
Program verification

Nelma Moreira

Departamento de Ciência de Computadores da FCUP

Program verification
Lecture 4
Procedures

Procedures

• Until now we consider a program as a sequence of commands

• The treatment of subroutines is challenging from the point of
view of verification: procedures or functions

• The treatment of procedures and functions includes the
following aspects:

• recursive calls (that can lead to non termination in the
evaluation of expressions);

• parameters;

• A program will be a set of procedures annotated with
contracts.

• We will not consider here an operational semantics for
procedures but assume that there exists one and the program
logic will be adequate.

• We start with procedures without parameters.

Procedures and Recursion

We suppose that procedures have no parameters.

• proc p = Cp defines a procedure p;

• the command Cp is the body of the procedure p (body(p));

• the new command call p invokes the procedure, transfering
execution to the body of p;

• A natural semantics rule could be:

〈body(p), s〉 −→ s ′

〈call p, s〉 −→ s ′

• for non recursive procedures the rule of Hoare logic is

{ϕ}body(p){ψ}
{ϕ}call p{ψ}

Example

Consider the procedure

proc fact =
f ← 1;
i ← 1;
while i ≤ n do

{f = fact(i − 1) and i ≤ n + 1}
f ← f × i ;
i ← i + 1

By the correction of the body we have:

{n ≥ 0 ∧ n = n0}body(fact){f = fact(n) ∧ n = n0}

Applying the above rule we have:

{n ≥ 0 ∧ n = n0}call fact{f = fact(n) ∧ n = n0}

Modularity

• In verification it is useful that one can reuse correctness
results.Mesmo sem procedimentos.;

• Let

fact = f ← 1; i ← 1; while i ≤ n do (f ← f × i ; i ← i + 1)

and fact(n) = n!, and we have a proof of

{n ≥ 0}fact{f = fact(n)}

we would like to use this result to prove a weaker
specification:

{n = 10}fact{f = fact(n)}

This can be achieved using the consequence rule.
• However, if we have,

{n ≥ 0 ∧ n = n0}fact{f = fact(n) ∧ n = n0}

we cannot derive the weaker triple.

Adaptation

The problem of matching a proved specification of a program with
a weaker specification is called the adaptation problem (without
the full proof of this last specification).

(Satisfiable specification) A specification (ϕ,ψ) is satisfiable if
there is a program C such that |= {ϕ}C{ψ}.
(Adaptation completeness) Let (ϕ,ψ) satisfiable and for any
program C we have |= {ϕ′}C{ψ′} whenever |= {ϕ}C{ψ}. A
deductive system of Hoare triples is adaptation complete iff for any
program C the following rule is derivable.

{ϕ}C{ψ}
{ϕ′}C{ψ′}

Hoare logic is not adaptation complete, due to the presence of
auxiliary variables.

• Informally, auxiliary variables are universally quantified over
Hoare triples, connecting pre and post conditions. But, the
side conditions in consp rule do not take that in consideration.

• A solution was proposed by Kleymann, considering a stronger
consequence rule, formalizing the difference between program
and auxiliary variables.

• In the consequence rule

{ϕ}C{ψ}
{ϕ′}C{ψ′} if ϕ′ =⇒ ϕ ∧ ψ =⇒ ψ′

• The first side condition is interpreted in the pre-state, whereas
the second is interpreted in the post-state. Both should
communicate through the auxiliary variables.

• The auxiliary variables in ψ have to be interpreted in the
pre-state and should be existentially quantified:in the factorial
example n = 10 =⇒ n ≥ 0 ∧ n = n0, does not hold, but
n = 10 =⇒ ∃n0.n ≥ 0 ∧ n = n0 does.

The adequate side condition suggested by Kleymann has the form

ϕ′ =⇒ (ϕ ∧ (ψ =⇒ ψ′))

Let y be the auxiliary variables in {ϕ}C{ψ}, existencial
quantification is introduced as follows (yf):

ϕ′ =⇒ ∃yf .(ϕ[yf /y] ∧ (ψ[yf /y] =⇒ ψ′))

The auxiliary variables in ϕ′ and ψ′ do not change.

We replace program variables in the post-state by universally
quantified fresh variables

{ϕ}C{ψ}
{ϕ′}C{ψ′} se ϕ′ =⇒ ∀xf .∃yf .(ϕ[yf /y]∧(ψ[yf /y , xf /x] =⇒ ψ′[xf /x]))

where y are the auxiliary variables in {ϕ}C{ψ}, x the program
variables in C , and yf , xf are fresh variables.

• The previous rule works for total correctness , i.e., C has to
terminate.

• we have a weaker condition for partial correctness (seeing the
pre condition impling the post condition

ϕ′ =⇒ ((ϕ =⇒ ψ) =⇒ ψ′)

The auxiliar variables are now universally quantified

ϕ′ =⇒ (∀y .(ϕ =⇒ ψ) =⇒ ψ′)

The resulting rule is

{ϕ}C{ψ}
{ϕ′}C{ψ′} se ϕ′ =⇒ ∀xf .(∀yf .(ϕ[yf /y] =⇒ ψ[yf /y , xf /x]) =⇒ ψ′[xf /x])

where y are auxiliary variables {ϕ}C{ψ}, x are the program
variables of C and yf and xf fresh.

We will only use these new consequence rules to deal with
recursive procedures

Example

Given the assertion:

{n ≥ 0 ∧ n = n0}fact{f = fact(n) ∧ n = n0}

To derive a weaker assertion:

{n = 10}fact{f = fact(10)}

we obtain the side condition

n = 10 =⇒ ∀nf , ff .(∀n0f .n ≥ 0 ∧ n = n0f =⇒ ff = fact(nf) ∧ nf = n0f)
=⇒ ff = fact(10))

We can use the adapted consequence rule for system H

{ϕ}C{ψ}
{ϕ′}C{ψ′} if ϕ′ =⇒ ∀xf .(∀yf .(ϕ[yf /y] =⇒ ψ[yf /y , xf /x]) =⇒ ψ′[xf /x])

where

• y are the auxiliar variables in {ϕ}C{ψ}
• x program variables in C

• xf and yf fresh variables

to reuse the above deduction for a stronger precondition

{n ≥ 0 ∧ n = n0}call fact{f = fact(n) ∧ n = n0}
{n = 10}call fact{f = fact(10)}

and we obtain the side condition

n = 10 =⇒ ∀nf , ff .((∀n0f .n ≥ 0 ∧ n = n0f =⇒ ff = fact(nf) ∧ nf = n0f)
=⇒ ff = fact(10))

For the system Hg this is not possible because it lacks a
consequence rule, but we may have a specific rule to deal with
recursive procedures.

Notation˜

In practice specification languages avoid the generality allowed by
auxiliary variables and forbid their use in the procedure
specifications.

Given a variable x we denote x̃ its value in the pre-state.

For the previous example we have

{n ≥ 0}call fact{f = fact(n) ∧ n = ñ}

The new consequence rule is (conseq̃)

{ϕ}C{ψ}
{ϕ′}C{ψ′} if ϕ′ =⇒ ∀xf .((ϕ =⇒ ⌊ψ[xf /x]⌋) =⇒ ψ′[xf /x])

where x are program variables and ⌊ψ[xf /x]⌋ denotes the result of
substituting in ψ[xf /x] every variable x̃ by the corresponding x .

The triple
{n = 10}call fact{f = fact(10)}

can be derived by consequence rule

{n ≥ 0}call fact{f = fact(n) ∧ n = ñ}
{n = 10}call fact{f = fact(10)}

and we obtain the side condition, considering n and f program
variables,

n = 10 =⇒ ∀nf , ff .((n ≥ 0 =⇒ (ff = fact(nf) ∧ nf = n)) =⇒ ff = fact(10))

To derive the triple with x̃

one needs to modify the call rule as follows

{ϕ ∧ x = x1̃ ∧ . . . ∧ xn = xñ}body(p){ψ}
{ϕ}call p{ψ}

where x1, . . . , xn are the program variables of body(p).

In the example

{n ≥ 0 ∧ n = ñ}body(fact){f = fact(n) ∧ n = ñ}
{n ≥ 0}call fact{f = fact(n) ∧ n = ñ}

Example

suppose one has allready derived the following Hoare triple

{x > 0∧y > 0∧x = x̃∧y = ỹ∧z = z̃}body(p){z = x+y∧x = x̃}

for some procedure p, apply the deduction rules and obtain the
verification conditions to ensure the derivation of

{ϕ}call p{ψ}

where

ϕ is x > 0 ∧ y > 0 ∧ x = x̃ + 100

ψ is z = x + y ∧ x = x̃ + 100

Using the call rule we obtain

{x > 0 ∧ y > 0}call p{z = x + y ∧ x = x̃}

Using the consequence rule (conseq̃) we have the condition:

x > 0 ∧ y > 0 ∧ x = x̃ + 100 =⇒
(∀xf , yf , zf .(x > 0 ∧ y > 0 =⇒ zf = xf + yf ∧ xf = x)

=⇒ (zf = xf + yf ∧ xf = x̃ + 100))

where x̃ is the value of x in the callee of p. The condition holds
(check!).

Recursive procedures

• In recursive procedures, body(p) can contain commands
call p

• The application of the rule for procedures given above can
lead to infinite derivations.

• The following rule was proposed by Hoare

[{ϕ}call p{ψ}]
...

{ϕ}body(p){ψ}
{ϕ}call p{ψ}

Assuming {ϕ}call p{ψ} we can derive {ϕ}body(p){ψ}, then
{ϕ}call p{ψ} can be derived without hypotheses (and that is
why the hypothesis had square brackets).

• For total correctness new rules with variants need to be
introduced to ensure termination of the several calls.

• It is an axiomatic counterpart of fixpoint induction.

Example

Consider the procedure

proc factr =
if n == 0 then

f ← 1
else

n ← n − 1;
call factr;
n ← n + 1;
f ← n × f

then

{n ≥ 0 ∧ n = n0}call factr{f = fact(n) ∧ n = n0}

can be derived using an adapted consequence rule

Contracts and mutual recursion

Avoid the use of auxiliar variables and the consequence rule. A
contract is a public specification with respect to which the
procedure is correct once and for all. The˜notation will be used.

• we consider programs as a set of procedures and a set of
global variables

• procedures communicate through the global variables and
thus do not have parameters

• procedures can be mutually recursive

• this also models very simple object-oriented programming
languages

We extend the syntax of the programming language:

• PN is a set of procedure names p, q, . . .

• Proc are procedure definitions, Φ m

• Pspec are programs correctness formulas, Sp

Φ ::= preϕpostψ proc p = C

Π ::= Φ | ΠΦ

Sp ::= {Π}

And let

• Var̃ = {x̃ | x ∈ Var}
• Var̃(ϕ) = {x | x̃ occurs in ϕ}
• ⌊θ⌋ = θ[x1/x1̃, . . . , xn/xñ], for any formula θ such that

Var̃(θ) = {x1, . . . , xn}.

Given a program Π with a procedure p,

preϕpostψ proc p = C

we define

pre(p) = ϕ

post(p) = ψ

body(p) = C

And

• pre(p) and post(p) contain no auxiliar variables (only either
program variables or quantified logical variables)

• pre(p) has no occurrence of ˜ variables (those˜variables only
can occur in post(p)

Contract triple

Given a program Π a contract triple for a procedure p is

{pre(p)}call p{post(p)}

A program Π is correct, denoted by {Π}, if all procedures are
correct with respect to their specifications

|= {Π} ⇐⇒ |= {pre(p) ∧ x1 = x1̃ ∧ · · · ∧ xk = xk̃}call p{post(p)}, ∀p ∈ PN(Π).

where we suppose PN(Π) = {p1, . . . , pn}.

Deductive System for Parameterless Procedures, Hg

(mutual recursion parameterless)

[{Π}]
...

{ pre(p1)}body(p1) {post(p1)}

[{Π}]
...

{ pre(pn)}body(pn) {post(pn)}
{Π}

where pre(pi) = pre(pi) ∧ x1 = x1̃ ∧ · · · ∧ xk = xk̃

Var̃(post(pi)) = {x1, . . . , xk}

(procedure call parameterless)

{Π}
if ϕ =⇒ ∀xf .((pre(p) =⇒ ⌊post(p)[xf /x]⌋) =⇒ ψ[xf /x]){ϕ}call p{ψ}

where x = Var(post(p)) ∪ Var(ψ)

xf are fresh variables

Example

Let Π be the program below with PN(Π) = {p1, p2}
pre x > 0 ∧ y > 0
post x = x̃ ∧ y = 2× ỹ ∧ z = x + y ∧ z > 2
proc p1 =

y ← 2× y ;
z ← x + y

pre x > 0
post x = x̃ ∧ y = 2× ỹ ∧ z = 3× x̃ + 200
proc p2 =

y ← x + 100;
call p1

The contract for p1 is easily checked using the rule for mutual
recursion and a tableaux. For p2 we still need to find the weakest
pre condition for a call command given a post-condition. Have any
idea looking for the rule for procedure calls?

Verification Conditions Generator

We can extend the VCG algorithm to cope with procedures. For
the call command we have

wp(call p,ψ) = ∀xf .((pre(p) =⇒ ⌊post(p)[xf /x]⌋) =⇒ ψ[xf /x])

VC (call p,ψ) = ∅

The set of verification conditions for a program correctness formula
{Π} can be computed by

VCG ({Π}) =

p∈PN(Π)

VCG ({pre(p)}body(p) {post(p)})

Exerc.
Considering the program Π given above compute VCG ({Π}) ⋄

VCG ({ pre(p1)}body(p1) {post(p1)})
= VCG ({x > 0 ∧ y > 0 ∧ x = x̃ ∧ y = ỹ ∧ z = z̃}
y ← 2× y ; z ← x + y

{x = x̃ ∧ y = 2× ỹ ∧ z = x + y ∧ z > 2})
= {x > 0 ∧ y > 0 ∧ x = x̃ ∧ y = ỹ ∧ z = z̃ =⇒
x = x̃ ∧ 2× y = 2× ỹ ∧ x + 2× y = x + 2× y ∧ 2× y + x > 2}

VCG ({ pre(p2)}body(p2) {post(p2)})
= VCG ({x > 0 ∧ x = x̃ ∧ y = ỹ ∧ z = z̃}
y ← x + 100; call p1{z = 3× x̃ + 200})
= {x > 0 ∧ x = x̃ ∧ y = ỹ ∧ z = z̃ =⇒
wp(call p1, z = 3× x̃ + 200)[x + 100/y]}
= {x > 0 ∧ x = x̃ ∧ y = ỹ ∧ z = z̃ =⇒
∀xf , yf , zf .((x > 0 ∧ x + 100 > 0 =⇒ xf = x ∧ yf = 2× (x + 100) ∧ zf = xf + yf ∧ zf > 2

=⇒ zf = 3× x̃ + 200)

where

wp(call p1, z = 3× x̃ + 200)

= ∀xf , yf , zf .((x > 0 ∧ y > 0 =⇒ ⌊xf = x̃ ∧ yf = 2× ỹ ∧ zf = xf + yf ∧ zf > 2⌋)
=⇒ zf = 3× x̃ + 200)

= ∀xf , yf , zf .((x > 0 ∧ y > 0 =⇒ xf = x ∧ yf = 2× y ∧ zf = xf + yf ∧ zf > 2)

=⇒ zf = 3× x̃ + 200)

Frame conditions I

After the execution of a call command call p nothing is assumed
about the value of the variables that do not occur in
Var(post(p)) ∪ Var(ψ) according to the correctness rule:

{Π}
if ϕ =⇒ ∀xf .((pre(p) =⇒ ⌊post(p)[xf /x]⌋) =⇒ ψ[xf /x]){ϕ}call p{ψ}

Thus, if one wants to connect the value of any variable between
the pre-state and the post-state this must be expressed in post(p).

If one knows which variables p modifies then one could have

x = frame(p)

where frame(p) denotes the set of variables possibly assigned by
p. In this way the value of a variable not assigned in p and

Frame conditions II

occurring in ψ is considered in the pre-state. It is the same as
post(p) would contain x = x̃ .

For instance

pre x > 0 ∧ y > 0
post z = x + y
frame z
proc p =

. . .

Instead of explicitly state that the value of x is preserved by the
execution of p, the contract just says that only z will be modified.
If

ϕ = x > 0 ∧ y > x ∧ x = x̃ + 100

and after the execution of call p the post-condition ψ is true,

ψ = z = x + y ∧ x = x̃ + 100

Frame conditions III

then the side condition for the call rule would be

x > 0 ∧ y > x ∧ x = x̃ + 100 =⇒ ∀zf .((x > 0 ∧ y > 0 =⇒ zf = x + y) =⇒
zf = x + y ∧ x = x̃ + 100)

Procedures with Parameters

We now have to consider a list of formal arguments for procedure
definitions and a list of expressions in the call command.

We only consider parameters passed by value. Parameters passed
by reference could easily be considered in the syntax but their
axiomatic semantics is much more complicated due to aliases (as
for arrays). Let a ∈ Var and ε the empty sequence.

Arglist λ ::= a,λ | ε
Proc Φ ::= preϕpostψ proc p(λ) = C

Comm C ::= . . . | call p(E)

For p ∈ PN(Π)

• param(p) = λ, i.e., list of formal parameters passed by value

• we have now global variables and parameter variables, which
have local scope

• pre(p) and post(p) can contain occurrences of parameters

• any variable occurring in the body of a procedure and not in
its parameter list is a global variable

For instance,

pre θ
post ρ
proc p(x , z) =

C

We have param(p) = {x , z}, but parameters may be substituted
by fresh variables in the procedure’s body and contract. The
following definition is equivalent to the above if x ′ and z ′ do not
occur free in C , θ, or ρ.

pre θ[x ′/x , z ′/z]
post ρ[x ′/x , z ′/z]
proc p(x ′, z ′)=

C [x ′/x , z ′/z]

If a variable is both global and a parameter, the global one would
not be visible inside the procedure. But we will assume that this
cannot occur: global variables cannot occur as parameters of a
procedure p ∈ PN(Π).

We assume static scope: when a procedure is called the values of
the caller’s local variables do not affect the callee.

Parameters Passed by Value

Suppose first that a procedure p has a single formal parameter a.
A procedure call rule without adaptation could be

{Π}
if ϕ =⇒ pre(p)[E/a] and post(p)[E/a] =⇒ ψ

{ϕ}call p(E){ψ}

• if a occurs in ϕ (or in E) its value is the value in the caller
procedure

• if a occurs in pre(p) or post(p) its value is substituted by the
one in the pre-state (caller).

• if a is not assigned in p, it is called a constant value; in this
case, the mutual recursion rule is the same as for
parameterless procedures.

• if a is assigned in p, as the internal value in p is irrelevant for
the caller, in post(p) and ψ, the value of a is the one in the
pre-sate

However, if a is not a constant value, the mutual recursion rule
must change. Consider just one branch

[{Π}]
...

{pre(p) ∧ a = ã}body(p) {post(p)[ã/a]}
{Π}

Example

Consider again the factorial as a one-parameter procedure.

pre n ≥ 0
post f = fact(n)
proc factr (n)=

f ← 1;i ← 1;
while i ≤ n do

{f = fact(i − 1) ∧ i ≤ n + 1}
f ← f × i ;
i ← i + 1

The following triple can be derived

{x ≥ −10}call factr(x + 20){f = fact(x + 20)}

with the following side conditions:

x ≥ −10 =⇒ (n ≥ 0)[x + 20/n]

f = fact(x + 20) =⇒ f = fact(n)[x + 20/n]

Deductive system for mutually recursive procedures with
parameters passed by value

[mutual recursion]

[{Π}]
...

{ pre(p1)}body(p1) { post(p1)}

[{Π}]
...

{ pre(pn)}body(pn) { post(pn)}
{Π}

where

pre(pi) = pre(pi) ∧ x1 = x1̃ ∧ · · · ∧ xk = xk̃ ,

with Var̃(post(pi)) ∪ param(pi) = {x1, . . . , xk}, and

post(pi) = post(pi)[a1̃/a1, . . . , am̃/am],

with param(pi) = {a1, . . . , am}.

[procedure call pbv]

{Π}
if ϕ =⇒ ∀xf .((pre(p)[E/a] =⇒ ⌊post(p)[E/a, xf /x]⌋) =⇒ ψ[xf /x]){ϕ}call p(E){ψ}

where

a = param(p)

x = Var(post(p)) ∪ Var(ψ)

xf are fresh variables

• global variables that occur in E are not substituted by fresh
variables in post(p) as they must be interpreted in the
pre-state (thus the simultaneous substitution of a and x).

• x has no parameter variables (of any procedure)
• parameters are not substituted by fresh variables

Example

Consider

pre a > 0 ∧ y > 0
post z = a+ y
proc p(a)=

. . .

The variable y must be a global variable and suppose we want to
prove the following triple:

{x > 0 ∧ y > x}call p(2× x + 1){z = 2× x + 1 + y}

If x is global, the side conditions is

(x > 0 ∧ y > x) =⇒ ∀xf , yf , zf .(2× x + 1 + y > 0 ∧ y > 0 =⇒ zf = 2× x + 1 + yf)

=⇒ zf = 2× xf + 1 + yf

which is not valid:

• zf is the final value of z and in the contract is given in terms
of the value of x in the pre-state while the postcondition of
the triple uses the value of x in the post-state.

• this can be fixed if we include in the contract
post(p) = z = a+ y ∧ x = x̃

But if x is a local parameter of the caller then the side condition is

(x > 0 ∧ y > x) =⇒ ∀yf , zf .(2× x + 1 + y > 0 ∧ y > 0 =⇒ zf = 2× x + 1 + yf)

=⇒ zf = 2× x + 1 + yf

which is valid, as p cannot modify the value of a parameter.

Other features of procedures

• Parameters passed by reference

• Aliasing

• Return values of procedures

• Pure functions

Return values and Pure Functions

A pure function has no side effects:

• no assignment to global variables

• parameters are passed as constants

So

• no need of the ˜notation

• no need of fresh variables to account for new values of
variables in the post-state

• the rule for the call command could be

{Π}
if ϕ =⇒ (pre(p)[E/a] =⇒ post(p)[E/a]) =⇒ ψ

{ϕ}call p(E){ψ}

But this is completely useless, as no information is passed to the
caller.

Return value

A (pure) function must has a return value that is passed to the
caller. let FN(Π) denote a set of names of functions and

Proc Φ ::= . . . | preϕpostψ fun f (x) = C

Comm C ::= . . . | return E | x ← fcall f (E)

• returnE is a syntactic sugar for result ← E ,

• result is a reserved program variable

• result only can be used in post-conditions

• result can have multiple assignments inside a function (being
the last value paased to the caller)

• thus, return does not have a exit semantics

• x ← fcall f (E) is a syntatic sugar of call f (E); x ← result.

Deductive system for mutually recursive procedures and
functions

[mutual recursion pbv]

[{Π}]
...

{ pre(p1)}body(p) { post(p)}

[{Π}]
...

{pre(f)}body(f) {post(f)}
{Π}

(function call)

{Π}
if ϕ =⇒ (pre(f)[E/a] =⇒ post(f)[E/a]) =⇒ ψ[result/x]

{ϕ}x ← fcall f (E){ψ}
(return)

if ϕ =⇒ ψ[E/result]
{ϕ}return E{ψ}

Example

Consider again the factorial now as a (non recursive) function

pre n ≥ 0
post result = fact(n)
fun factf (n)=

f ← 1;i ← 1;
while i ≤ n do

{f = fact(i − 1) ∧ i ≤ n + 1}
f ← f × i ;
i ← i + 1;

return f

How can we define f and i if we cannot assign global variables and
i cannot be result?

Is this correct? We should allow the definition of local variables in
the start of the function body.

Local variables

THe previous example should be:

pre n ≥ 0
post result = fact(n)
fun factf (n)=

local f ← 1 in
local i ← 1 in
while i ≤ n do

{f = fact(i − 1) ∧ i ≤ n + 1}
f ← f × i ;
i ← i + 1;

return f

We have that

wp(local x ← E in C) = wp(x ← E ;C)

For more, see: [AFPMdS11] Chap. 8 [Lei23] Chap. 1-3

José Bacelar Almeida, Maria João Frade, Jorge Sousa Pinto,
and Simão Melo de Sousa.
Rigorous Software Development: An Introduction to Program
Verification.
Springer, 2011.

K. Rustan M. Leino:.
Program Proofs.
The MiT Press, 2023.

