Partial correctness \mathcal{H}

 $[skip_p]$

$$\{\varphi\}$$
 skip $\{\varphi\}$

 $[ass_p]$

$$\{\varphi[E/x]\} x \leftarrow E\{\varphi\}$$

 $[comp_p]$

$$\frac{\left\{\varphi\right\}C_{1}\left\{\eta\right\}}{\left\{\varphi\right\}C_{1};C_{2}\left\{\psi\right\}}$$

 $[if_p]$

 $[if'_p]$

$$\frac{\left\{\varphi_{1}\right\}C_{1}\left\{\psi\right\} \qquad \left\{\varphi_{2}\right\}C_{2}\left\{\psi\right\}}{\left\{\left(B\rightarrow\varphi_{1}\right)\ \land\ \left(\neg B\rightarrow\varphi_{2}\right)\right\} \text{if }B \text{ then }C_{1} \text{ else }C_{2}\left\{\psi\right\}}$$

 $[while_p]$

$$\frac{\{\psi \wedge B\} C \{\psi\}}{\{\psi\} \text{ while } B \text{ do } C \{\psi \wedge \neg B\}}$$

 $[cons_p]$

$$\frac{\vdash \varphi' \to \varphi \quad \{\varphi\} C \{\psi\} \quad \vdash \psi \to \psi'}{\{\varphi'\} C \{\psi'\}}$$

Soundness and Completeness

Recall that $\models_p \{\varphi\}C\{\psi\}$ means that for all states that satisfy φ , the state that results from the execution of C satisfies ψ , if C terminates.

• Soundness: Each rule must preserve the validity.

$$\vdash_p \{\varphi\}C\{\psi\} \Rightarrow \models_p \{\varphi\}C\{\psi\}.$$

• Completeness: The system should infer all the valid partial correctness specifications.

$$\models_p \{\varphi\}C\{\psi\} \qquad \Rightarrow \qquad \vdash_p \{\varphi\}C\{\psi\}.$$

Execution State

For the evaluation of an expression we need the values of the variables. A state s is a function that assigns a value to a variable

The set of states is

$$\mathbf{State} = \mathbf{Var} \to \mathbb{Z}$$

and $s \in \mathbf{State}$ such that $s : \mathbf{Var} \to \mathbb{Z}$.

Let s x or s(x) be the value of x in the state s. If $v \in \mathbb{Z}$,

$$s[v/x](y) = \begin{cases} s(y) & \text{if } y \neq x \\ v & \text{if } y = x \end{cases}$$

Semantics of expressions

Aexp - Arithmetic expressions

$$A : \mathbf{Aexp} \to (\mathbf{State} \to Z)$$

$$\mathcal{A}[\![n]\!]s = n$$
 $\mathcal{A}[\![x]\!]s = s(x)$
 $\mathcal{A}[\![E_1 + E_2]\!]s = \mathcal{A}[\![E_1]\!]s + \mathcal{A}[\![E_2]\!]s$
 $\mathcal{A}[\![E_1 - E_2]\!]s = \mathcal{A}[\![E_1]\!]s - \mathcal{A}[\![E_2]\!]s$
 $\mathcal{A}[\![E_1 \times E_2]\!]s = \mathcal{A}[\![E_1]\!]s \cdot \mathcal{A}[\![E_2]\!]s$

Bexp - Boolean Expressions

 $T = \{\mathsf{true}, \mathsf{false}\}$

 $\mathcal{B}: \mathbf{Bexp} \to (\mathbf{State} \to \mathbf{T})$

$$\mathcal{B}[\![\mathsf{true}]\!]s = \mathsf{true}$$

$$\mathcal{B}[\![\mathsf{false}]\!]s = \mathsf{false}$$

$$\mathcal{B}[\![E_1 = E_2]\!]s = \begin{cases} \mathsf{true} & \text{if } \mathcal{A}[\![E_1]\!]s = \mathcal{A}[\![E_2]\!]s \\ \mathsf{false} & \text{if } \mathcal{A}[\![E_1]\!]s \neq \mathcal{A}[\![E_2]\!]s \end{cases}$$

$$\mathcal{B}[\![E_1 \leq E_2]\!]s = \begin{cases} \mathsf{true} & \text{if } \mathcal{A}[\![E_1]\!]s \leq \mathcal{A}[\![E_2]\!]s \\ \mathsf{false} & \text{if } \mathcal{A}[\![E_1]\!]s > \mathcal{A}[\![E_2]\!]s \end{cases}$$

$$\mathcal{B}[\![\neg b]\!]s = \begin{cases} \mathsf{true} & \text{if } \mathcal{B}[\![b]\!]s = \mathsf{false} \\ \mathsf{false} & \text{if} \mathcal{B}[\![b]\!]s = \mathsf{true} \end{cases}$$

$$\mathcal{B}[\![b_1 \land b_2]\!]s = \begin{cases} \mathsf{true} & \text{if } \mathcal{B}[\![b_1]\!]s = \mathsf{true} \text{ and } \mathcal{B}[\![b_2]\!]s = \mathsf{true} \end{cases}$$

$$\mathcal{B}[\![b_1 \land b_2]\!]s = \begin{cases} \mathsf{true} & \text{if } \mathcal{B}[\![b_1]\!]s = \mathsf{false} \text{ or } \mathcal{B}[\![b_2]\!]s = \mathsf{false} \end{cases}$$

Exemp. 4.1. For s(x) = 3 compute

a)
$$\mathcal{A}[x+1]s$$

b)
$$\mathcal{B}\llbracket \neg (x=1) \rrbracket s$$

We have
$$\mathcal{A}[\![1]\!]s = \mathcal{N}[\![1]\!] = 1$$
 and $\mathcal{A}[\![x]\!]s = s(x) = 3$. Thus $\mathcal{A}[\![x+1]\!]s = 3+1=4$. And $\mathcal{A}[\![1]\!]s = 1 \neq \mathcal{A}[\![x]\!]s = 3$, $\mathcal{B}[\![(x=1)]\!]s =$ false, thus $\mathcal{B}[\![\neg(x=1)]\!]s =$ true.

Natural semantics (big-step)

Describes the complete execution of a command.

Configurations: $\langle C, s \rangle$ or s, where C is a command and s a state $\Gamma = (\mathbf{Com} \times \mathbf{State}) \cup \mathbf{State}$

Final configurations: $s \in State$

Transitions: $\langle C, s \rangle \longrightarrow s'$

Rules:

$$\frac{\langle C_1, s_1 \rangle \longrightarrow s'_1 \dots \langle C_n, s_n \rangle \longrightarrow s'_n}{\langle C, s \rangle \longrightarrow s'}$$

Hypothese: $\langle C_i, s_i \rangle \longrightarrow s_i'$ Conclusion: $\langle C, s \rangle \longrightarrow s'$ If n = 0 the rule is an **Axiom**.

Natural semantics for commands While

$$\begin{array}{lll} \operatorname{att}_{sn} & \langle x \leftarrow E, s \rangle & \longrightarrow s[\mathcal{A}[\![E]\!] s/x] \\ \operatorname{comp}_{sn} & \frac{\langle C_1, s \rangle & \longrightarrow s' \; , \; \langle C_2, s' \rangle & \longrightarrow s''}{\langle C_1; C_2, s \rangle & \longrightarrow s''} \\ & \operatorname{if}^v{}_{sn} & \frac{\langle C_1, s \rangle & \longrightarrow s'}{\langle \operatorname{if} B \operatorname{then} C_1 \operatorname{else} C_2, s \rangle & \longrightarrow s'} \operatorname{if} \mathcal{B}[\![B]\!] s = \operatorname{true} \\ & \operatorname{if}^f{}_{sn} & \frac{\langle C_2, s \rangle & \longrightarrow s'}{\langle \operatorname{if} B \operatorname{then} C_1 \operatorname{else} C_2, s \rangle & \longrightarrow s'} \operatorname{if} \mathcal{B}[\![B]\!] s = \operatorname{false} \\ & \operatorname{while}^v{}_{sn} & \frac{\langle C, s \rangle & \longrightarrow s', \; \langle \operatorname{while} B \operatorname{do} C, s' \rangle & \longrightarrow s''}{\langle \operatorname{while} B \operatorname{do} C, s \rangle & \longrightarrow s''} \operatorname{if} \mathcal{B}[\![B]\!] s = \operatorname{true} \\ & \operatorname{while}^f{}_{sn} & \langle \operatorname{while} B \operatorname{do} C, s \rangle & \longrightarrow s \operatorname{if} \mathcal{B}[\![B]\!] s = \operatorname{false} \\ \end{array}$$

Example

If $s_0 = [x = 5, y = 7]$ compute the state after the execution of:

$$(z \leftarrow x; x \leftarrow y); y \leftarrow z.$$

$$\frac{\frac{\langle z \leftarrow x, s_0 \rangle \longrightarrow s_1 \ \langle x \leftarrow y, s_1 \rangle \longrightarrow s_2}{\langle z \leftarrow x; x \leftarrow y, s_0 \rangle \longrightarrow s_2} \ \langle y \leftarrow z, s_2 \rangle \longrightarrow s_3}{\langle (z \leftarrow x; x \leftarrow y); y \leftarrow z, s_0 \rangle \longrightarrow s_3}$$

where,

$$s_1 = s_0[5/z]$$

 $s_2 = s_1[7/x]$
 $s_3 = s_2[5/y]$

Validity w.r.t. Operational Semantics

A partial correctness specification is valid

$$\models_{p} \{\varphi\}C\{\psi\}$$

iff

For all states s, if $s \models \varphi$ and $\langle C, s \rangle \longrightarrow s'$ then $s' \models \psi$

Theorem 1 (Soundness). For all $\{\varphi\}C\{\psi\}$,

$$\vdash_p \{\varphi\}C\{\psi\} \ implies \models_p \{\varphi\}C\{\psi\}$$

The proof is by induction in the size of the inference tree of $\vdash_p \{\varphi\}C\{\psi\}$:

- Show that the property holds for the axioms.
- Show that the property holds for compound trees: for each rule, assume that the property holds for the premises and show that the property holds for the conclusion.

Case ass_p . Assume that $\vdash_p \{\varphi[E/x]\}x \leftarrow E\{\varphi\}$.

Let

$$\langle x \leftarrow E, s \rangle \longrightarrow s'$$

and $s \models \varphi[E/x]$ iff $s[\mathcal{A}[\![E]\!]s/x] \models \varphi$. (Exercise)

We need to prove that $s' \models \varphi$.

By $[ass_{sn}]$ we have s' = s[A[E]s/x], and thus

$$s' \models \varphi \text{ iff } s[\mathcal{A}[\![E]\!]s/x] \models \varphi$$

Case $comp_p$. Assume that $\vdash_p \{\varphi\} C_1 \{\eta\}$ and $\vdash_p \{\eta\} C_2 \{\psi\}$. By the ind. hyp. $\models_p \{\varphi\} C_1 \{\eta\}$ and $\models_p \{\eta\} C_2 \{\psi\}$.

We want

$$\models_p \{\varphi\}C_1; C_2\{\psi\}.$$

Let s and s" be states, such that $s \models \varphi$ and $\langle C_1; C_2, s \rangle \longrightarrow s$ ". By $[comp_{sn}]$ there exists s' such that

$$\langle C_1, s \rangle \longrightarrow s' \text{ and } \langle C_2, s' \rangle \longrightarrow s''$$

From $\langle C_1, s \rangle \longrightarrow s', s \models \varphi$ and $\models_p \{\varphi\}C_1\{\eta\}$, we have that $s' \models \eta$.

From $\langle C_2, s' \rangle \longrightarrow s''$, $s' \models \eta$ and $\models_p \{\eta\} C_2 \{\psi\}$, we have $s'' \models \psi$. As we wanted.

Case if_p . Assume that $\vdash_p \{B \land \varphi\} C_1 \{\psi\}$ and $\vdash_p \{\neg B \land \varphi\} C_2 \{\psi\}$. By the ind. hyp. $\models_p \{B \land \varphi\} C_1 \{\psi\}$ and $\models_p \{\neg B \land \varphi\} C_2 \{\psi\}$.

To prove that

$$\models_p \{\varphi\} \text{ if } B \text{ then } C_1 \text{ else } C_2 \{\psi\}$$

let s and s' be states such that $s \models \varphi$ and

$$\langle \text{if } B \text{ then } C_1 \text{ else } C_2, s \rangle \longrightarrow s'.$$

If $\mathcal{B}[\![B]\!]s = \text{true by } [if_{sn}]$, we have that $\langle C_1, s \rangle \longrightarrow s'$.

Given that

$$\models_n \{B \land \varphi\}C_1\{\psi\}.$$

we conclude that $s' \models \psi$.

In the same way, we prove for $\mathcal{B}[\![B]\!]s = \mathsf{false}$.

Caso while_p. Assume that $\vdash_p \{B \land \varphi\} C \{\varphi\}$. By induction

$$\models_p \{B \land \varphi\} C \{\varphi\}. \tag{1}$$

To prove that

$$\models_p \{\varphi\}$$
 while B do $C\{\neg B \land \varphi\}$,

let s and s" be states such that $s \models \varphi$ and

$$\langle \mathtt{while}\, B\, \mathtt{do}\, C, s \rangle \ \longrightarrow \ s''.$$

We need to prove $s'' \models \neg B \land \varphi$. We use induction on the derivation tree of the natural semantics

Case while_p. There two cases, for $[while_{sn}]$.

If $\mathcal{B}[\![B]\!]s = \text{false then } s'' = s \text{ and } s'' \models (\neg B \land \varphi).$

If not, $\mathcal{B}[\![b]\!]s = \mathsf{true}$ and there exists s' such that $\langle C, s \rangle \longrightarrow s'$ and $\langle \mathsf{while} \, B \, \mathsf{do} \, C, s' \rangle \longrightarrow s''$.

We have $s \models (B \land \varphi)$ and by (1) we have $s' \models \varphi$.

Applying the ind. hyp. to

$$\langle \mathtt{while}\, B\, \mathtt{do}\, C, s' \rangle \ \longrightarrow \ s'',$$

we have

$$s'' \models (\neg B \land \varphi),$$

as wanted.

Case $cons_p$. Suppose that

$$\models_{\mathcal{D}} \{\varphi'\} C \{\psi'\}, \models \varphi \to \varphi', \text{ and } \models \psi' \to \psi.$$
 (2)

To prove

$$\models_p \{\varphi\}C\{\psi\},$$

let s and s' such that $s \models \varphi$ and $\langle C, s \rangle \longrightarrow s'$.

As $s \models \varphi$ and $\models \varphi \rightarrow \varphi'$ then $s \models \varphi'$ and by (2), $s' \models \psi'$.

But $s' \models \psi' \rightarrow \psi$, we have $s' \models \psi$, as wanted.

Completeness of axiomatic semantics

Theorem 2 (Incompleteness of Gödel (1931)). There is no deductive system for **PA** (arithmetics), in such a way that the theorems are the valid formulae of **PA**.

Theorem 3 (Completeness). For all partial correctness specifications $\{\varphi\}C\{\psi\}$,

$$\models_p \{\varphi\}C\{\psi\} \text{ implies } \vdash_p \{\varphi\}C\{\psi\}$$

Note that $\models \psi$, iff $\models \{\texttt{true}\}$ skip $\{\psi\}$. This means that the completeness of \vdash_p contradicts the Incompleteness theorem of Gödel.

Theorem 4. There is no deductive system for partial correctness specifications such that the theorems coincide with the valid partial correctness specifications.

Proof Note that

$$\models \{\mathtt{true}\}C\{\mathtt{false}\}$$

iff the command C does not terminate for all states (diverge).

A deductive system could be used to assert that a command diverge which is impossible by the undecidability of the *Halting Problem*.

Relative completeness

Theorem 5. The proof system of partial correctness is relatively complete, i.e. for any partial correctness specification $\{\varphi\}C\{\psi\}$:

$$\vdash_{n} \{\varphi\}C\{\psi\} \ if \models_{n} \{\varphi\}C\{\psi\}$$

This result is due to Stephen Cook (1978).

The fact that $\vdash_p \{\varphi\}C\{\psi\}$ depends on some propositions in **PA** be valid.. See Chap. 7 [Win93]

Cycle for

We can add to the language the command for

for
$$x \leftarrow E_1$$
 until E_2 do C

the meaning is:

- The expressions E_1 and E_2 are evaluated at the beginning, and let e_1 and e_2 be their values;
- If $e_1 > e_2$ do nothing;
- If $e_1 \le e_2$ the command for is equivalent to:

$$x \leftarrow e_1; C; x \leftarrow e_1 + 1; C \dots; x \leftarrow e_2; C$$

The cycle executes $(e_2 - e_1) + 1$ times.

for

One could have the rule for:

$$\frac{\{\psi\}\,C\,\{\psi[x+1/x]\}}{\{\psi[E_1/x]\}\,\text{for}\,x\leftarrow E_1\,\text{until}\,E_2\,\text{do}\,C\,\{\psi[E_2+1/x]\}}$$

But it is not enough:

- The command C can modify the value of x;
- The value of E_1 can be greater then the value of E_2 .

Lógica de Hoare

[for_p -axiom] If $E_1 > E_2$

$$\{\varphi \land E_2 < E_1\}$$
 for $x \leftarrow E_1$ until E_2 do $C\{\varphi\}$

 $[for_p]$

$$\frac{\{\psi \ \land \ E_1 \leq x \ \land \ x \leq E_2\} \, C \, \{\psi[x+1/x]\}}{\{\psi[E_1/x] \ \land \ E_1 \leq E_2\} \, \text{for} \, x \leftarrow E_1 \, \text{until} \, E_2 \, \text{do} \, C \, \{\psi[E_2+1/x]\}}$$

where neither x, or any variable that occurs in E_1 or E_2 is modified by the command C.

Example

$$\vdash_p \{x=0 \ \land \ 1 \leq m\} \texttt{for} \ n \leftarrow 1 \ \texttt{until} \ m \ \texttt{do} \ x \leftarrow x + n\{x=m \times (m+1) \ div \ 2\}$$

Consider ψ equal to $x = (n-1) \times n \operatorname{div} 2$.

Arrays (aliases)

If we have an array u[] the assignment rule cannot be directly applied:

$$\{\varphi[E_2/u[E_1]]\}u[E_1] \leftarrow E_2\{\varphi\}$$

as modifications in $u[E_1]$ can (should) change other references to (aliases) u that can occur in φ or in E_2 .

For instance, $u[i] \leftarrow 10$ with pre-condition $\{u[j] > 100\}$ and i = j.

T. Hoare solution was to consider the arrays monolitic, and an assignment

$$u \leftarrow u[E_1 \triangleright E_2]$$

means that u is a new array equal to the previous one where the position E_1 has value E_2 .

Thus in the example the values of u[i] and of u[j] both change because the array itself has changed.

Syntax of the language While array

For $n \in \mathbf{Num}$, $x \in \mathbf{Var}$, $u \in \mathbf{Array}$

ArrayExp
$$A ::= u \mid A[E \triangleright E]$$

$$\begin{aligned} \mathbf{AExp} \quad E &::= \quad n \mid x \mid -E \mid E+E \mid E-E \\ \mid E \times E \mid E \div E \\ \mid A[E] \end{aligned}$$

$$\begin{aligned} \mathbf{BExp} \quad B ::= \quad & \mathsf{true} \mid \mathsf{false} \mid \neg B \mid E = E \\ & \mid B < E \mid B < B \mid B \ \land \ B \mid B \ \lor \ B \end{aligned}$$

Semantics for expressions of While array

We only need to define the semântica for expressions **ArrayExp**. An array is a function $\mathbb{Z} \to \mathbb{Z}$ thus

$$\mathbf{State} = \mathbf{Var} \to \mathbb{Z} \cup \mathbf{Array} \to (\mathbb{Z} \to \mathbb{Z})$$

$$\begin{split} \mathcal{A} \llbracket u \rrbracket s &= s(u) \\ \mathcal{A} \llbracket A \llbracket E \rhd E' \rrbracket \rrbracket s &= \mathcal{A} \llbracket A \rrbracket s \llbracket \mathcal{A} \llbracket E' \rrbracket s / \mathcal{A} \llbracket E \rrbracket s \rrbracket \\ \mathcal{A} \llbracket A \llbracket E \rrbracket \rrbracket s &= (\mathcal{A} \llbracket A \rrbracket s) (\mathcal{A} \llbracket E \rrbracket s) \end{split}$$

Partial Correctness for Arrays

 $[array_p(assign)]$

$$\{\psi[u[E_1 \triangleright E_2]/u]\}\ u[E_1] \leftarrow E_2\ \{\psi\}$$

where E_1 is a positive integer.

And

$$\begin{array}{rcl} u[E_1 \triangleright E_2][E_1] & = & E_2 \\ u[E_1 \triangleright E_2][E_3] & = & u[E_3] \text{ if } E_3 \neq E_1. \end{array}$$

Example

$$\begin{split} &\vdash_{p}\{a[x] = x \ \land \ a[y] = y\} \\ &\quad r \leftarrow a[x]; \\ &\quad a[x] \leftarrow a[y]; \\ &\quad a[y] \leftarrow r \\ &\quad \{a[x] = y \ \land \ a[y] = x\} \end{split}$$

The tableaux is

$$\{a[x] = x \ \land \ a[y] = y\}$$

$$\{a[x \rhd a[y]][y \rhd a[x]][x] = y \ \land \ a[x] = x\}$$

$$r \leftarrow a[x];$$

$$\{a[x \rhd a[y]][y \rhd r][x] = y \ \land \ r = x\}$$

$$a[x] \leftarrow a[y];$$

$$\{a[y \rhd r][x] = y \ \land \ r = x\}$$

$$\{a[y \rhd r][x] = y \ \land \ a[y \rhd r][y] = x\}$$

$$a[y] \leftarrow r$$

$$\{a[x] = y \ \land \ a[y] = x\}$$

Where $a[x \triangleright a[y]][y \triangleright a[x]][x] = a[y]$.

Note: In implementations this technique is not used as it is very inefficient

Calculus for total correctness

In the language **while** the only command that can lead to non termination is the command **while**.

The calculus \vdash_{tot} coincides with \vdash_p except in the rule while tot.

To prove that a program terminates we need to associate a strictly decreasing expression called the *variant*.

For the while we associate a non negative expression and in each iteration we show that its value diminish maintaining non negative:in this way we ensure that in a finite number of times it will be zero.

For the factorial

$$y \leftarrow 1; z \leftarrow 0; \text{ while } z \neq x \ do \ (z \leftarrow z + 1; y \leftarrow y \times z)$$

the variant is x-z.

Calculus for total correctness

Hoare logic

The rules ass_{tot} , $comp_{tot}$, if_{tot} e $cons_{tot}$ are the same as for \vdash_p

 $[while_{tot}]$

$$\frac{\left\{\eta \ \land \ B \ \land \ 0 \leq E \ \land \ E = e_0\right\} C \left\{\eta \ \land \ 0 \leq E \ \land \ E < e_0\right\}}{\left\{\eta \ \land \ 0 \leq E\right\} \mathtt{while} \, B \, \mathtt{do} \, C \left\{\eta \ \land \ \neg B\right\}}$$

where e_0 is a logic variable whose value is the value of E before the execution of the command C.

Tableaux- $while_{tot}$

$$\{\varphi\}$$

$$\{\eta\ \land\ 0\leq E\}$$
 while B do
$$\{\eta\ \land\ B\ \land\ 0\leq E\ \land\ E=e_0\}$$

$$C$$

$$\{\eta\ \land\ 0\leq E\ \land\ E
$$\{\eta\ \land\ \neg B\}$$

$$while_{tot}$$

$$\{\psi\}$$$$

Example

$$\vdash_{tot} \{x \geq 0\} y \leftarrow 1; z \leftarrow 0; \text{ while } z \neq x \text{ do } (z \leftarrow z + 1; y \leftarrow y \times z) \{y = x!\}$$

```
\{x \ge 0\}
\{1 = 0! \ \land \ 0 \le x - 0\}
y \leftarrow 1
{y = 0! \land 0 \le x - 0}
z \leftarrow 0
\{y = z! \land 0 \le x - z\}
                                               ass_{tot}
while z \neq x do
\{y = z! \land z \neq x \land 0 \le x - z \land x - z = e_0\}
\{y \times (z+1) = (z+1)! \land 0 \le x - (z+1) \land x - (z+1) < e_0\}
                                                                                                       ass_{tot}
z \leftarrow z + 1
\{y \times z = z! \land 0 \le x - z \land x - z < e_0\}
                                                                        ass_{tot}
y \leftarrow y \times z
\{y = z! \land 0 \le x - z \land x - z < e_0\}
\{y=z! \ \land \ z=x\}
{y = x!}
```

How to find a variant?

Variants are harder to find as it is not possible to know, in general, that a program terminates.

Consider this specification

```
\begin{array}{l} \vdash_{tot} \\ \textbf{Require:} \ \{x>0\} \\ c \leftarrow x; \\ \textbf{while} \ c \neq 1 \ \textbf{do} \\ \textbf{if} \ c\%2 == 0 \ \textbf{then} \\ c \leftarrow c/2 \\ \textbf{else} \\ c \leftarrow 3*c+1 \\ \textbf{Ensure:} \ \{\textbf{true}\} \end{array}
```

Is this triple valid? In this case the specification would only ensure termination. But we do not know if the program terminates! (Collatz conjecture).

Exerc. 4.1. Show

$$\begin{aligned} \vdash_{tot} \{y > 0\} \\ \text{while} \ y &\leq r \text{ do} \\ r &\leftarrow r - y; \\ q &\leftarrow q + 1 \\ \text{ \{true\}} \end{aligned}$$

 \Diamond

References

- [HR04] Michael Huth and Mark Ryan. Logic in Computer Science: Modelling and reasoning about systems. CUP, 2004.
- [NN07] H. Nielson and F. Nielson. Semantics with Applications: an appetizer. Springer, 2007.
- [Win93] Glynn Winskel. The Formal Semantics of Programming Languages. MIT Press, 1993.