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Abstract

Graphs are often used to show information in many applications. They are capable of

displaying the information in a more pleasant way then other formats and can simplify

its interpretation. The finite automata diagrams are a good example of this. Finite

automata are drawn using a set of conventions that intend to improve their readability.

Currently there are no good tools available for automatic drawing of finite automata,

that respect these conventions. GUItar is a graphical environment for the visualization,

editing, and interaction of diagrams, that specially focuses in finite automata type of

diagrams. The application incorporates mechanisms to facilitate the edition of these

diagrams. It also provides two style managers that allow the creation of rich node and

arc styles to be used in the diagrams drawings. These style managers allow the system

to cope with complex styles, broaden the application scope to graphical representations

of other computational models like transducers or Turing machines. GUItar also has

a foreign function call (FFC) mechanism for the easy integration of external modules

and libraries like automata symbolic manipulators or graph drawing libraries. FAgoo

is a Python module that seeks to provide a set of graph drawing algorithms for finite

automata diagrams. Currently FAgoo implements some important graph algorithms,

such as planarity testing and planar embedding. Both GUItar and FAgoo are on going

projects licensed under GPL. The work of this thesis was the implementation of a

graphical environment for finite automata diagrams (GUItar) and a first version of a

graph drawing library for finite automata diagrams (FAgoo).
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Chapter 1

Introduction

Information is often represented by graphs in many applications because they can

be displayed in a relatively small space. A good graph drawing can help a lot the

interpretation of the information associated with it. If the graph is small, then it is

easy to draw it, but usually graphs are very large and complex which hardens the

task of drawing them. A good example of this are finite automata. Finite automata

are usually drawn as diagrams to simplify its interpretation. Usually is easier to

understand the behaviour of a finite automata when it is drawn as a diagram. These

diagrams are drawn following a set of conventions, such as: initial states are positioned

to the left, final states tend to be pushed to the right, and its readability flows

from the left to the right. These conventions intend to improve the readability and

understanding of these diagrams. If the finite automata is small, then it is easy to draw

it and preserve these conventions, but finite automata that actually have a practical

application and are used in the industry, are very large and complex, which difficult its

drawing task. Graph drawing is an area with many years of research and development,

and it is very well documented. There are many applications and libraries for graph

drawing available, although most of them do not fit the finite automata drawing

conventions, and the ones that are specifically designed to manipulate finite automata

either present very poor graph drawing algorithms or are outdated.

13



14 CHAPTER 1. INTRODUCTION

GUItar [FAd10b] is a graphical environment tool for finite automata visualization and

editing. The Figure 1.1 shows the interface of this application, with a drawing of a

finite automaton. GUItar incorporates tools that assist the user through the diagram

drawing and visualization processes, such as the automatic positioning of the nodes

into a grid to avoid overlaps, the automatic adjustment of the arcs’ control points

and the automatic organization of the arcs so that arcs from the left to the right

are positioned above the ones from the right to left. GUItar also provides powerful

styling tools that not only allow the editing of node and arc styles but also allow

the creation of new node structures. Furthermore, it implements a foreign function

call (FFC) mechanism which is used to access external modules or libraries as FAdo

and FAgoo [FAd10b]. FAdo is a tool for symbolic manipulation of formal languages,

specially finite automata, that can be incorporated with GUItar. Since most FAdo

Figure 1.1: An automaton drawing created using GUItar.
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manipulations result in finite automata with no embedding, the graph drawing library,

FAgoo, is being developed. FAgoo specially focuses in finite automata type of diagrams,

which require additional aesthetic and graphical constraints over other types of graphs.

Already existing graph drawing algorithms must be adapted in order to fit the finite

automata conventions. FAgoo is a Python module written in C, which provides a good

performance and at the same time a high-level interface.

The project for this thesis intended to implement a graphical interface for finite

automata visualization and editing, as well as a graph drawing library for finite

automata. A working prototype of a graphical interface, GUItar, is presented in this

thesis. It is also presented FAgoo, a first version of what intends to be graph drawing

library specialized in finite automata drawings.

Chapter 2 gives some basic definitions in graph and finite automata theory. It also

presents some graph drawing applications and libraries, and explains why they are not

suitable for finite automata drawings. Chapter 3 presents GUItar, the implemented

graphical interface for finite automata visualization and editing, and describes some

of its features. FAgoo and some of the algorithms implemented in it are presented and

described in Chapter 4. Finally Chapter 5 concludes this thesis and suggests some

future work.
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Chapter 2

Graphs and Automata Drawing

Applications

2.1 Graphs and Drawings

It is usual in computer science to represent relational structures as graphs. The entities

are represented by vertices and their relationships by edges. For instance in program-

ming languages documentation, graphs are used to illustrate class dependencies. Each

class is represented by a vertex, and every time a class b extends a class a there is

an edge from a to b. The graph in Figure 2.1 illustrates some class dependencies

in GUItar’s canvas. Graphs are useful because they are capable of precisely display

information and at the same time provide an easy way to read and interpret it. In

order to achieve this, graphs must be drawn with a good layout that can be easy

to follow and understand. Graphs with poor layouts are confusing, thus difficult to

understand. The same graph can have some layouts that favor its readability and

others that just difficult its readability. Figure 2.2a and Figure 2.2b represent the

class dependencies in GUItar, where vertices represent the classes and edges represent

the instantiation of one class in another, i.e., there is an edge (u,v) every time the

class u contains a instance of the class v. Both Figure 2.2a and Figure 2.2b represent

17



18 CHAPTER 2. GRAPHS AND AUTOMATA DRAWING APPLICATIONS

Figure 2.1: Some class dependencies in GUItar’s FloatCanvas.

the same graph but with different layouts. While Figure 2.2a is easy to read and to

understand, Figure 2.2b is confusing and difficult to follow.

A graph G is a tuple (V,E), being V the set of vertices and E the set edges where each

edge is an unordered pair (u,v) of vertices. In some contexts vertices are called nodes

and edges are called links, connections or arcs. Two vertices u and v are adjacent if

there is an edge e=(u,v) and e is called incident to u and v. The vertices u and v are

also called the end-points of e. The vertex neighbors are its adjacent vertices. The

degree (deg(u)) of a vertex u is the number of its incident edges. An edge (u,v) with

u = v is a self loop. An edge is a multiple edge if it occurs more than once. A graph

with no self loops and no multiple edges is called a simple graph. Usually in generic

graph algorithms, when nothing else is specified, simple graphs are assumed.
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(a) A GUItar components overview with a layout without edge crossing.

(b) A GUItar components overview with a layout with edge crossing.

Figure 2.2: Two different layouts for the same graph.

A directed graph, also called digraph, is a graph where E is a set of ordered pairs

of vertices (directed edges). A directed edge (u,v) is an outgoing edge of u and an

incoming edge of v. A vertex is called a source if it only has incoming edges and a

sink if it only has outgoing edges. In digraphs, a vertex degree can be distinguish
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between indegree and outdegree which is the number of incoming and outgoing edges,

respectively.

A path is a sequence (v1, v2, ..., vj) of distinct vertices, being each pair (vi, vi+1) of the

sequence, with 1 ≤ i ≤ j, an edge of the graph. If v1 = vj then the path is called a

cycle. A graph is acyclic if it has no cycle path, otherwise is a cycle graph.

A graph G’ = (V’,E’) is a subgraph of G = (V,E) if V’ ⊆ V and E’ ⊆ E ∩ (V’ ×

V’).

There are two conventional ways of describing a graph, with an adjacency matrix or

with an adjacency list. An adjacency matrix M of a graph G = (V,E) with |V | = n and

|E | = m uses a n × n matrix such that, for every u,v ∈ V , Muv = 1 if there is an edge

(u,v), Muv = 0 otherwise. The other way of describing a graph is by using an adjacency

list Lu for each vertex u, consisting on its adjacent vertices. For digraphs the list Lu

only contains the adjacent vertices of the outgoing edges. Adjacency matrices can be

easier to implement and access than adjacency lists, although an adjacency matrix

uses space of size n2 and to list the neighbors of a vertex u it takes an execution time

bounded by n, while the adjacency list uses at most space of size n+m and to list the

neighbors of a vertex u it takes an execution time bounded by deg(u).

A drawing is a family of mappings:

Γ : V → R2,Γu,v : [0, 1]→ R2,

where each Γu,v must be injective and continuous, and such that Γu,v(0) = Γ(u) and

Γu,v(1) = Γ(v).

Each vertex u is mapped to a distinct point Γ(u) in the plane and each edge is mapped

to a simple curve Γ(u,v) with Γ(u) and Γ(v) as its endpoints. In digraphs the edges

are normally drawn using arrows. It is also usual to refer to an edge drawing Γ(u,v)

using the edge terminology (u,v). A graph and its graph drawing are two different

things, in fact a graph can have an infinite number of drawings.
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A graph can be either planar or non−planar. To be planar it must be possible to draw

it in a plane without edge crossings, i.e., if there are no pair of edges that intersect

each other. The theory of planar graphs is well developed and documented. There

are several algorithms to draw planar graphs described in literature. Edge crossing

reduces the graph drawing readability making it confusing and difficult to follow. The

non-planar graph drawing in Figure 2.2b is much more difficult to read than the one

in Figure 2.2a. The Euler’s formula implies that a simple planar graph with n vertices

has at most 3n - 6 edges, which means that planar graphs can be drawn in a more

scattered way.

A planar drawing induces an ordering on the neighbors of each vertex of the graph.

The clockwise sequence of incident edges around each vertex is called an embedding.

Two planar graph drawings of the same graph are equivalent when they have the same

embedding. An embedded graph is a graph with an embedding associated. The graph

drawings in Figure 2.3a, Figure 2.3b and Figure 2.3c are all equivalent (have the same

embedding), and the one in Figure 2.3d is not (has a different embedding).

(a) (b)

(c) (d)

Figure 2.3: Four planar layouts for the same graph.
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A planar drawing partitions the plane in connected regions which are called faces.

Each face has associated a set of vertices and edges. The unbounded face is generally

called the external face. The dual graph of a graph drawing has a vertex for each

face and an edge (u,v) for each edge shared by the faces u and v. Notice that this

graph may have self loops and multiple edges. An example of a dual graph is shown

in Figure 2.4.

A graph is connected if for any pair of vertices u and v there is a path from u to v. A

graph maximal connected subgraph is called a connected component. A cutvertex is

a vertex that if removed, disconnects the graph. A tree is a connected graph without

cycles (acyclic). A graph whose all connected components are acyclic (are trees) is

called a forest. A graph is biconnected if it is connected and has no cutvertices. The

maximal biconnected subgraph of a graph is called block or biconnected component.

The BC-tree Tbc [Har69, 36] of a graph G is a graph where each block is represented by

a B-vertex and each cutvertex by a C-vertex. There is an edge (u,v), for each cutvertex

represented by a C-vertex v, that belongs to a block represented by a B-vertex u. The

BC-tree is sometimes denoted as the block tree, bc(G) or 2-block tree. Biconnectivity

notions and a BC-tree example are illustrated in Figure 2.5.

Figure 2.4: Dual graph example(represented by the squares and dashed lines).
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(a) (b)

Figure 2.5: An example graph and its BC-tree(the letter represent the biconnected

components).

A pair of vertices (u,v) in a biconnected graph G is a separating pair if their re-

moval makes G disconnected. A biconnected graph with no separating pairs is called

triconnected. Triconnected graphs are important in graph drawing. They can have

interesting drawing properties. For example, a triconnected planar graph has only an

unique embedding, up to a reversal of the circular ordering of the neighbors of each

vertex.

Usually planar graph drawing algorithms use graph connectivity properties. For

example a graph is planar if and only if all its biconnected components are. It is

usual in graph drawing algorithms to assume that the input graph is biconnected.

This is done because biconnected graphs have good properties that can simplify the

algorithm and the biconnected components of a graph are relativily easy to compute.

2.2 Finite Automata

Automata are state based models, i.e., they model problems that can be represented

by a finite set of states and transitions between them. A finite automaton usually has



24 CHAPTER 2. GRAPHS AND AUTOMATA DRAWING APPLICATIONS

at least one initial state and a set of acceptance states called final states. An input

sequence is accepted if the resulting state is a final state. There are several applications

of automata such as the designing and checking of digital circuits, parsers, lexical

analyzers, software verification with model checking and definition of protocols. An

example of an automaton that checks if the substring FA occurs in a string is illustrated

in the Figure 2.6. The arrow pointing to the state s0 indicates that it is the initial

state. The automaton remains in state s0 until the letter F occurs, in which case it

moves to state s1. In state s1 the automaton moves to s2 if the input letter is an A,

otherwise it returns to s0. Once in state s2 the automaton remains in it disregarding

the input letter. The two concentric ellipses used in state s2 indicate that this state is

final. If the automaton is in state s2 after its execution then the substring FA occurs

in the input string otherwise FA does not occur.

In the study of regular languages finite automata are used as its computational model.

A finite automaton is deterministic if for each state there is not more than one

transition with the same input, otherwise it is non-deterministic. The terminology

DFA and NFA is usually used for deterministic and non-deterministic finite automata,

respectively.

A NFA A consists in five elements and is usually represented as a tuple as it follows:

A = ( Q , Σ , δ , Q0 , F )

Figure 2.6: Automaton that accept strings containing the FA substring.
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where Q is a finite set of states, Σ is a finite set of input symbols, δ is a transition

function Q × Σ → 2Q, Q0 is a non-empty set of initial states with Q0 ⊆ Q and F is

a set of final states with F ⊆ Q. The specification of the automaton in Figure 2.6 is

A = ( {s0,s1,s2} , {A,B,C,...,F,...,Z} , δ , {s0} , {s2} )

with the transition function

(s0,Σ\F) → s0 (s0,F) → s1 (s1,Σ\A) → s0

(s1,A) → s2 (s2,Σ) → s2.

Finite automata are often represented as diagrams like the one in Figure 2.6. Given

the structure of a finite automata it is clear to consider its underline graph. Each

state is represented by a labeled node. Usually all the nodes have the same shape

(circle or ellipse) with the exception of the initial and final states. Normally the

initial states have an arrow pointing to its circle (or ellipse) and final states are drawn

as two concentric circle (or ellipse). The node’s label is placed inside of it. These

nodes are usually called states. For each transition (q,a) → q’ there is a directed arc

from the state q to the state q’ labeled with the input symbol a. It is acceptable to

have multiple arcs for the multiple transitions between two states, although these are

normally represented by a single arc with their different input symbols concatenated

by commas. The edges usually have their labels on their left side and edges from the

left to the right are placed above the one from the right to the left. These diagrams are

a special type of graph. They are labeled digraphs which can have self loops and are

usually drawn according to some conventions that intend to improve its readability.

The initial states are placed on the left so that the diagram readability flow from the

left to the right, pushing the final states to the right. When the diagram is acyclic

this is not difficult to achieve. When the diagram is cyclic and non-planar it is not so

easy to keep the left to right readability.
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2.3 Graph Drawing Libraries

There are several graph drawing libraries available with many layout algorithms for

generic and specific types of graphs. Most of these libraries focus in a specific type

of graphs in order to achieve better drawings. Restricting the type of graphs that an

algorithm have to deal with, results in having graphs with particular properties which

usually facilitates their drawings. Some of the most significant graph drawing libraries

and applications are presented in this section.

2.3.1 aiSee

The application aiSee [aiS10] is currently used by several areas for graph visualiza-

tion. The application is non-free and closed-source, although it can be used for

non-commercial purposes with some restrictions, and a C library version is available

for some costumers if requested. It provides a set of features that help the user to

visualize large graphs. Graphs up to 1,000,000 nodes and 1,500,000 edges can be easily

handle. The drawings can be exported to various formats such as PostScript (PS),

Scalable Vector Graphics (SVG), and PNG. This software is used for many purposes

such as software development, hardware design, web development and others. aiSee is

currently used to draw many type of graphs, in particular:

• Trees;

• Organization charts;

• Control flow graphs;

• Circuit diagrams;

• Entity relationship diagrams;

• P2P networks;
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• Network traffic graphs;

• Parse trees;

• Algorithm animation;

• Finite state diagrams.

Figure 2.7 shows a finite automaton example drawn using aiSee with the depth first

search layout algorithm. Other available layout algorithms did not present better

results. There are currently fifteen layout algorithms available which are:

• normal;

• tree;

• forcedir;

• dfs;

• minbackward;

• maxdepth;

• maxdepthslow;

• maxindegree;

• maxoutdegree;

• maxdegree;

• mindepth;

• mindepthslow;

• minindegree;

• minoutdegree;

• mindegree.
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Figure 2.7: Layout of a finite automaton using aiSee.

Figure 2.8: Layout of a finite state machine using aiSee.
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Initial and final states could not be represented with the usual styles due to style

limitations of the nodes. The overall aesthetic of the diagram draw is not bad although

the edges, specially self loops, are not handled very well and the labels positioning

is not the conventional in finite automata drawings. An example of a finite state

machine drawing with manual positioning of states is available at aiSee’s website and

illustrated in Figure 2.8, but also fails to deliver the aesthetic conventions expected in

this type of diagrams.

2.3.2 yWorks

yWorks [yWo10] software provides a set of libraries and applications to visualize class

relations in programming languages such as Java, .NET and AJAX. This software is

non-free and provides a set of Java class libraries to be used by other softwares. There

are three licenses available for this software: single developers, projects and sites.

These libraries have layout algorithms for graphs, edges and label positioning. For

graph layout the following algorithms are available:

• Tree;

• Circular;

• Hierarchical;

• Organic (force-directed);

• Orthogonal.

It is also possible to just layout the graph edges in which an Organic routing and an

Orthogonal routing are available. The label positioning can be done during the graph

layout or independently.

There are also available a set of libraries that can export this layouts to various types

of formats such as PDF, SWF, EPS, EMF, SVG and GraphML.
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yWork was not designed to draw finite automata diagram, although a finite automa-

ton example drawn using yWork layout algorithm is shown in Figure 2.9. First an

hierarchical layout algorithm with breadth-first search layering was applied to the

graph followed by a force-direct edge routing algorithm and finally a label positioning

algorithm. The visible failures in this drawing are the loops that should be rounded,

the labels that overlap edges, and the lack of node styles for the initial and final states.

The overall result for this example was not bad, taking into consideration that the

application was not specifically designed to draw this type of diagrams.

2.3.3 JGraph

The JGraph [jgr10] is a graph drawing component available for Java and prepared to be

compatible with Swing. This software is non-free, open-source and distributed under

a three clause BSD license. This graph drawing component provides tools to visualize

several type of graphs such as process diagrams, workflow visualization, flowcharts,

traffic flow, database and WWW visualization, networks, UML diagrams, electronic

circuits, VLSI and others. The available layout algorithms are:

• Tree;

• Circle;

• Hierarchical;

• Force-directed.

Figure 2.10 illustrates a finite automaton example drawn using JGraphX (JGraph’s

graphical interface) with a horizontal hierarchical layout algorithm. The edges’ labels

positioning is not conventional, self loops are not supported and the initial and final

states positioning is not the best.
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Figure 2.9: Layout of a finite automaton using yWork.

2.3.4 OGDF

The Open Graph Drawing Framework (OGDF) [Tec10] is a project that aims to provide

a graph drawing library. This is an open-source library written in C++ and available

under the GNU General Public License (GPL). This library implement important graph

drawing algorithms such as:

• Biconnectivity decomposition and BC-Tree;
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Figure 2.10: Layout of a finite automaton using JGraphX.

• Triconnectivity decomposition and SPQR-Tree;

• Planarity test based on PQ-Trees;

• Planar biconnected augmentation;

• Extration of multiple Kuratowski-subdivisions in linear time;

• NonPlanarCore reduction in linear time;

• Edge insertion with crossing minimization.

These algorithms are the base for the layout algorithms available in this library. The

implemented layout algorithms are:

• Orthogonal used for UML and Cluster graphs (UMLOrtholayout and ClusterOrtho-

Layout);

• Planar (MixedModelLayout, PlanarStraightLayout and PlanarDrawLayout);
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• Planarization (UMLPlanarizationLayout, PlanarizationGridLayout and Cluster-

PlanarizationLayout);

• Energy-based:

– FM3 Layout (FMMMLayout);

– Simulated-Annealing (DavidsonHarelLayout);

– Fruchterman-Reingold (SpringEmbedderFR).

• Layered (SugiyamaLayout) also for cluster graphs:

– acyclic subgraph;

– ranking;

– 2-layer crossing minimization;

– coordinate assignment.

• Tree-based (TreeLayout and RadialTreeLayout);

• Misc (CircularLayout and BallonLayout).

The OGDF presents interesting approaches for non-planar graphs that deserve some

study.

2.3.5 P.I.G.A.L.E

The Public Implementation of a Graph Algorithm Library and Editor (P.I.G.A.L.E.) [H. 10]

is a project that consists in the development of a graph editor and a C++ library that

has planar graphs as its main target. This software is open-source and available under

GPL. It implements some important algorithms based on new theoretical researches

which are:

• Planarity test and embedding (Fraysseix-Rosenstiehl left-right algorithm);
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• Kuratowski subdivision or cotree critical partial subgraph extraction (for non-

planar graphs);

• Triconnectivity test and decomposition;

• Four-connectivity test;

• Fast Depth-First Search;

• Bipolar and regular orientation algorithms;

• Triangulation of triconnected planar graphs;

• Partitioner based on factorial analysis.

It also provides the following layout algorithms:

• Fraysseix, Pach Pollack algorithm;

• Schnyder algorithm using their triangulation algorithms;

• Schnyder algorithm using a vertex triangulation;

• Tutte barycentric representation of triconnected graphs;

• A Fary representation derived from the Tutte algorithm;

• A spring embedder which preserves the map;

• Visibility representation of planar graphs;

• A drawing of planar graphs using Béziers curves (based on a spring embedder);

• An algorithm to represent biconnected planar bipartite graphs as the incidence

graph of horizontal and vertical segments;

• An algorithm to represent planar graphs by contacts of T;

• An algorithm to represent a graph in R3, as projections of different embeddings

of the graph in Rn−1;
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• an heuristic to detect symmetries (experimental);

• an heuristic to find a maximal planar partial graph of a non-planar graph

(experimental).

This library introduces new algorithms that can be useful for finite automata drawing

but just by themselves do not provide the desired aesthetic for this type of graphs.

2.3.6 Graphviz

Graphviz [LC10] is a well known open-source package in the graph drawing community.

This package provides a set of tools for graph drawing purposes, including a C library.

There are five command line tools available to draw graphs:

• dot (hierarchical layout);

• neato (spring models);

• twopi (radial layout);

• circo (circular layout);

• fdp (force-directed model).

Graphviz uses its own graph description format called dot [Gra10a]. A set of tools are

available to read this format and produce graph drawings that can be exported to

several formats including, for example, GIF, JPEG, Portable Document Format (PDF),

PS, SVG, GTK Canvas, Xlib Canvas. There are several graphical interfaces for this

software as dotty and WebDot. This library is used by several applications to dis-

play hierarchical and network type of graphs. Although Graphviz’s layout algorithms

specially focus in this last two types of graphs, it can be used for several others in

particular finite automata diagrams.
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Figure 2.11: Layout of a finite automaton using Graphviz (dot).

Figure 2.11 shows a finite automaton example drawn using Graphviz’s hierarchical

layout (dot). The result is almost the expected with the exception of four aspects:

the positioning of the states s9 and s10 that should be more to the right, the edges

(s0,s1) and (s1,s0) that would look better if they were two simple symmetric arcs,

the overlap of the (s0,s0) self loop’s label and the lack of a node style for the initial

state. Besides these minor problems, the resulting layout for this specific diagram is

good, although more complex diagrams may be a problem for a hierarchical layout.

The spring model also presented an interesting layout, but could not provide a left to

right readability.

2.3.7 JFLAP

JFLAP [RF06] is an application that aims to provide a way to experiment with formal

languages representations such as nondeterministic finite automata, nondeterministic

pushdown automata, multi-tape Turing machines, several types of grammars, parsing,

and L-systems. This software is open-source and distributed under the JFLAP 7.0

license. It provides a finite automata editor that allows the user to draw its finite

automata and manipulate them. It has implemented some basic layout algorithms:

• Tree (degree and hierarchical);

• Generalized Expectation-Maximization (GEM);
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• Circle;

• Two circle;

• Spiral;

• Random.

Clearly JFLAP do not focus its work on the layout of the finite automata, thus,

the available layout algorithms are very basic and simple. Figure 2.12 illustrates

an automaton drawn using JFLAP’s tree degree layout algorithm which has been the

one that presented the most pleasant layout for this example. This layout has no edge

crossing although the edge’s labels overlap and make it very difficult to read. The left

to the right readability also fails, but in this particular case a simple ninety degrees

rotation would solve that problem.
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Figure 2.12: Automaton example using JFLAP’s two circles layout.



Chapter 3

GUItar

GUItar [FAd10a, AAA+09] is a project that aims to provide a graphical environment for

finite automata visualization and editing. Although GUItar specially focuses in finite

automata type of diagrams, it supports many types of diagrams due to its versatility,

such as transducers and Turing machines. An example of a Turing machine drawing

on GUItar is shown in Figure 3.1. Currently GUItar is implemented in Python [Fou10]

and uses wxPython graphical toolkit. Its canvas is implemented using the wxPython’s

FloatCanvas [Bar10] module. The graphical interface basic frame is composed by

a menu bar, a tool bar and a notebook. Both the menu bar and the tool bar

are dynamically built from XML configuration files, which provides an easy way to

configure them. The notebook handle multiple pages, each one containing a canvas.

3.1 GUItar’s Canvas

GUItar is an application mostly mouse driven, and most of its interfacing is done

through the canvas. As said before, the canvas uses the wxPython’s FloatCanvas module

which provides a set of graphical objects that can be bound with mouse events. The

bound mouse events are defined by the selected mouse mode. All mouse modes are

created by extending a base mode and redefining some of its mouse event bindings.

39
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Figure 3.1: An automaton created in GUItar.

There are four mouse modes available:

• Mouse mode (to edit the existing objects);

• Node mode (to add nodes);

• Arc mode (to add arcs);

• Move mode (to freely move the diagram).

The existing Spline object in FloatCanvas did not provide enough information about

the spline to correctly place the arc labels. Therefore, a new object, ArrowSpline,

was implemented in order to correctly draw the arc labels. To draw the diagrams’

nodes, arcs and labels the following, FloatCanvas primitive objects are used:

• Rectangle (nodes);

• Ellipse (nodes);

• ArrowSpline (nodes and arcs);

• ScaledText (labels).
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The nodes are adjusted into a grid to avoid overlaps. If a node is dropped above

another, then the closest free position is found to accommodate it. The arcs, when

added, are automatically arranged in order to keep the arcs from the left to the

right above the ones from the right to the left. It is also possible to move the arc’s

control points in stepwise movements. The self loops are a particular type of arcs, and

therefore, treated differently. The self loop control points are found by intersecting a

circle with the node. There is also a special control point in the center of the loop,

that basically controls the circle that is used to calculate the control points.

The node and arc labels can be either simple or compound. Simple labels are just text

strings, while compound labels have custom fields with values specified by the user.

The user can choose either to display each label field or not and, this way, extra data

can be associated to nodes and arcs (see Figure 3.2).

(a) (b)

Figure 3.2: Two examples of compound labels.
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3.2 Styles

GUItar provides a node and arc style manager that not only allows the management

of multiple styles, but also provides an interactive way to edit and create new ones.

The graphical representation of a node consists in a set of objects. The available

objects for nodes are ellipses, rectangles, arrowed splines and scaled texts. Each node

must have at least an ellipse or a rectangle to ensure that it has a place to dock the

incoming and outgoing arcs. It must also have one scaled text to place the node’s

label. This node structure allows the creation of complex nodes, enriching the graph

visualization. For example in finite automata diagrams we can represent final states

by using two concentric ellipses, or initial states using an arrow pointing to an ellipse.

Figure 3.3a shows the GUItar’s node style manager, editing a style. A few node styles

created using this style manager are shown in Figure 3.3b.

The arc style manager allows the editing and creation of rich arrow styles. A large

set of properties, such as arrow heads number, arrow head size, arrow head angle, line

width, line color, fill color and label font, are available. It is also possible to define

default behaviours for loops according to its style. The arc style manager and some

examples of arcs styles are presented in Figures 3.3c and Figure 3.3d, respectively.

3.3 FFCs

The GUItar project was not intended to be a new monolithic graph visualization and

editing tool, but supposed to be seen more as a hub where graph manipulation libraries

can, together, provide better visualization and manipulation tools. This is achieved by

a FFC mechanism, using a Python interface to access the external tools (see Figure 3.4).

There are three types of FFC: module FFC, object FFC and interactive FFC. In the first

case, the FFC calls a function directly from an external Python module. In the second

case, it creates a foreign object and then calls methods of that object. In the last case,

when a specific event occurs, the FFC triggers the respective handler function from
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(a) Node style manager. (b) Node styles.

(c) Arc style manager. (d) Arc styles.

Figure 3.3: GUItar’s style managers and a few styles examples.
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Figure 3.4: A FFC mechanism overview.

an external Python module that will return a sequence of actions as script commands.

FFCs require an XML configuration file that specifies the available methods. FFCs

can create their own menu entries which makes its integration in GUItar smooth and

practical. Most of the GUItar tools are implemented using FFCs such as the interfaces

of FAdo and FAgoo.

3.4 Graph Classification

The GUItar classification mechanism allows to test if a graph belongs to a certain

class by checking if the graph verifies a set of properties. These properties can test

graphical properties (e.g. if arcs have arrows) or semantic properties (e.g. if a finite

automaton is deterministic). A few of these methods are predefined in GUItar to check

the most usual graphical properties of a graph. Access to external libraries with FFCs

can be used to test graph properties, broadening the class range. Biconnectivity and

planarity tests can be done, for example, using FAgoo.

A friendly interface is available for graph classification (see Figure 3.5). This interface

lists the graph properties and identifies the ones that are verified in the current graph.

The user can create his own classes by stating the properties that the class must

comply. It is also possible to export and import these class definitions.
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Figure 3.5: GUItar’s interface for graph classification.

3.5 Semaphores

When editing a graph it can be useful to constraint the actions performed so that the

resulting graph does not leave a certain class. The GUItar Semaphore tool assists this

task by warning the user, or even restricting his actions. For example, suppose that

we have a deterministic finite automaton (DFA) as the result of some manipulation,

and we want to edit it. We can enable the semaphore for DFAs to ensure that the

changes that we apply to the graph do not compromise the DFA class definition.

New Semaphores can be created by extending the Semaphore base class and declaring

them in an XML configuration file. An image of a traffic sign is associated to each

semaphore whose light color represent the current state of the graph evaluation. There

is also an image of a small padlock that when closed means that actions are restrict,
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i.e., do not allow actions that compromise the desired graph properties.

3.6 Import and Export

GUItar store its graphs using GUItarXML [AMR10], which is an XML format specially

designed for this application and based on GraphML [Gra10b]. GUItar also imports and

exports to other formats, converting from and to GUItarXML. Currently the available

exporting formats are GraphML, dot [Gra10a], Vaucanson-G [LS09] and FAdo. It is

also possible to import from all these formats with the exception of Vaucanson-G. The

Xport mechanism provides an easy way to add new export and import methods to

GUItar.



Chapter 4

FAgoo Implementation

Since GUItar is implemented using Python and its extension mechanism interface, the

FFC, is Python oriented, FAgoo either had to be implemented using Python or provide

a Python interface to it. Python is a high level language that allow the easy and fast

development of large applications in a small amount of time, although for performance

reasons it was decided not to use Python for this library implementation. Python is

implemented in C and its API provides tools to create new built-in modules written in

C or C++. Thus, FAgoo is implemented as a C extension of Python, providing this way

a high-level interface for this library, that can be easily interfaced with GUItar using

FFCs, and having at the same time the performance of a C library. FAgoo is being

developed so that with minimal modifications it could be separated from Python’s API

and used directly as a C library.

4.1 Conventions and Aesthetics

Graph drawing algorithms usually are specialized for certain classes of graphs, i.e.,

they check for specific properties before its application, for example an algorithm to

draw a graph without edge crossing requires a planar graph as input. Generally graph

drawing algorithms require the input graph to belong to one or more specific classes.

47
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This is done because the algorithms can only work with that type of graphs (presents

better results) or that type of graphs are expected to be handle differently.

The drawing conventions of a graph are the basic properties that are expected to be

satisfied in a drawing. The drawing conventions of finite automata were described in

Chapter 2.2 and some of them are complex and not easy to achieve. The following

drawing conventions are widely used in graph drawing:

• Grid Drawing (vertices, edges bends and crossings have integer coordinates, see

Figure 4.1a);

• Polyline Drawing (edges are drawn as polygonal chains, see Figure 4.1b);

• Orthogonal Drawing (edges are drawn as polygonal chains of vertical and hori-

zontal segments, see Figure 4.1c);

• Upward Drawing (for digraphs where edges are drawn as curves monotonically

non-decreasing in the vertical direction, see Figure 4.1d);

• Straight-Line Drawing (edges are drawn as a straight line segments, see Fig-

ure 4.1e);

• Planar Drawing (edges do not cross, see Figure 4.1f).

The straight-line drawing is a particular case of polyline drawings and this in turn can

be planar making it a planar straight-line drawing. These drawing conventions are

usually used as base for more complex drawing conventions.

There are graphical properties that improve the graph readability. These properties

are called aesthetics and some frequently adopted are:

• Crossings (Minimize the number of edges crossings. If possible have planar

drawings.);

• Overlaps (Avoid the overlap of edges with edges’ labels. Finite automata can

have large edge labels.);
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(a) (b) (c)

(d) (e) (f)

Figure 4.1: Some examples of drawing conventions.

• TotalEdgeLength (Minimize the sum of the edges’ length.);

• MaximumEdgeLength (Minimize the maximum length of each edge.);

• UniformEdgeLength (Minimize the length difference of the edges.);

• TotalBends (Minimize the total number of bends along the edges. If possible

have a straight-line drawing.);

• MaximumBends (Minimize the maximum number of bends on an edge.);

• UniformBends (Minimize the variance of the number of bends on the edges.);

• AngularResolution (Maximize the smallest angle between two edges incident

on the same vertex.);

• Area (Minimizing the area of drawing.);

• AspectRatio (Minimize the aspect ratio of a drawing.);

• Symmetry (Reveal the symmetries of the graph in the drawing.).
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The area aesthetic is relevant because usually the visualization area is limited and

some times small. For example, the visualization of networks can be difficult even in

the largest screens due to the generally large size of these graphs. Another example

is the representation of diagrams in paper (e.g. finite automata diagrams, or dataflow

diagrams). The area of drawing is usually formally defined as the area of the smallest

rectangle that covers the drawing this is so because the visualization support is usually

rectangular (e.g. monitor, and paper sheets). But the area can be defined differently,

for example as the area of the smallest convex polygon that cover the graph. The

aspect ratio of a graph is defined by the ratio between the length of the longest and

the shortest side of the rectangular area of the drawing. The aspect ratio is related

with the area of the drawing because the balance between these two aesthetics is very

important. For example, a drawing with a small drawing area and a high aspect ratio,

can not be well visualized on a screen. The ideally would be having a small area and

small aspect ratio.

Most of these aesthetics give rise of computationally hard problems, so many different

strategies and heuristics approximations have been developed.

4.2 Implementation Choices

As said before, graph drawing algorithms usually take as input a graph satisfying a

certain set of properties. It is often thanks to this restriction that it is possible to

find solutions that approximate the polynomial execution time. It is frequent to have

an input graph that does not meet the required properties of the drawing algorithm.

So, when possible, the graph is first transformed in order to meet these properties,

then the drawing algorithm is applied and finally it is transformed back to its original

form. For example, graph drawing algorithms usually assume that the input graph

is connected, so if the input graph is disconnected, edges are added in order to make

the graph connected, and after applying the drawing algorithm, the previously added

edges are removed. Bertolazzy et al [BBL95] presented a taxonomy where graph classes
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and graph drawing algorithms are represented hierarchically. Each graph drawing

algorithm is defined on a graph class, and inherited by all the subclasses. A taxonomy

of the graph classes addressed by FAgoo is illustrated in Figure 4.2a, and Figure 4.2b

uses the Bertolazzy et al taxonomy to represent the current implementation path of

FAgoo and a possible one for the future.

At this early stage of FAgoo’s implementation, it was necessary to implement many

basic graph manipulation algorithms such as connectivity and biconnectivity aug-

mentation algorithms. The currently implemented layout algorithm is a straight-line

drawing, that draws planar graphs without edge crossings and uses only straight-

lines to draw the edges. This algorithm requires that the input graph is planar

and triangulated. Kant [Kan93] presents an algorithm to triangulate a planar graph

(a) (b)

Figure 4.2: A taxonomy of FAgoo’s graphs and its implementation path.
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while minimizing the maximum degree which is a good approximation of the optimal

solution. Although these algorithms requires the input graph to be triconnected and

FAgoo currently does not yet implement triconnectivity augmentation algorithms. So

another triangulation algorithm was implemented, which only requires the input graph

to be biconnected and as side effect computes a leftmost canonical ordering (lmc-

ordering) [Kan93, 127] that is needed for the straight-line drawing algorithm.

4.3 Implementation Programming Language

FAgoo intends to be a graph drawing library for Python, because Python is a high

level language, object oriented and very easy to use. This way FAgoo can easily be

embedded in other applications. To implement FAgoo as a Python module there were

considered three possibilities:

• write it in Python;

• write it in C and then use an automatic wrapper and interface generator (e.g.

SWIG [Dav10] and Boost.Python [Boo10]) to export it to Python;

• write a extension module for Python in C.

Writing FAgoo in Python was excluded due to performance reasons, and since Python

provides such good support for writing C modules, FAgoo is currently implemented

as a C module for Python. This combination allows the creation of an efficient graph

drawing library, available to a high level language, making its usage very easy and

practical.

4.4 SimpleGraph Object

FAgoo provides a Python object named SimpleGraph, which implements a set of meth-

ods for graph manipulation. This object handles the input graphs as multigraphs,
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i.e., undirected graphs that allow multiple edges. Its constructor takes a Element-

Tree, a string of GUItarXML (see Chapter 3.6) or a Python list with pairs of integers

representing edges. The ElementTree is an object from the lxml Python module, that

provides methods to load XML files as trees of Element objects, and save them back.

The XML specification accepted is GUItarXML that is used by GUItar. The graph

is maintained in a adjacency list and each vertex and edge contains a pointer to

its respective Element object, to be used when extra information is needed. The

SimpleGraph object implements the following set of methods for its manipulation:

• GetEdgesNumber (Returns the number of edges in the graph);

• GetNodesNumber (Returns the number of vertices in the graph);

• GetGraphEtree (Returns the graph as a lxml Element object);

• GetGraphAsGuitarEtree (Returns the graph as a lxml ElementTree object);

• AddNode (Add a new vertex to the graph);

• AppendNode (Add a new vertex to the graph from an Element object);

• GetNodeEtree (Returns a vertex Element object representation);

• AddEdge (Add a new edge to the graph);

• AppendEdge (Add a new edge to the graph from an Element object);

• GetEdgeEtree (Returns the edge Element object representation);

• IsPlanar (Returns true if planar, otherwise false);

• IsConnected (Returns true if the graph is connected, otherwise returns false);

• MakeConnected (Makes the graph connected by adding edges between the con-

nected components);

• IsBiconnected (Returns true if the graph is biconnected, otherwise returns false);
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• GetBicomponents (Returns the graph biconnected components as a list of Sim-

pleGraph objects);

• GetBCTree (Returns a SimpleGraph object with a graph representation of its

BC-Tree);

• MakeBiconnected (Returns true if the graph is planar and was successfully made

biconnected, otherwise returns false);

• IsTriangular (Returns true if the graph is triangular otherwise returns false);

• Triangulate (If the graph is planar, triangulates it, otherwise leave it unchanged);

• SetSLDraw (If the graph is planar, set its layout to a straight-line draw, otherwise

leave it unchanged).

4.5 Biconnectivity

FAgoo implements algorithms to test if a graph is biconnected, to compute its BC-tree,

and to augment it so that it becomes biconnected. The algorithm to test biconnectivity

and compute the BC-tree is an adaptation of the one presented by Hopcroft and

Tarjan [HT73]. The original algorithm tests if the graph is biconnected in linear time.

To explore the graph, this algorithm uses a depth-first search. For a graph G = (V,E),

it starts at a vertex v of G and an unexplored adjacent vertex u is chosen to proceed

the search. The vertex v is called the parent of u. When the depth-first search finishes

on the vertex u, it proceeds on the next unexplored adjacent vertex of v. If the depth-

first search is applied to each connected component of G, then each node will be visited

exactly once. The algorithm uses a depth-first search to number the vertices from 0

to n, where |V | = n. A vertex u is a cutvertex, if all the vertices that were explored

as result of the depth-first search on u, have a higher numbering than it.

The algorithm uses a structure (BC Vars) to keep a stack with the traversed edges and

the graph BC-tree (BC Tree). During the depth-first search the traversed edges are
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added to the stack and when a cutvertex u is found, all the edges on the stack added

after the edge (v, u), where v is the parent of u, form a biconnected component. Each

biconnected component originates a B-vertex, which is connected to the respective

C-vertices and added to the BC-tree.

The function BDFS receives four arguments: a BC V ars structure vars, thet keeps

all the necessary auxiliary variables such as the edge stack and the BC-tree, the current

vertex v, the id of the parent vertex, and the variable lowpoint with the number of the

lowest vertex reached. The first value of lowpoint is |V |+ 1 and it is updated through

the function execution.

int

BDFS( BC Vars ∗vars , BC Vertex ∗v , int parent id , int lowpoint ) {

BC CVertex List ∗ ne ighbors=NULL; BC Edge List ∗ bc b lock=NULL;

int newlowpt ; BC Vertex ∗w;

For each edge (v, w), the function tests if (v, w) was not traversed, by testing if the

number of w is lower then the number of v, and if w is not parent vertex of v. If it

was not traversed then it is added to the edge stack.

BC Edge ∗ edge=v−>f i r s t e d g e ;

while ( edge !=NULL) {

w=edge−>t a r g e t ;

i f (w−>number < v−>number && w−>id != parent id ) {

vars−>edgestack [ vars−>ep]= edge ; vars−>ep++;

At this point the vertex w was either not visited yet or the edge (v, w) is a back edge,

i.e., the number of w is lower then the number of v. If the vertex w was not visited

yet then it is numbered and the function is recursively called for the vertex w. Then

the lowpoint variable is updated with the minimum between it self and the returned

lowest point.

i f (w−>number==0){

vars−>vertexnumber++; w−>number=vars−>vertexnumber ;

newlowpt=BDFS( vars ,w, v−>id , vars−>V+1) ;

lowpoint=min ( lowpoint , newlowpt ) ;
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If v is a cutvertex then the returned lowest point must be greater or equal then

the number of v, in which case all in the edge stack above the edge (v, w) form a

biconnected component. If v has no parent, i.e., it is the vertex of the first call, then

it is a cutvertex only if there is another biconnected component to be explored.

i f ( newlowpt >= v−>number ) {

int becvertex =1;

i f ( parent id <0 && v−>cve r t ex==NULL) {

BC Edge ∗ r e s t=edge−>next ;

becver tex =0;

while ( r e s t !=NULL) {

i f ( r e s t−>target−>number < v−>number ) {

becvertex =1;

break ;

}

r e s t=re s t−>next ;

}

}

int cutve r t ex =0;

ne ighbors=NULL;

i f ( becver tex ) {

i f (v−>cve r t ex==NULL) {

BC CVertex New (v ,NULL) ;

BC Tree AddCVertex ( vars−>bctree , v−>cve r t ex )

}

ne ighbors=BC CVertex List Push (NULL, v−>cve r t ex ) ;

cutve r t ex++;

}

Each vertex maintains a pointer to the respective C-vertex of the BC-tree. To create

the B-vertex that represents the biconnected component, the edges on the stack above

the edge (v, w) and it-self are pop from the stack a added to a list on the B-vertex.

The list neighbors keeps all the C-vertices on the biconnected component.

bc b lock=NULL;

int ne igbor s count =0;
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BC Edge ∗aux=vars−>edgestack [ vars−>ep−1] ;

while ( aux−>source−>number > v−>number ) {

i f ( aux−>source−>cve r t ex !=NULL) {

ne ighbors=BC CVertex List Push ( neighbors , aux−>source−>cve r t ex ) ;

cutve r t ex++;

}

i f ( aux−>target−>cve r t ex !=NULL) {

ne ighbors=BC CVertex List Push ( neighbors , aux−>target−>cve r t ex ) ;

cutve r t ex++;

}

bc b lock=BC Edge List Push ( bc block , aux ) ;

ne i gbor s count++;

vars−>ep−−;

aux=vars−>edgestack [ vars−>ep−1] ;

}

i f (w−>cve r t ex !=NULL) {

ne ighbors=BC CVertex List Push ( neighbors ,w−>cve r t ex ) ;

cutve r t ex++;

}

bc b lock=BC Edge List Push ( bc block , edge ) ;

ne i gbor s count++;

vars−>ep−−;

BC BVertex ∗bvertex=BC BVertex New (0 , bc block , ne igbors count ,

ne ighbors , cutve r t ex ) ;

Finally the C-vertices on neighbors list are added as neighbors of the created B-vertex,

and the B-vertex is added to the BC-tree.

while ( ne ighbors !=NULL) {

BC CVertex AddNeighbor ( ne ighbors−>cvertex , bvertex )

ne ighbors=neighbors−>next ;

}

BC Tree AddBVertex ( vars−>bctree , bvertex )

}

}
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In the case of (v, w) being a back edge, the lowpoint variable is updated with the

minimum between it-self and the number of w.

else lowpoint=min ( lowpoint ,w−>number ) ;

}

edge=edge−>next ;

}

return lowpoint ; }

To test if a graph is biconnected, this algorithm is applied to each of its connected

components, and if the BC-tree has only one B-vertex, then the graph is biconnected.

To connect a graph, its BC-trees are computed and each pair of BC-trees are connected

by adding an edge between the C-vertices with lower degree of each component. The

C-vertices are used to connect the BC-trees to avoid create more C-vertices.

Figure 4.3 and Figure 4.4 show a graph example and its BC-tree, respectively.

Figure 4.3: Example graph G1.
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Figure 4.4: The BC-tree of G1.

4.6 Planarity testing and embedding

Planar graphs have a major role in Graph Drawing, because of its important drawing

properties. But even non-planar graphs are usually transformed into planar graphs

(by removing edges) in order to be better drawn. The Kuratowski’s theorem [Kur30]

states that a graph G is planar if and only if it has no subgraph homeomorphic

to K3,3 or K5 (K3,3 is the complete bipartite graph on 2 sets of 3 vertices and K5

is the complete graph with 5 vertices, see Figure 4.5). Although, this approach is

not practical and therefore other techniques for planarity testing where developed.

There are, several algorithms for planarity testing which are based on one of two

principles, the edge addition and the vertex addition. The edge addition algorithm

was originally presented by Auslander and Parter [AP61] and correctly formulated by

Goldstein [Gol63]. A linear time implementation of this algorithm was developed by

Hopcroft and Tarjan [HT74]. FAgoo currently implements this algorithm for planarity

testing and to compute a planar embedding it implements the algorithms presented

by Mehlhorn and Mutzel [MM96].



60 CHAPTER 4. FAGOO IMPLEMENTATION

Figure 4.5: On the left the K3,3 graph and on the right the K5 graph.

To test if a graph G = (V,E) is planar, the algorithm starts by testing if the number of

edges of G exceeds 3n−3, where |V | = n. If that test fails then the algorithm proceed

with the planarity test, otherwise the graph is declared non-planar. Once again a

depth-first search is used to number all the vertices in the graph, and a direction is

imposed to the edges, which is the direction in which they are traversed. The search

also divides the graph into two classes of directed edges: a set of tree edges, which

define a spanning tree T (a tree T which is a subgraph of G and T contains all the

vertices of G) of G, and a set of back edges (v, u), such that v, u ∈ T and there is

a path from u to v in T . A graph partitioned in such way is called a palm tree.

Figure 4.6 shows an example of graph and its palm and spanning tree. Finally the

search computes two values for each vertex, the lowpt1 and the lowpt2, where lowpt1

and lowpt2 are defined as follows:

lowpt1(v) = min( {v} ∪ Sv ), and

lowpt2(v) = min( {v} ∪ (Sv - {lowpt1(v)}) ),

where v is a vertex, and Sv the set of vertices reached by back edges from descendants

of v. The lowpt1 is the vertex with lowest number than v reachable by a back edge

from a descendant of v, and lowpt2 is the second vertex with lowest number than v

reachable by a back edge from a descendant of v. Then the adjacency lists are sorted

according to the increasing value of φ((v, u)), where φ is a function defined on the

edges of the graph’s palm tree as follows:
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(a) An example graph.

(b) A palm tree generated from the exam-

ple graph. The solid edges are tree arcs,

and they form a spanning tree. The dotted

edges are the back edges.

(c) The first generated cycle is represent with

dotted edges, and the segments with the solid

edges.

Figure 4.6: Some examples of the planarity notions.
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φ((v, u)) =


2 · u if (v, u) is a back edge

2 · lowpt1(u) if (v, u) is a tree edge and lowpt2(u) ≥ v

2 · lowpt1(u) + 1 if (v, u) is a tree edge and lowpt2(u) < v

Now the Auslander, Parter & Goldstein algorithm can be applied. This algorithm

finds a cycle in the graph and deletes it, leaving a set of connected components called

segments. Then the algorithm recursively tests the planarity of each segment, and

determines if the segment can be embedded on the inside (left side) of the cycle or

on the outside (right side) of the cycle. A cycle is formed by a path from a vertex

v to a vertex u in the spanning tree plus a back edge (u, v). All the cycles besides

the first one, when needed, use part of the path of the parent cycle. The segments

cycles besides the first one, may have to use part of its parent cycle path. The edges

leaving the cycle are called attachments. The Block structure represents a set of

embedded segments, that contains a list of the left attachments and a list of the right

attachments. Blocks can be flipped in order to avoid interlacing with other Blocks.

The recursive planarity test function IsP lanar takes three arguments: an edge, which

is an attachment of the previous cycle, and a structure where the ordered attachments

of this segment will be returned. The pointer Att points to a list structure that is

used to keep the ordered list of attachments that will be returned.

int I sP lanar ( PE Edge ∗edge , Return Att ∗RAtt ) {

Stack ∗ s=NULL;

I n t L i s t ∗Att=NULL;

Block ∗block=NULL;

The function starts by finding the segment’s cycle. To do that, it starts at the target

vertex of edge and then traverses the first edge in the adjacency list (previously sorted)

of each vertex until the first back edge occurs. During this process each source vertex

of the traversed edge is marked as parent of the target one, so that later the cycle can

be traversed backwards during the embedding process.

PE Vertex ∗x=edge−>source ;

PE Vertex ∗y=edge−>t a r g e t ;
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y−>pe−>parent=x ;

PE Edge ∗e=y−>f i r s t e d g e ;

while ( e−>pe−>backedge==0){

e−>target−>pe−>parent=e−>source ;

e=e−>target−>f i r s t e d g e ;

}

PE Vertex ∗wk=e−>source ;

PE Vertex ∗w0=e−>t a r g e t ;

Now all the vertices in the cycle are traversed in backwards, and a stack s with the

embedded Blocks is kept. For each edge (v, u) emanating from the cycle, the function

is recursively applied, except if it is a back edge, in which case, an attachments list

is created consisting only in the vertex u. Then a Block is created using the returned

attachments list or the created one. This Block only has attachments on the left

side. If it interlaces with the top Block of s (last block embedded), then it must

be flipped (the left attachments are swapped with the right attachments) to see if

it can be embedded on the right side. If it is still interlaced, the graph is declared

non-planar. If that is not the case, the Block is finally tested to see if its right side

interlaces with the left side of the last embedded Block. In the affirmative case, the

two Blocks are combined and pushed to s, otherwise the Block is simply pushed to s.

After embedding all the segments emanating from a vertex w, the attachments higher

than that vertex can be cleared and definitely marked with its embedding side (left

or right).

Return Att RA;

RA. Att=NULL;

PE Vertex ∗w=wk ;

while (w−>number!=x−>number ) {

e=w−>f i r s t e d g e−>next ;

while ( e !=NULL && e−>pe−>backedge >=0){

RA. Att=NULL;

i f ( e−>pe−>backedge==0){

r=IsP lanar ( e ,&RA) ;

} else {
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I n t L i s t ∗ item=( I n t L i s t ∗) mal loc ( s izeof ( I n t L i s t ) ) ;

item−>value=e−>target−>number ;

item−>next=RA. Att ;

RA. Att=item ;

}

block = Block New ( e ,RA. Att ) ;

RA. Att=NULL;

while ( s !=NULL) {

i f ( B l o c k L e f t I n t e r l a c e ( block , s ) )

B lock F l ip ( s−>topblock ) ;

i f ( B l o c k L e f t I n t e r l a c e ( block , s ) )

return FALSE;

i f ( B l o c k R i g h t I n t e r l a c e ( block , s ) ) {

block=Block Combine ( block , s−>topblock ) ;

s=Stack Pop ( s ) ;

}

else

break ;

}

s=Stack Push ( s , b lock ) ;

b lock=NULL;

e=e−>next ;

}

w=w−>pe−>parent ;

while ( s !=NULL && Block Clean ( s−>topblock ,w−>number ) ) {

s=Stack Pop ( s ) ;

}

}

Finally the attachments list to be returned is created using the Blocks from s, and

each Block is tested to see if it interlaces the cycle’s back edge, which make the graph

non-planar.

while ( s !=NULL) {

Block ∗ tb lock=s−>topblock ;

i f ( tb lock−>Latt !=NULL && tblock−>Ratt !=NULL &&
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tb lock−>Latt−>value > w0−>number && tblock−>Ratt−>value > w0−>

number ) {

return FALSE;

}

Att=Int L i s t Conca t ( Att , Block 2Att ( tblock , w0−>number ) ) ;

s=Stack Pop ( s ) ;

}

i f (w0−>number!=x−>number ) {

Att=Int List Append ( Att , w0−>number ) ;

}

RAtt−>Att=Att ;

Att=NULL;

return TRUE;

}

The function IsP lanar tests if the graph is planar. If that is the case, it computes

each segment side. Although it does not computes a complete embedding of the graph.

To do that the function Embedding traverses the graph using a depth-first search, and

computes a planar embedding using the side information about each segment, provided

by the function IsP lanar. A planar embedding is given by the final ordering of the

adjacency lists.

The function Embedding uses a depth-first search similar to the one used in the

planarity test to recursively compute a planar embedding. A set of auxiliary lists are

used to kept the clockwise ordered edges. The list T has the ordered edges that will

form the adjacency list of the current vertex w. The list A is the concatenation list

of AL,(wk,w0) and AR, where AL and AR are the ordered lists of incident edges to

the left and to the right side of the cycle, respectively. Each recursively embedded

segment S returns the lists TPrime and APrime, where TPrime is the ordered list

of edges incident to w embedded in S and APrime is the ordered list of edges incident

to the cycle embedded in S. The segment S can be embedded in the left or right side

of the cycle. If S is embedded in the left side then T becomes the concatenation list

of TPrime and T , and AL the concatenation list of AL and APrime, otherwise T
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becomes the concatenation list of T and TPrime, and AR the concatenation list of

APrime and AR (see Figure 4.7).

(a) (b)

Figure 4.7: Embedding the segment S on the left and right side of the cycle,

respectively.

The embedding function receives four arguments: a tree edge e0, the side where the

segment is going to be embedded, and the lists T and A described above. This function

starts by finding the cycle just as in the case of the function IsP lanar.

void Embedding ( PE Edge ∗e0 , int s ide , TA List ∗T, TA List ∗A) {

int rv =1;

PE Vertex ∗ e0 sou r c e=e0−>source ;
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e0−>target−>pe−>parent=e0 sour c e ;

e0−>target−>pe−>edge in=e0 ;

PE Edge ∗e=e0−>target−>f i r s t e d g e ;

while ( e−>pe−>backedge==0){

e−>target−>pe−>parent=e−>source ;

e−>target−>pe−>edge in=e ;

e=e−>target−>f i r s t e d g e ;

}

PE Vertex ∗wk=e−>source ;

PE Edge ∗ cyc l e backedge=e ;

The list T is initialized with the back edge (wk,w0) and all the others are initialized

empty.

PE Edge List ∗newedgeR ;

PE Edge List ∗newedge=PE Edge List New ( cyc l e backedge ) ;

PE Edge List ∗ cyc le backedge R=PE Edge List New ( cyc le backedge−>

r e v e r s a l ) ;

TA List Append (T, newedge ) ;

TA List TPrime ;

TA List APrime ;

TPrime . Head=TPrime . Ta i l=NULL;

APrime . Head=APrime . Ta i l=NULL;

TA List AL;

TA List AR;

AL. Head=AL. Ta i l=NULL;

AR. Head=AR. Tai l=NULL;

The cycle is now traversed on backwards and for each edge (w, u) emanating from

the cycle vertex w, an embedding is recursively computed and the lists TPrime and

APrime return the embedding result as described above. Then the lists TPrime and

APrime are concatenated as described also above.

PE Vertex ∗w=wk ;

while (w−>number!= e0 source−>number ) {

e=w−>f i r s t e d g e−>next ;

while ( e !=NULL && e−>pe−>backedge >=0){
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TPrime . Head=TPrime . Ta i l=NULL;

APrime . Head=APrime . Ta i l=NULL;

i f ( e−>pe−>backedge==0){

int ps ide=RIGHT;

i f ( e−>pe−>s i d e==s i d e ) ps ide=LEFT;

Embedding ( e , ps ide ,&TPrime,&APrime) ;

} else {

newedge=PE Edge List New ( e ) ;

TA List Append(&TPrime , newedge ) ;

newedgeR=PE Edge List New ( e−>r e v e r s a l ) ;

TA List Append(&APrime , newedgeR ) ;

}

i f ( e−>pe−>s i d e==s i d e ) {

TA List Concat(&TPrime ,T) ;

TA List Concat (T,&TPrime ) ;

TA List Concat(&AL,&APrime) ;

} else {

TA List Concat (T,&TPrime ) ;

TA List Concat(&APrime,&AR) ;

TA List Concat(&AR,&APrime) ;

}

e=e−>next ;

}

After all the edges emanating the vertex w are embedded, the list T concatenated

with the edge (w, u), where u is the parent vertex of w, becomes the adjacency list of

w. The list AL is split into the lists AL′ and T ′ and AR into the lists AR′ and T ′′,

where T ′ and T ′′ contains all the incident edges to parent vertex of w. The list T then

becomes the concatenation of the lists T ′ and T ′′, AL and AR become the lists AL′

and AR′, respectively.

newedgeR=PE Edge List New (w−>pe−>edge in−>r e v e r s a l ) ;

TA List Push (T, newedgeR ) ;

w−>pe−>planar embedding=T−>Head ;

T−>Head=T−>Tai l=NULL;

PE Edge List ∗ppt=NULL,∗ pt=AL. Head ;
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while ( pt !=NULL && ! ( pt−>edge−>source−>id==w−>pe−>parent−>id ) ) {

ppt=pt ;

pt=pt−>next ;

}

i f ( pt !=NULL) {

T−>Head=pt ;

T−>Tai l=AL. Ta i l ;

i f ( ppt !=NULL) {

ppt−>next=NULL;

AL. Ta i l=ppt ;

} else {

AL. Head=AL. Ta i l=NULL;

}

}

newedge=PE Edge List New (w−>pe−>edge in ) ;

TA List Append (T, newedge ) ;

ppt=NULL, pt=AR. Head ;

while ( pt !=NULL && ( pt−>edge−>source−>id==w−>pe−>parent−>id ) ) {

ppt=pt ;

pt=pt−>next ;

}

i f ( ppt !=NULL) {

T−>Tail−>next=AR. Head ;

T−>Tai l=ppt ;

ppt−>next=NULL;

AR. Head=pt ;

i f ( pt==NULL)

AR. Ta i l=NULL;

}

w=w−>pe−>parent ;

}

At the end, T contains the ordered edges emanating from source vertex of e0, and the

list A becomes the concatenation list of AR, the cycle back edge and AL.
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TA List Concat (A,&AR) ;

TA List Append (A, cyc le backedge R ) ;

TA List Concat (A,&AL) ;

}

4.7 Planar Biconnectivity Augmentation

The planar biconnectivity augmentation problem consists in adding edges to a graph to

make it biconnected without destroying its planarity. To do this FAgoo implements an

algorithm presented by Kant [Kan93]. The original algorithm is due to Read [Rea87],

but for a graph G = (V,E), this algorithm could increase the degree of a single vertex

by O(n), with |V | = n. Kant modified the algorithm so that each vertex receives

at most two extra incident edges. The algorithm assumes that the input graph is

connected, a planar embedding is given, the vertices are sorted in a depth-first order

and the neighbors of a vertex v that belong to the same biconnected component appear

in a consecutive sequence in the adjacency list of v. For every vertex v of the graph,

an edge (u,w) is added for every pair of vertices u and w, that appear consecutive in

the adjacency list of v and belong to different biconnected components. If the edge

(v, u) was previously added by this algorithm then it is removed. The same is done

for the edge (v, w).

The function MakeBiconnected takes a planar connected graph graph and adds edges

in order to make it biconnected. The vertices were previously sorted in a depth-first

order, so that now they are traversed in such an order.

void MakeBiconnected (PE Graph ∗graph ) {

PE Edge ∗newedge=NULL,∗ newedgeR=NULL;

PE Vertex ∗v=graph−>f i r s t v e r t e x ;

while ( v!=NULL) {

i f (v−>number<0)

break ;

PE Edge ∗ edge=v−>f i r s t e d g e ;
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PE Edge ∗ edge2=edge−>next ;

while ( edge2 !=NULL) {

If the consecutive edges edge and edge2 belong to different biconnected components,

then a edge from the target vertex of edge to target vertex of edge2 is added.

i f ( PE EBlock GetId ( edge−>block ) !=PE EBlock GetId ( edge2−>block ) ) {

PE Edge ∗ eitem=PE Edge GetPrev ( edge−>r e v e r s a l ) ;

PE Edge ∗eitemR=edge2−>r e v e r s a l ;

newedge = PE Edge New (NULL, −1,−1,edge−>target , edge2−>t a r g e t ) ;

newedgeR = PE Edge New (NULL, −1,−1,edge2−>target , edge−>t a r g e t ) ;

newedge−>r e v e r s a l=newedgeR ;

newedgeR−>r e v e r s a l=newedge ;

PE Edge InsertAfter ( newedge , eitem ) ;

PE Edge InsertAfter ( newedgeR , eitemR ) ;

PE EBlock Merge ( edge−>block , edge2−>block ) ;

newedge−>block=edge2−>block ;

newedgeR−>block=edge2−>block ;

newedgeR=newedge=NULL;

If edge was added in a previous step of this function then it is removed.

i f ( edge−>id <0){

PE Edge Remove ( edge ) ; }

Analogously to edge, if edge2 was added in a previous step of this function then it is

removed.

i f ( edge2−>id <0){

edge=edge2 ;

edge2=edge2−>next ;

PE Edge Remove ( edge ) ;

}

}

edge=edge2 ;

edge2=edge2−>next ;

}

v=v−>next ; } }
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Figure 4.8 shows the biconnected graph as result of the application of the biconnec-

tivity augmentation algorithm to the graph G1 (Figure 4.3).

Figure 4.8: A biconnected graph.

4.8 Triangulation

A planar graph which all faces have exactly three vertices is said to be triangular. If

a planar graph is not triangular then there is at least one face that has four or more

vertices. A simple way to triangulate a planar graph is to add edges to the faces with

more than three vertices until all faces have exactly three vertices. Note that, this

approach may cause multiple edges to appear. Kant presents a simple triangulation

algorithm [Kan93] that runs in linear time and as side effect it computes a canonical

ordering for triangular planar graphs [dFPP90].

Given a planar graph G = (V,E) and a planar embedding of G, the algorithm starts

with a subgraph G2 = ({v1, v2}, {(v1, v2)}) of G, and at each step it adds a vertex

vk to Gk−1, with 3 ≤ k ≤ n and |V | = n, such that Gk is triangular. An edge

(u,w) with u ∈ Gk−1 and w ∈ (G − Gk−1) is called an outgoing edge. Let Ck−1 be
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Figure 4.9: Triangulating a planar graph.

the exterior face of Gk−1 with vertices v1 = c1, c2, ..., cr = v2. The leftvertex of vk

is the vertex ci ∈ Ck−1, with lowest i, in the adjacency list of vk. Analogously the

rightvertex of vk is the vertex cj ∈ Ck−1, with highest j, in the adjacency list of vk.

A vertex u applies to be vk, if u ∈ (G − Gk−1) and all its neighbors that belong to

Gk−1 appear in a consecutive sequence on its adjacency list, i.e., there are no outgoing

edges between the edges (vk, cj) and (vk, ci). The consecutive vertex vl ∈ (G−Gk−1)

to ci in the adjacency list of vk is called the leftup of vk, and the precedent vertex

vr ∈ (G−Gk−1) to cj in the adjacency list of vk is called the rightup of vk. If vk has

only one outgoing edge then leftup = rightup, and if it has no outgoing edges then

leftup = rightup = nil. To control if a vertex can be the next vk each vertex has

two variables: old and visit. The variable old counts the number of neighbors in Gk−1

of a vertex u, and the variable visit is incremented by one for every consecutive pair

of neighbors of u that belong to Gk−1. If old = visit + 1 then all the neighbors of

u in Gk−1 appear consecutively in the adjacency list, thus it qualifies to be the next

vk. Such vertices are kept in a linked list called readylist. Some of these notions are

illustrated in Figure 4.9.

The algorithm was slightly modified in order to not only compute a canonical ordering

but to compute a lmc-ordering. Kant defined that “A canonical ordering is a leftmost

canonical ordering if we can add in any step k a vertex set Vk with leftvertex cl or a

vertex set Vk′ with leftvertex cl′, and l < l′ holds, then k < k′”. So to ensure this, the
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algorithm keeps the readylist sorted so that any vertex u with a leftvertex cl occurs

before than any vertex u′ with a leftvertex c′l with l < l′. This is done by controlling

the order that the vertices are added to the readylist. At each step the vertices that

are tested to be added to the readylist are: the rightup of vk’s leftvertex (ci), the

leftup of vk, the rightup of vk and the leftup of vk’s rightvertex (cj).

The function Triangulate receives a planar biconnected graph G = (V,E) and com-

putes a leftmost canonical ordering while triangulating the graph. The vertices old

and visit are initialized with 0. The ordering will be given by the vertices number,

which is initialized with |V |+ 1. Then two arbitrary vertices are chosen to be v1 and

v2.

void Triangu late (PE Graph ∗graph ) {

PE Vertex ∗ ver tex=graph−>f i r s t v e r t e x ;

while ( ver tex !=NULL) {

vertex−>number=graph−>V+1;

ver tex=vertex−>next ;

}

PE Vertex ∗v1=graph−>f i r s t v e r t e x ;

v1−>number=0;

PE Edge ∗ r ightup=v1−>f i r s t e d g e ;

PE Edge ∗v1v2=rightup−>next ;

PE Edge ∗ l e f t u p=PE Edge GetNext ( v1v2−>r e v e r s a l ) ;

PE Vertex ∗v2=v1v2−>t a r g e t ;

v2−>number=1;

The old variable of the neighbors of v1 and v2 is incremented by one.

PE Edge ∗ edge=v1−>f i r s t e d g e ;

while ( edge !=NULL) {

edge−>target−>ct−>o ld++;

edge=edge−>next ;

}

edge=v2−>f i r s t e d g e ;

while ( edge !=NULL) {

edge−>target−>ct−>o ld++;
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edge=edge−>next ;

}

PE Vertex ∗ c l=rightup−>t a r g e t ;

PE Vertex ∗ cr=l e f tup−>t a r g e t ;

If the rightup of v1 and the leftup of v2 are the same vertex then its visit is incremented

by one and added to the ready list. Otherwise they are tested and if they qualify

(old = visit + 1) then they are added to the readylist. The readylist works like a

stack, that is why the leftup of v2 is pushed before the rightup of v1.

PE Vertex List ∗ r e a d y l i s t=NULL;

i f ( c l−>id==cr−>id ) {

c l−>ct−>v i s i t ++;

r e a d y l i s t=PE Vertex List Push ( r e a d y l i s t , c l ) ;

c l−>ct−>ready =1;

} else {

i f ( cr−>ct−>o ld==(cr−>ct−>v i s i t +1) ) {

r e a d y l i s t=PE Vertex List Push ( r e a d y l i s t , c r ) ;

cr−>ct−>ready =1;

}

i f ( c l−>ct−>o ld==(c l−>ct−>v i s i t +1) ) {

r e a d y l i s t=PE Vertex List Push ( r e a d y l i s t , c l ) ;

c l−>ct−>ready =1;

} }

The external face of Gk−1, outerface, is kept as a linked list of edges, to be easy to

navigate forwards and backwards on the external list. The outerface is initialized

with the edges (v2, v1) and (v1, v2).

PE Edge List ∗ o u t e r f a c e=NULL;

o u t e r f a c e=PE Edge List Push ( oute r f ace , v1v2 ) ;

o u t e r f a c e=PE Edge List Push ( oute r f ace , v1v2−>r e v e r s a l ) ;

PE Vertex ∗vk ;

int k=2;

while (k<graph−>V) {

vk=NULL;
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Each step starts by taking a vertex from the readylist to be vk. During each step some

vertices in the readylist may need to be removed from it, but instead of removing then,

their flag ready is set to false. To find a vertex ready to be the next vk, vertices are

pop from the readylist until one with the ready flag set to true is found.

PE Vertex List ∗ r l=r e a d y l i s t ;

while ( r l !=NULL && ! r l−>vertex−>ct−>ready ) {

r e a d y l i s t=r l−>next ;

r l−>next=NULL;

PE Vertex Lis t Free ( r l ) ;

r l=r e a d y l i s t ;

}

vk=r e a d y l i s t−>ver tex ;

r l=r e a d y l i s t ;

r l−>vertex−>ct−>ready =0;

r e a d y l i s t=r l−>next ;

r l−>next=NULL; PE Vertex Lis t Free ( r l ) ;

vk−>number=k ;

Now that vk is found, all its neighbors old are incremented by one and the ready flag

is set to false for the ones that do not belong to Gk−1 (number > k).

int deg=0;

edge=vk−>f i r s t e d g e ;

while ( edge !=NULL) {

i f ( edge−>target−>number>k ) {

edge−>target−>ct−>o ld++;

edge−>target−>ct−>ready =0;

}

deg++;

edge=edge−>next ;

}

vk−>ct−>degree=deg ;

The next task is to find the leftvertex and rightvertex of vk (ci and cj, respectively).

This is done by traversing the outerface and testing the vertices rightup and leftup.
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The leftvertex is the last vertex with outgoing edges that occurs before an vertex

that has an edge to vk, and the rightvertex is the first vertex with outgoing edges

after it.

PE Edge List ∗ c i=o u t e r f a c e ;

PE Edge List ∗ c j=NULL;

PE Edge List ∗ck=o u t e r f a c e ;

while ( ck !=NULL) {

l e f t u p=PE Edge GetNext ( ck−>edge−>r e v e r s a l ) ;

i f ( l e f tup−>target−>number>k )

c i=ck ;

while ( l e f tup−>target−>number>k )

l e f t u p=PE Edge GetNext ( l e f t u p ) ;

i f ( l e f tup−>target−>number==k ) {

c j=ck ;

break ;

}

i f ( ck−>edge−>target−>ct−>degree !=ck−>edge−>target−>ct−>o ld )

c i=ck ;

ck=ck−>next ;

}

i f ( ck !=NULL && ck−>next !=NULL) {

l e f t u p=PE Edge GetNext ( ck−>edge−>r e v e r s a l ) ;

while ( l e f tup−>target−>number!=k )

l e f t u p=PE Edge GetNext ( l e f t u p ) ;

l e f t u p=PE Edge GetNext ( l e f t u p ) ;

i f ( l e f tup−>target−>number<k ) {

c j=ck−>next ;

ck=c j ;

while ( ck !=NULL) {

i f ( ck−>next==NULL) {

c j=ck ;

break ;

}

l e f t u p=PE Edge GetNext ( ck−>edge−>r e v e r s a l ) ;

i f ( l e f tup−>target−>number>k ) {
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c j=ck ;

break ;

}

i f ( l e f tup−>target−>number==k ) {

l e f t u p=PE Edge GetNext ( l e f t u p ) ;

i f ( l e f tup−>target−>number>k ) {

c j=ck ;

break ;

}

}

ck=ck−>next ;

} } }

The leftup of vk is the previous edge of its first outgoing edge in the adjacency list,

and the rightup is the first edge after the last outgoing edge in the adjacency list.

PE Edge ∗next=NULL;

r ightup=vk−>f i r s t e d g e ;

l e f t u p=vk−>f i r s t e d g e ;

i f ( l e f tup−>target−>number<k ) {

while ( l e f t u p !=NULL && le f tup−>target−>number<k ) {

r ightup=l e f t u p=le f tup−>next ;

}

i f ( l e f t u p !=NULL) {

next=rightup−>next ;

while ( next !=NULL && next−>target−>number>k ) {

r ightup=next ;

next=next−>next ;

}

}

} else {

next=rightup−>next ;

while ( next−>target−>number>k ) {

r ightup=next ;

next=next−>next ;

}
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while ( next !=NULL && next−>target−>number<k )

next=next−>next ;

i f ( next !=NULL)

l e f t u p=next ;

}

PE Edge ∗ vk l e f tup=l e f t u p ;

PE Edge ∗ vkr ightup=r ightup ;

To triangulate Gk, edges from ci, ..., cj to vk are added if not present yet.

PE Edge List ∗add2vk=NULL;

PE Edge ∗ f i r s t e d g e=NULL,∗ l a s t e d g e=NULL;

ck=c i ;

while ( ck != cj−>next ) {

PE Edge ∗prev=ck−>edge−>r e v e r s a l ;

l e f t u p=PE Edge GetNext ( prev ) ;

while ( f i r s t e d g e==NULL && le f tup−>target−>number>k ) {

prev=l e f t u p ;

l e f t u p=PE Edge GetNext ( l e f t u p ) ;

}

i f ( l e f tup−>target−>id !=vk−>id ) {

PE Edge ∗newedge = PE Edge New (NULL, −1,−1,ck−>edge−>target , vk ) ;

PE Edge ∗newedgeR = PE Edge New (NULL, −1,−1,vk , ck−>edge−>t a r g e t ) ;

newedge−>r e v e r s a l=newedgeR ;

newedgeR−>r e v e r s a l=newedge ;

PE Edge InsertAfter ( newedge , prev ) ;

add2vk=PE Edge List Push ( add2vk , newedgeR ) ;

i f ( f i r s t e d g e==NULL)

f i r s t e d g e=newedge ;

l a s t e d g e=newedgeR ;

} else {

i f ( f i r s t e d g e==NULL)

f i r s t e d g e=l e f t u p ;

l a s t e d g e=le f tup−>r e v e r s a l ;

i f ( add2vk!=NULL) {

PE Edge ∗prev=l a s t e d g e ;

while ( add2vk!=NULL) {
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PE Edge InsertAfter ( add2vk−>edge , prev ) ;

prev=add2vk−>edge ;

PE Edge List ∗ t o f r e e=add2vk ;

add2vk=add2vk−>next ;

t o f r e e−>next=NULL;

PE Edge List Free ( t o f r e e ) ;

}

}

}

ck=ck−>next ;

}

i f ( add2vk!=NULL) {

PE Edge ∗prev=vkrightup ;

i f ( prev==NULL)

prev=f i r s t e d g e−>r e v e r s a l ;

while ( add2vk!=NULL) {

PE Edge InsertAfter ( add2vk−>edge , prev ) ;

prev=add2vk−>edge ;

PE Edge List ∗ t o f r e e=add2vk ;

add2vk=add2vk−>next ;

t o f r e e−>next=NULL;

PE Edge List Free ( t o f r e e ) ;

}

}

The firstedge is the edge (ci, vk) and the lastedge is the edge (vk, cj). The rightup of

ci is the previous edge of firstedge in the adjacency list of ci, and the leftup of cj is

the edge after (cj, vk) in the adjacency list of cj.

r ightup=PE Edge GetPrev ( f i r s t e d g e ) ;

l e f t u p=PE Edge GetNext ( l a s t edge−>r e v e r s a l ) ;

c l=NULL;

cr=NULL;

i f ( r ightup−>target−>number<k )

r ightup=NULL;

else
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c l=rightup−>t a r g e t ;

i f ( l e f tup−>target−>number<k )

l e f t u p=NULL;

else

cr=l e f tup−>t a r g e t ;

The vertices that need to increment the visit by one are: the rightup of ci if it is the

leftup of vk, the rightup of the ci if it is the leftup of cj and vk has no outgoing edges

(old = degree), and the leftup of cj if it is the rightup of vk.

PE Edge ∗aux=vk−>f i r s t e d g e ;

while ( aux!=NULL && aux−>target−>number<k )

aux=aux−>next ;

i f ( vk−>ct−>o ld==vk−>ct−>degree ) {

i f ( c l !=NULL && cr !=NULL && cl−>id==cr−>id ) {

c l−>ct−>v i s i t ++;

}

} else {

i f ( c l !=NULL && cl−>id==vkle f tup−>target−>id ) {

c l−>ct−>v i s i t ++;

}

i f ( cr !=NULL && cr−>id==vkrightup−>target−>id ) {

cr−>ct−>v i s i t ++;

}

}

Now the leftup of the cj, the rightup of vk, the leftup of vk and the rightup of ci,

are added to the readylist if their old = visit+ 1. They are push to the readylist by

that order, to ensure a lmc-ordering.

i f ( cr !=NULL && cr−>ct−>o ld==(cr−>ct−>v i s i t +1)

&& ! cr−>ct−>ready ) {

r e a d y l i s t=PE Vertex List Push ( r e a d y l i s t , c r ) ;

cr−>ct−>ready =1;

}

i f ( vkr ightup !=NULL && vkrightup−>target−>ct−>o ld==(vkrightup−>target

−>ct−>v i s i t +1)
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&& ! vkrightup−>target−>ct−>ready ) {

r e a d y l i s t=PE Vertex List Push ( r e a d y l i s t , vkrightup−>t a r g e t ) ;

vkrightup−>target−>ct−>ready =1;

}

i f ( vk l e f tup !=NULL && vkle f tup−>target−>ct−>o ld==(vkle f tup−>target−>

ct−>v i s i t +1)

&& ! vk le f tup−>target−>ct−>ready ) {

r e a d y l i s t=PE Vertex List Push ( r e a d y l i s t , vk le f tup−>t a r g e t ) ;

vk le f tup−>target−>ct−>ready =1;

}

i f ( c l !=NULL && cl−>ct−>o ld==(c l−>ct−>v i s i t +1)

&& ! c l−>ct−>ready ) {

r e a d y l i s t=PE Vertex List Push ( r e a d y l i s t , c l ) ;

c l−>ct−>ready =1;

}

Finally the outerface is updated, by replacing the edges between ci and cj, with the

firstedge and lastedge.

PE Edge List ∗ t o f r e e=ci−>next ;

PE Edge List ∗ next l=NULL;

c j=cj−>next ;

while ( t o f r e e != c j ) {

next l=t o f r e e−>next ;

t o f r e e−>next=NULL;

PE Edge List Free ( t o f r e e ) ;

t o f r e e=next l ;

}

c i−>next=c j ;

PE Edge List ∗ n e w l i s t=PE Edge List Push (NULL, l a s t e d g e ) ;

i f ( n e w l i s t==NULL) {

rv=−1;

goto f r e e a l l ;

}

n e w l i s t=PE Edge List Push ( new l i s t , f i r s t e d g e ) ;
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i f ( n e w l i s t==NULL) {

rv=−1;

goto f r e e a l l ;

}

c i−>next=n e w l i s t ;

n e w l i s t=new l i s t−>next ;

n ew l i s t−>next=c j ;

k++; } }

Figure 4.11 is the triangulation result of the graph in Figure 4.10.

Figure 4.10: Example graph G2.

4.9 Straight Line Drawing

The straight-line drawing algorithm implemented in FAgoo [Kan93] is originally due

to Fraysseix et al. [dFPP90]. The algorithm takes as input a triangular planar graph.

It also uses the lmc-ordering computed during the triangulation process.

The algorithm starts with v1 at (0,0) and at each step k of the lmc-ordering, x(c1) <

x(c2) < ... < x(cm), where v1 = c1, c2, ..., cm = v2 is the external face of Gk. The
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Figure 4.11: A triangulation of G2.

edges (vl, vl+1) have slopes of +1 or −1. Each time a vertex vk, with a leftvertex cl

and rightvertex cr, is added to Gk−1, the vertices cl+1, ..., cr−1 in the external face of

Gk−1 are shifted one position to the right, and the vertices cr, ..., cm in the external

face of Gk−1 are shifted two position to the right. Several internal vertices of Gk−1

must also be shifted to the right. These internal vertices will be shifted in a second

stage of the algorithm. The vertex vk is now placed at the crossing point of the line

with slope +1 that passes through cl and the line with slope −1 that passes through

cr. All the vertices cl, ..., cr in the external face of Gk−1 are visible from this point.

An illustration of a step k of this algorithm is shown in Figure 4.12.

To correctly deal with the shifts applied to the vertices, a flag, correct, is assigned to

each vertex u. This flag denotes whether x(u) must be recalculated or not. There is

also a counter, shift, for each vertex u, which count the number of shifts that must be

done to the right. At each step k of the lmc-ordering, the correct and shift of vk are

set to false and to 0, respectively. Then the vertex cj with lowest j and correct set to

false is found. For each vertex cn with j ≤ n < r, x(cn) is set to
∑

j≤i≤n shift(ci) and

correct of cn is set to true. After recalculating the x position of all vertices cj, ..., cr−1,

the
∑

j≤i<n shift(ci) is added to the shift of cn.
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Finally, to correctly shift all the internal vertices of each step k, the algorithm traverses

the vertices in the reversal ordering, and uses the shift and rshift counters to

propagate the shifts to the internal vertices.

The function GetStraightLineDraw starts by setting an array with pointers to the

graph’s vertices with a lmc-ordering. The position of the vertices v1 and v2 were

already initialized at (0,0), and the correct of v1 can be set to true, since its final

position will be (0,0). The external face of Gk−1 is kept in the vertex list outerface.

void GetStraightLineDraw (PE Graph ∗graph ) {

PE Vertex ∗ lmc order ing [ graph−>V ] ;

PE Vertex ∗ ver tex=graph−>f i r s t v e r t e x ;

(a)

(b)

Figure 4.12: Two examples of compound labels.
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while ( ver tex !=NULL) {

lmc order ing [ vertex−>number]= vertex ;

ver tex=vertex−>next ;

}

PE Vertex ∗v1=lmc order ing [ 0 ] ;

PE Vertex ∗v2=lmc order ing [ 1 ] ;

v1−>s ld−>c o r r e c t =1;

PE Vertex List ∗ o u t e r f a c e=NULL;

o u t e r f a c e=PE Vertex List Push ( oute r f ace , v2 ) ;

o u t e r f a c e=PE Vertex List Push ( oute r f ace , v1 ) ;

The the graph is traversed in a lmc-ordering. Each step k starts by recalculating the

x value of the vertices cj, .., cr−1, and the shift value of cr, as described above. The

variable SLD SPACE is used to add an extra shift to the vertices and scatter more

the drawing.

int k=2;

while (k<graph−>V) {

PE Vertex ∗vk=lmc order ing [ k ] ;

PE Vertex ∗ c l=vk−>s ld−>c l−>t a r g e t ;

PE Vertex ∗ cr=vk−>s ld−>cr−>t a r g e t ;

PE Vertex List ∗ c i=NULL;

PE Vertex List ∗ c j=NULL;

PE Vertex List ∗cv=o u t e r f a c e ;

while ( cv !=NULL && cv−>vertex−>id != cr−>id && cv−>vertex−>s ld−>c o r r e c t

) {

i f ( cv−>vertex−>id==cl−>id )

c i=cv ;

cv=cv−>next ;

}

int sum=0;

while ( cv !=NULL && cv−>vertex−>id != cr−>id ) {

i f ( cv−>vertex−>id==cl−>id )

c i=cv ;

sum+=cv−>vertex−>s ld−>s h i f t ;

cv−>vertex−>s ld−>x+=sum ;
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cv−>vertex−>s ld−>c o r r e c t =1;

cv=cv−>next ;

}

c j=cv ;

cr−>s ld−>s h i f t+=sum+(2∗SLD SPACE) ;

Then the position of vk is calculated, by intersecting the lines that pass cl and cr with

slopes +1 and −1, respectively, and the outerface is updated.

int x1 , y1 , b1 ;

int x2 , y2 , b2 ;

int bm;

x1=cl−>s ld−>x ;

y1=cl−>s ld−>y ;

b1=y1−x1 ;

x2=cr−>s ld−>x+cr−>s ld−>s h i f t ;

y2=cr−>s ld−>y ;

b2=y2+x2 ;

bm=b2−b1 ;

i f (bm!=0)

bm/=2;

vk−>s ld−>x=bm;

vk−>s ld−>y=b1+bm;

PE Vertex List ∗ t o f r e e=ci−>next ;

PE Vertex List ∗ next l=NULL;

while ( t o f r e e != c j ) {

next l=t o f r e e−>next ;

t o f r e e−>next=NULL;

PE Vertex Lis t Free ( t o f r e e ) ;

t o f r e e=next l ;

}

c i−>next=c j ;

c j=PE Vertex List Push ( cj , vk ) ;

i f ( c j==NULL) {

rv=−1;

goto f r e e a l l ;
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}

c i−>next=c j ;

k++;

}

The second stage of the function starts by resetting the shift value of the vertices to

0. Then the vertices are traversed in the reversal order. The shift and rshift of vk

are added to the shift of the vertices cl+1, ..., cr−1. This propagates the shifts applied

to vk to its internal vertices. The rshift is also added to the vertex cr. The vk’s final

x position in now set by adding it the shift value.

int i ;

for ( i =0; i<graph−>V; i++)

lmc order ing [ i ]−>s ld−>s h i f t =0;

k−−;

while (k>1){

PE Vertex ∗vk=lmc order ing [ k ] ;

PE Edge ∗ v i=PE Edge GetPrev ( vk−>s ld−>c l ) ;

while ( vi−>target−>id !=vk−>s ld−>cr−>target−>id ) {

vi−>target−>s ld−>s h i f t=vk−>s ld−>s h i f t+vk−>s ld−>r s h i f t+SLD SPACE;

v i=PE Edge GetPrev ( v i ) ;

}

vk−>s ld−>cr−>target−>s ld−>r s h i f t+=vk−>s ld−>r s h i f t +(2∗SLD SPACE) ;

vk−>s ld−>x+=vk−>s ld−>s h i f t ;

k−−;

}

v2−>s ld−>x+=v2−>s ld−>s h i f t+v2−>s ld−>r s h i f t ;}

Figure 4.10, Figure 4.13, and Figure 4.14 are some examples of straight-line drawing

created using this algorithm.
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Figure 4.13: A straight-line drawing of G2 computed by FAgoo.

Figure 4.14: A straight-line drawing of G3 computed by FAgoo.
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Chapter 5

Conclusions

This thesis shows that finite automata drawings have very specific drawing conventions

that usually can not be achieved by simply applying the already existent graph drawing

algorithms. Some applications and libraries for graph and finite automata drawing

and visualization are presented. The overall appreciation of these softwares in finite

automata drawings is weak, which is comprehensible since most of them were not

specifically designed to draw finite automata.

A new graphical environment, GUItar, was developed for the visualization, editing and

manipulation of finite automata diagrams. This software allows the creation of rich

node and arc styles for diagram drawings widening its scope to other types of diagrams.

It provides a powerful mechanism, the FFCs, that allows the easy integration of other

software libraries, such as FAdo and FAgoo. With this mechanism, GUItar pretends to

converge several software libraries and increase the potential of each one.

FAgoo is the first work of what intends to be a library for finite automata drawings.

This software was implemented as a Python module written in C because this way

it combines a Python high level interface, allowing its integration in GUItar, with

the performance efficiency of the C programming language. The Table 5.1 shows a

summary of the implemented algorithms in FAgoo.

91
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Function Input Graph Output

BDFS Connected graph Computes the graph

biconnected components

and its BC-tree.

IsP lanar Biconnected graph Return true if the graph is

planar, false otherwise.

Embedding Biconnected planar graph Computes a planar em-

bedding of the graph.

MakeBiconnected Connected planar graph

and a planar embedding

Biconnected planar graph.

Triangulate Biconnected planar graph

and a planar embedding

Triangular planar graph.

GetStraightLineDraw Triangular planar graph Computes a planar

straight-line drawing.

Table 5.1: A summary of the implemented algorithms.

As for future work, we intend to improve GUItar and implement some new features such

as the combining of nodes and edges, the collapsing of subgraphs, and the animation

of algorithms. We also intend to continue the implementation of FAgoo, which still

needs to implement many other graph drawing algorithms, as well as the development

and adaptation of graph drawing algorithms for finite automata diagrams. We also

pretend to implement an interactive force-directed model in FAgoo.
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