Mechanising Hoare Logic

Given a Hoare triple $(\{\varphi\} C\{\psi\})$ rules are applied from the conclusion, assuming that the side conditions hold.

- If all side conditions hold, a proof can be build;
- If some side condition does not hold, the derivation tree is not a valid deduction, but is there an alternative derivation?

There is a strategy to build the derivation trees such that we can conclude (if some side conditions does not hold) that there is no derivation for the given Hoare triple.

Tableaux

- The tableaux system allows to obtain the derivation of a Hoare triple, that is the conclusion.
- The derivation is valid if the verification conditions are satisfiable.
- But if they are not, how to ensure that there is no other derivation?
- If there is no determinism one cannot mechanise the Hoare logic.
- We will see that the tableaux ensure that if the verification conditions are not satisfiable no other derivation exists.
- and the tableaux can be automated.

Subformula property and Ambiguity

Most rules of Hoare logic have the subformula property:
all the assertions that occur in the premises of a rule also occur in its conclusion.

The exceptions are:

- The rule comp, which requires an intermediate condition;
- The rule cons, where the precondition and the postcondition must be guessed.

Other property that we want is that the choice of the rules is non ambiguous, but:

- The rule cons, can be applied to any Hoare triple. Thus it should be removed.

Hoare logic without the rule cons: system \mathcal{H}_{g}

$$
\begin{gathered}
\frac{\{\varphi\} \text { skip }\{\psi\}}{} \text { if } \models \varphi \rightarrow \psi \\
\frac{\{\varphi\} x \leftarrow E\{\psi\}}{\{f} \models \varphi \rightarrow \psi[E / x] \\
\frac{\{\varphi\} C_{1}\{\eta\} \quad\{\eta\} C_{2}\{\psi\}}{\{\varphi\} C_{1} ; C_{2}\{\psi\}} \\
\frac{\{\varphi \wedge B\} C_{1}\{\psi\} \quad\{\varphi \wedge \neg B\} C_{2}\{\psi\}}{\{\varphi\} \text { if } B \text { then } C_{1} \text { else } C_{2}\{\psi\}} \\
\frac{\{\eta \wedge B\} C\{\eta\}}{\{\varphi\} \text { while } B \text { do }\{\eta\} C\{\psi\}} \text { if } \models \varphi \rightarrow \eta \text { and } \models \eta \wedge \neg B \rightarrow \psi
\end{gathered}
$$

In the while $_{p}$ rule the loop is annotated with the invariant η, to keep the subformula property. .
We can show that the cons is derivable in \mathcal{H}_{g}. Let Γ be a set of assertions.
Lema 7.1. If $\Gamma \vdash_{\mathcal{H}_{g}}\{\varphi\} C\{\psi\}$ and $\models \varphi^{\prime} \rightarrow \varphi, \models \psi \rightarrow \psi^{\prime}$, then $\Gamma \vdash_{\mathcal{H}_{g}}$ $\left\{\varphi^{\prime}\right\} C\left\{\psi^{\prime}\right\}$.

Proof: By induction on the derivation of $\Gamma \vdash_{\mathcal{H}_{g}}\{\psi\} C\{\varphi\}$. We consider the case skip and sequence.

- For $C \equiv$ skip, we have $\Gamma \vdash_{\mathcal{H}_{g}}\{\varphi\} \operatorname{skip}\{\psi\}$, if $\models \varphi \rightarrow \psi$. We have $\vDash \varphi^{\prime} \rightarrow \varphi, \models \varphi \rightarrow \psi$ and $\models \psi \rightarrow \psi^{\prime}$, thus $\models \varphi^{\prime} \rightarrow \psi^{\prime}$, what means that $\Gamma \vdash_{\mathcal{H}_{g}}\left\{\varphi^{\prime}\right\} \operatorname{skip}\left\{\psi^{\prime}\right\}$.
- For $C \equiv C_{1} ; C_{2}$, we have $\Gamma \vdash_{\mathcal{H}_{g}}\{\varphi\} C_{1} ; C_{2}\{\psi\}$, if $\Gamma \vdash_{\mathcal{H}_{g}}\{\varphi\} C_{1}\{\eta\}$ and $\Gamma \vdash_{\mathcal{H}_{g}}\{\eta\} C_{2}\{\psi\}$.
By induction we have

$$
\begin{aligned}
& \Gamma \vdash_{\mathcal{H}_{g}}\left\{\varphi^{\prime}\right\} C_{1}\{\eta\} \text { as } \models \varphi^{\prime} \rightarrow \varphi \text { and } \models \eta \rightarrow \eta, \\
& \Gamma \vdash_{\mathcal{H}_{g}}\{\eta\} C_{2}\left\{\psi^{\prime}\right\} \text { as } \models \eta \rightarrow \eta \text { and } \models \psi \rightarrow \psi^{\prime},
\end{aligned}
$$

thus $\Gamma \vdash_{\mathcal{H}_{g}}\left\{\varphi^{\prime}\right\} C_{1} ; C_{2}\left\{\psi^{\prime}\right\}$.
Exerc. 7.1. Complete the previous proof.

Equivalence between \mathcal{H} and \mathcal{H}_{g}

Lema 7.2. $\Gamma \vdash_{\mathcal{H}}\{\varphi\} C\{\psi\}$ iff $\Gamma \vdash_{\mathcal{H}_{g}}\{\varphi\} C\{\psi\}$
Proof:
(\Rightarrow) By induction on the derivation of $\Gamma \vdash_{\mathcal{H}}\{\varphi\} C\{\psi\}$, using the lemma. We consider the case of assignment and consequence.

- we have $\Gamma \vdash_{\mathcal{H}}\{\varphi[E / x]\} x \leftarrow E\{\varphi\}$ and $\models \varphi[E / x] \rightarrow \varphi[E / x]$, thus $\Gamma \vdash_{\mathcal{H}_{g}}\{\varphi[E / x]\} x \leftarrow E\{\varphi\}$
- By the rule of consequence we have

$$
\Gamma \vdash_{\mathcal{H}}\{\varphi\} C\{\psi\}
$$

if $\Gamma \vdash_{\mathcal{H}}\left\{\varphi^{\prime}\right\} C\left\{\psi^{\prime}\right\}$ and $\models \varphi \rightarrow \varphi^{\prime}, \models \psi^{\prime} \rightarrow \psi$.
By induction we have $\Gamma \vdash_{\mathcal{H}_{g}}\left\{\varphi^{\prime}\right\} C\left\{\psi^{\prime}\right\}$, thus by the previous lemma we have $\Gamma \vdash_{\mathcal{H}_{g}}\{\varphi\} C\{\psi\}$.
(\Leftarrow) By induction on the derivation of $\Gamma \vdash_{\mathcal{H}_{g}}\{\varphi\} C\{\psi\}$. We consider the case of assignment and conditional.

- we have

$$
\Gamma \vdash_{\mathcal{H}_{g}}\{\varphi\} x \leftarrow E\{\psi\} \text { if } \models \varphi \rightarrow \psi[E / x] .
$$

As

$$
\Gamma \vdash_{\mathcal{H}}\{\psi[E / x]\} x \leftarrow E\{\psi\} \text { and } \models \varphi \rightarrow \psi[E / x]
$$

and $\models \psi \rightarrow \psi$, by consp $_{p}$ rule, we have $\Gamma \vdash_{\mathcal{H}}\{\varphi\} x \leftarrow E\{\psi\}$.

- we have $\Gamma \vdash_{\mathcal{H}_{g}}\{\varphi\}$ if B then C_{1} else $C_{2}\{\psi\}$, if

$$
\Gamma \vdash_{\mathcal{H}_{g}}\{\varphi \wedge B\} C_{1}\{\psi\} \text { and } \Gamma \vdash_{\mathcal{H}_{g}}\{\varphi \wedge \neg B\} C_{2}\{\psi\} .
$$

By induction $\Gamma \vdash_{\mathcal{H}}\{\varphi \wedge B\} C_{1}\{\psi\}$ and $\Gamma \vdash_{\mathcal{H}}\{\varphi \wedge \neg B\} C_{2}\{\psi\}$, thus $\Gamma \vdash_{\mathcal{H}}\{\varphi\}$ if B then C_{1} else $C_{2}\{\psi\}$

Exerc. 7.2. Complete the previous proof.

Pro and Cons

Advantages of \mathcal{H}_{g} :

- The ambiguity of rule cons was eliminated.

Drawbacks of \mathcal{H}_{g} :

- Is still necessary to guess the intermediate preconditions in comp.

The weakest precondition strategy:tableaux

We already saw that for building a derivation for $\{\varphi\} C\{\psi\}$, where φ can or not be known (we write $\{?\} C\{\psi\}$).

1. if φ is known, we apply the unique rule of \mathcal{H}_{g}. if C is $C_{1} ; C_{2}$, we build a subproof of the form $\{?\} C_{2}\{\psi\}$. when the proof terminates we can go on with $\{\varphi\} C_{1}\{\theta\}$, with θ obtained in the previous sub-derivation.
2. if φ is unknown, the construction proceeds as before, except that, in the rules for skip, assignment and loops, with a side condition $\varphi \rightarrow \theta$, we tale the precondition φ to be θ (which is exactly the $w p(C . \psi)$.

Two phases verification

Verification condition generator, VCG

Given $\{\varphi\} C\{\psi\}$ to compute $V C(C, \psi)$ we have to:

- Compute the weakest precondition $w p(C, \psi)$
- we have that $\varphi \rightarrow w p(C, \psi)$ is a verification condition (VC)
- The remaining VC are collected from the conditions introduced in the loops while.

Computation of the weakest preconditions (wp)

Given a program C and a postcondition ψ, we can compute $w p(C, \psi)$ such that $\{w p(C, \psi)\} C\{\psi\}$ is valid and if $\{\varphi\} C\{\psi\}$ is valid for any φ then $\varphi \rightarrow w p(C, \psi)$.

$$
\begin{aligned}
w p(\mathbf{s k i p}, \psi) & =\psi \\
w p(x \leftarrow E, \psi) & =\psi[E / x] \\
w p\left(C_{1} ; C_{2}, \psi\right)= & w p\left(C_{1}, w p\left(C_{2}, \psi\right)\right) \\
w p\left(\text { if } B \text { then } C_{1} \text { else } C_{2}, \psi\right)= & \left(B \rightarrow w p\left(C_{1}, \psi\right)\right) \\
& \wedge\left(\neg B \rightarrow w p\left(C_{2}, \psi\right)\right) \\
w p(\text { while } B \text { do }\{\eta\} C, \psi)= & \eta
\end{aligned}
$$

Properties of $w p$ and $V C G$

Given a program C and an assertion ψ if $\Gamma \vdash_{\mathcal{H}_{g}}\{\varphi\} C\{\psi\}$, for any precondition φ, then

Lema 7.3.

1. $\Gamma \vdash_{\mathcal{H}_{g}}\{w p(C, \psi)\} C\{\psi\}$
2. $\Gamma \models \varphi \rightarrow w p(C, \psi)$

Proof: By induction on C. We consider the cases of skip and while.

- For $C \equiv$ skip, we have $\Gamma \vdash_{\mathcal{H}_{g}}\{\varphi\} \operatorname{skip}\{\psi\}$ if $\models \varphi \rightarrow \psi$. Note that $w p($ skip,$\psi)=\psi$.

1. Trivially we have $\Gamma \vdash_{\mathcal{H}_{g}}\{\psi\} \operatorname{skip}\{\psi\}$, as $\models \psi \rightarrow \psi$.
2. By hypothesis we have $\Gamma \models \varphi \rightarrow \psi=w p$ (skip, ψ).

- $C \equiv$ while B do C, we have

$$
\Gamma \vdash_{\mathcal{H}_{g}}\{\varphi\} \text { while } B \text { do }\{\eta\} C\{\psi\} \text { if } \Gamma \vdash_{\mathcal{H}_{g}}\{\eta \wedge B\} C\{\eta\}
$$

and $\models \varphi \rightarrow \eta, \models \eta \wedge \neg B \rightarrow \psi$.
Note that $w p($ while B do $\{\eta\} C, \psi)=\eta$

1. As $\models \eta \rightarrow \eta$, and by hypothesis $\models \eta \wedge \neg B \rightarrow \psi$ and $\Gamma \vdash_{\mathcal{H}_{g}}\{\eta \wedge$ $B\} C\{\eta\}$, then

$$
\Gamma \vdash_{\mathcal{H}_{g}}\{\eta\} \text { while } B \text { do }\{\eta\} C\{\psi\}
$$

2. by hypothesis we have $\Gamma \models \varphi \rightarrow \eta=w p$ (while B do $\{\eta\} C \psi$).

Exerc. 7.3. Complete the previous proof.

Algorithm $V C G$

First one computes $V C(C, \psi)$ without consider the preconditions

$$
\begin{aligned}
V C(\text { skip }, \psi)= & \emptyset \\
V C(x \leftarrow E, \psi)= & \emptyset \\
V C\left(C_{1} ; C_{2}, \psi\right)= & V C\left(C_{1}, w p\left(C_{2}, \psi\right)\right) \cup V C\left(C_{2}, \psi\right) \\
V C\left(\text { if } B \text { then } C_{1} \text { else } C_{2}, \psi\right)= & V C\left(C_{1}, \psi\right) \cup V C\left(C_{2}, \psi\right) \\
V C(\text { while } B \text { do }\{\eta\} C, \psi)= & \{(\eta \wedge B) \rightarrow w p(C, \eta)\} \cup \\
& \{(\eta \wedge \neg B) \rightarrow \psi\} \cup V C(C, \eta)
\end{aligned}
$$

Next one considers the precondition:

$$
V C G(\{\varphi\} C\{\psi\})=\{\varphi \rightarrow w p(C, \psi)\} \cup V C(C, \psi)
$$

Example

let fact be the program:

```
\(f \leftarrow 1 ; i \leftarrow 1 ;\)
while \(i \leq n\) do
    \(\{f=(i-1)!\wedge i \leq n+1\} \quad \triangleright\) Invariante
    \(f \leftarrow f * i ;\)
    \(i \leftarrow i+1 ;\)
```

We compute

$$
\operatorname{VCG}(\{n \geq 0\} \operatorname{fact}\{f=n!\})
$$

with

$$
\begin{aligned}
\theta & =f=(i-1)!\wedge i \leq n+1 \\
C_{w} & =f \leftarrow f * i ; i \leftarrow i+1
\end{aligned}
$$

$$
\begin{aligned}
& V C(\text { fact, } f=n!) \\
= & V C\left(f \leftarrow 1 ; i \leftarrow 1, w p\left(\text { while } i \leq n \operatorname{do}\{\theta\} C_{w}, f=n!\right)\right) \\
& \cup V C\left(\text { while } i \leq n \operatorname{do}\{\theta\} C_{w}, f=n!\right) \\
= & V C(f \leftarrow 1 ; i \leftarrow 1, \theta) \cup\left\{\theta \wedge i \leq n \rightarrow w p\left(C_{w}, \theta\right)\right\} \\
& \cup\{\theta \wedge i>n \rightarrow f=n!\} \cup V C\left(C_{w}, \theta\right) \\
= & V C(f \leftarrow 1, w p(i \leftarrow 1, \theta)) \cup V C(i \leftarrow 1, \theta) \\
& \cup\{f=(i-1)!\wedge i \leq n+1 \wedge i \leq n \rightarrow w p(f \leftarrow f * i ; i \leftarrow i+1, \theta)\} \\
& \cup\{f=(i-1)!\wedge i \leq n+1 \wedge i>n \rightarrow f=n!\} \\
& \cup V C(f=f * i, w p(i \leftarrow i+1, \theta)) \cup V C(i \leftarrow i+1, \theta) \\
= & \emptyset \cup \emptyset \cup\{f=(i-1)!\wedge i \leq n+1 \wedge i \leq n \\
& \rightarrow w p(f \leftarrow f * i, f=(i+1-1)!\wedge i+1 \leq n+1)\} \\
& \cup\{f=(i-1)!\wedge i \leq n+1 \wedge i \leq n \rightarrow f=n!\} \cup \emptyset \cup \emptyset \\
= & \{f=(i-1)!\wedge i \leq n+1 \wedge i \leq n \rightarrow f * i=(i+1-1)! \\
& \wedge i+1 \leq n+1, f=(i-1)!\wedge i \leq n+1 \wedge i \leq n \rightarrow f=n!\}
\end{aligned}
$$

$$
\begin{aligned}
& V C G(\{n \geq 0\} \text { fact }\{f=n!\}) \\
= & \{n \geq 0 \rightarrow w p(\text { fact, } f=n!)\} \cup V C(\text { fact, } f=n!) \\
= & \left\{n \geq 0 \rightarrow w p\left(f \leftarrow 1 ; i \leftarrow 1 ; w p\left(\text { while } i \leq n \operatorname{dos}\{\theta\} C_{w}, f=n!\right),\right.\right. \\
& f=(i-1)!\wedge i \leq n+1 \wedge i \leq n \rightarrow f * i=(i+1-1)! \\
& \wedge i+1 \leq n+1, f=(i-1)!\wedge i \leq n+1 \wedge i \leq n \rightarrow f=n!\} \\
= & \{n \geq 0 \rightarrow w p(f \leftarrow 1 ; i \leftarrow 1 ; \theta), \\
& f=(i-1)!\wedge i \leq n+1 \wedge i \leq n \rightarrow f * i=(i+1-1)! \\
& \wedge i+1 \leq n+1, f=(i-1)!\wedge i \leq n+1 \wedge i \leq n \rightarrow f=n!\}
\end{aligned}
$$

We have the following proof obligations:

1. $n \geq 0 \rightarrow 1=(1-1)!\wedge 1 \leq n+1$
2. $f=(i-1)!\wedge i \leq n+1 \wedge i \leq n \rightarrow f * i=(i+1-1)!\wedge i+1 \leq n+1)$
3. $f=(i-1)!\wedge i \leq n+1 \wedge i \leq n \rightarrow f=n$!

Teorema 7.1 (Adequacy of $V C G$). Let $\{\varphi\} C\{\psi\}$ a Hoare triple and Γ a set of assertions.

$$
\Gamma \vDash V C G(\{\varphi\} C\{\psi\}) \text { iff } \Gamma \vdash_{\mathcal{H}_{g}}\{\varphi\} C\{\psi\} .
$$

Proof:
(\Rightarrow) By induction on the derivation of C. We consider the case of assignment and sequence

- For $C \equiv x \leftarrow E$, we have

$$
\begin{aligned}
V C G(\{\varphi\} X \leftarrow E\{\psi\}) & =\{\varphi \rightarrow w p(X \leftarrow E, \psi)\} \cup V C(x \leftarrow E, \psi) \\
& =\{\varphi \rightarrow \psi[E / x]\} .
\end{aligned}
$$

If $\Gamma \models \varphi \rightarrow \psi[E / x]$, then by the assignment rule

$$
\Gamma \vdash \vdash_{\mathcal{H}_{g}}\{\varphi\} C\{\psi\} .
$$

- For $C \equiv C_{1} ; C_{2}$, we have

$$
\begin{aligned}
V C G\left(\{\varphi\} C_{1} ; C_{2}\{\psi\}\right)= & \left\{\varphi \rightarrow w p\left(C_{1} ; C_{2}, \psi\right)\right\} \cup V C\left(C_{1} ; C_{2}, \psi\right) \\
= & \left\{\varphi \rightarrow w p\left(C_{1}, w p\left(C_{2}, \psi\right)\right)\right\} \\
& \cup V C\left(C_{1}, w p\left(C_{2}, \psi\right)\right) \cup V C\left(C_{2}, \psi\right) .
\end{aligned}
$$

Let $\eta=w p\left(C_{2}, \psi\right)$. As

$$
\Gamma \models \varphi \rightarrow w p\left(C_{1}, \eta\right) \cup V C\left(C_{1}, \eta\right)=V C G\left(\{\varphi\} C_{1}\{\eta\}\right)
$$

by induction $\Gamma \vdash_{\mathcal{H}_{g}}\{\varphi\} C_{1}\{\eta\}$.
Also $\quad \Gamma \models \eta \rightarrow \eta \cup V C\left(C_{2}, \psi\right)=V C G\left(\{\eta\} C_{2}\{\psi\}\right)$, by induction $\Gamma \vdash_{\mathcal{H}_{g}}$ $\{\eta\} C_{2}\{\psi\}$, thus $\Gamma \vdash_{\mathcal{H}_{g}}\{\varphi\} C_{1} ; C_{2}\{\psi\}$.
(\Leftarrow) By induction on the derivation of $\Gamma \vdash_{\mathcal{H}_{g}}\{\psi\} C\{\varphi\}$. We consider the case skip and conditional.

- $\Gamma \vdash_{\mathcal{H}_{g}}\{\varphi\} \operatorname{skip}\{\psi\}$, if $\Gamma \models \varphi \rightarrow \psi=V C G(\{\varphi\} \operatorname{skip}\{\psi\})$.
- $\Gamma \vdash_{\mathcal{H}_{g}}\{\varphi\}$ if B then C_{1} else $C_{2}\{\psi\}$ if $\Gamma \vdash_{\mathcal{H}_{g}}\{\varphi \wedge B\} C_{1}\{\psi\}$ e $\Gamma \vdash_{\mathcal{H}_{g}}$ $\{\varphi \wedge \neg B\} C_{2}\{\psi\}$. By induction

$$
\Gamma \models V C G\left(\{\varphi \wedge B\} C_{1}\{\psi\}\right)=\left\{(\varphi \wedge B) \rightarrow w p\left(C_{1}, \psi\right)\right\} \cup V C\left(C_{1}, \psi\right)
$$

and

$$
\Gamma \models V C G\left(\{\varphi \wedge \neg B\} C_{2}\{\psi\}\right)=\left\{(\varphi \wedge \neg B) \rightarrow w p\left(C_{2}, \psi\right)\right\} \cup V C\left(C_{2}, \psi\right)
$$

Note that,

$$
\left.w p\left(\text { if } B \text { then } C_{1} \text { else } C_{2}, \psi\right)=B \rightarrow w p\left(C_{1}, \psi\right) \wedge \neg B \rightarrow w p\left(C_{2}, \psi\right)\right\}
$$

thus,

$$
\Gamma \models\left\{\varphi \rightarrow w p\left(\text { if } B \text { then } C_{1} \text { else } C_{2}, \psi\right)\right\}
$$

Thus, $\Gamma \models\left\{\varphi \rightarrow w p\left(\right.\right.$ if B then C_{1} else $\left.\left.C_{2}, \psi\right)\right\} \cup V C\left(C_{1}, \psi\right) \cup V C\left(C_{2}, \psi\right)=$ $V C G\left(\{\varphi\}\right.$ if B then C_{1} else $\left.C_{2}\{\psi\}\right)$.
Exerc. 7.4. Complete the previous proof.

References

[AFPMdS11] José Bacelar Almeida, Maria João Frade, Jorge Sousa Pinto, and Simão Melo de Sousa. Rigorous Software Development: An Introduction to Program Verification. Springer, 2011.

