
Mechanising Hoare Logic

Given a Hoare triple ({ϕ}C{ψ}) rules are applied from the conclusion, assuming
that the side conditions hold.

• If all side conditions hold, a proof can be build;

• If some side condition does not hold, the derivation tree is not a valid
deduction, but is there an alternative derivation?

There is a strategy to build the derivation trees such that we can conclude (if
some side conditions does not hold) that there is no derivation for the given
Hoare triple.

Tableaux

• The tableaux system allows to obtain the derivation of a Hoare triple, that
is the conclusion.

• The derivation is valid if the verification conditions are satisfiable.

• But if they are not, how to ensure that there is no other derivation?

• If there is no determinism one cannot mechanise the Hoare logic.

• We will see that the tableaux ensure that if the verification conditions are
not satisfiable no other derivation exists.

• and the tableaux can be automated.

Subformula property and Ambiguity

Most rules of Hoare logic have the subformula property:

all the assertions that occur in the premises of a rule also occur in its conclu-
sion.

The exceptions are:

• The rule comp, which requires an intermediate condition;

• The rule cons, where the precondition and the postcondition must be
guessed.

Other property that we want is that the choice of the rules is non ambiguous,
but:

• The rule cons, can be applied to any Hoare triple. Thus it should be
removed.

1

Hoare logic without the rule cons: system Hg

if |= ϕ → ψ
{ϕ} skip {ψ}

if |= ϕ → ψ[E/x]
{ϕ}x ← E {ψ}

{ϕ}C1 {η} {η}C2 {ψ}
{ϕ}C1;C2 {ψ}

{ϕ ∧ B}C1 {ψ} {ϕ ∧ ¬B}C2 {ψ}
{ϕ} ifB thenC1 elseC2 {ψ}

{η ∧ B}C {η}
if |= ϕ → η and |= η ∧ ¬B → ψ

{ϕ} whileB do {η}C {ψ}

In the whilep rule the loop is annotated with the invariant η, to keep the
subformula property. .

We can show that the cons is derivable in Hg. Let Γ be a set of assertions.

Lema 7.1. If Γ ⊢Hg {ϕ}C{ψ} and |= ϕ′ → ϕ, |= ψ → ψ′, then Γ ⊢Hg

{ϕ′}C{ψ′}.

Proof: By induction on the derivation of Γ ⊢Hg
{ψ}C{ϕ}. We consider the case

skip and sequence.

• For C ≡ skip, we have Γ ⊢Hg {ϕ}skip{ψ}, if |= ϕ → ψ. We have
|= ϕ′ → ϕ, |= ϕ → ψ and |= ψ → ψ′, thus |= ϕ′ → ψ′, what means that
Γ ⊢Hg {ϕ′}skip{ψ′}.

• For C ≡ C1;C2,we have Γ ⊢Hg {ϕ}C1;C2{ψ}, if Γ ⊢Hg {ϕ}C1{η} and
Γ ⊢Hg {η}C2{ψ}.
By induction we have

Γ ⊢Hg {ϕ′}C1{η} as |= ϕ′ → ϕ and |= η → η,

Γ ⊢Hg
{η}C2{ψ′} as |= η → η and |= ψ → ψ′,

thus Γ ⊢Hg {ϕ′}C1;C2{ψ′}.

Exerc. 7.1. Complete the previous proof.

2

Equivalence between H and Hg

Lema 7.2. Γ ⊢H {ϕ}C{ψ} iff Γ ⊢Hg
{ϕ}C{ψ}

Proof:

(⇒) By induction on the derivation of Γ ⊢H {ϕ}C{ψ}, using the lemma. We
consider the case of assignment and consequence.

• we have Γ ⊢H {ϕ[E/x]}x ← E{ϕ} and |= ϕ[E/x] → ϕ[E/x], thus
Γ ⊢Hg

{ϕ[E/x]}x ← E{ϕ}
• By the rule of consequence we have

Γ ⊢H {ϕ}C{ψ},

if Γ ⊢H {ϕ′}C{ψ′} and |= ϕ → ϕ′, |= ψ′ → ψ.

By induction we have Γ ⊢Hg {ϕ′}C{ψ′}, thus by the previous lemma
we have Γ ⊢Hg

{ϕ}C{ψ}.

(⇐) By induction on the derivation of Γ ⊢Hg
{ϕ}C{ψ}. We consider the case

of assignment and conditional.

• we have
Γ ⊢Hg {ϕ}x ← E{ψ} if |= ϕ → ψ[E/x].

As
Γ ⊢H {ψ[E/x]}x ← E{ψ} and |= ϕ → ψ[E/x]

and |= ψ → ψ, by consp rule, we have Γ ⊢H {ϕ}x ← E{ψ}.
• we have Γ ⊢Hg {ϕ}ifB thenC1 elseC2 {ψ}, if

Γ ⊢Hg {ϕ ∧B}C1{ψ} and Γ ⊢Hg {ϕ ∧ ¬B}C2{ψ}.

By induction Γ ⊢H {ϕ ∧ B}C1{ψ} and Γ ⊢H {ϕ ∧ ¬B}C2{ψ}, thus
Γ ⊢H {ϕ}ifB thenC1 elseC2 {ψ}

Exerc. 7.2. Complete the previous proof.

Pro and Cons

Advantages of Hg:

• The ambiguity of rule cons was eliminated.

Drawbacks of Hg:

• Is still necessary to guess the intermediate preconditions in comp.

3

The weakest precondition strategy:tableaux

We already saw that for building a derivation for {ϕ}C{ψ}, where ϕ can or not
be known (we write {?}C{ψ}).

1. if ϕ is known, we apply the unique rule of Hg. if C is C1;C2, we build a
subproof of the form {?}C2{ψ}. when the proof terminates we can go on
with {ϕ}C1{θ}, with θ obtained in the previous sub-derivation.

2. if ϕ is unknown, the construction proceeds as before, except that, in the
rules for skip, assignment and loops, with a side condition ϕ → θ, we tale
the precondition ϕ to be θ (which is exactly the wp(C.ψ).

Two phases verification

Verification condition generator, VCG

Given {ϕ}C{ψ} to compute V C(C,ψ) we have to:

• Compute the weakest precondition wp(C,ψ)

• we have that ϕ → wp(C,ψ) is a verification condition (VC)

• The remaining VC are collected from the conditions introduced in the
loops while.

4

Computation of the weakest preconditions (wp)

Given a program C and a postcondition ψ, we can compute wp(C,ψ) such that
{wp(C,ψ)}C{ψ} is valid and if {ϕ}C{ψ}is valid for any ϕ then ϕ → wp(C,ψ).

wp(skip,ψ) = ψ

wp(x ← E,ψ) = ψ[E/x]

wp(C1;C2,ψ) = wp(C1, wp(C2,ψ))

wp(ifB thenC1 elseC2,ψ) = (B → wp(C1,ψ))

∧(¬B → wp(C2,ψ))

wp(whileB do {η}C,ψ) = η

Properties of wp and V CG

Given a program C and an assertion ψ if Γ ⊢Hg
{ϕ}C{ψ}, for any precondition

ϕ, then

Lema 7.3.

1. Γ ⊢Hg
{wp(C,ψ)}C{ψ}

2. Γ |= ϕ → wp(C,ψ)

Proof: By induction on C. We consider the cases of skip and while.

• For C ≡ skip, we have Γ ⊢Hg {ϕ}skip{ψ} if |= ϕ → ψ. Note that
wp(skip,ψ) = ψ.

1. Trivially we have Γ ⊢Hg {ψ}skip{ψ}, as |= ψ → ψ.

2. By hypothesis we have Γ |= ϕ → ψ = wp(skip,ψ).

• C ≡ whileB doC, we have

Γ ⊢Hg {ϕ} whileB do {η}C {ψ} if Γ ⊢Hg {η ∧B}C{η}

and |= ϕ → η, |= η ∧ ¬B → ψ.

Note that wp(whileB do {η}C,ψ) = η

1. As |= η → η, and by hypothesis |= η ∧ ¬B → ψ and Γ ⊢Hg {η ∧
B}C{η}, then

Γ ⊢Hg {η} whileB do {η}C {ψ}

2. by hypothesis we have Γ |= ϕ → η = wp(whileB do {η}C ψ).

Exerc. 7.3. Complete the previous proof.

5

Algorithm V CG

First one computes V C(C,ψ) without consider the preconditions

V C(skip,ψ) = ∅
V C(x ← E,ψ) = ∅
V C(C1;C2,ψ) = V C(C1, wp(C2,ψ)) ∪ V C(C2,ψ)

V C(ifB thenC1 elseC2,ψ) = V C(C1,ψ) ∪ V C(C2,ψ)

V C(whileB do {η}C,ψ) = {(η ∧ B) → wp(C, η)} ∪
{(η ∧ ¬B) → ψ} ∪ V C(C, η)

Next one considers the precondition:

V CG({ϕ}C{ψ}) = {ϕ → wp(C,ψ)} ∪ V C(C,ψ)

Example

let fact be the program:

f ← 1; i ← 1;
while i ≤ n do

{f = (i− 1)! ∧ i ≤ n+ 1} ⊲ Invariante
f ← f ∗ i;
i ← i+ 1;

We compute

VCG({n ≥ 0}fact{f = n!})

with

θ = f = (i− 1)! ∧ i ≤ n+ 1

Cw = f ← f ∗ i; i ← i+ 1

6

V C(fact, f = n!)

= V C(f ← 1; i ← 1, wp(while i ≤ n do{θ}Cw, f = n!))

∪V C(while i ≤ n do{θ}Cw, f = n!)

= V C(f ← 1; i ← 1, θ) ∪ {θ ∧ i ≤ n → wp(Cw, θ)}
∪{θ ∧ i > n → f = n!} ∪ V C(Cw, θ)

= V C(f ← 1, wp(i ← 1, θ)) ∪ V C(i ← 1, θ)

∪{f = (i− 1)! ∧ i ≤ n+ 1 ∧ i ≤ n → wp(f ← f ∗ i; i ← i+ 1, θ)}
∪{f = (i− 1)! ∧ i ≤ n+ 1 ∧ i > n → f = n!}
∪V C(f = f ∗ i, wp(i ← i+ 1, θ)) ∪ V C(i ← i+ 1, θ)

= ∅ ∪ ∅ ∪ {f = (i− 1)! ∧ i ≤ n+ 1 ∧ i ≤ n

→ wp(f ← f ∗ i, f = (i+ 1− 1)! ∧ i+ 1 ≤ n+ 1)}
∪{f = (i− 1)! ∧ i ≤ n+ 1 ∧ i ≤ n → f = n!} ∪ ∅ ∪ ∅

= {f = (i− 1)! ∧ i ≤ n+ 1 ∧ i ≤ n → f ∗ i = (i+ 1− 1)!

∧ i+ 1 ≤ n+ 1, f = (i− 1)! ∧ i ≤ n+ 1 ∧ i ≤ n → f = n!}

V CG({n ≥ 0}fact{f = n!})
= {n ≥ 0 → wp(fact, f = n!)} ∪ V C(fact, f = n!)

= {n ≥ 0 → wp(f ← 1; i ← 1;wp(while i ≤ n do{θ}Cw, f = n!),

f = (i− 1)! ∧ i ≤ n+ 1 ∧ i ≤ n → f ∗ i = (i+ 1− 1)!

∧i+ 1 ≤ n+ 1, f = (i− 1)! ∧ i ≤ n+ 1 ∧ i ≤ n → f = n!}
= {n ≥ 0 → wp(f ← 1; i ← 1; θ),

f = (i− 1)! ∧ i ≤ n+ 1 ∧ i ≤ n → f ∗ i = (i+ 1− 1)!

∧i+ 1 ≤ n+ 1, f = (i− 1)! ∧ i ≤ n+ 1 ∧ i ≤ n → f = n!}

We have the following proof obligations:

1. n ≥ 0 → 1 = (1− 1)! ∧ 1 ≤ n+ 1

2. f = (i− 1)! ∧ i ≤ n+ 1 ∧ i ≤ n → f ∗ i = (i+ 1− 1)! ∧ i+ 1 ≤ n+ 1)

3. f = (i− 1)! ∧ i ≤ n+ 1 ∧ i ≤ n → f = n!

Teorema 7.1 (Adequacy of V CG). Let {ϕ}C{ψ} a Hoare triple and Γ a set
of assertions.

Γ |= V CG({ϕ}C{ψ}) iff Γ ⊢Hg {ϕ}C{ψ}.

7

Proof:

(⇒) By induction on the derivation of C. We consider the case of assignment
and sequence

• For C ≡ x ← E, we have

V CG({ϕ}X ← E{ψ}) = {ϕ → wp(X ← E,ψ)} ∪ V C(x ← E,ψ)

= {ϕ → ψ[E/x]}.

If Γ |= ϕ → ψ[E/x], then by the assignment rule

Γ ⊢Hg {ϕ}C{ψ}.

• For C ≡ C1;C2, we have

V CG({ϕ}C1;C2{ψ}) = {ϕ → wp(C1;C2,ψ)} ∪ V C(C1;C2,ψ)

= {ϕ → wp(C1, wp(C2,ψ))}
∪ V C(C1, wp(C2,ψ)) ∪ V C(C2,ψ).

Let η = wp(C2,ψ). As

Γ |= ϕ → wp(C1, η) ∪ V C(C1, η) = V CG({ϕ}C1{η}),

by induction Γ ⊢Hg {ϕ}C1{η}.
Also Γ |= η → η ∪ V C(C2,ψ) = V CG({η}C2{ψ}), by induction Γ ⊢Hg

{η}C2{ψ}, thus Γ ⊢Hg
{ϕ}C1;C2{ψ}.

(⇐) By induction on the derivation of Γ ⊢Hg {ψ}C{ϕ}. We consider the case
skip and conditional.

• Γ ⊢Hg {ϕ}skip{ψ}, if Γ |= ϕ → ψ = V CG({ϕ}skip{ψ}).

• Γ ⊢Hg
{ϕ}ifB thenC1 elseC2 {ψ} if Γ ⊢Hg

{ϕ ∧ B}C1{ψ} e Γ ⊢Hg

{ϕ ∧ ¬B}C2{ψ}. By induction

Γ |= V CG({ϕ ∧B}C1{ψ}) = {(ϕ ∧B) → wp(C1,ψ)} ∪ V C(C1,ψ)

and

Γ |= V CG({ϕ ∧ ¬B}C2{ψ}) = {(ϕ ∧ ¬B) → wp(C2,ψ)} ∪ V C(C2,ψ).

Note that,

wp(ifB thenC1 elseC2,ψ) = B → wp(C1,ψ) ∧ ¬B → wp(C2,ψ)},

thus,
Γ |= {ϕ → wp(ifB thenC1 elseC2,ψ)}.

Thus, Γ |= {ϕ → wp(ifB thenC1 elseC2,ψ)}∪V C(C1,ψ)∪V C(C2,ψ) =
V CG({ϕ}ifB thenC1 elseC2{ψ}).

Exerc. 7.4. Complete the previous proof.

8

References

[AFPMdS11] José Bacelar Almeida, Maria João Frade, Jorge Sousa Pinto, and
Simão Melo de Sousa. Rigorous Software Development: An In-
troduction to Program Verification. Springer, 2011.

9

