tableaux for partial correctness

Let $C=C_1;C_2;\ldots;C_n$ and we want $\vdash_p \{\varphi\}C\{\psi\}$. We can consider several problems of the form $\vdash_p \{\varphi_i\}C_i\{\varphi_{i+1}\}$, with $\varphi=\varphi_0$ and $\psi=\varphi_n$. For that we annotate the commands that compose C with formulae φ_i and consider a proof tableaux:

$$\{\varphi_0\}$$
 C_1 ;
 $\{\varphi_1\}$ justification
 C_2 ;
:
 $\{\varphi_{n-1}\}$ justification
 C_n
 $\{\varphi_n\}$

Then we need to show

$$\vdash_p \{\varphi_i\}C_{i+1}\{\varphi_{i+1}\},$$

starting with φ_n . But how to obtain φ_i ?

Weakest preconditions (wp)

For each command C and postcondition ψ a formula $wp(C, \psi)$ is the weakest precondition that being true in state s, ensures that in the state s' obtained after the execution of C and if C stops, the postcondition ψ holds.

- $\models_p \{wp(C,\psi)\}C\{\psi\}$
- $\models_p \{\varphi\}C\{\psi\}$ implies $\varphi \to wp(C,\psi)$ (called verification condition)

tableaux for partial correctness

- a formula φ_i obtained from C_{i+1} and φ_{i+1} is the weakest precondition of C_{i+1}
- given the postcondition φ_{i+1} , we can write

$$wp(C_{i+1}, \varphi_{i+1}) = \varphi_i.$$

- From wp() and using the consequence rule $(cons_p)$ we can automatically generate the verification conditions,
- that can be proved automatically or assisted by a solver.
- In general if $\{\varphi\}C\{\psi\}$ the verification condition is:

$$\varphi \to wp(C,\psi)$$

Weakest preconditions - ass_p

Assignment

$$\begin{aligned} \{\psi[E/x]\} \\ x \leftarrow E \\ \{\psi\} \end{aligned} \qquad ass_p$$

A verification condition for $\{\varphi\}x \leftarrow E\{\psi\}$, is

$$\varphi \to \psi[E/x]$$

and $wp(x \leftarrow E, \psi) = \psi[E/x]$.

Exemp. 2.1. Compute

- 1. $wp(x \leftarrow 0, x = 0)$ is 0 = 0.
- 2. $wp(x \leftarrow x + 1, x > 0)$ is x + 1 > 0.

Weakest preconditions - $cons_p$

Consequence

The rule $cons_p$ can be applied when $\varphi' \to \varphi$ and we have $\{\varphi\} C \{\psi\}$. In this case the tableaux can have two formulas in a row: φ' and below φ .

$$\{\varphi'\}$$

 $\{\varphi\}$ $cons_p$

Exerc. 2.1. Show with a tableaux $\vdash_p \{y=5\}x \leftarrow y+1\{x=6\}$. \diamond

Weakest preconditions if_p

Conditional

We want φ such that $wp(\text{if } B \text{ then } C_1 \text{ else } C_2, \psi) = \varphi$.

$$\begin{split} &\{(B \rightarrow \varphi_1) \ \land \ (\neg B \rightarrow \varphi_2)\} \\ &\text{if B then} \\ &\{\varphi_1\} \\ &C_1 \\ &\{\psi\} \qquad \qquad if_p \\ &\text{else} \\ &\{\varphi_2\} \\ &C_2 \\ &\{\psi\} \\ &\{\psi\} \qquad \qquad if_p \end{split}$$

We can compute $\{\varphi_1\}C_1\{\psi\}$ e $\{\varphi_2\}C_2\{\psi\}$, and then $\varphi \equiv (B \to \varphi_1) \land (\neg B \to \varphi_2)$, i.e.,

$$wp(\texttt{if }B\texttt{ then }C_1\texttt{ else }C_2,\psi)=(B\to\varphi_1)\ \land\ (\neg B\to\varphi_2)$$

and the verification conditions are the ones generated by φ_1 and φ_2 .

Exemp. 2.2. Show with a tableaux

$$\vdash_p \{\mathsf{true}\}$$

$$a \leftarrow x + 1;$$

$$\mathsf{if} \ a - 1 = 0 \ \mathsf{then}$$

$$y \leftarrow 1$$

$$\mathsf{else}$$

$$y \leftarrow a$$

$$\{y = x + 1\}$$

$$\begin{cases} \{ \text{true} \} \\ \{ (x=0 \to 1=1) \ \land \ (\neg (x=0) \to x+1=x+1) \} \\ \{ (x+1-1=0 \to 1=x+1) \ \land \ (\neg (x+1-1=0) \to x+1=x+1) \} \\ cons_p \\ \{ (x+1-1=0 \to 1=x+1) \ \land \ (\neg (x+1-1=0) \to x+1=x+1) \} \\ a \leftarrow x+1 \\ \{ (a-1=0 \to 1=x+1) \ \land \ (\neg (a-1=0) \to a=x+1) \} \\ \text{if } a-1=0 \text{ then} \\ \{ 1=x+1 \} \\ y \leftarrow 1 \\ \{ y=x+1 \} \\ \text{else} \\ \{ a=x+1 \} \\ y \leftarrow a \\ \{ y=x+1 \} \end{cases}$$

$$ass_p$$

We use the following inference rule:

 $[if'_p]$

$$\frac{\left\{\varphi_{1}\right\}C_{1}\left\{\psi\right\} \qquad \left\{\varphi_{2}\right\}C_{2}\left\{\psi\right\}}{\left\{\left(B\rightarrow\varphi_{1}\right)\ \land\ \left(\neg B\rightarrow\varphi_{2}\right)\right\} \text{if } B \text{ then } C_{1} \text{ else } C_{2}\left\{\psi\right\}}$$

Exerc. 2.2. Show that this rule can be deduced from the inference system $\mathcal{H} \diamond$

Weakest preconditions - $while_p$

We want $\vdash_p \{\varphi\}$ while B do C $\{\psi\}$.

To use $while_p$ rule we need a formula η such that:

- $\bullet \ \varphi \to \eta$
- $\eta \wedge \neg B \rightarrow \psi$ e
- $\vdash_p \{\eta\}$ while B do $C\{\eta \land \neg B\}$

Invariant

One invariant of the cycle while B do C is a formula η such that

$$\models_{p} \{ \eta \land B \} C \{ \eta \}.$$

Weakest preconditions - $while_p$

We have that $wp(\mathtt{while}\, B\, \mathtt{do}\, C, \psi) = \eta$, the verification conditions are $\varphi \to \eta$, $\eta \wedge \neg B \to \psi$ and the verification conditions of $\{\eta \wedge B\}C\{\eta\}$.

Exemp. 2.3. Show that

$$\vdash_p \{\mathsf{true}\}y \leftarrow 1; z \leftarrow 0; \mathsf{while} \ \neg z \ = \ x \ do \ (z \leftarrow z+1; y \leftarrow y \times z) \{y = x!\}$$

The invariant I is : y=z! and verifies the conditions: Is implied by the precondition of while which is $y=1 \land z=0$:

$$\begin{array}{l} y \leftarrow 1 \\ z \leftarrow 0 \\ \{y = z!\} \\ \text{while } \neg z = x \text{ do} \\ \{y = z! \ \land \ \neg z = x\} \\ \{y \times (z+1) = (z+1)!\} \\ z = z+1 \\ \{y \times z = z!\} \\ y = y \times z \\ \{y = z!\} \end{array} \qquad ass_p \\ \{y = x!\} \end{array}$$

because $(y = z! \land \neg z = x) \rightarrow y = z! \rightarrow y \times (z+1) = (z+1)!$.

Exerc. 2.3. Show that

$$\begin{array}{c} \vdash_p \{\mathsf{true}\} \\ r \leftarrow x; q \leftarrow 0; \\ \mathsf{while} \, y \leq r \, \mathsf{do} \\ r \leftarrow r - y; \\ q \leftarrow q + 1 \\ \{r < y \, \wedge \, x = r + (y \times q)\} \end{array}$$

 \Diamond

The condition $x = r + (y \times q)$ is the invariant.

Exerc. 2.4. Show that

$$\{x \geq 0\}z \leftarrow x; y \leftarrow 0; \text{ while } \neg z = 0 \text{ do } (y \leftarrow y+1; z \leftarrow z-1)\{x=y\}.$$