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Resumo

A complexidade descritiva de linguagens formais estuda as medidas de descrições de

linguagens em termos dos modelos de computação que as aceitam. Por exemplo, a

state complexity de uma linguagem regular L é o menor número de estados necessários

para um autómato finito determińıstico aceitar L.

A investigação no domı́nio da complexidade descritiva nos últimos anos deu origem a

uma grande colecção de resultados dispersos ao longo de algumas centenas de artigos.

É cada vez mais dif́ıcil ter uma ideia geral de todo o trabalho feito nesta área de

investigação .

DesCo, um sistema de conhecimento baseado na web para resultados de complexidade

descritiva, foi criado para compensar esta dificuldade, bem como, para fornecer algu-

mas funcionalidades que podem auxiliar os investigadores da área, enquanto tentam

encontrar novos resultados.

Nesta tese, descrevemos os principais conceitos relacionados com complexidade des-

critiva, e como podem ser representados, de modo a que possam ser manipulados de

forma a auxiliar a comunidade de investigação a encontrar novos resultados. Descreve-

mos também as ferramentas utilizadas no criação da base de conhecimento e interface

web, e as funcionalidades do sistema.
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Abstract

Descriptional complexity of formal languages studies the measures of descriptions of

languages in terms of their accepting models of computation. For example, the state

complexity of a regular language L is the minimal number of states in any deterministic

finite automaton accepting L.

The proliferous research in the field of descriptional complexity in recent years has

given origin to a large collection of results dispersed along a few hundred articles. It

is becoming increasingly difficult to have a general idea of all the work done in this

field of research.

DesCo, a web-based knowledge system for descriptional complexity results, was

created to compensate for this, as well as, to provide some features that could be

of help to the researchers, when looking for new results.

In this thesis we describe the key concepts involved with descriptional complexity, and

how they can be represented in some way so that they can be manipulated in order

to aid the research community in finding new results. We also describe the tools used

in the creation of the knowledge base and web interface, and the functionality of the

system.
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Chapter 1

Introduction

Recently, the descriptional complexity of formal languages has been extensively re-

searched [GKK+02, Hro02, Yu05, HK11, Brz10]. Descriptional complexity of formal

languages studies the measures of descriptions of languages in terms of their accepting

models of computation. For example, the state complexity of a regular language L is

the minimal number of states in any deterministic finite automaton accepting L. For

each measure, it is important to know the size of the smallest representation for a given

language as well as how the size varies when several such representations are combined

or transformed. These studies are of much interest, as they relate to the efficiency

of implementing operations on languages. For instance, given an binary operation ◦
closed for regular languages, then the study in state complexity looks to express the

worst-case state complexity of L1 ◦ L2 as a function of the state complexities of L1

and L2. This is crucial in new applied areas where automata and other models of

computation are used, for instance, for pattern matching in bioinformatics or network

security, or for model checking or security certificates in formal verification systems.

In general, having succinct objects will improve our control on software, which may

become smaller, more efficient and easier to certify.
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13

Among formal languages, regular languages are fundamental structures in computer

science. Despite their apparently weak expressive power (lowest level of Chomsky

hierarchy), regular languages have applications in almost all areas of computer science.

The general decidability of their properties and operations, and in many cases the

linear or low polynomial computational complexity of the available algorithms, is also

an attractive property for this class of languages. In particular, when compared with

the undecidability world of context-free languages, just in the next level of Chomsky

hierarchy. Therefore, it is essential that the structural properties of regular language

representations are researched deeper. One of the most studied complexity measures

for regular languages is the state complexity. The state complexity of an operation over

languages is the complexity of the resulting language as a function of the complexities

of its arguments. Both concepts can be extended to other models of computation

(e.g. nondeterministic automata, two-way automata, regular expressions, grammars,

etc.), other measures (number of transitions, number of symbols, etc.) and other

classes of languages (classes of sub-regular languages, context-free languages, recursive

languages, etc). Knowing the descriptional complexity and succinctness of the objects

has also obvious consequences for the computational complexity of the algorithms that

manipulate them.

This proliferous research gave origin to a multitude of results that are scattered over

a few hundred articles, with the inevitable lack of unified terminology and notation.

This makes it very difficult to have a global perspective of this field and realize what is

the current coverage achieved in order to know where to allocate more research efforts.

All these different aspects and the huge number of results obtained, mainly in the last

couple of decades, motivates the need of a tool that helps to structurally organize,

visualize and manipulate this information. In this way, researchers and software

engineers working in applications based on automata and formal languages can also

more easily have access to information that can help to improve the performance of
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their algorithms. Moreover, such a tool could be of great help to anyone refereeing for

a conference or journal of this field, by providing a way to quickly look up existing

results, giving a higher degree of confidence to the referee when deciding whether to

accept or not a submitted article.

This motivated the creation of the DesCo system, a Web-based knowledge system for

results in descriptional complexity. This is not a trivial task as most of the concepts

are abstract and difficult to classify and instantiate. For instance, which are the main

concepts to describe the complexity of a language operation; which is the best way to

represent parameterized families of languages and how to determine if two different

representations correspond to the same family; etc...

1.1 Thesis Outline

The thesis is structured as follows:

— Section 1.2 gives an overview of related systems, in the sense that they deal with

the same kind of data.

— Chapter 2 gives the reader an introduction to some concepts of formal languages,

mostly concentrating on regular languages, and a few examples of descriptional

complexity.

— Chapter 3 describes how the information is represented in the knowledge base,

while introducing some additional concepts not covered in Chapter 2.

— Chapter 4 gives a brief overview of the tools utilized to implement the DesCo

system, and some small examples of how they can be put tu use.
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— Chapter 5 describes the structure and functionally of the web interface. It

discusses introducing, updating and consulting the knowledge base through the

web interface, and how the user can interact with a formal language symbolic

manipulator.

— Chapter 6 has some final remarks regarding this thesis, the current state of

DesCo and possible future work.

1.2 Related Systems

There are some similar systems that deal with (somehow) similar data but with

different aims and solutions. Neil Sloane’s The On-Line Encyclopedia of Integer

Sequences [The11] collects about 200,000 sequences of numbers the first collection

of which was published as a book in 1970’s [SP95]. A smaller and more recent

project is the The Encyclopedia of Combinatorial Structures [Alg11b]. The same

Web site includes a Dictionary of Mathematical Functions [Alg11a]. The Complexity

Zoo [Aar11] is a Wiki that contains information about computational complexity

classes and related topics. More sophisticated but also more restricted is The Nav-

igator on Description Logic Complexity [Zol11] where results on the computational

complexity of reasoning in Description Logics can be browsed. More recently, mini-

complexity [Kap12] website was created, which focuses on the complexity of two-way

finite automata. These systems are briefly described in the following subsections.

1.2.1 The Encyclopedia of Combinatorial Structures

The Encyclopedia of Combinatorial Structures was created by Stéphanie Petit, and

stores integer sequences along with their associated decomposable combinatorial struc-
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tures, making it possible to automatically compute several properties such as gener-

ating functions, closed formulas, asymptotic estimates, etc.

1.2.2 Dynamic Dictionary of Mathematical Functions

The Dynamic Dictionary of Mathematical Functions is a website consisting of interac-

tive tables of mathematical formulas on elementary and special functions. The website

can interactively provide differential equations, plot functions, numerical evaluations,

Taylor expansions, among other features.

1.2.3 The Navigator on Description Logic Complexity

The Description Logic Complexity Navigator is a web page that allows to review the

complexity of reasoning tasks of various description logics by adding or removing

features to a logic. It includes a comprehensive list of references to the literature. It

is currently maintained by Evgeny Zolin.

1.2.4 Minicomplexity

Minicomplexity theory is a mathematical theory that studies the complexity of two-

way finite automata. It focuses on the resource requirements for solving certain

problems.

The minicomplexity website, features a list of several machines, and their description,

commonly used in minicomplexity theory, related complexity classes and usual prob-

lems, such as acceptance and inclusion. The project is currently under development,

and does not yet feature reductions between problems. It also features an extensive
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bibliography.

1.2.5 OEIS

The On-Line Encyclopedia of Integer Sequences(OEIS), is an online database of

integer sequences, created by N. J. A. Sloane, and is currently maintained by The

OEIS Foundation Inc. The OEIS records information on integer sequences of interest

to mathematicians in general, and is widely cited. It contains over 200,000 sequences,

very likely making it the largest database of its kind. Each entry lists the initial terms

(if available), a description, formulae, programs to generate the sequence, references,

links to relevant web pages, and more, including the option to generate a graph or

play a musical representation of the sequence.

Searching the OEIS can be done by entering a few terms of a sequence, by entering a

string such as “Pascals triangle” or “Fibonnaci sequence”, or by entering a sequence

ID number.

The OEIS can have many applications. The most obvious way to use it, would be to

look up a sequence, very much like looking up a word in a dictionary. If one encounters

a sequence during some calculations, and want to find out if there is a known formula

for the n-th term, the OEIS can be of great use. Another application would be to find

out the latest information about certain problems, such as, the decimal expansion of

π. The OEIS can also be used to simplify complicated expressions. By calculating the

first few terms of a complicated expression, and looking up the sequence, one might

find out there is known simplified version of our expression. The OEIS can also be of

use when trying to figure out if two different objects can be enumerated by the same

sequence, since by establishing bijections between objects, it is possible to conclude

new properties from this relation.



Chapter 2

Basic Concepts

This chapter gives the reader an introduction to some concepts of formal languages.

These concepts are in accordance to Ullman and Hopcroft’s Introduction to Automata

Theory [HMU06], which can be consulted for more details. We will concentrate on

regular languages, as most of the data currently available in DesCo is related with

the descriptional complexity of regular and sub-regular languages.

2.1 Formal Languages

An alphabet, is a finite set of symbols, usually denoted by Σ. A word is a sequence of

symbols from an alphabet. A language is a set of words over a given alphabet. The

set of all words over an alphabet Σ is denoted by Σ?. The length of a word w over an

alphabet Σ, is the number of occurrences of symbols from Σ in w, and it is denoted

by |w|. The empty word, i.e., |w| = 0, is denoted by ε. For a given k ≥ 0, Σk is

the set of all words over Σ of length k. A language class is a set of languages which

can be represented by a particular model of computation or have specific properties

18
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in common. A model of computation is a finite representation of a language.

2.2 Operations Over Languages

Since languages are sets of words, all boolean operations usually defined over sets are

also defined over languages. Let L1 and L2 be two languages over some alphabet Σ.

The definition of union, intersection, symmetric difference, difference and complement

follows:

• Union: L1 ∪ L2 = {w | w ∈ L1 or w ∈ L2}

• Intersection: L1 ∩ L2 = {w | w ∈ L1 and w ∈ L2}

• Symmetric Difference: L1 ⊕ L2 = (L1 ∪ L2) \ (L1 ∩ L2)

• Difference: L1 \ L2 = {x ∈ Σ? | x ∈ L1 and x /∈ L2}

• Complement: L1 = Σ? \ L1

Many other operations over languages are defined. A few examples are reversal,

(con)catenation, Kleene closure and left quotient. For a language L over an alphabet

Σ, the reversal of L is denoted by LR, and is defined by LR = {wR | w ∈ L}, where

wR = an−1 · · · a0, if w = a0 · · · an−1 and ∀i ai ∈ Σ. The catenation of two languages

L1 and L2 is denoted by L1L2 and is defined by L1L2 = {xy | x ∈ L1 and y ∈ L2}.
The Kleene closure (also know as Kleene operator or Kleene star) of a language L

can be defined as L? = {x1x2...xn | n ≥ 0 and xi ∈ L, 1 ≤ i ≤ n}. The left quotient

of L2 by L1, denoted by L−11 L2, is the language {y ∈ Σ? | xy ∈ L2 and x ∈ L1}.
If |L1| = 1, usually the operation is called left quotient by a word and is denoted

by w−1L = {x ∈ Σ? | wx ∈ L}. An infinite number of operations can be defined
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if one takes into consideration combined operations, for example (L1 ∪ L2)
?, L1L

R
2 ,

L1((L2 ∪ L3)
?)R and so on.

2.3 Regular Languages

The Chomsky hierarchy is a containment hierarchy language classes. The hierarchy

consists of the following classes: Recursively Enumerable, Context-Sensitive, Context-

Free and Regular. Regular languages are the most restricted, and the simplest,

languages in the Chomsky hierarchy.

The set of regular languages over an alphabet Σ can be defined recursively as follows:

• The empty language ∅ is regular

• The empty word language {ε} is regular

• For each a ∈ Σ, the language {a} is regular

• If A and B are both regular languages, then A ∪ B, AB and A? are regular

languages

• No other languages over Σ are regular

Models of computation that recognize exactly the set of regular languages include

deterministic finite automata (DFA), non-deterministic finite automata (NFA) and

regular expressions (RE). Two important subclasses of regular languages are finite

languages and star-free languages.

Finite languages are those containing only a finite number of words. Finite languages

are regular, as they can be defined as the union of singletons associated to each word
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in the language. Star-free languages are those that can be described without making

use of the Kleene star operation. Star-free languages include all finite languages.

2.3.1 Deterministic Finite Automata

A deterministic finite automaton is a 5-tuple (Q,Σ, δ, q0, F ), consisting of:

• A finite set of states Q

• A finite set of symbols Σ, called the alphabet

• A transition function δ : Q× Σ→ Q

• An initial (or starting) state q0 ∈ Q

• A set of accepting states F ⊆ Q, also known as set of final states

Given a DFA A and a word w as input, A accepts w, if w is contained in the language

recognized by A, denoted by L(A), and rejects w otherwise. To do this, we start

applying the transition function δ to the initial state q0 and the first symbol of our

input word w = a0a1 · · · an−1. After evaluating δ(q0, a0) = qi, we consume the next

symbol a1, evaluating δ(qi, a1) = qj, and continue to do so until we consume the last

symbol of w an−1, by evaluating δ(q′, an−1) = q′′. Finally, if q′′ ∈ F then w ∈ L(A),

otherwise w /∈ L(A).

An extended transition function δ̂ : Q × Σ? → Q can be defined by induction on the

size of the input word as follows:

• δ̂(q, ε) = q, i.e., if we are in state q and consume no symbols, then we stay in

state q
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• δ̂(q, wa) = δ(δ̂(q, w), a)

The language accepted by a DFA A = (Q,Σ, δ, q0, F ) is the set of all words that take

the initial state to one of the final states, i.e., L(A) = {p ∈ Σ? | δ̂(q0, p) ∈ F}. It is

possible to prove that a language is regular, by defining a DFA that recognizes it.

For each regular language, there exists a minimal DFA, i.e., a DFA with a minimum

number of states. The Nerode congruence [Ner58] ≈L of L ⊆ Σ? is defined as follows:

for x, y ∈ Σ?, x ≈L y if and only if xv ∈ L⇔ yv ∈ L for all v ∈ Σ?

The relation ≈L is an equivalence relation on strings, which divides the set of all

finite strings into equivalence classes. Each equivalence class is called a quotient of

the language. The language L is regular if and only if ≈L has a finite number of

equivalence classes. The number of states in the minimal DFA that recognizes L is

equal to the number of equivalence classes in ≈L. This implies that the minimal DFA

is unique.

DFA are commonly represented as digraphs with labeled edges, where to each state we

associate a node. For each state q ∈ Q and each symbol a ∈ Σ, if δ(q, a) = q′ then our

digraph has an edge from node q to node q′ with label a. The initial state q0 is marked

with an arrow, and each of the final states is marked with a double circle. Fig. 2.1 shows

the digraph associated to the DFAD = ({st0, st1, st2, st3, st4, st5}, {a, b, c}, δ, st0, {st3, st4})
where δ is

δ(st0, a) = st1 δ(st0, b) = st5 δ(st0, c) = st5

δ(st1, b) = st2 δ(st1, a) = st5 δ(st1, c) = st5

δ(st2, c) = st3 δ(st2, a) = st5 δ(st2, b) = st5

δ(st3, a) = st4 δ(st3, c) = st3 δ(st3, b) = st5

δ(st4, a) = st4 δ(st4, b) = st3 δ(st4, c) = st3
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δ(st5, a) = st5 δ(st5, b) = st5 δ(st5, c) = st5

st0

st1 st2

st3 st4

st5

a
b

c
a

c, b

c a

b, c
a, c

a, b

b

a, b, c

Figure 2.1: DFA D

2.3.2 Non-Deterministic Finite Automata

To represent regular languages, it can be convenient to use a more flexible and

compact representation. Using non-deterministic finite automata to represent regular

languages, usually requires a smaller number of states and applying some operations

to NFA can be much more straight forward when compared to DFA.

An NFA is a 5-tuple (Q,Σ, δ, q0, F ), very similar to a DFA, consisting of:

• A finite set of states Q

• A finite set of symbols Σ

• A transition function δ : Q× Σ→ 2Q

• An initial (or starting) state q0 ∈ Q

• A set of final states F ⊆ Q
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where 2Q is the power set of Q, i.e., the set of all subsets of Q. Sometimes slight

variations of this definition are considered, such as, multiple initial states and NFA

with ε moves. These variations are considered as they can be handy regardless of not

adding any expressiveness to the model of computation.

Variations aside, the only difference between DFA and NFA, is the transition function.

In DFA, δ maps a state and a symbol to a state. The NFAs transition function maps

a state and a symbol to a set of states, meaning that the NFA can be in multiple

states at once, hence the non-determinism. To verify if a word is accepted by an NFA,

we process the input like when using DFA, but taking into consideration the multiple

states the NFA can be in. When the input word is fully processed, we must check if

at least one of the possible states the NFA can be in is a final state. If so, then the

NFA accepts the word. If none of the states is final, then the NFA rejects the word.

More formally, given an NFAA = (Q,Σ, δ, q0, F ), we can define an extended transition

function δ̂ : 2Q × Σ? → 2Q, as:

• δ̂(P, ε) = P , where P ⊆ Q

• δ̂(P, aw) = δ̂(
⋃
s∈P

δ(s, a), w)

The language recognized by A can be defined by:

L(A) = {p ∈ Σ? | δ̂({q0}, p) ∩ F 6= ∅}

2.3.3 Regular Expressions

Sometimes an algebraic description of regular languages is more useful than automata,

for example, in pattern matching applications. To this end, regular expressions are

used as a declarative representation of the words we want to accept.
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We can define RE recursively as follows:

• ε and ∅ are RE and, L(ε) = {ε} and L(∅) = ∅

• Let a ∈ Σ, then a is a RE and L(a) = {a}

• If r1 and r2 are RE, then r1 + r2 is also a RE, and L(r1 + r2) = L(r1) ∪ L(r2)

• If r1 and r2 are RE, then r1r2 is also a RE, and L(r1r2) = L(r1)L(r2)

• If r is a RE, then r? is also a RE, and L(r?) = (L(r))?

As an illustrative example, we can consider the DFAD, from Section 2.3.1, represented

in Fig. 2.1

The language defined by D can be represented by the RE abc(a + (ab)? + c)?, which

is arguably a more readable and compact representation.

2.4 Descriptional Complexity

Two simple examples of descriptional complexity follow, to help the reader become

more familiarized with the concept. Consider the following language, over the unary al-

phabet Σ = {a}, L = {a2n | n ≥ 0} (or, in other words, L = {ε, aa, aaaa, aaaaaa, . . . },
where ε represents the empty-word). Since the language L is regular, it can be

recognized by a deterministic finite automaton. In fact, it can be recognized by

infinitely many DFAs. To illustrate this fact, two examples of DFAs that recognize

L are given in Fig. 2.2. Since DFA B is the (state) minimal DFA that recognizes L,

we say that the descriptional complexity, in respect to the number of states, i.e., the

state complexity, of L, denoted by sc(L), is 2.
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0 1 2 3
a a

a

a
0 1

a

a

Figure 2.2: DFA A (left) and DFA B (right) recognize the language L

Let us look at another example. In Fig. 2.3, we present a nondeterministic finite

automaton C with three states. It is well known that any n-state NFA, can be

converted, via subset construction, to an equivalent DFA, i.e. that recognize the same

language, with at most 2n states. This conversion is called determinization. If we

apply the subset construction to NFA C, we will obtain the DFA shown in Fig. 2.3,

which is minimal, and thus we can conclude that the state complexity of the language

recognized by NFA C, or sc(L(C)), is 23 = 8, whereas the non-deterministic state

complexity of the same language, nsc(L(C)), is 3, i.e., the number of states of a

minimal NFA accepting L(C)

0 1 2
a

b

a, b

a

a

0

1
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7

a

b

a, b a

a

a

b

a b

b
a

b

b a, b

Figure 2.3: NFA C(left) and its equivalent minimal DFA (right)

We conclude this section by giving a more practical example of descriptional com-

plexity, the state complexity of star operation on regular languages. This result was

obtained by Yu et al. [YZS94] and states that for an n-state DFA A = (Q,Σ, δ, q0, F ),

such that |F − q0| ≥ 1 and n > 1, 2n−1 + 2n−2 states are sufficient and necessary, in

the worst case, for a DFA to accept L(A)?.
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One can start by proving that for any n-state DFA A = (Q,Σ, δ, q0, F ), such that

|F − q0| ≥ 1, 2n−1 + 2n−2 states are sufficient to accept L(A)?, by providing a method

to construct a new DFA A′, such that L(A′) = L(A)?, and that the number of states

of A′ is bounded by 2n−1 + 2n−2. The construction of DFA A′ = (Q′,Σ, δ′, q′0, F
′)

follows:

— q′0 /∈ Q is the new initial state,

— Q′ ={q′0} ∪ {P | P ⊆ (Q− F − {q0}) and P 6= ∅}

∪ {R | R ⊆ Q and q0 ∈ R and R ∩ (F − {q0}) 6= ∅},

— δ′(q′0, a) = {δ(q0, a), q0} if δ(q0, a) ∈ F − {q0},

and δ′(q′0, a) = {δ(q0, a)} otherwise.

δ′(R, a) = δ(R, a) for R ⊆ Q and a ∈ Σ if δ(R, a) ∩ (F − {q0}) = ∅,

and δ′(R, a) = δ(R, a) ∪ {q0} otherwise,

— F ′ = {q′0} ∪ {R | R ⊆ Q and R ∩ F 6= ∅}.

The DFA A′ recognizes L(A)?, and |Q′| ≤ 2n−1 + 2n−2.

0 1 2 · · · n− 2 n− 1a a, b a, b a, b a, b

a, b

b

Figure 2.4: Language Family An

To prove that, in the worst case, 2n−1 + 2n−2 states are necessary, we can provide a

family of languages. For n = 2, L1 = {w ∈ {a, b}? | #a(w) is odd }, as it is accepted

by a 2-state DFA, and L?
1 = {ε} ∪ {w ∈ {a, b}? | #a(w) ≥ 1} is accepted by a

DFA with 3 states. For n ≥ 3, the family An shown in Fig. 2.4 can be considered.
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Constructing a DFA A′n from An as previously described, it is possible to show that

every state in A′n is reachable from the initial state, and that each state defines a

distinct equivalence class, in terms of the Nerode congruence, proving that 2n−1 +2n−2

states are necessary, in the worst case, to accept the star of an n-state DFA.

2.5 Conclusion

In this chapter an introduction to some concepts of formal languages was given. We

gave some elemental definitions and notation on languages, operations, automata,

regular expressions and descriptional complexity.

For deterministic finite automata, the formal definition and a description of how they

can recognize a regular language was given. It was also mentioned the existence of a

unique minimal DFA for each regular language.

It is important to note that many other models of computation and languages classes

can be defined, as well as the descriptional complexity of their operations.



Chapter 3

The Knowledge Base

In this chapter we describe how the information about descriptional complexity is

represented in the knowledge base. The most important concepts we are going to con-

sider are: Language Classes, Models of Computation, Language Operations, Language

Families, Complexity Measures and Operational Complexities. Along with the basic

information, some additional details, that will be useful in the future, are also taken

into consideration. For example, data for interacting with the FAdo system, such as

which FAdo method generates a deterministic automaton for a given language family,

or performs an operation between some given languages.

We briefly describe each of the above mentioned concepts.

3.1 Language Classes

A language class is defined with a name and a description. Given a preorder on

language classes, a hierarchy can be considered. Currently, we define an inclusion

hierarchy. In addition, witnesses of non-emptiness of language classes are available.

29
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As already mentioned, the class of regular languages, for instance, can be defined

recursively, over an alphabet Σ, as follows:

• The empty language ∅ is regular

• The empty string language {ε} is regular

• For each a ∈ Σ, the language {a} is regular

• If A and B are both regular languages, then A ∪ B, A ∩ B, AB and A? are

regular languages

• No other languages over Σ are regular

3.2 Models of Computation

Models of computation are represented by a name, an abbreviation, a description and

the FAdo’s class that corresponds to it. The description can store a wide variety of

information, such as a mathematical description or certain properties that hold for a

specific model.

A deterministic finite automaton, for example, would have DFA, as its abbreviation,

FAdo.fa.DFA as its FAdo class, and could be described as a 5-tuple (Q,Σ, δ, q0, F )

consisting of:

• a finite set of states Q

• a finite set of input symbols Σ, called the alphabet

• a transition function δ : Q× Σ→ Q:

• a initial state q0 ∈ Q
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• a set of final states F ⊆ Q

3.3 Complexity Measures

A complexity measure of a language is a function of a size of an associated model of

computation. Complexity measures are described by a name, a description and the

associated model of computation. The name, for example, could be state complexity

and its description, “The state complexity of a regular language L, denoted by sc(L),

is the number of states of its minimal DFA”.

Complexity measures are usually referenced, in descriptional complexity results, by

a variable, instead of their shorthand notation. For example, state complexity is

typically referred to by n or m, instead of sc(L). For this reason, we choose to include

these commonly used variables when describing complexity measures.

3.4 Operations

Operations on formal languages include all boolean operations usually defined on sets

plus other specific operations. For instance, concatenation of two languages L1 and L2,

is defined by L1L2 = {w1w2 | w1 ∈ L1 and w2 ∈ L2}. We also consider the simulation

(conversion) of different models of the same language. To characterize an operation

we use a name, a symbol (represented in LATEX), a description (as illustrated above),

its arity, if it is a combined operation or not, and, in the case of being a combined

operation, which operations it is composed of. The purpose of the LATEX symbol is

mainly for displaying a more intuitive label than just the name of the operation, but

also an attempt to standardize symbols used in the literature.
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To represent combined operations, we chose to use a tree structure. Suppose we want

to define the following operation: O = L1 ∪ L?
2 (union of Kleene star). The operation

O can be defined considering that the first operation is ∪ (union), the second one

is ? (Kleene star) and that it is applied to the second argument of the first operation.

Every combined operation can be defined recursively in this manner.

3.5 Operational Complexities

The descriptional complexity of an operation over a class of languages, for a given

measure and a given model, is the (worst-case) complexity of a language resulting

from the operation, considered as a function of the descriptional complexity of its

arguments. For instance the state complexity of a binary operation ◦ on regular

languages can be stated as the following decision problem:

• Given an m-state DFA A1 and an n-state DFA A2.

• How many states are sufficient and necessary, in the worst case, to accept the

language L(A1) ◦ L(A2) by a DFA?

To obtain an upper bound, usually, an algorithm is provided, such that, given DFAs

as the operands, constructs a DFA that accepts the resulting language. The number

of states of this DFA (as a function of the state complexities of the operands) is an

upper bound for the state complexity of the referred operation. To show that an

upper bound is tight, a family of languages (one language, for each possible value of

the state complexity) can be given, for each operand, such that the minimal automata

resulting from the operation (i.e the state complexity of resulting language) achieve

that bound, if not, then they at least provide a lower bound.
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The same approach can be used to obtain other operational complexities. To specify

an operational complexity, the following information is considered:

Operation the operation that we are considering;

Complexity kind if it is worst-case or average-case;

Complexity measure as defined above, e.g. state complexity ;

Argument types which computational models are used and to which language

classes the arguments must belong to;

Result type what model represents the resulting language;

Complexity function the operation complexity as function of the arguments com-

plexity;

An algorithm that for a given model of computation calculates the correspondent

model of the resulting language having as input models for the argument lan-

guages;

Alphabet size The operational complexity (and witnesses) can depend on the size

of the languages alphabet;

Tightness whether the complexity function is reachable or not;

Restrictions on argument parameters For which values of the parameters the

complexity function applies (e.g. is an upper bound);

Witnesses For each argument (operand), a family of languages that ensures that

the upper bound is reached (or provides a lower bound);

References to the literature The references store a BIBTEX entry, for articles on

which the result can be found.
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An illustrative example, of worst-case state complexity, follows.

Operation Catenation

Argument types Both arguments must be DFAs over regular languages

Result type The result is also a DFA

Complexity function m2n − f12n−1

Algorithm An adaptation of the usual algorithm for catenation of NFAs followed

by a specialized subset construction.

Alphabet size Must be greater than one

Restrictions on argument parameters m ≥ 1, n > 1, f1 ≥ 1, where:

• f1 is the number of final states of the first argument

• m is the number of states of the first argument

• n is the number of states of the second argument

Witnesses The following language families ensure the complexity function is reach-

able:

• For the first argument, A = ([0,m − 1], {a, b, c}, δ, 0, {m − 1}), and for all

i ∈ [0,m− 1],

δ(i,X) =


(i+ 1) mod m, if X=a

0, if X=b

i, if X=c

• For the second argument, B = ([0, n− 1], {a, b, c}, δ, 0, {n− 1}), and for all
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i ∈ [0, n− 1],

δ(i,X) =


i, if X=a

(i+ 1) mod n, if X=b

1, if X=c

References to the literature [YZS94]

3.6 Language Families

To show that a certain operational complexity bound can be reached, examples of

language families Ln, where n is related to a complexity measure, must be given.

These language families can be described extensionally by a parameterized condition,

such as Lm = {x ∈ {a, b} | #a(x) = 0 mod m}. These languages can also be defined

by models of computation that recognize them, for instance Lm can be defined by the

family of minimal DFAs represented in Fig. 3.1, or by the following regular expression,

(b? + (a(b?a)m−1))?a(b?a)m−2b?.

0 1 · · · m− 2 m− 1
a

a

b

a

b

a

b

a

b

Figure 3.1: A family of minimal DFAs recognizing Lm

It is also possible to represent DFAs using transformations [Pin95]. A transformation

of a set Q is a mapping of Q into itself. In general, a transformation has the form:
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t =

 0 1 . . . n− 2 n− 1

s0 s1 . . . sn−2 sn−1


Each DFA naturally induces, for each symbol of the alphabet, a transformation on

its set of states. Without loss of generality, we assume that the set of states Q =

{0, 1, . . . , n−1}, and that the alphabet Σ = {0, 1, . . . , k−1}. We can describe a DFA

by the transformations induced on its set of states, its initial state and set of final

states. For example, the DFA A, presented in Fig. 3.2, can be described by its initial

state 0, its set of final states {1, 2}, and its transformations t0 and t1:

t0 =

 0 1 2

1 0 1

 , t1 =

 0 1 2

2 2 2


Note that the “first” line of each transformation is always the sequence 0, . . . , n − 1,

so it can be omitted, and thus t0 becomes (1 0 1) and t2 becomes (2 2 2).

0 1 2
0

1

0

1
1

0

Figure 3.2: DFA A

This concept can be used to specify families of DFAs in a clean and compact way.

The family Lm, for example, is represented in the following way:

m;m; 2; 0; [m− 1]; [1..m− 1, 0]; [0..m− 1]

The first field, m, is the families parameter. The second field, m, is the number of

states each instance must have. The third and fourth fields are the alphabet size
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and initial state, respectively, followed by a list of final states, and finally, a list of

transformations for each symbol of the alphabet. In this case, since |Σ| = 2, we have

two lists, that describe the transition function. This first transformation states the

following:

δ(i, 0) = i+ 1 mod m,∀i ∈ Q

And the second transformation describes the identity function, i.e.,

δ(i, 1) = i, ∀i ∈ Q

In general, a family of DFAs, can be described using the following syntax:

p;n; k; i;F ;T

where,

• p is the families parameter, that can be used in other components,

• n is the number of states,

• k is the alphabet size,

• i is the initial state,

• F is the set of final states,

• T is the set of transformations.

This notation can also be used to specify families of incomplete DFAs, i.e., ∃p,s such

that δ(p, s) is not defined, considering the convention that, if a transformation maps

a state p ∈ Q to a state q /∈ Q, by a symbol s ∈ Σ, then the transition function is not

defined for state p, by symbol s.

This representation, is compact and easy to manipulate and instantiate, and an

attempt at standardizing how families of DFAs are represented.
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3.6.1 The Universal Witness

The notion of Universal Witness was introduced by Brzozowski [Brz12]. This notion

aims to characterize families of languages that may be more difficult to handle . A

family of languages Ln is said to be universal if it satisfies the following properties:

A0: The state complexity of Ln should be n. In other words, each instance

should be minimal.

A1: The state complexity of each quotient of Ln should be n. Every strongly

connected DFA defines a language that satisfies this condition.

A2: The number of atoms of Ln should be 2n. An atom [BT12] of a regular

language L with quotients K0, . . . , Kn−1, is a non-empty intersection of the form

K̃0∩· · ·∩K̃n−1, where K̃i is either Ki or Ki. The number of atoms of a language

is bounded by 2n, and it was proved that this bound is tight.

A3: The state complexity of each atom of Ln should be maximal. Since

every quotient of Ln is a union of atoms, the atoms of Ln are its basic building

blocks and so they should be as complex as possible.

A4: The syntactic semigroup of Ln should have cardinality nn. The syntactic

semigroup [Pin97] of L is the quotient semigroup Σ+/ ≈L, where≈L is the Myhill

congruence [Myh57], defined as follows:

for x, y ∈ Σ?, x ≈L y if and only if uxv ∈ L⇔ uyv ∈ L for all u, v ∈ Σ?

Since there are nn possible transformations of a set of n elements, nn is an upper

bound on the size of the syntactic semigroup of Ln. That this is a tight bound,

was noted by Maslov [Mas70]. This property implies properties A1, A2, A3

and B1.
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B1: The state complexity of the reverse of Ln should be 2n. It was shown by

Mirkin [Mir66] that this upper bound can be reached.

B2: The state complexity of the star of Ln should be 2n−1 + 2n−2. It was

noted by Maslov [Mas70] that this upper bound is tight, and later proved by Yu,

Zhuang and Salomaa [YZS94].

C1: The state complexity of Km ◦ Ln should be mn, where ◦ is one of the

boolean operations union, symmetric difference, intersection, or difference and

Km is also universal, obtained by permutating the symbols of the alphabet used

for Ln. Yu, Zhuang and Salomaa [YZS94] proved that the upper bound is tight

for union and intersection, and Brzozowski [Brz10] for symmetric difference and

difference.

C2: The state complexity of the product KmLn should be (m− 1)2n + 2n−1.

Yu, Zhuang and Salomaa [YZS94] proved that this upper bound is tight.

Brzozowski gave an example of such a family Un which can be described by the

following family of DFA Un:

For n ≥ 3, let Un= Un(a, b, c) = (Q,Σ, δ, q0, F ), where Q = {0, . . . , n − 1} is the set

of states, Σ = {a, b, c} is the alphabet, q0 = 0 is the initial state and F = {n − 1} is

the set of final states. The transition function δ is defined as δ(q, a) = q + 1 mod n,

δ(0, b) = 1, δ(1, b) = 0, δ(q, b) = q if q /∈ {0, 1}, δ(n − 1, c) = 0, and δ(q, c) = q if

q 6= n− 1.

Using the representation discussed in Section 3.6, the family Un can be seen as:

n;n; 3; 0; [n− 1]; [1..n− 1, 0]; [1, 0, 2..n− 1]; [0..n− 2, 0]

In other words, the transition function, for the first symbol, performs a cycle over all

states, for the second symbol it performs a transposition of states 0 and 1, and for the
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third symbol it performs a singular transformation sending the state n− 1 to 0. The

family of DFAs Un is presented in Fig. 3.3.

0 1 2 · · · n− 2 n− 1
a, b

a a a a

c c b, c b, c b

b

a, c

Figure 3.3: Un(a, b, c)

The notion of universal witness was not enough to meet the upper bound for some

combined operations, and so it was extended to include dialects and quaternary

alphabets. A dialect of Un is the language of any DFA with Σ = {a, b, c}, where a

performs a cycle of length n, b transposes any two states and c performs any singular

transformation. To extend the universal witness to alphabets with four symbols, the

transition function is defined to perform the identity transformation for the fourth

symbol.

With this characterization, it was implemented in DesCo the functionality to operate

several instances of the universal witness, its permutationally equivalent languages and

its dialects. This feature can be useful to the community when searching for witnesses

to meet their upper bounds.

3.7 Conclusion

The most important concepts represented in the knowledge base were described in

this chapter. Some definitions not covered in Chapter 2 were given. We presented a
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new representation for languages families which are compact and easy to manipulate

and instantiate. The universal witness and its extensions were also covered.



Chapter 4

Desco Components

The DesCo system is implemented in Python [Pyt12], and has four main components:

a Web framework, an interface to relational databases, a mathematical typesetter and

a formal language symbolic manipulator. In this chapter, we describe each of the

above mentioned components and briefly explain how they can be used.

4.1 Web Framework

Pylons [Gar11] is an open source Web application framework written in Python, that

makes extensive use of the Web Server Gateway Interface [Eby11] standard to promote

re-usability and to separate functionality into distinct modules. In the past, developers

typically wrote Web applications as a series of simple CGI scripts, each of which would

be responsible for accessing the database and generating HTML to produce the pages

it outputs. Although each individual script was quick to write and easy to understand,

there are a few disadvantages with this approach. Every script in the site needs the

same code to load configurations and to handle errors. CGI scripts can be quite slow,

42
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since the whole Python interpreter, as well as, the modules the scripts uses have to

be loaded into memory on each request. Also, it can be difficult to understand how

the application is structured because each script is almost autonomous. To address

these problems, Pylons (as well as other popular frameworks such as Django [JW11],

TurboGears [DR11] and Ruby on Rails [HT11]) use a Model View Controller (MVC)

architecture.

The MVC Architecture is a result of the recognition that most web applications:

• Store and retrieve data (the model)

• Represent data, usually as HTML pages (the view)

• Execute code to manipulate the data and control how it is interacted with (the

controllers)

In Pylons each of these components is kept separate. Requests are directed to a

controller, which is a Python class that handles the application logic. The controller

then interacts with the model classes to fetch data from the database. Once all

the information has been gathered, the controller passes this information to a view

template where an HTML representation of the data is generated and sent to the

user’s browser.

4.2 Database Interaction

SQLAlchemy [Cop08] is a Python library created to provide a high level interface to

relational databases such as PostgreSQL [Gro11], MySQL [AB11] and SQLite [Hip11].

It allows the mapping of Python objects to database tables. For instance, consider

the following (MySQL output) table for models of computation:
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+--------------+--------------+------+-----+---------+----------------+

| Field | Type | Null | Key | Default | Extra |

+--------------+--------------+------+-----+---------+----------------+

| id | int(11) | NO | PRI | NULL | auto_increment |

| abbreviation | varchar(10) | NO | PRI | | |

| name | varchar(255) | YES | | NULL | |

| description | text | YES | | NULL | |

| FAdoClass | varchar(80) | YES | | NULL | |

+--------------+--------------+------+-----+---------+----------------+

This table can be mapped to the following Python object:

class Model ( ob j e c t ) :

def i n i t ( s e l f , abbrev iat ion , name ,

d e s c r i p t i o n , FAdoClass ) :

s e l f . abbrev i a t i on = abbrev ia t i on

s e l f . name = name

s e l f . d e s c r i p t i o n = d e s c r i p t i o n

s e l f . FAdoClass = FAdoClass

This approach is very convenient, as every object instance corresponds to a table

record, and this object can have any number of methods implemented, this makes it

very easy to manipulate table records. Using SQLAlchemy also has the advantage of

not binding the applications source code to a particular database. If we decide that

MySQL does not suit our needs, changing to PostgreSQL, for example, only requires

that we tell SQLAlchemy to use a different DB-API driver.
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4.3 Mathematical Typesetting

Since DesCo must deal with a lot of mathematical notation, due to the nature of

the system, the ability to, on the one hand, typeset and display math efficiently, and

on the other, allow the use of a language that is familiar to the end-user, is crucial.

LATEX is, arguably, the most popular language, amongst computer scientists, to write

mathematical notation, and, as opposed to MathML, it is intended to be written

and edited directly by humans. Note also that most of the mathematical formulae in

DesCo are functions over integer variables (complexity measures) that can be easily

coded in any programming language if any other manipulation is needed.

Listing 4.1: MathJax example

<script src=’ ’ http :// cdn . mathjax . org /

mathjax/ l a t e s t /MathJax . j s ? c on f i g=de fau l t ’ ’> </ script>

$$

\ de l t a ( i ,X) = \ l e f t \{
\begin { array }{ l l }

( i +1)\mod m, & \ t ex t { i f X=a} \\
0 , & \ t ex t { i f X=b} \\
i , & \ t ex t { i f X=c}

\end{ array }
\ r i g h t .
$$

All this motivates the use of MathJax [Sci11] for the purpose of displaying math.

MathJax is a collection of JavaScript programs and support files for displaying math-

ematics in HTML pages. It works on all modern browsers and does not require any

special downloads by the end-user (unlike MathML). It uses HTML/CSS and unicode
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fonts for high quality typesetting that is scalable and prints at full resolution. MathJax

can display mathematical notation written in LATEX or MathML markup. However,

since it is only meant for math display, only the subset of LATEX used to describe

mathematical notation is supported. One of its most notable features is its ease of

use. Say you want to display a transition function, with a branch defined for each

symbol of the alphabet on a web page. The page source only needs to load MathJax

and have the functions LATEX source between $$. The code in Listing 4.1, generates a

page, which is exhibited in Fig. 4.1.

Figure 4.1: Web browser displaying a MathJax generated formula

4.4 Formal Language Symbolic Manipulator

The FAdo system [AAA+09] aims to provide an open source extensible software li-

brary for the symbolic manipulation of automata and other models of computation. To

allow high-level programming with complex data structures, easy prototyping of algo-

rithms, and portability, are its main features. FAdo is implemented in Python [Pyt12]

and currently includes most standard operations for the manipulation of regular lan-

guages. Regular languages can be represented by regular expressions (reex) or finite

automata, among other formalisms. Finite automata may be deterministic (DFA),

non-deterministic (NFA) or generalized (GFA). In FAdo, these representations are

implemented as Python classes. Elementary regular language operations, such as,
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union, intersection, concatenation, complementation, and reverse are implemented

for each class. Many combined operations for DFA have specialized algorithms.

Several conversions between representations are implemented: NFA to DFA via

subset construction, NFA to reex using a recursive method, GFA to reex using

the state elimination algorithm, with possible choice of state orderings and several

heuristics, reex to NFA using the Thompson method, Glushkov method, follow, and

partial derivatives. For DFA, several minimization algorithms are available: Moore,

Hopcroft, Brzozowski, and some incremental algorithms. Some support is provided

for computing syntactic semigroups. There are several algorithms for language equiv-

alence. Finite languages can also be represented, by tries and AFA (acyclic finite

automata).

Symbolic manipulation systems, and the FAdo system in particular, are essential

for the studies of descriptional complexity, as they provide a tool for testing the

complexity bounds and to find candidate witnesses. FAdo implements many of the

specialized algorithms used for the upper bounds of the operational complexities of

regular languages and also many of the language families used as witnesses.

The FAdo system currently aids DesCo in the generation and manipulation of

language family instances. Either by using the representation using transformations,

as previously defined in Section 3.6, or by using Python code, we can generate language

family instances. Once a FAdo class, representing a model of computation, has been

instantiated, we can then make use of all the algorithms it has to offer to do symbolic

manipulation, such as checking whether or not the first few instances of a family

of DFAs are minimal, checking the equivalence of several instances of two different

language families, or even verify if the given witnesses reach the upper bound for

specific parameters of the language family. It is also be possible to guess whether

a language family is already in the knowledge base. By instantiating a family, for
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example by varying its parameter between 3 and 10, then converting each instance

to its canonical string representation [AMR07], and concatenating all the strings, we

obtain a representation which would allow a good guess to be made when comparing

language families. To compare two language families, one only has to compare the

obtained strings, and if they are the same then there is a high chance that the language

families are the same.

4.5 Conclusion

This chapter described the functionality of the four main components of the DesCo

system: Pylons the web framework, SQLAlchemy the interface to the relational

database, MathJax the mathematical typesetter and FAdo the formal language sym-

bolic manipulator. Some small examples of how they can be used were given, as well

as, some uses of the formal language manipulator.



Chapter 5

The Web Interface

The web interface allows the manipulation and visualization of all the existing results

and respective bounds, as well as, all the concepts described in Chapter 3. Its source

code is generated using Mako, a Python templating language. MathJax is used

for mathematical typesetting and FAdo is used as a symbolic manipulator when

such functionality is requested by the user. The structure and functionality of the

web interface is described in this chapter. Introducing and updating information is

discussed in Section 5.1, the various ways to consult the knowledge base are described

in Section 5.2, and how the user can interact with FAdo through DesCo is covered

in Section 5.3.

5.1 Introducing and Updating Information

Inserting and updating data through the web interface is done using a series of

forms built with common HTML input elements, such as, text boxes, check boxes,

radio buttons, etc., and rich text editors. Fig. 5.1 shows the form for adding a
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new operation. Such tasks can only be performed by authenticated users, and the

information submitted can be alter, if necessary, at a later time by any authenticated

user that has updating privileges. The main page provides quick access to the forms

for adding languages classes, operations, models and their variables specifications,

complexity kinds and measures, language families and bibtex entries.

Figure 5.1: Form for adding a new operation

Since some concepts have natural dependencies between them, it is possible that while

introducing new information, some parts of the form can not be filled. For example,

if we attempt to introduce a new complexity measure, state complexity, we must first

make sure that its associated model of computation, DFA, exists in our knowledge

base. If DFA is not in the knowledge base, the user would be unable to fill out that

particular item of the form. This is not a problem however, as the user can simple go

back, introduce this missing concept, and then introduce the new complexity measure.

Some of the forms used for introducing and updating information are equipped with

a preview functionality in order to avoid mistakes, which during the development of
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DesCo became quite obvious they would be very common. For instance, some forms

require the user to use LATEX markup language. In such cases it was not obvious

whether the input had to be enclosed in $ signs. With the preview functionality this

requirement now becomes obvious for the user.

5.2 Consulting the Knowledge Base

Consulting the knowledge base, in contrast to inserting and updating data, does

not require any kind of authentication, thus the information is available to every-

one. Querying the knowledge base on language classes, language families, operations,

models of computation, complexity kinds or complexity measures results in a table

listing the requested information. This listing is formatted using HTML/CSS and

MathJax for a more aesthetically pleasing visualization. An example of such a listing

is illustrated in Fig. 5.2. The main page provides such listings.

Figure 5.2: Listing operations
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Language families can be further queried for more information, such as, the code

that generates its instances. Additionally, a diagram that represents a given language

family can be generated on the fly. This is exemplified in Fig. 5.3.

Figure 5.3: Language family details

The complexity bounds can be consulted with more fine-grain detail, giving control

over how the information is displayed by customizing query parameters, using the

DataBase Viewer. Firstly, one must choose the complexity kind. Then, one can

choose to query all the results for a single operation. This generates a table with the

complexity functions for all language classes and all complexity measures, for that

specific operation, as seen in Fig. A.1.

On the other hand, one can also choose a list of operations and a specific complexity

measure, generating a table for each language class with all the results for the chosen

operations, as presented in Fig. 5.4. It is also possible to list results, for all operations,

for a given language class and one or more complexity measures.

All the available details, about a specific result, such as its witnesses, references and
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algorithms, can also be consulted, as portrayed in Fig. A.2, by selecting the desired

result from the table generated by the DataBase Viewer.

Figure 5.4: Listing results for several operations and language classes

5.3 Interacting with FAdo

FAdo plays an important role in DesCo. It is the symbolic manipulator used to

operate language family instances. If the knowledge base contains the FAdo function,

which given representations of languages as arguments returns the resulting languages

after performing an operation, as well as a representation of the language families to

be used as arguments, then DesCo can make use of FAdo to generate its instances,

perform the given operation and return the result in several formats. The available

formats are .svg, .fa and plain information about the result. The .fa format allows

the user to download the result and use it later on with FAdo, on their own machine.

The .svg format checks if the resulting automaton has less then 150 states, and if so,

displays the diagram associated to the automaton on a browser window, otherwise,

the user can download the .dot source code (a popular plain text graph description
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language) and convert it on their own machine later on, in order to not overload the

server.

Another way of interacting with FAdo through DesCo is by performing operations

using the Universal Witness described in Section 3.6.1. The user can choose from any

of the operations that have a FAdo function associated in the knowledge base and

parameterize the arguments in order to define which dialect and permutation of the

alphabet to use. For each argument, its parameter is instantiated for all integer values

in a given interval, the operation is computed on the server and the information about

the result is then displayed to the user. This feature can be useful to the community

when searching for witnesses to meet their upper bounds.

5.4 Conclusion

This chapter describes how information can be introduced, updated and consulted

through the web interface. Some features that the forms for introducing and updating

information are equipped with were described, as well as, how the user can consult

the knowledge base in various ways. How the user can interact with FAdo though

DesCo was also outlined.



Chapter 6

Conclusion

This thesis describes the DesCo system, a Web-based knowledge system for de-

scriptional complexity results. It gives an introduction to formal languages and

descriptional complexity, characterizes the key concepts involved and describes how

they can be represented in a knowledge base. Some of these concepts, namely language

families, require careful consideration, in order to obtain a representation that can be

manipulated in such a way as to help the research community with their work in

descriptional complexity.

The tools employed in the creation of the knowledge base, web interface and symbolic

manipulation were delineated, as well as, the functionality implemented in the web

interface.

6.1 Current State of DesCo

DesCo is currently online (desco.up.pt) and an authenticated user can also submit

new information. Most of the data accessible is related with the operational complexity
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of regular or subregular languages, with over three hundred results and more than sixty

language families already available. Even for this subset of descriptional complexity

results, it is now easier to have a general overview, analyze the complexity behavior

of different operations for a language class, or compare the relative complexity of the

same operation on different language classes.

One motivation for this project was to help ease the work of anyone refereeing for a

conference or journal in the field of descriptional complexity. Even though there is a

considerable amount of information still missing from the knowledge base, it is now

possible, with the help of DesCo, to look up specific results and their references to

the literature. This can be of great help to the community. Also, it is now easier for

members of the research community to decide where to allocate their efforts in the

field of descriptional complexity.

6.2 Future Work

Possible future work could include allowing a test of universality for language families,

i.e., test whether a language family satisfies the properties enumerated in Section 3.6.1.

It may not be possible to test all of the properties, since some of them might require

the notion of dialects to satisfy, which are not defined for all language families.

To prove that a complexity bound is tight there are also other techniques besides the

use of language families, for instance the fooling-set lower bound technique [GS96].

That also has to be accommodated in DesCo.

Even though the DesCo system was planned to be as flexible as possible, in order

to accommodate any result in descriptional complexity, as the system evolves and

new results are included, new concepts may arise that are currently not supported.
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Such problems are likely to come up and have to be dealt with in the future. Fi-

nally, the continued usage of the system by the community, will likely lead to more

improvements.



Appendix A

Web Interface Screenshots

Figure A.1: Listing results for union operation
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Figure A.2: Details for a particular result

Figure A.3: FAdo generating instances
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Figure A.4: FAdo operating with universal witnesses
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