
Program verification

Nelma Moreira

Departamento de Ciência de Computadores da FCUP

Lecture 11
Equality Logic and Theory of Uninterpreted Functions

Equality Logic and Uninterpreted Functions, EUF

• functional terms are added to the equality theory

ϕuf := ϕuf ∧ ϕuf | ¬ϕuf | t = t

t := x |c |F (t1, . . . , tn)

• only functional congruence

x1 = y1 ∧ · · · ∧ xn = yn → F (x1, . . . , xn) = F (y1, . . . , yn)

• Functions of a given theory can be substituted by uninterpreted functions
simplifying the validity proofs although equivalence is not preserved. We have

|= ϕuf =⇒ |= ϕ

• but if ∕|= ϕuf nothing can be concluded.

Example: Program equivalence

Static single assignment

1 Remove the variable declarations and return statements.

2 Unroll the for loop.

3 Replace the left-hand side variable in each assignment with a new auxiliary
variables

4 Whenever a variable is read (referred to in an expression), replace it with the
auxiliary variable that replaced it in the last place where it was assigned.

5 If your program have branchs where the same variable was assigned (xi and xj)
add an assigment xk := φ(xi , xj) in the join point.

6 Conjoin all program statements.

Static single assignment

Static single assignment

In the example, given two programs we obtain two formulae ϕ1 and ϕ′
1 and we want to

prove that
ϕ1 ∧ ϕ′

1 =⇒ out3 = out ′1

Usage of uninterpreted functions

The advantage is that it is easy to prove the validity of uninterpreted functions. In the
example multiplication * is substituted by an uninterpreted function F and we obtain
ϕuf
1 and ϕ′uf

1 .

Decision procedures for conjunctions of equalities and with uninterpreted
functions with congruence closure

Input: conjunction of literals ϕuf

Output: Satisfiable or Unsatisfiable

1 Build congruence-closed equivalence classes.

a) Initially, put two terms t1, t2 (either variables or uninterpreted function instances) in
their own equivalence class if (t1 = t2) is a predicate in ϕuf . All other variables form
singleton equivalence classes.

b) Given two equivalence classes with a shared term, merge them. Repeat until there are
no more classes to be merged.

c) Compute the congruence closure: given two terms ti , tj that are in the same class and
that F (ti) and F (tj) are terms in ϕuf for some uninterpreted function F , merge the
classes of F (ti) and F (tj). Repeat until there are no more such instances.

2 If there exists a disequality ti ∕= tj in ϕuf such that ti and tj are in the same
equivalence class, return ”Unsatisfiable”. Otherwise return ”Satisfiable”

Ex.
Let ϕuf be a conjunction

x1 = x2 ∧ x2 = x3 ∧ x4 = x5 ∧ x5 ∕= x1 ∧ F (x1) ∕= F (x3).

Initially the equivalence classes are:

{x1, x2}, {x2, x3}, {x4, x5}, {F (x3)}, {F (x1)}

We merge equal terms in the same classe

{x1, x2, x3}, {x4, x5}, {F (x3)}, {F (x1)}

By the congruence closure we have:

{x1, x2, x3}, {x4, x5}, {F (x1),F (x3)}

Finally as F (x1) ∕= F (x3) ∈ ϕuf , the output is Unsatisfiable.

• This algorithm can be implemented efficiently with a union-find data structure,
which results in a time complexity of O(n log(n)).

• To extend to general quantifier-free formulae one can use DPLL(T) or (lazy)
variants; or eager algorithms that reduces the whole formula ϕuf to a
equisatisfiable propositional formula (eager approach).

Ackerman reduction of uninterpreted functions to equality logic

We add explicit constraints to a formula in order to enforce functional consistence.
Given a formula ϕuf we transform it in a formula from the equality logic ϕE such that

ϕE := FCE =⇒ flatE

where FCE is a conjunction of functional-consistency constraints and flatE is a a
version of ϕUF where each function instance is replaced by a new variable.

Example

Ackerman reduction (unary functions)

Input: An EUF formula ϕuf with m instances of an uninterpreted function F
Output: An equality logic formula ϕE such that ϕE is valid if and only if ϕuf is valid

1 Assign indices to the uninterpreted-function instances from subexpressions F , Fi
outwards. Denote by Fi the instance of F that is given the index i , and by arg(Fi)
its single argument.

2 Let flatE = T (ϕuf), where T is a function that takes an EUF formula (or term)
as input and transforms it to an equality formula (or term, respectively) by
replacing each uninterpreted-function instance Fi with a new term-variable fi (for
nested functions, only the variable corresponding to the most external instance
remains).

3 Let FCE denote the following conjunction of functional-consistency constraints:

FCE :=
m−1

i=1

m

j=i+1

T (arg(Fi)) = T (arg(Fj)) =⇒ fi = fj

4 Let ϕE := FCE =⇒ flatE

5 Return ϕE

Example: equivalence of programs (cont.)

Example I

Let ϕ be

x1 = x2 =⇒ F (F (G (x1)))) = F (F (G (x2)))

Consider the propositional variables g1, g2, f1, f2, f3, and f4

x1 = x2 =⇒
F (

F (

g1
G (x1))
f1)
f2 =

F (

F (

g2
G (x2))
f3)
f4

Example II

then flatE : x1 = x2 =⇒ f2 = f4 and FCE is

x1 = x2 =⇒ g1 = g2

g1 = f1 =⇒ f1 = f2

g2 = f3 =⇒ f3 = f4

g1 = g2 =⇒ f1 = f3

g1 = f3 =⇒ f1 = f4

f1 = g2 =⇒ f2 = f3

f1 = f3 =⇒ f2 = f4

g2 = f3 =⇒ f1 = f4

Thus, we have ϕE = FCE =⇒ flatE .

One can generalise this algorithm to functions with any arity.

Exerc.
Verifying the compilation process.Suppose the following statement:

z = (x1 + y1) ∗ (x2 + y2)

which is compiled to the following sequence of three assigments:

u1 = x1 + y1; u2 = x2 + y2; z = u1 ∗ u2

The verification condition to ensure correctness is

u1 = x1 + y1; u2 = x2 + y2; z = u1 ∗ u2 =⇒ z = (x1 + y1) ∗ (x2 + y2)

Obtain a an equality formula using uninterpreted functions and applying the reduction
of Ackermann. ⋄

Eager procedures for equational logic

We will see how to construct a formula of propositional logic that is equisatisfiable to a
formula of equational logic without quantifiers.

The SAT solver is called only once.

The presented algorithm will not be very efficient but can be optimized in order to
execute in polynomial time and obtain a propositional formula with a cubic size in the
number of variables of the equational formula.

Sets of literals of equalities and inequalities

Assume a equational formula ϕE (without constants) with Boolean operations in NNF.

• Let E= be the set of positive literals in ϕE

• Let E ∕= be the set of negative literals in ϕE

For example ϕE

(x1 ∕= x2 ∨ y1 ∕= y2 ∨ f1 = f2)∧
(u1 ∕= f1 ∨ u2 ∕= f2 ∨ g1 = g2)∧
(u1 = f1 ∨ u2 = f2 ∨ z = g1) ∧ z ∕= g2

We have

E= = {f1 = f2, g1 = g2, u1 = f1, u2 = f2, z = g1}
E ∕= = {x1 ∕= x2, y1 ∕= y2, u1 ∕= f1, u2 ∕= f2, z ∕= g2}

Equality graph

Given a equality logic formula ϕE in NNF, the equality graph of ϕE , GE (ϕE) is the
graph (V ,E=,E ∕=) where the nodes V are the variables in ϕE , the edges E=

correspond to the set of positive literals and the edges E ∕= to the set of negative
literals.

For example, for E= = {x1 = x5, x2 = x3, x2 = x5, x4 = x5} e E ∕= = {x1 ∕= x4} we have

As in the case of conjunctions of literals, graphically we represent with a dashed line
the edges that correspond to equalities and solid those of inequalities.

• The equational graph GE (ϕE) is an abstraction of ϕE

• It actually represents all formulas that have the same literals as ϕE

• Since it does not consider Boolean connectives, it can represent both satisfiable
and unsatisfiable formulas

• For example x1 = x2 ∧ x1 ∕= x2 and x1 = x2 ∨ x1 ∕= x2 are represented by the same
graph.

Equality and Disequality Paths I

• A equality path in GE is a path with only edges of E=. If there is such a path
between x and y we say that x =∗ y , for x , y ∈ V .

• A disequality path in GE is a path with edges of E= and only one edge og E ∕=. If
there is such a path between xand y we write x ∕=∗ y x , y ∈ V .

• Any of these paths is simple if has no cycles.

• If x =∗ y it can happen that x and y have the same value but is not necessary
(because we do not have the structure of the Boolean formula).

• For x ∕=∗ y it can happen that x and y have different values

• in the example x1 =
∗ x4 and x1 ∕=∗ x4 but that may not be inconsistent

• A contradictory cycle is a cycle in GE that has exactly one edge in E ∕=
• For x , y ∈ V ia a contradictory cycle we have x =∗ y and x ∕=∗ y .

• The conjunction of literals of the cycle is unsatisfiable.

• In the example x1, x2, x4 is a contradictory cycle

Equality and Disequality Paths II

We can simplify formulas if there are literals that do not participate in contradictory
cycles (simple).

Simplifications of the Formula

Example I

Let

ϕE :=(x1 ∕= x2 ∨ y1 ∕= y2 ∨ f1 = f2) ∧ (u1 ∕= f1 ∨ u2 ∕= f2 ∨ g1 = g2)∧
(u1 = f1 ∨ u2 = f2 ∨ z = g1) ∧ z ∕= g2

the graph GE is

Example II

The edges f1 = f2, x1 ∕= x2 and y1 ∕= y2 are not part of any simple contradictory cycle
and can therefore be substituted by true.

ϕ′E :=(true ∨ true ∨ true) ∧ (u1 ∕= f1 ∨ u2 ∕= f2 ∨ g1 = g2)∧
(u1 = f1 ∨ u2 = f2 ∨ z = g1) ∧ z ∕= g2

Simplifying

ϕ′E :=(u1 ∕= f1 ∨ u2 ∕= f2 ∨ g1 = g2) ∧ (u1 = f1 ∨ u2 = f2 ∨ z = g1) ∧ z ∕= g2

And in this case, if we calculate the graph, we see that we can not simplify any further.
However, if the contradictory cycles disappear, we can conclude that the formula is
satisfiable (and only by simplifying).

Reduction to propositional Logic (sparse method, Bryant et al)

Nonpolar equality graph

Let ϕE be a equational formula, a nonpolar equality graph of ϕE , GE
NP(ϕ

E) is a graph
(V ,E) where V are the variables of ϕE and the edges E correspond to At(ϕE), i.e., all
atomic formulae (equalities) ϕE .

• Note that x1 ∕= x2 is an abbreviation of ¬x1 = x2, then GE
NP only x1 = x2 is

present in E .

• Instead of literals we only consider equalities (omitting the polarity).

Transformation to propositional logic

Given ϕE the procedure generates two propositional formulas e(ϕE) and Btrans such
that

ϕE is satisfiable ⇐⇒ e(ϕE) ∧ Btrans is satisfiable

• The formula e(ϕE) is the propositional skeleton of ϕE , where every predicate
xi = xj (i ≤ j) is replaced with a new Boolean variable ei ,j

• The formula Btrans is a conjunction of implications, the transitive constraints.
Each such implication is associated with a cycle in the nonpolar equality graph
GE
NP .

• For a cycle with n edges Btrans forbids an assignment false to one of the edges
when all the other edges are assigned true.

Correctness

• If ϕE is satisfiable e(ϕE) is also satisfiable

• The constraints Btrans are enough to ensure that ϕE is satisfiable if e(ϕE) is.

Let ϕE := x1 = x2 ∧ (((x2 = x3) ∧ (x1 ∕= x3)) ∨ (x1 ∕= x2)) then

e(ϕE) := e1,2 ∧ (((e2,3 ∧ (¬e1,3)) ∨ (¬e1,2))

The formulae x1 = x2, x2 = x3 and x1 = x3 form a cycle in GE
NP then the transitive

constraints are:

Btrans :=((e1,2 ∧ e2,3) =⇒ e1,3)∧
(e1,2 ∧ e1,3) =⇒ e2,3)∧
(e2,3 ∧ e1,3) =⇒ e1,2).

A nonch

Complexity and Optimization

• The algorithm can have exponential complexity because the number of cycles in a
graph can be exponential

• A chord in a cycle is any edge that connects two nonadjacent vertices in a cycle

• Bryant et al shown that

It is sufficient to add transitive constraints for simple chord-free cycles

• Chordal graphs A chordal graph is an undirected graph in which no cycle of size 4
or more is chord-free.

• Every graph can be made chordal in a time polynomial in the number of vertices

• Since the only chord-free cycles in a chordal graph are triangles, this implies that
applying the procedure to these graphs can be done in polynomial time and obtain
a formula whose size is not more than cubic in the number of variables (3
constraints for each triangle). The newly added chords are represented by new
variables that appear in Btrans but not in e(ϕE).

A nonchordal nonpolar equality graph corresponding to ϕE and a possible chordal
version of it (right).

For the triangle (x1, x2, x5),

Linear arithmetic

Decision procedures for conjunctions of linear constraints.

• Domains: integers, rationals, reals

• For integers the problem is NP-complete

• Classic methods of optimization (that can be reduced to decision problems):
Simplex Algorithm accepts constraints of the form

a1x1 + · · ·+ anxn = 0

ℓi ≤ xi ≤ ui

• Branch and Bound

• Fourier-Motzin Variable Elimination

• Omega Test: conjunction of linear constraints of the form
n

i=1 aixi = b andn
i=1 aixi ≤ b (ai ∈ Z

Theory of arrays

The axiomatization of arrays is the following, where the quantifier-free fragment is
decidable:

TE
∀a, i , j .i = j → read(a, i) = read(a, j)

∀a, i , j , v .i = j → read(write(a, i , v), j) = v

∀a, i , j , v .¬(i = j) → read(write(a, i , v), j) = read(a, j)

∀a, b.(∀i .read(a, i) = read(b, i)) → a = b

We formalise an array a as a map from index type theory TI to an element type theory
TE .

The type of an array a is
TA = TI → TE

Reading and writing

Let a ∈ TA be an array.The basic operations are:

Reading a[i] denotes read(a, i), i.e., an element of TE that correspond to the
index i ∈ TI of a

Writing a[i ← e] denotes write(a, i , e), i.e., e ∈ TE is the value to be written at
index i of a.

Array Logic I

We assume that TI is a theory where the quantified fragment is decidable (e.g.
Presburger arithmetic, i.e., linear arithmetic over integers).

In this way it is possible to model properties such as there exists an array element that
is zero or all elements of the array are nonzero.

Let tI and tE be the terms of TI and TE and ida ∈ Vararray identifiers for arrays, then
the terms for TA are:

tA := ida | tA[tI ← tE]

Terms of tE are extended to include the elements of arrays:

tE := tA[termI] | · · ·

The formulae include the ones of TI and TE plus the equality of terms of TA., i.e.

ϕ := tA = tA | · · ·

Array Logic II

We can consider a1 = a2 an abbreviation of ∀i .a1[i] = a2[i], if TI includes quantifiers.
The axioms given above can be rewritten as:

∀a1 ∈ TA.∀a2 ∈ TA.∀i ∈ TI .∀j ∈ TI .((a1 = a2 ∧ i = j) =⇒ a1[i] = a2[j]), (1)

∀a ∈ TA.∀e ∈ TE .∀i ∈ TI .∀j ∈ TI .a[i ← e][j] =

e i = j ,

a[j] otherwise,
(2)

∀a1 ∈ TA.∀a2 ∈ TA.(∀i ∈ TI .a1[i] = a2[i]) =⇒ a1 = a2. (3)

The axiom (2) is called read-over write axiom and the axiom (3) is the
extensionality rule

Note: in this theory the arrays have unbounded dimension. The array dimension can
be given using formulae over integers.

Example

Consider the Hoare triple

{True} for i ← 0 to 99 do a[i] ← 0 {∀0 ≤ k < 100, a[k] = 0}

Let η : ∀0 ≤ k < i , a[k] = 0 be the invariant and the following tableaux:

{true}
{0 ≤ 99}
for i ← 0 to 99 do

{
{(∀0 ≤ k < i , a[k] = 0) ∧ 0 ≤ i ∧ i ≤ 99}
{∀0 ≤ k < i + 1, a[i ← 0][k] = 0} constot

a[i] ← 0

{∀0 ≤ k < i + 1, a[k] = 0} asstot

}
{η[100/i]}
{∀0 ≤ k < 100, a[k] = 0}

Arrays as Uninterpreted Functions

In the previous example we need to proof the following verification condition:

(∀0 ≤ k < i , a[k] = 0) =⇒ ∀0 ≤ k < i + 1, a[i ← 0][k] = 0

Suppose that there are no quantifiers over arrays, i.e. arrays are ground terms

Considering a a function we can substitute each of its instances by an uninterpreted
function, where the index is the only argument.

In particular, the axiom (1) corresponds to the functional congruence.

Example

If TE is the theory of strings

(i = j ∧ a[j] = ”z”) =⇒ a[i] =′ z ′

can be substituted by

(i = j ∧ Fa(j) =
′ z ′) =⇒ Fa(i) =

′ z ′

that can be evaluated by the decision procedures already considered.

Array updates

To replace terms of the form
a[i ← e],

fresh variables of type array are introduced, a′ ∈ Vararray and two constraints are added
(that correspond to the two cases of the read-over write rule).

This rule is an equivalence-preserving transformation

Write rule

1 a′[i] = e

2 ∀j ∕= i .a′[j] = a[j]

Example

The formula
a[i ← e][i] ≥ e

is transformed into
a′[i] = e =⇒ a′[i] ≥ e

. The formula a[0] = 10 =⇒ a[1 ← 20][0] = 10 is transformed into:

(a[0] = 10 ∧ a′[1] = 20 ∧ (∀j ∕= 1.a′[j] = a[j])) =⇒ a′[0] = 10.

Introducing Fa and Fa′ we have

(Fa(0) = 10 ∧ Fa′(1) = 20 ∧ (∀j ∕= 1.Fa′(j) = Fa(j))) =⇒ Fa′(0) = 10.

A Reduction Algorithm for Array Logic

• The combination of Presburger theory with uninterpreted functions is in general
undecidable.

• Thus, we need to restrict the set of formulas we consider.

• We consider formulae that are Boolean combinations of array properties.

Array properties

Definição (Array properties)

Is a formula of the form

∀i1 · · · ∀ik ∈ TI .ϕI (i1, . . . , ik) =⇒ ϕV (i1, . . . , ik)

where

1 ϕI is called the index guard and must follow the grammar

ϕI := ϕI ∧ ϕI | ϕI ∨ ϕI | ti ≤ ti | ti = ti

ti := i1 | · · · | ik | t
t := n ∈ N | n × idi | t + t

Terms t are expressions over integers and idi is a variable of TI distinct from ij .

2 Index variables i1, . . . , ik can only be used in array read expressions of the form
a[ij] in ϕV .

Examples

• Extensionality is an array property

∀i .a1[i] = a2[i]

where the guard is true.
• The formula a′ = a[i ← 0] is replaced by two formulas:

• a′[i] = 0 is an array property and
• ∀j ∕= i .a′[j] = a[j].

In this case we need to replace it by

∀j .((j ≤ i − 1 ∨ i + 1 ≤ j) =⇒ a′[j] = a[j])

which is an array property.

A Reduction Algorithm

We now describe an algorithm that accepts a formula from the array property fragment
of array theory and reduces it to an equisatisable formula that uses the element and
index theories combined with equalities and uninterpreted functions.

The input will be an array property in NNF, where universal quantifiers can be replaced
by existential quantifiers but no alternation of quantifiers occur (due to the syntactic
restrictions).

Array-reduction

Input: An array property formula ϕA in NNF
Output: A formula ϕuf of the theories TI and TE ,

and with uninterpreted functions.

1 Apply the write rule to remove all array updates a[i ← e] from ϕA .

2 Replace all existencial quantifiers ∃i ∈ TI .P(i) by P(j), where j is a fresh variable.

3 Replace all universal quantifiers ∀i ∈ TI .P(i) by

i∈I(ϕ)
P(i).

4 Replace the array read operators (a[i]) by uninterpreted functions, and obtain ϕuf .

5 return ϕuf .

I(ϕ)

The set I(ϕ) denotes the index expressions that i might possibly be equal to in the
formula ϕ which is the current formula. Contains:

1 All expressions used as an array index in ϕ expect quantified variables

2 All expressions used inside index guards in ϕ expect quantified variables

3 if ϕ contains none of the above I(ϕ) = {0} (in order to obtain a nonempty set of
index expressions).

Example I

Let k , i ∈ N0, and let us prove the validity of

(∀k .k < i =⇒ a[k] = 0) =⇒ (∀k .k ≤ i =⇒ a[i ← 0][k] = 0)

For that we consider that its negation is not satisfiable.

(∀k .k < i =⇒ a[k] = 0) ∧ (∃k .k ≤ i ∧ a[i ← 0][k] ∕= 0)

By applying the write rule, we obtain

(∀k .k < i =⇒ a[k] = 0) ∧ a′[i] = 0 ∧ (∀j ∕= i .a′[j] = a[j])

∧ (∃k .k ≤ i ∧ a′[k] ∕= 0)

We instantiate k with k1 to eliminate the quantifier ∃k

Example II

(∀k .k < i =⇒ a[k] = 0) ∧ a′[i] = 0 ∧ (∀j ∕= i .a′[j] = a[j])

∧ k1 ≤ i ∧ a′[k1] ∕= 0

We have I = {i , k1}. Then we eliminate the universal quantifiers:

(i < i =⇒ a[i] = 0) ∧ (k1 < i =⇒ a[k1] = 0) ∧ a′[i] = 0

∧ (i ∕= i =⇒ a′[i] = a[i])

∧ (k1 ∕= i =⇒ a′[k1] = a[k1]) ∧ k1 ≤ i ∧ a′[k1] ∕= 0

Simplifying, we get

(k1 < i =⇒ a[k1] = 0) ∧ a′[i] = 0

∧ (k1 ∕= i =⇒ a′[k1] = a[k1]) ∧ k1 ≤ i ∧ a′[k1] ∕= 0

Example III

We replace a and a′ by uninterpreted functions and obtain

(k1 < i =⇒ Fa(k1) = 0) ∧ Fa′(i) = 0

∧ (k1 ∕= i =⇒ F ′
a(k1) = Fa(k1)) ∧ k1 ≤ i ∧ F ′

a(k1) ∕= 0

Considering the three cases k1 < i , k1 = i and k1 > i we can conclude that the
formula is unsatisfiable.

Thus, we conclude the validity of the initial verification condition.

Arrays em SMT-LIB/Z3

• To define arrays one use the (sort) Array

A = Array(’A’, IntSort(), IntSort())

x, y = Consts(’x y’,IntSort())

solve(A[x] == x, Store(A, x, y) == A)

• A[x] is defined by Select(A,x) (or A[x])

• Store(A,x,v), corresponds to A[x ← v].

• K(Sort,v) is an array of Sort where all indexes have the value v (constant array,
it is used to show a solution).

• For the verification condition above

solve (Implies(ForAll([x],(Implies(x< y, A[x]==0))),

ForAll([x],(Implies(x<= y, Store(A, y, 0)[x]==0)))))

Arrays can be represented by λ-terms : if f : A× B → C then Lambda [x,y].

f(x, y) has type Array(A,B,C).

a[i] # select array ’a’ at index ’i’

Select(a, i)

Store(a, i, v) # update array ’a’ with ’v’ at index ’i’

= Lambda(j, If(i == j, v, a[j]))

K(D, v) # constant Array(D, R), where R is sort of ’v’.

= Lambda(j, v)

Map(f, a) # map function ’f’ on values of ’a’

= Lambda(j, f(a[j]))

Ext(a, b) # Extensionality

Implies(a[Ext(a, b)] == b[Ext(a, b)], a == b)

Bit-vector theories

Nikolai Bjorner and Leonardo de Moura.
Z3 Theorem Prover.
Rise, Microsft, 2015.

Aaron R. Bradley and Zohar Manna.
The Calculus of Computation: Decision Procedures with Applications to
Verification.
Springer Verlag, 2007.

Daniel Kroening and Ofer Strichman.
Decision Procedures:An Algorithmic Point of View.
Texts in Theoretical Computer Science. An EATCS Series. Springer, 2016.

