢ is not an option

Verification using deductive systems
e Given a program and specification, we want to verify that the program
satisfies the specification .
e We considere Hoare logics based on pre and post conditions:

A formula is an specification that if the pre-condition holds
before the execution of the program, the post-condition must
hold after the program execution.



Example

x < 0;
Yy L
Require: {z =0Ay =1}
while y! = 101 do
T T +y;
y—y+1
100
Ensure: {z =) " n}

Simple imperative language - While
Syntactic categories

e Num integers, n

e Bool truth values, true and false

e Var variables, x

e Aexp arithmetic expressions, F

Bexp Boolean expressions, B

Com statements/commands, C

BNFs

For n in Num and z in Var

E = n|z|E4+FE|E-FE|EXE

B = true|false | E=F|E<FE|'B|B A B

C == skip|la+ E|C; C|if Bthen C else C |while Bdo C
Semantics

e Expressions denote Integers or Booleans.

To evaluate an expression it is needed to know the values of the variables
that occur in it

A state s is a function from variables to values.

The set of states is a set of functions

State = Var — Z



Commands are evaluated in a state and can modify the state.

The semantics of a program is the state in which it stops.

The semantics (or meaning) of each command and expression can be
defined by a transition system - operational semantics

or by domain functions — denotational semantics.

Partial and total correctness

We aim to verify that the program has a given property and not necessarily to
determine its meaning. We call this aziomatic semantics.

In particular, we will consider properties of partial correctness given by logical
formulae (¢, ) :

If the program C' is run in a state that satisfies @, then the state
resulting from C'’s execution will satisfy v

partial correctness+ termination=total correctness

Given the undecidability of the halting problem, the properties of partial cor-
rectness are specially important in formal software verification.

Specifications—Hoare Triples

The properties of partial correctness of programs are specifications as:
{v}C{v}

where C' is a command and ¢ and v are predicates of a first order logic.
The predicate ¢ is a precondition and ¥ is a postcondition.
An specification is valid if:

e if o is true in the initial state

e If the execution of C' terminates in the state s’

e then ® is true in the state s

Pre and post conditions



. Program state
initial final
state state

7 h\ . =
inputs :\;.. Method, function, ,* ™

\
T etc. (C) || joutputs

Pre-condition (¢) \—Pes-t-eeﬁdiﬁon (W)

Examples

{z =1}x + x+ 1{x = 2} the specification is true

{x =1}y + x{y =1} the specification is true

{x =1}y + x{y = 2} the specification is false

{r=z0 Ny=uwolrxixyiyer{z=y N y=x}

the variables zo and yo are called logic variables as they occur only in the
conditions.

{true}C{y} if C stops ¢ holds
{}C{true} is always true for any C' and ¢.

Example

x < 0;
Yy L
Require: {r =0Ay =1}
while y! = 101 do
T4 T+ Y,
y—y+ L
Ensure: {z = Z’}LO:OO n}
e We want to infere that z = 2717221 m given that before the while we had
y=0and z=1.

e [t is easy to see that in the end of the loop y = 101, but we want the value
of z!

e We have to know an loop invariant:



e In the beginning of each iteration we have

r=1+2+3+--+(y—1)

Condition Language

In an specification, {p}C{9}, ¢, 1 are formulae @, 1), . .. of a first-order language
for arithmetics:

e constants 0 and 1 (decimal integers can be seen as abbreviations)
e functional symbols —,+, — and x (to form terms)
e Predicate symbols <, = (to build predicates)

e logical symbols: operators A, V, etc. and quantifiers (that bound only
logical variables) V, 3.

Semantics of Conditions

Conditions are interpreted in a model for the integers Z = (Z,-) and the states
s, are assignments of values to variables.

If Z =5 ¢, we say that s satisfies ¢, i.e., s &= .
For instance, if s(z) = —2, s(y) =5, s(z) = —1,
s | —=(z+y < z) holds

sy —x Xz < z does not hold

Partial correctness

A (Hoare) triple {p}C{} is satisfied for partial correctness if for all states that
satisfy ¢, the state that results from running C satisfy v, if C stops,

Fp {p}C{0}
Note that

while true do
x <+ 0;

satisfies all specifications

Total correctness

A triple {p}C{t} is satisfied for total correctness if for all states that satisfy
p, is ensured that C stops and that in resulting state v is satisfied,



Fe {p}C{v}

In this case

while true do
x < 0;

does not hold for any specification.
Deductive system for partial correctness/Hoare Logic

e A deduction system is a set of axioms and a set of inference rules.
e A derivation (or proof) is a finite sequence of rule applications and axioms.
o If an specification {¢}C {1} is derived from the partial correctness calculus
we say that
Fp {e}C{v}
is valid.

e The calculus is sound if:
Fp {p}C{y} implies =, {¢}C{v}.

Deduction system for partial correctness/Hoare Logic, H

[skipy ]
{0} skip{e}
[assy |
{plE/z]} v E{p}
[comp,, ]

{e} Cr{n} {n} C2 {v}
{p} C1; Ca {9}

where ¢[E/z] is the formula that is obtained substituting « by E.
[ifp ]




o ABYCi{Y)  {e A =BICo{Y)
{¢} if BthenCj else Cy {¢)}

[while, ]

{v A BYC{¢}
{Y} while Bdo C' {¢) A —B}

where 1 is the invariant

[cons,, |

Fo'— o {ptC{y} Foy—9f
{e'yC{v'}

Ex. 2.1. Show that bper {true}z < x;2z 2+ y;u + z{u =2z +y}

{zty=a+ylz + z+y{z=a+y} {z==+ylu <+ z{u==+y}
compyp

{z+y=a+ylz < a{z+y=a+y} {z+ty=2+ylz < z2+yu+ 2{u=a+y} comp
p

{z+y=az+ylz+z;2+ 2+y;u+ 2z{u=a+y}
consp

{true}z «— xz;2 «+— z+ y;u +— z{u=a + y}

Exerc. 2.1. Deduce the following specifications
o {r=1lx+x+1{x =2}
o {z=1y < x{y=1}
e {r=xgANy=ylrx;xy;y<r{x=yAy=ax0}
S
Exerc. 2.2. Show that
Fpfe=r+@xglr<r—yqe g+ H{z=r+(yxq}
o

Exerc. 2.3. Show that

Fp {true}z <~ x +1; if 2 — 1 = Otheny «+ lelsey + z{y =z + 1}



tableaux for partial correctness

Let C = Cy;C%;...;C, and we want F, {¢}C{¢}. We can consider several
problems of the form ), {¢;}Ci{pit1}, with ¢ = ¢y and ¢ = ¢,. For that
we annotate the commands that compose C' with formulae ¢; and consider a
proof tableaux :

{eo}

C1

{1} justification
Cs

{pn-1} justification
Chn
{en}

Then we need to show
Fp {0i}Civi{pit1}
starting with ¢,. But how to obtain ¢;?

Weakest preconditions (wp)

For each command C and postcondition ¢ a formula wp(C, ) is the weakest
precondition that being true in state s, ensures that in the state s’ obtained
after the execution of C' and if C stops, the postcondition v holds.

o =p {wp(C¥)}C{y}
o =, {p}C{y} implies ¢ — wp(C, 1) (called verification condition)

tableaux for partial correctness
e a formula ¢; obtained from C;;11 and ;41 is the weakest precondition
of C¢+1
e given the postcondition ¢;;1, we can write
wp(Cit1, Pit1) = @i

e From wp() and using the consequence rule (cons,) we can automatically
generate the verification conditions,

e that can be proved automatically or assisted by a solver.

e In general if {¢}C{t} the verification condition is:
¢ — wp(C, 1)



Weakest preconditions - ass,

Assignment
{v[E/x]}
r<+ E
{v} assp
A verification condition for {p}z < E{¢}, is
¢ — Y[E/z]

and wp(z « E,¢) = ¢[E/z].

Ex. 2.2. Compute

1. wp(x + 0,2 =0) is 0=0.

2. wp(x+—2x+1,2>0)is z+1>0.
Weakest preconditions - cons,

Consequence

The rule cons, can be applied when ¢’ — ¢ and we have {¢} C {¢}. In this
case the tableaur can have two formulas in a row: ¢’ and below .

{#'}
{0} cons,
Exerc. 2.4. Show with a tableaux -, {y =5}z < y+ 1{z =6}. ©

‘Weakest preconditions if,

Conditional



We want ¢ such that wp(if BthenC) else Cy, 1)) = .

{(B—= 1) A (=B = p2)}
if B then

{p1}

Cy

{v} ifp
else

{2}

Co

{v}
{v} ifp

We can compute {p1}C1{} e {p2}Co{t}, and then p = (B — 1) A (=B —

p2), i.e.,

wp(if BthenC)else Co, ) = (B — ¢1) A (0B — @2)

and the verification conditions are the ones generated by ¢; and ¢s.

Ex. 2.3. Show with a tableaux

Fp {true}
a+—x+1;
ifa—1=0then
y<«1
else
Yy a
{y=2+1}
{true}
{z=0—=1=1) A (m(z=0)—>z+1=2+1)} consy
{z+1-1=0—=1=z+1) A (m(z+1-1=0)—2x+1=a+1)}cons,
a+—zx+1
{la—1=0—>1=z+4+1) A (mn(a—1=0)—>a=2+1)} assy
ifa—1=0then
{1=ax+1} if,
y<+1
{y=z+1} assy
else
{a=2+1} if,
Yy a
{y=z+1} assy

10



We use the following inference rule:
[if} |

{e1} C1{v} {2} Ca {¥}
{(B—=¢1) A (#B — ¢3)}if BthenC) else Cs {9}

Exerc. 2.5. Show that this rule can be deduced from the inference system H <

Weakest preconditions - while,

We want F, {¢}while Bdo C {¢}.

To use while, rule we need a formula 7 such that:

*p—
en AN-B—=1e
e -, {n}while Bdo C{n A —B}

Invariant

One invariant of the cycle while Bdo C is a formula 7 such that

= {n A B}YC{n}.

Weakest preconditions - while,

{¢}
{n}

while Bdo

{n N B}
C

{n}
{n N =B} while,,

{y} consy

We have that wp(while Bdo C,v¢) =5, the verification conditions are ¢ — 7,
n A =B — 1 and the verification conditions of {n A B}C{n}.

Ex. 2.4. Show that

Fp {truely <= 1;2z < O;while =z = x do (2 < 2+ Ly <y x 2){y = !}

11



The invariant I is : y = z! and verifies the conditions: Is implied by the
precondition of while whichisy=1 A z2=0:

y+1

240

{y =2} ?
while—z = xdo

{ly=2z! N ~z=2z}

{lyx(z+1) ==+ consy,
z=z+1

{y x z =z} assp

y=yxz

{y =2} assy

{y =2} !

because (y =zl AN ~z=2) s y=zl—wyx(z+1)=(z+1)L

{true}

{1=0} cons,
y<1

{y =01} assy
z+0

{y =21} assy

while -z = xdo

{ly==2l N mz=12z}

{lyx(z+1)=0E=+D1} consy
z+2z+1
{y x z =21} assp
Yy xz
{y =2} assy
{y=2! AN z=uz} whiley
{y = 2!} cons,,

Exerc. 2.6. Show that

12



Fp {true}

rx;q < 0;
whiley < rdo
reT—

qg+—q+1
{r<ynaz=r+(yxq}

<

The condition = 7 + (y X ¢) is the invariant.

Exerc. 2.7. Show that
{x >0}z« x;y + 0; while 2=0do (y+ y+ ;2 z — 1){x = y}.

<&

13



