
Program verification

Nelma Moreira

Decidable first order theories and SMT Solvers
Lecture 21

Decision algorithm DPT : quantifier-free theories

The aim is to solve combinations such as

(x1 = x2 ∨ x1 = x3) ∧ (x1 = x2 ∨ x2 = x− 4) ∧ x1 ∕= x3 ∧ x1 ∕= x4

(x1 + 2x3 < 5) ∨ ¬(x3 ≤ 1) ∧ (x2 ≥ 3)

(i = j ∧ a[j] = 1) ∧ ¬(a[i] = 1)

We consider quantifier-free theories, T , for which there exists a decision al-
gorithm DPT for the conjunction of atomic formulae.

Example:Equality Logic

• Corresponds to the equality theory TE only with variables (and constants
that can be eliminated) and quantifers-free

ϕ := ϕ ∧ ϕ | (ϕ) | ¬ϕ | t = t

t := x|c

• has the same expressivity and complexity of propositional logic.

Exerc. 21.1. Describe an algorithm no eliminate constants from a formula
with equalities. ⋄

Decition procedure for theory of equality (conjunctions), DPT

• Seja ϕ a conunction of equalities and inequalities

• Build a graph G = (N,E=, E ∕=) where

• N are variables of ϕ,

• E=, edges (xi, xj) correspond to equalities xi = xj ∈ ϕ (dashes)

1

• E ∕=, edges (xi, xj) correspond to inequalities xi ∕= xj ∈ ϕ (filled)

• ϕ is not satisfiable if and only if there exists an edge (v1, v2) ∈ E ∕= such
that v2 is reachable from v1 by edges of E=.

For x2 = x3 ∧ x1 = x3 ∧ x1 ∕= x2, we conclude that is not satisfiable

Using SAT solvers for SMT

There are two approaches for the Boolean combination of atomic formulas

• eager

– translate to an equisatisfiable propositional formula

– that is solved by a SAT solver

• lazy

– incrementally encode the formula in a proposicional formula

– use DPLL SAT solver

– use a solver for the theory (DPT) to refine the formula and guide the
SAT solver

• the lazy approach seems to work better

Lazy approach

Mainly in the case that ϕ contains other connectives besides conjunction is
better to integrate DT in a SAT solver.

• Suppose ϕ in (NNF)

• at(ϕ) set of atomic formulae over Σ in ϕ; ati(ϕ) i-th atomic formula

• To each atomic formula a ∈ at(ϕ) associate e(a) a proposicional variable,
called the encoder

• Extend the encoding e to ϕ, and let e(ϕ) be the formula resulting from
substituting each Σ-literal by its encoder.

• For example if ϕ := (x = y ∨ x = z) then e(ϕ) := e(x = y) ∨ e(x = z)

2

Example

Let
ϕ := x = y ∧ ((y = z ∧ ¬(x = z)) ∨ x = z)

We have

e(ϕ) := e(x = y) ∧ ((e(y = z) ∧ ¬(e(x = z))) ∨ e(x = z)) := B

Using a SAT solver we obtain an assignment for B:

α := {e(x = y) 󰀁→ true, e(y = z) 󰀁→ true, e(x = z) 󰀁→ false}

The procedure DPT checks if the conjunction of literals correspondent to α is
satisfiable, i. e.,

T̂ h(α) = (x = y) ∧ (y = z) ∧ x ∕= z

This formula is not satisfiable, thus ¬T̂ h(α) is a tautology. We can make the

conjunction e(¬T̂ h(α))∧B and call again the SAT solver but α will be blocked

as it will not satisfy e(¬T̂ h(α)) (blocking clause).

Let α′ be a new assignment

α′ := {e(x = y) → true, e(y = z) → true, e(x = z) → true}

that corresponds to

T̂ h(α′) := (x = y) ∧ (y = z) ∧ x = z

which is satisfiable, proving that the original formula ϕ is satisfiable.

Formally, given a encoding e(ϕ) and an assignment α, for each encoder e(ati)
we have

Th(ati,α) =

󰀫
ati α(e(ati)) = true

¬ati α(e(ati)) = false

and let the set of literals be

Th(α) = {Th(ati,α) | ati ∈ ϕ}

then T̂ h(α) is the conjunction of literals in Th(α).

Let deduction be the procedure DPT with the possible generation of a
blocking clause , t = ¬T̂ h(α).

3

Consider the following three requirements on the formula t that is returned by
Deduction:

1. t is valid in T .

2. The atoms in t are restricted to those appearing in ϕ

3. The encoding of t contradicts α, i.e., e(t) is a blocking clause

The first requirement 1. ensures soundness. The second and third requirements
2. e 3.

are sufficient to guaranteeing termination.

Two can be weakened:

• It is enough that t implies ϕ

• In t can occur other atomic formulas

Beside considering an incremental SAT (that keeps the B from previous calls,
it is more efficient to integrate the procedure deduction in the CDCL al-
gorithm.

CDCL(T): integrar DPT em CDCL-SAT

4

This algorithm uses a procedure AddClauses, which adds new clauses to the
current set of clauses at run time.

Theory propagation

Suppose that ϕ has an integer variable x1 and the literals x1 < 0 and x1 > 10.
If e(x1 > 10) 󰀁→ true and e(x1 < 0) 󰀁→ true ther will be a contradiction but that
is only detected after being obtained a full assignment. However that can be
improved, if the call to deduction is made earlier. That allows to

• Contradictory partial assignments are ruled early

• Implications of literals that are still unassigned can be communicated back
to the Sat solver. We call this technique theory propagation.

• For example, if e(x1 > 10) ← true we can infer that e(x1 < 0) ← false and
and thus avoid the conflict altogether.

DPLL(T)

5

Z3

• Z3 https://github.com/Z3Prover/z3

• Z3 https://z3prover.github.io/papers/programmingz3.html

• https://z3prover.github.io/papers/z3internals.html

• Python : pip install z3-solver

• Tutorial: https://ericpony.github.io/z3py-tutorial/guide-examples.
htm

Z3 Architecture of a SMT Solver

6

pyZ3

x = Real(’x’)

y = Real(’y’)

z = Real(’z’)

s = Solver()

s.add(3*x + 2*y - z == 1)

s.add(2*x - 2*y + 4*z == -2)

s.add(-x + 0.5*y - z == 0)

print(s.check())

print(s.model())

pyZ3

• Logical variables are created indicating their Sort: Real, Bool, Int, or
any new declarated type:

S = DeclareSort(’S’)

f = Function(’f’, S, S)

x = Const(’x’, S)

y = Const(’y’, S)

z = Const(’z’, S)

s = Solver()

s.add(Or(x!=y,Or(f(x)==f(y),f(x)!=f(z))))

print(s.check())

print(s.model())

7

solve(Or(x!=y,Or(f(x)==f(y),f(x)!=f(z)))

• solve() creates a Solver, adds a formula and checks if it is satisfiable
returning a solution (model).

• Const and Function define zero or more variables, respectively

SMT-LIB

• a standard language for SMT is the SMT-LIB (similar to LISP), but we
can use the Python interface

x, y = Ints(’x y’)

s = Solver()

s.add((x % 4) + 3 * (y / 2) > x - y)

print(s.sexpr())

• outputs

(declare-fun y () Int)

(declare-fun x () Int)

(assert (> (+ (mod x 4) (* 3 (div y 2))) (- x y)))

• Quantifiers: ForAll, Exists

solve([y == x + 1, ForAll([y], Implies(y <= 0, x < y))])

The first occurence of y is free, the second is bounded.

Example SMT-LIB 2

(set-logic QF UFLIA)

(declare-fun x () Int)

(declare-fun y () Int)

(declare-fun z () Int)

(assert (distinct x y z))

(assert (> (+ x y) (* 2 z)))

(assert (>= x 0))

(assert (>= y 0))

(assert (>= z 0))

(check-sat)

(get-model)

(get-value (x y z))

Usando % z3 exemplo1.smt2

8

sat

(

(define-fun x () Int

3)

(define-fun z () Int

1)

(define-fun y () Int

0)

)

((x 3)

(y 0)

(z 1))

pyz3: s.from file("exemplo1.smt2")

Z3 API

• help(class) or help(function)

• describe tactics.

•

References

[BdM15] Nikolai Bjorner and Leonardo de Moura. Z3 Theorem Prover. Rise,
Microsft, 2015.

[BM07] Aaron R. Bradley and Zohar Manna. The Calculus of Computation:
Decision Procedures with Applications to Verification. Springer Verlag,
2007.

[KS16] Daniel Kroening and Ofer Strichman. Decision Procedures:An Al-
gorithmic Point of View. Texts in Theoretical Computer Science. An
EATCS Series. Springer, 2016.

9

