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Abstract

Automata are fundamental computation models with many practical applications

in Computer Science. For this reason, many applications and libraries have been

developed for their study, symbolic manipulation and visualization.

Some applications and libraries focus only on providing an efficient platform for testing

and developing algorithms, having little or no means of graphical visualization and

manipulation. Graphical applications exist, but are generally more limited on the

kinds of manipulations that can perform, and are usually more adapted for didactic

purposes. GUItar is a graphical interface for the manipulation of automata diagrams,

providing assisted drawing features that facilitate the drawing of diagrams. GUItar also

provides style editors for nodes and transitions that allow creation of graphical styles

to cope with many kinds of applications. A generic diagram description language,

GUItarXML, was developed for GUItar. GUItarXML is expressive enough to be used as

an intermediate format for conversion into other diagram representation formats such

as GraphML, dot and VauCanSon-G. A generic extension mechanism, called the Foreign

Function Calls (FFC) allows GUItar to interface with external diagram manipulation

tools like, for instance, the FAdo engine.

The FFC mechanism provides Object Creators that can handle foreign objects, objects

that are not native to GUItar. The Object Creators ensure that GUItar is not limited to

the kinds of objects it can manipulate. The FFC mechanism provides an Object Library

that stores objects created during the execution of FFCs that is able to graphically

represent the relations between them. GUItar also has scripting capabilities and a
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console that is able to manipulate the user interface, giving guitar the possibility of

both a mouse-driven and a text-based interaction.

This work presents the GUItar application and the features designed to enhance its

extensibility and interoperability, in particular:

• The GUItarXML language;

• The import and export filters;

• The Foreign Function Calls;

• The Object Creators, that are used to handle Foreign objects ;

• The Object Library that is used to track objects created during the execution of

FFCs;

• The scripting framework and the console interface.
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Chapter 1

Introduction

Automata are fundamental computation models with many practical applications in

Computer Science, such as compilers, voice and image recognition, model checking,

bioinformatics or computer networks. Many applications and libraries have been de-

veloped for the study, symbolic manipulation and visualization of automata. However,

while some applications provide a platform for testing and developing new algorithms,

they often do not have any kind of graphical visualization capabilities. Also, those

that provide visualization features often are not extensible and only allow limited

interaction. In this context, the GUItar application is being developed. GUItar is a

graphical tool for the drawing and the manipulation of many kinds of diagrams, with

special focus on automata. This application provides interesting automata drawing

capabilities, including assisted drawing and visualization features and complex styling

tools.

This thesis presents the GUItar application, while focusing on its extensibility and

interoperability features. A generic XML language for the representation of automata,

called GUItarXML, is presented. GUItarXML is used as the default specification to

export GUItar diagrams and is also used as the base to perform conversions to other

formats of automata and graph representation. The generic extension mechanism for

GUItar, the Foreign Function Calls (FFC) is also presented. The FFCs provide GUItar
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16 CHAPTER 1. INTRODUCTION

with a framework for calling methods from external modules or objects. The FFCs also

provide an Object Library that can store objects created during the execution of a

Foreign Function Call and that is able to graphically represent the relationships between

those objects. GUItar’s scripting framework, that provides GUItar with automation and

scripting features, and the console interface will also be presented.

Chapter 2 presents a review of some graph and automata drawing applications and

descriptive languages. The chapter includes a brief overview of (visual) scripting

languages. Chapter 3 presents an overview of the GUItar application, showing the

GUItar architecture and some of its more interesting features. In Chapter 4, the

GUItarXML language is presented and in Chapter 5 the method used to convert

GUItarXML to other format is presented. The FFCs are presented in Chapter 6.

Chapter 6 presents the XML specification used by FFCs, the Object Creators and their

specification, and the Object Library. In Chapter 7 GUItar’s scripting features and the

console interface are presented. Chapter 8 concludes this thesis and proposes some

future work.



Chapter 2

Applications and Descriptive

Languages for Graphs and

Automata

2.1 Introduction

Many applications and libraries for the study, symbolic manipulation and visualization

of automata have been developed. Some implementations focus only on providing a

platform to test existing algorithms or implement new ones, having little or no graphi-

cal display or drawing capabilities. Graphical tools for drawing and manipulation also

exist, but they are, generally, much more limited on the kinds of manipulations they

can perform and are often geared more towards didactic purposes. In Section 2.2,

some automata manipulation applications are presented. Since automata share some

graphical properties with graphs, some graph drawing applications can be adopted for

drawing or visualization of automata diagrams, therefore, some examples of graph

drawing applications will also be considered. The usefulness of the applications

would be limited, however, if they did not have the means of storing the results

of their manipulations or exchange them with other applications. For that reason,
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18 CHAPTER 2. APPLICATIONS AND LANGUAGES

specification languages to describe them also had to be developed. Some of these

languages were designed mainly to represent graphs, but they can easily be extended

to include properties of automata. Some of the languages are reviewed in Section

2.3. An advantage that some of the console based applications and libraries have is

the capability for scripting. Scripting automates repetitive operations to make them

both faster to execute and more resistant to human error. For this reason, scripting

technologies are presented in Section 2.4. Several of the examples presented in this

chapter will be based on the automaton in Figure 2.1.

Figure 2.1: Automaton example

2.2 Applications

2.2.1 AMoRE

AMoRE [MMP+95] (Automata, MOnoids and Regular Expressions) is an open-source,

console based application for the symbolic manipulation of formal languages. It

implements the classical automata algorithms like minimization, intersection or union

of two automata, and computes the syntactic monoid of the language of a automaton.

Figure 2.1 shows the AMoRE interface.
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Figure 2.2: AMoRE interface

2.2.2 Vaucanson

The Vaucanson project [CLC+05] aims to provide a platform for the manipulation of

finite state machines, with focus on transducers and weighted automata. It consists

of a C++ library that includes a few example programs implemented on that library.

Those programs can be used to test some of the features of the library. The library

itself implements many algorithms and uses the FSMXML [Gro10c] format as the

default export and communication format.

2.2.3 FAdo

FAdo [AAA+09] is an ongoing project that aims to provide a set of tools for the

symbolic manipulation of formal languages. The FAdo engine is written in Python

and provides a set of classes for the manipulation of finite automata and regular

expressions. It implements several of the most common algorithms related to automata

and regular expressions, such as converting regular expressions to automata (and vice-
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versa), minimization, determinization, and intersection and union of automata.

2.2.4 Graphviz

Graphviz [Res10b] is a suite of applications and a library for drawing graphs. Graphviz

uses the dot language [Res10a] as the means of specifying graphs. The Graphviz

applications (dot, neato, fdp, etc...) receive a file in the dot format and output an

image with the graph drawn according to the algorithm the application implements

and the drawing constraints given in the file.

2.2.5 JFLAP

Figure 2.3: JFLAP

JFLAP [RF06] is a didactic graphical tool for the visualization and manipulation of

formal languages that has support for various types of automata, Turing machines,



2.2. APPLICATIONS 21

grammars and regular expressions. The automata interface provides basic drawing

capabilities and a few algorithms like minimization, determinization and conversion

to grammars (that can then be manipulated inside the application). The grammar

interface allows defining new grammars and has features such as building parse tables,

parsing of strings (while interactively building the parse trees), and conversion to

automata. Figure 2.3 shows part of the JFLAP automata interface.

2.2.6 yFiles and yEd

Figure 2.4: yED example

yFiles [yG10b] is a comprehensive commercial library that provides the means for

developing applications for the visualization and edition of graphs and diagrams. yEd

[yG10a] is a free (but not open-source) diagram editor built with the yFiles library as
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a technological demonstration of the library. yEd has many options for customizing

the graphical properties of the diagrams and implements a few automatic layout

algorithms. yEd can also import and export to many formats such as GML, XGMML

and GraphML. Figure 2.4 shows the yEd interface.

2.2.7 Visual Automata Simulator

Visual Automata Simulator [Bov10] is an automata and Turing machines simulation

application written in Java. It only has basic drawing capabilities but can simulate

checking if a word is accepted by an automaton or a Turing machine, and can show

that process step-by-step by highlighting states on the automaton and showing the

state of the tape on a Turing machine, as symbols are consumed. Figure 2.5 shows

the Visual Automata Simulator interface.

Figure 2.5: Visual Automata Simulator example
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2.3 Graph and Automata Representation Languages

2.3.1 Non-XML Languages

2.3.1.1 GML

graph [

node [

id 0

l a b e l ” s0 ”

f i n a l 1

i n i t i a l 1

]

node [

id 1

l a b e l ” s1 ”

]

node [

id 2

l a b e l ” s2 ”

]

edge [

source 0

t a r g e t 0

l a b e l ”b”

]

edge [

source 1

t a r g e t 1

l a b e l ”b”

]

edge [

source 2

t a r g e t 2

l a b e l ”b”

]

edge [

source 0

t a r g e t 1

l a b e l ”a”

]

edge [

source 1

t a r g e t 2

l a b e l ”a”

]

edge [

source 2

t a r g e t 0

l a b e l ”a”

]

]

Figure 2.6: GML file example

GML [Him] is a graph representation language that is intended to be simple, portable
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and flexible. It is an attempt at establishing a common data format for graph

manipulation applications. GML documents are sets of keys followed by values or a list

of values. Lists of values are surrounded by square brackets. Users and applications

are free to use any non-standard keys, however, recognizing those keys depends on the

implementation of the applications that are reading the documents. Figure 2.6 shows

an example of a GML file.

2.3.1.2 FAdo

@DFA 0

0 b 0

1 b 1

2 b 2

0 a 1

1 a 2

2 a 0

@NFA 3

0 a 0

0 b 1

0 b 2

1 a 1

1 b 3

2 a 2

2 b 3

Figure 2.7: FAdo example

The FAdo engine uses a simple language for storing automata. It can contain multiple

automata, each starting with either @DFA or @NFA (depending on the type of the

automaton), followed by the identifiers of the list of final states. The following lines

contain the transitions (one per line), and are composed of three elements: the source

state identifier, the label of the transition and the target state identifier. Figure 2.7

shows two automata: a DFA, with three states, on the left and an NFA, with four

states, on the right.

2.3.1.3 dot

The dot language is a graph specification language used by the Graphviz graph visu-

alization tools. The dot language allows the specification of directed and undirected
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graphs, including their graphical attributes, and some drawing constraints used by

the Graphviz applications. A dot document may contain multiple graphs or digraphs.

Transitions of the form “node id1->node id2” are for digraphs, and “node id1 – node

id2” are for graphs. Attributes of nodes and transitions are given inside square

brackets. Figure 2.8 shows an example of a graph specified in the dot language.

digraph A1{

rankd i r=LR;

s0 [ l a b e l=” s0 ” , shape=doub l e c i r c l e ] ;

s1 [ l a b e l=” s1 ” , shape=c i r c l e ] ;

s2 [ l a b e l=” s2 ” , shape=c i r c l e ] ;

nu l l [ shape = p l a i n t e x t l a b e l=”” ] ;

nu l l −> s0 ;

s0 −> s0 [ l a b e l=”b” ] ;

s1 −> s1 [ l a b e l=”b” ] ;

s2 −> s2 [ l a b e l=”b” ] ;

s0 −> s1 [ l a b e l=”a” ] ;

s1 −> s2 [ l a b e l=”a” ] ;

s2 −> s0 [ l a b e l=”a” ] ;

}

Figure 2.8: A dot file

s0

b
s1

a

b

s2

a

a

b

Figure 2.9: Example of Figure 2.8 rendered by the dot application

The rankdir statement indicates that the diagram is to be drawn from left to right.

Nodes and edges have a label attribute that contains their label, and nodes have the

shape attribute that indicates what shape they will use. Since Graphviz has no builtin

shape with an incoming arrow (for initial states), an invisible node (called null) was
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placed next to the initial state with a transition to the initial state. Figure 2.9 shows

this diagram rendered by the dot application.

2.3.2 XML Based Languages

XML [Con10b] (eXtensible Markup Language) is a formalism used to describe a

family of languages that are widely used for storing, exchanging, and representing

information. The basic building blocks of XML are the elements, identified by a tag.

Elements can have attributes and other elements nested within them. Elements can

also have text containers. XML documents must have a root element. Figure 2.10

shows an example of a XML document. The root element has the tag “xml example”.

The root element has an element called “example”, which in turn has the attributes

“att1” and “att2”, and a sub-element “other”. The “other” sub-element contains the

text “Text example”.

<xml example>

<example at t1=”1” att2=”2”>

<other>

Text example

</ other>

</example>

</xml example>

Figure 2.10: XML document example

XML does not define what elements are used or their valid contents. It is up to

the user to define them, usually by means of a schema. Common schemas are XSD

[Con10c], DTD [Con10a], RelaxNG [vdV03], or RelaxNG-Compact [vdV03]. They allow

defining a particular XML language and make it possible to validate documents of the

language against the schema. The XML definition requires that all XML documents

are well-formed. This means, for example, that there must be only one root element

and all tags must be properly closed. This is different from validation: a document



2.3. GRAPH AND AUTOMATA REPRESENTATION LANGUAGES 27

can be well-formed, but invalid, meaning that it does not conform to the schema.

XSL [Con10d] (eXtensible Stylesheet Language) is a language that allows to describe

how to render an XML document. Although CSS (Cascading Style Sheets) may be

used for the same purpose, the W3C [Con09b] recommends XSL as the default styling

language for XML. Besides rendering properties, XSL documents allow performing

complex transformations to XML documents. This is done by matching parts of the

original XML document to templates defined in XSL and then using the rules defined in

those templates to write the corresponding result to the output file. This is commonly

used to make the conversion between XML dialects or to convert XML documents into

HTML documents.

2.3.2.1 GraphML

The GraphML [Gro10a] language is an attempt at setting a standard specification for

graph representation based on XML.

The basic GraphML document allows having zero or more graph definitions represented

as graph elements. The graph elements can have zero or more node and edge elements

that must have an id attribute that must be unique within the entire document. The

edges must also have the attributes source and target that are the identifiers of

nodes located in the same document. Besides simple graphs, GraphML also provides

support for hyper-graphs - graphs where edges (called hyper-edges) can have more

than two endpoints. Hyper-edges are declared as hyperedge elements and can have

multiple endpoint sub-elements with the identifier of the endpoint nodes. GraphML

also provides the possibility of declaring nested graphs. This is achieved by declaring

a graph inside a node element. Ports is another feature of GraphML that allows the

specification of additional locations where edges and hyper-edges can connect into

nodes. Finally, GraphML provides an extension mechanism in the form of key-value

pairs called graphml-attributes. This mechanism requires the declaration of a key

element at the beginning of the document that defines an identifier, the domain of
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<graphml>

<key=”k0” f o r=” a l l ” a t t r . name=”Label ” a t t r . type=” s t r i n g ”/>

<graph id=”g0” edgede f au l t=” Directed ”>

<node id=”n0”>

<data key=”k0”>s0</data>

</node>

<node id=”n1”>

<data key=”k0”>s1</data>

</node>

<node id=”n2”>

<data key=”k0”>s2</data>

</node>

<edge id=”e0” source=”0” ta r g e t=”1”>

<data key=”k0”>a</data>

</edge>

<edge id=”e1” source=”0” ta r g e t=”0”>

<data key=”k0”>b</data>

</edge>

. . .

</graph>

</graphml>

Figure 2.11: GraphML Example
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the attribute (graph, node, edge, or all), a name for the attribute, and a default

value. This special “attribute” can then be used by declaring data elements with the

appropriate key inside its proper domain. In Figure 2.11 we have part of an example

of a GraphML document, making use of the extension mechanism to add labels to

nodes and edges.

2.3.2.2 FSMXML

<fsmxml>

. . .

<automatonStruct>

<s t a t e s>

<s t a t e id=”0” name=” s0 ”/>

<s t a t e id=”1” name=” s1 ”/>

</ s t a t e s>

<t r a n s i t i o n s>

<t r a n s i t i o n source=”0” ta r g e t=”1”>

< l a b e l>

<monElmt> <monGen value=”a”/> </monElmt>

</ l a b e l>

</ t r a n s i t i o n>

<t r a n s i t i o n source=”1” ta r g e t=”1”>

< l a b e l>

<monElmt> <monGen value=”b”/> </monElmt>

</ l a b e l>

</ t r a n s i t i o n>

. . .

Figure 2.12: Part of an FSMXML document

FSMXML [Gro10c] is an XML language for the description of finite state machines

(especially transducers and weighted automata), and regular expressions, developed

as part of the Vaucanson project [CLC+05].

Automata are described in automaton elements. Their sub-element valueType de-
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scribes the algebraic structures associated with transition labels and their sub-element

automatonStruct contains the states and the transitions elements. The states

<fsmxml xmlns=” ht tp : //vaucanson−p ro j e c t . org ” version=” 1 .0 ”>

<regexp name=”example”>

<valueType>

<semir ing type=”numerica l ” s e t=”B” ope r ta i on s=” c l a s s i c a l ”/>

<moxnoid type=” f r e e ” genSort=” s imple ” genKind=” l e t t e r ”

genDescr ipt=”enum”>

<monGen value=”a”/>

<monGen value=”b”/>

</monoid>

</valueType>

<typedRegExp>

<s t a r>

<sum>

<monElmt>

<monGen value=”a”/>

</monElmt>

<monElmt>

<monGen value=”b”/>

</monElmt>

</sum>

</ s t a r>

</typedRegExp>

</ regexp>

</fsmxml>

Figure 2.13: Example of a regular expression in FSMXML

element can have an arbitrary number of state elements, each one representing a

state. The state elements must have an id attribute and a name attribute, that is the

label of the state. The transitions element has an arbitrary number of transition

elements. Each transition element has the source and the target attributes that

are the identifiers of the source and target states. Labels of transitions are described
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using a regular expression, that is a combination of sum, star, product or monElmt

elements. The sum and product elements must have at least two sub-elements, the first

one being the left operand of that operation. The star elements have one sub-element.

Regular expressions are described in regExp elements. Like automata, they must have

a valueType element to describe the algebraic type of the regular expression. The

expression’s body is described in typedRegExp elements and has the same structure as

automaton transition labels. Figure 2.12 shows an example of an automaton described

in FSMXML. Parts of that document were removed due to space constraints. Figure

2.13 shows an example of a regular expression.

2.3.2.3 XGMML

XGMML [XGM09] (eXtensible Graph Markup and Modeling Language) is an XML

language for the description of graphs based on GML. In fact, XGMML could be

considered a direct translation of GML into XML. The XGMML specification offers

the following simple rules to transform GML documents into XGMML documents:

• A GML key is a name of an XGMML element if its value is a list of key-value

pairs;

• A GML key is a name of an XGMML attribute if its value is a number or a string;

• The comment GML tag and the GML lines starting with “#” character must be

ignored or translated to XML comments.

Figure 2.14 show an XGMML document.

2.3.2.4 SVG

SVG [Con09a] (Scalable Vector Graphics) is an XML language for the description of

two-dimensional vector graphics. SVG documents describe images by arranging and



32 CHAPTER 2. APPLICATIONS AND LANGUAGES

<graph d i r e c t ed=”1”>

<node id=”0” l a b e l=” s0 ” f i n a l=”1” i n i t i a l=”1”/>

<node id=”1” l a b e l=” s1 ”/>

<node id=”2” l a b e l=” s2 ”/>

<edge source=”0” ta r g e t=”0” l a b e l=”b”/>

<edge source=”1” ta r g e t=”1” l a b e l=”b”/>

<edge source=”2” ta r g e t=”2” l a b e l=”b”/>

<edge source=”0” ta r g e t=”1” l a b e l=”a”/>

<edge source=”1” ta r g e t=”2” l a b e l=”a”/>

<edge source=”2” ta r g e t=”0” l a b e l=”a”/>

</graph>

Figure 2.14: Example of an XGMML document

compositing basic shapes like rectangles, circles, ellipses, simple lines, or text. SVG

also provide the “path” feature that allows the creation of complex shapes and curves

by using straight or curved lines. Is is possible to style SVG elements, i.e., change their

color and other graphical properties. This can be achieved by changing style attributes

directly for each shape or by using external CSS specifications or even inline CSS code.

2.3.3 LATEX

LATEX [Lam94] is a document preparation system and language for high quality type-

setting based on the TEX system [Knu84], commonly used to produce scientific and

technical documents. LATEX’s philosophy is that the user should not have to worry

about the layout of the document and should only have to concentrate on writing

its content. Therefore, unlike most popular word processors such as Microsoft Word

[Cor09] or OpenOffice Writer [Ope09], LATEX is not an WYSIWYG (What You See

Is What You Get) system (although WYSIWYG tools exist for LATEX such as LyX

[Tea09]). Instead, the user creates LATEX documents using any text editor and then

compiles that text using a LATEX compiler, that will be in charge of typesetting the

document. LATEX is extensible and many packages for working with mathematics,
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chemistry, graphics, and, of course, for automata drawing exist.

2.3.3.1 VauCanSon-G

VauCanSon-G [Gro09] is a widely used LATEX package that contains a set of macros for

drawing automata in LATEX documents. It is built upon the PSTricks [Gro10b] package,

a LATEX package for plotting graphs and drawing 2D and 3D figures. Automata are

drawn inside a VCPicture environment. The user must indicate the dimensions of the

environment by indicating the coordinates of the lower left and upper right corners

of the “picture”. This is used to create a bi-dimensional coordinate system where

states can be laid. States are declared by using the \State command. This command

must receive the coordinates of the state and an id for the state. Optionally, it

may have a label. Initial states are declared by using the \Initial command with

the identifier of the initial state. This command receives an optional argument with

the direction of the arrow. Final states can be declared in two ways: similarly to

initial states, by using the \Final command or by declaring states as \FinalState.

The first method produces final states with an outgoing arrow, while the second

produces states with a double circle. Transitions are declared by using either the

\EdgeX command or the \ArcX command. The X in the commands stands for either

L or R, and indicates the side of the label for edges, or the orientation of of the

concavity for arcs. Both must receive the identifiers of the source and target nodes

and, the transition label. Loops (transitions where the source and target node are

the same) are declared with the \loopX command, where X is a cardinal direction of

the loop (for example, NE for North-East). This command receives as an argument

only the identifier of the node and the loop label. VauCanSon-G also provides styling

options that allow changing some graphical properties of states and transitions. It

also has support to call PSTricks macros directly. Figure 2.15 shows an example of an

automaton specified in VauCanSon-G. Figure 2.16 shows the resulting automaton, as

rendered by LATEX.
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\begin {VCPicture}{(−4 , −4) (4 , 1) }

\Fina lS ta t e [ s0 ]{(−3 ,0) }{0}

\ I n i t i a l [w]{0}

\ State [ s1 ] { ( 3 , 0 ) }{1}

\ State [ s2 ]{(0 ,−3) }{2}

\EdgeL [ 0 . 5 ]{0}{1}{ a}

\EdgeL [ 0 . 5 ]{1}{2}{ a}

\EdgeL [ 0 . 5 ]{2}{0}{ a}

\LoopN [ 0 . 5 ] { 0 } { b}

\LoopN [ 0 . 5 ] { 1 } { b}

\LoopS [ 0 . 5 ] { 2 } { b}

\end{VCPicture}

Figure 2.15: Example of a VauCanSon-G document

s0 s1

s2

a

aa

b b

b

Figure 2.16: Rendering of the VauCanSon-G example in Figure 2.15
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2.3.3.2 GasTeX

GasTeX [Gas09] is a LATEX package that adds macros to the LATEX picture environ-

ment to make it simpler to draw graphs, automata, and other kinds of diagrams.

\begin { p i c tu r e } (30 ,30)

\node [ Nmarks=i r ] ( 0 ) (0 , 0 ) { s0 }

\node (1 ) (60 ,0 ) { s1 }

\node (2 ) (30 ,−30){ s2 }

\drawedge (0 , 1 ) {a}

\drawedge (1 , 2 ) {a}

\drawedge (2 , 0 ) {a}

\drawloop (0 ) {b}

\drawloop (1 ) {b}

\drawloop [ l oopang l e =270](2) {b}

\end{ p i c tu r e }

Figure 2.17: Example of a GasTeX document

Diagrams are drawn inside a picture environment. A \gasset command may be

used to set global drawing properties for nodes and edges. Nodes are declared with

the \node command. This command receives three arguments: the identifier of

the node, its coordinates and its label. Optional parameters may be passed that

override the global parameters defined in \gasset. Edges are declared with the

\drawedge command. The command receives two arguments: the identifier of source

and target nodes, separated by a comma and the label of the transition. For drawing

loops, the \drawloop command is used. Arguments are the same as for the edges,

except that instead of a pair of identifiers, it receives only one. Figure 2.17 shows an

example of an automaton defined in GasTeX. Figure 2.18 shows that automaton as

rendered by LATEX.
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s0 s1
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b

Figure 2.18: Rendering of the GasTeX example in Figure 2.17

2.4 Scripting

Scripting languages allow automatization of repetitive tasks. In graphical environ-

ments, they allow expressing in an easy way sequences of actions that could require

several mouse actions. One of the oldest examples of scripting languages still in use

are the Unix shell languages (Bourne shell, C shell, or Bourne-Again shell, for example).

Shell scripts are often used in the automated installation and configuration of software,

compilation of programs, or by users to automate tasks. AppleScript [Coo07] is a

scripting language developed by Apple for the MacOS operating system that was

designed to be easy to use. For that purpose, the AppleScript syntax is similar to a

“natural language”. For example, the instruction ‘‘tell application X to quit’’

can be used to close applications (by replacing X with the name of an application).

AppleScript also allows high-level interaction with applications, where scripts may be

able to directly manipulate application components such as, for example, individual

cells, rows, or columns on a spreadsheet application. Some programming languages

such as Perl [SPbdf08] (developed in 1987), Tcl [Ous94] (1988), Python [Fou09] (1991),

Lua [IdFC06] (1993) or Ruby [Lan09] (1995) are also scripting languages.

Visual programming is a programming paradigm where, in order to build a program,
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graphical objects are manipulated instead of writing the corresponding expressions or

commands in text form. Examples of visual programming languages are some dataflow

languages like CODE [NB92], PROGRAPH [CP88] or SAC [Sch03]. An example of a

visual scripting application is the MacOS Automator [Inc09]. Automator allows the

creation of AppleScript scripts visually by means of a script recorder or by manually

adding a set of actions to an execution queue.
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Chapter 3

GUItar

Figure 3.1: GUItar interface

3.1 Introduction

GUItar [AAA+09, Pro09] (Figure 3.1) is an application for the drawing and the ma-

nipulation of diagrams. GUItar allows the drawing and the manipulation of several

39
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kinds of graph and automata diagrams, but it is especially focused on finite automata.

GUItar was developed as a visualization tool for FAdo and it is, currently, still under

development. GUItar provides the usual facilities for the assisted drawing of graph

diagrams. GUItar also has complex style managers that allow the user to create new

graphical styles for nodes and transitions or edit existing ones. GUItar has options to

restrict the types of diagrams that can be drawn (Semaphores) and a graph classifier

that is able to determine the type of diagram currently being drawn. GUItar allows

multiple import/export filters, a mechanism that relies on the GUItarXML specification

language as an intermediate format for conversion. GUItar provides a Foreign Function

Call (FFC) mechanism for extensibility and interoperability with external diagram

manipulation tools such as the FAdo engine. GUItar also has scripting capabilities and

a basic script recorder that is able to generate scripts by recording the user’s actions.

GUItar also provides a console that can be used to command GUItar

This chapter presents an overview of the functionalities of the GUItar application and

internal architecture. The next chapters describe the import/export mechanism, the

Foreign Function Call mechanism and GUItar’s scripting features in more detail.

3.2 GUItar’s Architecture

GUItar is implemented in Python, and its graphical interface is implemented using

the wxPython [wxP09] graphical toolkit. Figure 3.2 shows an overview of GUItar’s

architecture. The GUItar user interface has a frame that contains a menubar, a toolbar

and a notebook, which is a type of widget that can have multiple pages. The menubar

and the toolbar are built from XML specifications on startup, and are contextual.

This means that they react with the contents of the canvas, enabling or disabling

menus or toolbar buttons as required. Each notebook page contains a main working

area, called the Canvas, that is where the diagrams are drawn and edited. Each page

also contains a properties panel that is hidden by default. The properties panel is

used to change the properties of the selected objects. The interface also contains a
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Figure 3.2: GUItar architecture

Python console that is hidden by default. The console can be used to run Python

commands and interact with GUItar objects. The interface is mostly mouse-driven:

the user chooses the type of action to be performed from the toolbar (node actions,

edge actions, select or move canvas), and uses the mouse on the canvas to add nodes

or transitions, move them or edit them. All of these actions are managed by the

Drawgraph class and its components. Exporting and importing are handled by the

Export and Import classes respectively. These classes are responsible for validating

input files, exporting diagrams and, performing conversion between different types

of documents. GUItar’s extension mechanism, the Foreign Function Call (FFC), are

handled by the FFCManager class. This class is in charge of setting up, calling foreign

functions and track FFC history through its Object Library.
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3.2.1 The Drawgraph

The Drawgraph class is the class that manages all actions related to the interaction

with the Canvas. The Drawgraph controls the Canvas class, that is the widget where

diagrams are drawn, and receives commands from the GUImodes. The Drawgraph is

responsible for maintaining the internal logic of everything related to the diagram’s

structure, such as the internal identifiers of objects and their attributes. The Canvas

class is an extension of the FloatCanvas [Bar09], an wxPython class for drawing 2D

graphics. The most significant modification that was made to FloatCanvas were the

addition of the arrow head class (that allows drawing customized arrow heads) and

the creation of a generic spline class that can have multiple control points. The Grid

class controls the positioning of elements in the canvas, making sure, for example, that

nodes do not overlap. The mouse and keyboard actions are interpreted by the GUImode

classes. These classes are responsible for detecting mouse and keyboard events, and

calling the corresponding action in the Drawgraph. Switching edition mode in the

toolbar effectively switches the GUImode that is currently active.

3.3 Features

GUItar provides a few interesting and unique features. They will be described in the

following subsections.

3.3.1 Style Managers

The style managers allow the creation of custom graphical styles for nodes and tran-

sitions. They allow changing attributes such as colors, text fonts, line widths, fill, or

style. Figure 3.3 shows the edge style manager.

Node styles are the most complex. A node object can be made of a composition of

several graphical objects. The available graphic objects are:
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Figure 3.3: Edge style manager

• Ellipse;

• Rectangle;

• Floating Label: A static floating label;

• Arrow: An arrow. The line can have an arbitrary number of control points;

The proportions and distances of the objects can be modified, and even set to auto-

adjust according to the size of the node’s label. Figure 3.4 shows the node style

manager. Figure 3.5 shows a few style examples. On the left, it shows styles for

transitions, and on the right, it shows styles for nodes.
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Figure 3.4: Node style manager

Figure 3.5: Examples of edge and node styles
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3.3.2 Graph Classifier

The graph classifier is responsible for determining what type of diagram is currently

on the Canvas. Every time it is called the graph classifier runs a few test functions to

determine things like, if there are any initial states and final states, or if every edge

is directed or undirected. Diagram classes are identified by the result they expect

from each test: must verify, meaning that the function must return True, can’t verify

that means that the function must return False, or ignore, meaning that the result

is ignored (default behavior). If every test verifies the required conditions, then the

diagram belongs to that class. The graph classifier is used by the menubar to manage

the contextual menus. Figure 3.6 shows part of the graph classifier interface.

Figure 3.6: Graph classifier

3.3.3 Semaphores

Semaphores define a set of constraints for diagram drawing. When semaphores are

enabled, a semaphore is shown in the bottom left corner of the canvas. The light is

green if none of the constraints are violated, otherwise, the light switches to red. The

semaphore can be either locked or unlocked. Unlocked is the default behavior, where

the light only turns red to warn the user that the constraints are not being preserved.

When the semaphore is locked, it does not allow the user to perform any actions that
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Figure 3.7: Part of the GUItar interface, showing an enabled semaphore

may break those constraints. Figure 3.7 shows a the GUItar interface with a semaphore

enabled and unlocked.

3.3.4 Import and Export

The GUItarXML format is the default format for importing and exporting in GUItar.

However, GUItar can export to various different formats such as GraphML, dot and

VauCanSon-G. This is mainly achieved by first exporting to GUItarXML and then using

conversion methods to convert GUItarXML to the desired format. The import method

is analogous. The GUItarXML format will be described in more depth in Chapter 4.

Format conversions will be described in Chapter 5.

3.3.5 Foreign Function Calls

The Foreign Function Call (FFC) mechanism is the extension mechanism of GUItar. It

allows calling external methods from GUItar through a Python API. This mechanism
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is configured by XML specifications that contain information about the methods, such

as their arguments and return values. FFC methods can also have GUItar menus

associated to them, and these menus can be context-sensitive. This means that some

menus might only be enabled when, for example, DFA diagrams are present. This

mechanism will be described in more detail in Chapter 6.

3.3.6 Scripting and Console

GUItar has some basic scripting capabilities. GUItar scripts are Python scripts that can

control GUItar’s objects. GUItar’s console also allows the user to run Python commands

and have access to GUItar’s internal objects. The console has basic auto-complete

features and context-sensitive help. Figure 3.8 shows the GUItar console.

Figure 3.8: GUItar console

GUItar’s scripting features will be described in more detail in Chapter 7.
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Chapter 4

GUItarXML

4.1 Introduction

GUItarXML is an XML format for the description of diagrams and is based on the

GraphML format. GUItarXML can be used to describe graphs, digraphs or any other

kind of graph-like diagram, such as automata. GUItarXML can not only represent the

structural data of the diagram, but it can also represent its graphical information and

styling information. Despite GraphML’s key/value extension mechanism, it was chosen

not to use that mechanism to include the additional data that GUItar required. For

efficiency and clarity reasons, that data is encoded directly as new elements.

4.2 Structure of a GUItarXML Document

A GUItarXML document can contain an arbitrary number of graph elements. The

graph elements contain the diagram’s structure (the nodes and the edges), and may

contain some automata specific data. Styling data is encoded in style elements and

state object group elements. Each GUItarXML document may have an arbitrary

number of each of them. The style elements contain style data. Styles include

49
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gu i t a r = element guitarxml {

( graph | s t y l e | s t a t e ob j e c t g r oup ) ∗

}

graph = element graph {

a t t r i b u t e id { t ex t } ,

node ∗ ,

edge ∗ ,

graph automata ?

}

Figure 4.1: Top level structure of a GUItarXML document

colors, text fonts, line widths, or arrow head shapes that can be applied to graphical

objects. The state object group elements contain the structure of a node graphical

object, and rely on style elements for their styling. Figure 4.1 shows the RNC schema

of the structure of the top level of a GUItarXML document.

4.2.1 Nodes and Edges

node = element node{

a t t r i b u t e id { t ex t } ,

node diag ? ,

node draw ? ,

l a b e l ? ,

node automata ?

}

edge = element edge{

a t t r i b u t e id { t ex t } ,

a t t r i b u t e source { t ex t } ,

a t t r i b u t e t a r g e t { t ex t } ,

e lement diagram data {empty }? ,

edge draw ? ,

l a b e l ? ,

element automata data{empty}?

}

Figure 4.2: Nodes and Edge specification

A node element represents a node and an edge element represents a transition. They

both must have an id attribute that must be an integer, unique within the graph.

Edges must additionally contain source and target attributes, that are the identifiers
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of the source and the target node, respectively. Nodes and edges also have the sub-

elements diagram data, draw data, label and automata data, which are all optional.

Figure 4.2 shows the RNC schema for nodes and edges.

4.2.1.1 diagram data

node diag = element diagram data {

a t t r i b u t e x { t ex t } ,

a t t r i b u t e y { t ex t }

}

Figure 4.3: Node diagram data

The diagram data element contains diagram specific data. For nodes, it contains

the diagram (abstract) coordinates of the node (attributes x and y). This element

is currently empty for edges. Figure 4.3 shows the RNC schema for the node’s

diagram data.

4.2.1.2 draw data

The draw data element contains graphical data. For nodes, it contains the “world”

coordinates of the node (in pixels), the scale of the node’s graphical components, and

the name of the state object group to apply to it. A state object group element

with that name must exist in the document, or else the default value is assumed,

instead. Figure 4.4 shows the RNC schema for the node’s draw data. For edges,

draw data has the following attributes:

• arrowlinestyle: style to apply to the arrow’s line;

• head1style: style to apply to the arrow’s first head (head on the target side);

• head2style: style to apply to the arrow’s second head (head on the source side);



52 CHAPTER 4. GUITARXML

node draw = element draw data {

a t t r i b u t e x { t ex t } ,

a t t r i b u t e y { t ex t } ,

a t t r i b u t e s c a l e x { t ex t }? ,

a t t r i b u t e s c a l e y { t ex t }? ,

a t t r i b u t e obgroup { t ex t }?

}

Figure 4.4: Node draw data

• numberofheads: number of heads the edge has; can be 0, 1 or 2;

• labelside: side of the label; if positive, the label is placed on the left side of

the edge;

• labelperc: label position along the edge, given as a percentage; an 0 places the

label next to the source node; an 1 places label close to the target node;

• defaultdist: when there are multiple edges stacked on top of each other, this

is the distance, in pixels, to keep between them;

• snapposition: index of the position the label is snapped to;

• middlepoint: index of the point considered the “middle” point;

• snapped: if True, the edge is “snapped”;

• loopangle: orientation of the loop in radians; only used in loops;

• loopradius: distance from the center of the loop to the “middle” point; only

used in loops;

• loopintersection: distance from the center of the loop to the center of the

node, in pixels; only used in loops.

For each of the styles (head or line), a style element with that name must exist in

the document, or the default value is assumed. The edge’s draw data element must
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edge draw = element draw data {

a t t r i b u t e a r r ow l i n e s t y l e { t ex t }? ,

a t t r i b u t e head1s ty l e { t ex t }? ,

a t t r i b u t e head2s ty l e { t ex t }? ,

a t t r i b u t e numberofheads {”0” | ”1” | ”2” }? ,

a t t r i b u t e l a b e l s i d e { t ex t }? ,

a t t r i b u t e l a b e l p e r c { t ex t }? ,

a t t r i b u t e d e f a u l t d i s t { t ex t }? ,

a t t r i b u t e middlepoint { t ex t }? ,

a t t r i b u t e snaped {”True” | ” Fal se ” }? ,

a t t r i b u t e s t r a i g h t l i n e { t ex t }? ,

a t t r i b u t e loopang l e { t ex t }? ,

a t t r i b u t e l ooprad iu s { t ex t }? ,

a t t r i b u t e l o o p i n t e r s e c t i o n { t ex t }? ,

po int ∗

}

Figure 4.5: Edge draw data
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also contain at least three point sub-elements. These elements have the coordinates

(attributes X and Y) of the start point of the line, the control points, and finally,

the end point of the line. There must be at least one control point, but there can

be an unlimited number of them. Figure 4.5 shows the RNC schema for the edge’s

draw data.

4.2.1.3 label

l a b e l = element l a b e l {

a t t r i b u t e type {”Simple ” | ”Compound” } ,

a t t r i b u t e layout { t ex t } ,

a t t r i b u t e s t y l e { t ex t } ,

d i c t ∗

}

d i c t = element d i c t {

a t t r i b u t e key { t ex t } ,

a t t r i b u t e va lue { t ex t }

}

Figure 4.6: Label specification

The label element contains the label’s data. Figure 4.6 shows the RNC schema for

labels. Labels can be either simple or compound. Simple labels are just strings, while

compound labels can have a structure. The layout attribute contains the label’s

layout if the label is compound, or the label’s text, if the label is simple. The layout of

compound labels may have keys (words starting by $) that must have a corresponding

dict element. The value attribute of that element is the value of that key, in the

label. Figure 4.7 shows an example of a label on a GUItarXML document with two

fields: label and weight. These fields have the values a and 0.3, respectively, so the

final label value is a : 0.3.
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< l a b e l type=”Compound” layout=”$ l a b e l : $weight ” s t y l e=” de f au l t ”>

<d i c t key=” l a b e l ” va lue=”a”/>

<d i c t key=”weight ” value=” 0 .3 ”/>

</ l a b e l>

Figure 4.7: Compound label example

4.2.1.4 automata data

The automata data element contains automata specific data. Currently only nodes

use it to indicate if the node is initial or final. Figure 4.8 shows theRNC schema for

the automata data element of nodes.

node automata = element automata data {

a t t r i b u t e i n i t i a l {”0” | ”1” }? ,

a t t r i b u t e f i n a l {”0” | ”1”}?

}

Figure 4.8: Node automata data

4.2.2 Graph’s automata data

The graph elements also have an automata data element. This element has the sigma

element where the alphabet of the automaton can be encoded. The sigma element

can have multiple symbol sub-elements, each having a value attribute with one of the

members of the alphabet. The automata data elements also has a classification

element. This element has multiple class elements, which have a value element. They

are used to indicate the type (or types) of the diagram. Figure 4.9 shows the RNC

schema of the automata data of graphs.
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graph automata = element automata data{

element sigma{

element symbol{

a t t r i b u t e va lue { t ex t }

}∗

}? ,

element c l a s s i f i c a t i o n {

element c l a s s {

a t t r i b u t e va lue { t ex t }

}∗

}?

}

Figure 4.9: Graph’s automata data

s t y l e = element s t y l e {

s t y l eda t a

}

s t y l eda t a = (

a t t r i b u t e name { t ex t } ,

a t t r i b u t e ba s e s t y l e { t ex t }? ,

a t t r i b u t e w x f i l l s t y l e { t ex t }? ,

a t t r i b u t e wx l i n e s t y l e { t ex t }? ,

a t t r i b u t e l i n ew id th { t ex t }? ,

a t t r i b u t e arrowangle { t ex t }? ,

a t t r i b u t e a r rows i z e { t ex t }? ,

a t t r i b u t e c o r n e r s s i z e { t ex t }? ,

f i l l c o l o r ? ,

l i n e c o l o r ? ,

f ont ?

)

Figure 4.10: Style data
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4.2.3 Style Data

Styles are graphical properties that can be applied to nodes or edges, and are defined

in style elements. Figure 4.10 shows the RNC specification for styles. They must

have a name attribute that must be unique in the entire document, and it is used to

identify the style. Styles can also have the following attributes:

• wxlinestyle: line style; can be “Solid”, “Transparent”, “Dot”, “LongDash”,

“ShortDash” or “DotDash”;

• wxfillstyle: fill style; can be “Solid”, “Transparent”, “BiDiagonalHatch”,

“CrossDiagHatch”, “FDiagonalHatch”, “CrossHatch”, “HorizontalHatch” or “Ver-

ticalHatch”;

• linewidth: width of the line, in pixels;

• arrowangle: angle of the arrow’s head opening in radians,

• arrowsize, cornerssize: define arrow head properties. see Figure 4.11;

• fillcolor element: fill color;

• linecolor element: line color;

• font element: font data.

Figure 4.11: Arrow head
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Styles do not need to specify all attributes. The basestyle attribute can be used to

indicate the name of a style to inherit properties from. If a style has the basestyle

attribute set to “redstyle”, for example, that style will inherit all properties from

the style called “redstyle”. All properties specified on that style will override the

values of the base style. Nodes can be a composition of many sub-objects that

are defined in state object group elements. state object group elements must

have a name attribute that is used to identify them. state object group elements

can have multiple “shape” sub-elements. These shapes can be ellipse, rectangle,

floatingtext or arrowspline. “Geometric” shapes (ellipse or rectangle) have

the scalesize attribute, that indicates if the size of the object is automatically scaled

to the size of the label, and a size element. The floatingtext elements have a text

attribute, that contains the text of the label. The arrowspline has elements for the

style of the line and the head. Additionally it has point sub-elements, just like edges.

All shapes may have the following attributes:

• stylename: the name of the style to apply to the shape;

• scaleposition: if “True”, the position of the shape will be scaled depending

on the size of the label;

• scalesize: if “True”, the size of the shape will be scaled depending on the size

of the label;

• position: position of the shape, relative to the center of the object;

The state object group elements may have the attribute marginobjectindex that

identifies which object the edges attach to. Figure 4.12 shows an example of a node

style. The node is composed of two concentric ellipses. The external ellipse uses the

style “reddot”, which changes the fill and the line color to red, and changes the line

style to “Dot”. Figure 4.13 shows the rendering of a node using that style.
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. . .

<s t y l e name=” reddot ” ba s e s t y l e=” de f au l t ” l i n ew id th=”2” f i l l s t y l e=”Dot”>

< f i l l c o l o r r=”255” g=”0” b=”0”/>

< l i n e c o l o r r=”255” g=”0” b=”0”/>

</ s t y l e>

. . .

<s t a t e ob j e c t g r oup name=” f i n a l r e d /”>

<e l l i p s e s t y l e=” de f au l t ” s c a l e s i z e=”True”>

<s i z e x=”35” y=”15”/>

</ e l l i p s e>

<e l l i p s e s t y l e=” de f au l t ” s c a l e s i z e=”True”>

<s i z e x=”40” y=”20”/>

</ e l l i p s e>

</ s t a t e ob j e c t g r oup>

. . .

Figure 4.12: Example node style

Figure 4.13: Rendering of the style in Figure 4.12
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Chapter 5

Format conversions

5.1 Introduction

GUItar uses the GUItarXML format as its main export format, but it is also used

as means of converting GUItar diagrams into other formats. This is achieved by

first exporting to GUItarXML and then using a conversion method to convert from

GUItarXML to the desired format. The importing method is analogous.

Currently GUItar can export to GraphML, dot, FAdo and VauCanSon-G, and can im-

port from all of the previous formats, except VauCanSon-G. Exporting to GraphML

is simple since GUItarXML is an extension of it. The conversion is done via an

XSL transformation that removes the extra elements present in GUItarXML. Node

coordinates and labels, both for nodes and edges, are included using the GraphML

key/value mechanism. In the future, this export method will be improved to include

all the data present in GUItarXML.

The dot export method uses the pyGraphViz [PyG09] Python package to create a dot

document. The dot export is currently in an experimental phase, and only considers

the structural data of the diagram. Exporting to FAdo format is done by converting

the diagram into a FAdo DFA or NFA object (depending on the diagram type), and
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then using FAdo’s internal export method to write the file.

5.2 VauCanSon-G Export

The VauCanSon-G export method is the most complex method implemented. It

outputs a LATEX document with a VCPicture environment containing the automaton.

The method tries to produce an exact rendering of the drawing present in GUItar, but

when an exact conversion cannot be made, a reasonable approximation is done. For

example, VauCanSon-G has no native support for rectangular states, so regular round

states are used instead. Also, the method does not have full support for all of the

VauCanSon-G features. For example, it does not support zigzag edges or parameterized

arcs. The method provides a few customization options, as can be seen in Figure 5.1.

Figure 5.1: VauCanSon-G export dialog

The options it provides are:

• Default state size: allows choosing the default size for states;
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• Loop orientation: allows choosing if loops will use absolute angles or if they will

use cardinal directions;

• Global scaling: if scale to page is selected, the method will ensure that the image

does not exceed the size of a default A4 LATEX article text area (approximately

12cm by 19cm). In the future, an option to scale the image to fit inside a

user-specified box may be given;

• State Scaling: if the “use \VarState” option is selected, VauCanSon-G \VarState will

be used when the size of the state label exceeds a size specified by the user;

• Styles: allows exporting styles.

Styles are exported as LATEX macros that set various VauCanSon-G styling properties.

When necessary, new LATEX colors are also defined and included in the document.

These styles are applied by calling the macro before declaring the state or the edge.

5.3 XPort

The XPort mechanism allows for a simple way of adding new export and import

methods to GUItar, coded either as Python methods or XSL transformations. A menu

entry for every method will be added under GUItar’s import or export menu. Figure

5.2 shows the XPort RNC specification. The mechanism is configured using an XML

specification that allows multiple XPort definitions per document, defined in xport

elements for Python methods, or xslxport elements for the XML transformations.

xport and xslxport elements both must have a name attribute, that is the string

that will appear in the menu, and can, optionally, have a wildcard attribute that is

the file wildcard that will be used in the file dialog. Depending on the type of XPort,

additional attributes and elements may be required. The xport elements must have

the import attribute, that is the Python import statement for the module containing

the methods. XPort elements must have export and import sub-elements. These
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s t a r t = element xport data {

( xport | xs l xpo r t ) ∗

}

xport = element xport {

a t t r i b u t e name { t ex t } ,

a t t r i b u t e import { t ex t } ,

a t t r i b u t e wi ldcard { t ex t } ,

e lement import{

a t t r i b u t e method { t ex t }

}? ,

element export {

a t t r i b u t e method { t ex t }

}?

}

xs l xpo r t = element x s l xpo r t {

a t t r i b u t e name { t ex t } ,

a t t r i b u t e imp f i l e { t ex t } ,

a t t r i b u t e e x p f i l e { t ex t } ,

a t t r i b u t e wi ldcard { t ex t }

}

Figure 5.2: XPort specification
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sub-elements have a method attribute, that is the name of the method for export or

import. import and export elements can optionally have the customdialog attribute

that is a name of a custom dialog class to use when activating the method. The export

method must be a method that only receives two argument: a GUItarXML string and a

string with the path to export to. The import method receives only one argument, the

path to import from. The xslxport elements must have the expfile and impfile

attributes that are the paths for the XSL file containing the export transformation and

the import transformation, respectively. Figure 5.3 shows the XPort definition used

for VauCanSon-G and GraphML in GUItar.

<xport data>

<xs l xpo r t name=”GraphML” imp f i l e=”graphml−gu i t a r . x s l ”

e x p f i l e=” gu i tar−graphml . x s l ” wi ldcard=”xml f i l e s ( ∗ . xml ) | ∗ . xml”/>

<xport name=”Vaucanson exper imenta l ” import=”vaucanson” wi ldcard=” tex

f i l e s ( ∗ . tex | ∗ . tex ) ”>

<export method=”ExportVaucanson” customdia log=”VaucansonDialog”/>

</ xport>

</ xport data>

Figure 5.3: XPort definition for VauCanSon-G and GraphML
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Chapter 6

Foreign Function Calls

6.1 Introduction

The Foreign Function Call (FFC) mechanism provides GUItar with a generic interface

to external libraries or programs, and mechanisms to interact with foreign objects. In

the first case (called Module FFC), the FFC mechanism calls functions directly from

external modules. These modules can be any type of module that can be imported

into Python. In the second case (Object FFC), GUItar can deal with foreign objects and

call their methods, as long as there are methods to create those objects and convert

them back into GUItar. This functionality is implemented by the Object Creators.

The entire mechanism is configured by an XML specification that specifies things such

as the name of the methods, their arguments, and their return values. The FFC

mechanism also includes a facility called the Object Library, that is used to track FFC

operations.
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6.2 XML Specification

6.2.1 Top Level

f f c = element f o r e i g n f u n c t i o n c a l l {

a t t r i b u t e s i l e n t d e p e n d e n c y f a i l {”True” | ” Fal se ” }? ,

( depends | path ) ∗ ,

(mod | ob ) ∗

}

Figure 6.1: Top level FFC RNC specification

FFC configuration files can contain several FFC definitions (module or object). Figure

6.1 shows the top level specification of a FFC configuration file. The root element

(foreign function call) has the attribute silent dependency fail, that, if True,

means that GUItar should not raise any error if any of the dependencies for this FFC

are not met. The root element can have multiple path or depends elements. The

path elements have the attribute value that is used to add paths to GUItar in the

case that FFC modules are located in non-standard paths. The depends elements

are used to indicate the Python modules that the FFC depends on and only have an

import attribute that must contain the name of a module. The root element may have

multiple module and object elements. The module elements represent one module

FFC and have the import attribute that is the statement used to import the module

in Python. The module elements also have the name and description attributes that

are a “user-friendly” name and description for the module. The module elements can

have multiple method sub-elements and one Menu Data element that will be described

in subsections 6.2.2 and 6.2.3, respectively. The object elements represent Object

FFCs and have the creator attribute that is the name of the Object Creator used to

create the object that will contain the methods of this FFC. Object creators will be

explained in more detail in Section 6.3. Like in module FFCs, object elements also

have a name and a description attribute and can have multiple method elements and
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one Menu Data element.

6.2.2 Methods

met = element method{

a t t r i b u t e id { t ex t }? ,

a t t r i b u t e name { t ex t } ,

a t t r i b u t e f r i end ly name { t ex t }? ,

a t t r i b u t e d e s c r i p t i o n { t ex t }? ,

a t t r i b u t e r e t u r n s e l f {”True” | ” Fal se ” }? ,

a t t r i b u t e mode { t ex t }? ,

argument ∗ ,

r e turn ∗

}

Figure 6.2: Method specification

FFC methods are defined in method elements. Methods have a name attribute, that

is the name of the method as it is defined in the module or object. method elements

have an id attribute that is an unique identifier for this method and that will be

used in the menu definitions. The id attribute allows having different definitions for

the same method that, for example, have a different number of arguments. Methods

also have a friendly name attribute and a description attribute that are the name

and the description of the method that will appear in the FFC dialog when it is

called in GUItar. Methods may have multiple argument and return value elements.

The argument elements contain information about the method’s arguments and the

return value elements contain information about the values returned by the method.

Both have the type attribute that can be one of the following:

• Int;

• Float;
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• Bool;

• String;

• File: Requires the additional attributes diagmode that indicates the type of

dialog to use (“Save” or “Load”) and the filemode attribute, that indicates if

the method expects a path or a live file object;

• Canvas: a GUItarXML string;

• Object: foreign object that requires the additional attribute creator that is the

name of the object creator to use;

argument = element argument{

a t t r i b u t e type { t ex t } ,

a t t r i b u t e d e f a u l t v a l u e { t ex t }? ,

a t t r i b u t e u s e d e f a u l t {”True” | ” Fal se ” }? ,

a t t r i b u t e r e qu i r e s { t ex t }? ,

( f i l e a r g d a t a | ob j ec ta rgdata ) ?

}

f i l e a r g d a t a = (

a t t r i b u t e diagmode {”Save” | ”Load” }? ,

a t t r i b u t e f i l emode {”Path” | ” F i l e ”}?

)

ob j ec ta rgdata = ( a t t r i b u t e c r e a t o r { t ex t })

re turn = element r e tu rn va lu e {

a t t r i b u t e type { t ex t }? ,

( f i l e a r g d a t a | ob j ec ta rgdata ) ?

}

Figure 6.3: Argument and return value specification

Arguments may have the default value attribute, that is the default value for that

argument. “Canvas” arguments have special default values that can be:

• Current: use current canvas;
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• First: use canvas on first page;

• Last: use canvas on last page;

• Next: use canvas on next page;

• Previous: use canvas on previous page;

If the use default attribute is True, the default value is used and the user is not

prompted for a value. Figure 6.4 shows an example FFC for FAdo’s DFA object

Minimization and Intersection methods.

< f o r e i g n f u n c t i o n c a l l>

<depends import=”FAdo”/>

<ob j e c t creatorname=”FAdoDFA”>

<method name=”minimal” id=”minimal” f r i end ly name=”Minimal”

d e s c r i p t i o n=”Returns equ iva l en t minimal DFA”>

<r e tu rn va lu e type=”Object ” creatorname=”FAdoDFA”/>

</method>

<method name=” and ” id=”and” f r i end ly name=” I n t e r s e c t i o n ”

d e s c r i p t i o n=”Returns i n t e r s e c t i o n o f two automata”>

<argument type=”Object ” creatorname=”FAdoDFA”/>

<r e tu rn va lu e type=”Object ” creatorname=”FAdoDFA”/>

</method>

</ ob j e c t>

</ f o r e i g n f u n c t i o n c a l l>

Figure 6.4: Example FFC definition

6.2.3 Menus

FFC’s can, optionally, define their own menus. Those menus will be dynamically

created by GUItar on startup, just like GUItar’s own native menus.

Menu Data elements may have multiple Menu sub-elements. Each may have a title

attribute, that is the name of the menu. If a menu with the same title already exists,
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menu = element Menu {

a t t r i b u t e t i t l e { t ex t } ,

a t t r i b u t e pos { t ex t }? ,

a t t r i b u t e r e qu i r e s { t ex t }? ,

( menu entry | menu sep | menu) ∗

}

menu entry = element Menu Entry {

a t t r i b u t e desc r1 { t ex t } ,

a t t r i b u t e desc r2 { t ex t }? ,

a t t r i b u t e ac t i on { t ex t }? ,

a t t r i b u t e type {”normal” | ” rad io ” | ” check” | ” sep ” }? ,

a t t r i b u t e a c c e l { t ex t }? ,

a t t r i b u t e pos { t ex t }? ,

a t t r i b u t e r e qu i r e s { t ex t }?

}

Figure 6.5: Menu specification

the contents of this menu are appended to it. They may have a pos attribute, that is

the position of the menu on the menu bar and a requires attribute that has a comma

separated list of the names of the classes the currently displayed diagram must belong

to for the menu to be enabled. Each Menu may have multiple Menu Entry or Menu sub-

elements. Menu Entry elements are single entries on the menu while Menu elements

are sub-menus. Menu Entry elements have the following attributes:

• descr1: text that will appear in the menu entry;

• descr2: help text that will appear in the status bar when the mouse hovers over

the menu entry;

• action: method to execute. The value of this attribute must be the id of a

method;

• type: can be normal, check, radio or sep. A check value makes an entry with a

checkbox. A radio value makes an entry that is part of a set of mutually exclusive
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options (selecting one deselects the others). A sep value makes a separator and

all other attributes are ignored;

• accel: key combination (accelerator) used to activate the menu;

• pos: position of the entry inside the menu;

• requires: same as in Menu elements;

6.3 Object Creators

GUItar
“nfaT”

method

String

GUItarXML
NFA

Object Creator

regexp Object

NFA Object

regexp
Object Creator

Figure 6.6: Object creator functionality overview

Foreign objects are any type of value that is not internal to GUItar. They may be

returned by FFC methods or may be required as arguments for an FFC method.

Therefore, there are two processes that must be considered when handling foreign

objects: creating the objects and converting them back into values that GUItar is able

to work with.

The Object Creators were implemented for this purpose. They require a module

containing methods for creating foreign objects and methods to convert them back.

They are configured using an XML specification. Figure 6.6 shows an example of the

Object Creator functionality. The FAdo method nfaT creates an NFA from a regular

expression object. GUItar uses the regexp object creator to create a regular expression
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object. After calling the method, it uses the NFA object creator to convert that

automaton into a GUItarXML string that can be interpreted and imported by GUItar.

6.3.1 XML Specification

Object Creator configuration files may specify many object creators, as long as all of

the methods are present in the same module. The module is specified by the import

attribute, that must contain the Python import statement used to import the module.

s t a r t = element ob j e c t c r e a t o r g r oup {

a t t r i b u t e import { t ex t } ,

a t t r i b u t e s i l e n t d e p e n d e n c y f a i l {”True” | ” Fal se ” }? ,

( depends | path ) ∗ ,

obc ∗

}

obc = element o b j e c t c r e a t o r {

a t t r i b u t e name { t ex t } ,

a t t r i b u t e classname { t ex t } ,

e lement to method{

a t t r i b u t e method { t ex t } ,

argument∗

} ,

e lement from method{

a t t r i b u t e method { t ex t } ,

r e turn ∗

}

}

Figure 6.7: Object Creator specification

Object Creator definitions may have the silent dependency fail attribute, path and

depends elements, just like in FFC definitions. The root element can have multiple

object creator elements that must have a name attribute. The name attribute is used

in FFC method arguments and return values for the creatorname attribute of object
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types or in the in the creator attribute of Object FFCs. object creator elements

must have a classname attribute that is the name of the class the Object Creator can

handle. The Object Creator must have a to method element that contains the name of

the method used to create the object in the method attribute. to method may have

multiple argument elements that are the arguments of that method. It must also have

a from method element with the name of the method used to convert the object back

to GUItar and may have multiple return value elements with the values returned by

the method.

Figure 6.8 shows an example of an Object Creator specification for the FAdo DFA objects.

<ob j e c t c r e a t o r g r oup import=”GF”>

<ob j e c t c r e a t o r name=”FAdoDFA” c l a s s=”DFA”>

<to method method=”GuitarToFA”>

<argument type=”Canvas”/>

</ to method>

<from method method=”FAToGuitar”>

<r e tu rn s type=”Canvas”/>

</ from method>

</ ob j e c t c r e a t o r>

</ ob j e c t c r e a t o r g r oup>

Figure 6.8: Object Creator example

6.4 Object Library

The Object Library is a component of the FFC mechanism that stores objects created

and returned during the execution of an FFC method. The objects may be recalled

for future FFC calls. The Object Library allows viewing a graphical representation

of the relationships between objects. Objects are related if one or more objects

originated other objects by applying some function. There are two ways of displaying

this information. The first one is by displaying a tree of objects that originated the
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object in the current page. This tree displays the current object in the top and it’s

parents below it. The panel on the right shows a string representation of the value

of the object and the method that originated it. The second way is to display a

graph that shows the relationships between all objects. This graph is drawn using

GUItar’s own canvas. In the following examples, the method nfaPD was applied to an

object and then the method minimal was applied to the result of the first methods.

Figure 6.9 shows the tree of object relationships. Figure 6.10 shows a graph of object

relationships.

Figure 6.9: Object and operations tree

Figure 6.10: Relationship Graph
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Scripting

7.1 Introduction

GUItar provides scripting facilities based in a Python API. Scripts have access to the

GUItar interface by means of the GUItar frame object. Scripts can be manually created

or created by GUItar’s script recorder.

Figure 7.1: GUItar script recorder controls

Figure 7.1 shows the script recorder controls. When record is pressed, the script

manager listens to events generated by GUItar and stores them in an internal format.

If record is pressed again, the script can be saved. The pause button pauses the

recording until it is pressed again. The stop button stops the recording process and

discards all recorded data. Scripts can be called from the Script Manager or can

be run on startup by using GUItar’s -s option (for example, “python Guitar.py -s

script.py”). The script recorder is still in its initial development phase and currently

only detects Add Node and Add Edge events. GUItar also provides a console that is

able to interact with the graphical interface using the same API as the scripts. The
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console is implemented using wxPython’s py.shell class.

7.2 GUItarSimpleAPI

GUItar scripts can access any GUItar object. A simplified API called GUItarSimpleAPI

was developed and provides the following methods:

• AddNode: Adds a node; can have the following optional arguments:

– coords: the two coordinates;

– id: node identifier;

– label: node label;

– style: name of the style to apply to the node;

– convertcoords: if True, diagram coordinate units are used; otherwise,

coordinates are in pixels;

– undo: if True, this action is added to the undo stack, making it possible to

undo;

– page: number of the notebook page to add the node to;

• AddEdge: Adds a transition; has two mandatory arguments: the identifier of the

source node and the identifier of the target node; also has the following optional

arguments (same meaning as in AddNode): id, label, style, undo, and page;

• ConvertToXML: Returns a GUItarXML string of the current diagram;

• Draw: Receives a GUItarXML string as argument and draws it on a new canvas;

• CreateObject: Creates a foreign object; First argument is the list of arguments

required by the Object Creator for that foreign object; Second argument is the

name of the Object Creator to use;
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• UncreateObject: converts a foreign object into a GUItar object; Requires an

Object Creator compatible with the object;

• DrawObject: Draws a foreign object; If the result of converting the object is a

GUItarXML string, this method draws it on a new notebook page; Otherwise it

just prints the result; Requires an Object Creator compatible with the object.

Figure 7.2 shows a script that generates a K5 graph, a complete graph with five vertices.

Figure 7.3 shows the result of running the script in GUItar.

for x in range (5 ) :

AddNode( id=x , l a b e l=” s ”+s t r ( x ) )

for x in range (5 ) :

for y in range (x+1 ,5) :

AddEdge(x , y , s t y l e=”Line ” )

Figure 7.2: Script Example

Figure 7.3: Result of running the script in 7.2
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7.3 Console

The GUItar console is a Python shell that also allows interaction with GUItar with the

same expressiveness as the scripts. For example, the console can be used, to convert the

currently drawn diagram into a foreign object (for example, a FAdo DFA object). The

object can be manipulated as it would be in a usual Python session. After performing

the manipulations, the object can be imported back to GUItar. Figure 7.4 shows an

Figure 7.4: Console being used to create a FAdo object

automaton being converted into a FAdo object using the console. The ConvertToXML

function is used to retrieve a string with a GUItarXML representation of the currently

drawn diagram. The CreateObject function is used to create a FAdo object. Figure

7.5 shows the object being manipulated and then drawn in GUItar. The DFA is first

minimized and then inverted. The DrawObject function is used to draw the object in

GUItar.
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Figure 7.5: Console object being drawn in GUItar
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Chapter 8

Conclusions

This work presents the GUItar application, an interactive graphical environment for

the visualization and manipulation of automata diagrams. GUItar has tools that can

simplify diagram drawing, like the assisted drawing features and semaphores. It also

provides powerful style creators that give the users the freedom of creating their own

graphical styles to fit their needs.

This work mainly focuses on the mechanisms implemented in GUItar to make it

extensible and able to interact with external tools for diagram manipulation. The

GUItarXML format is the default export format of GUItar. GUItarXML contains the

structural data of the diagram and styling information. GUItarXML is expressive

enough to be used as an intermediate format for conversions to other formats. The

FFC mechanism allows the integration of GUItar with external diagram manipulation

tools, ensuring GUItar’s modularity. Currently, part of the FAdo engine is already

integrated in GUItar via the FFC mechanism as well as the FAgoo library, that provides

some automatic diagram layout algorithms. However, the FFCs still need some user

interface improvements. The Object Library still needs to be improved to be able to

infer certain properties of diagrams (like if they are minimal or complete) from the

methods applied to them and a language must be developed to be possible to represent

the object relationships. GUItar’s scripting framework and the console, allow a large
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degree of automatization and control over GUItar that would be difficult with the

mouse alone. The script recorder, although not yet finished, provides GUItar with an

automated tool for script generation.

As for future work, the GUItar application must continue to be enhanced. More export

and import methods must be developed. Methods for exporting to SVG and FSMXML

are planned. The manual creation of FFC XML configuration files is difficult, especially

for modules or objects that contain many methods, therefore, an automated tool for

the task of generating FFC configuration files must be developed. The FFC mechanism

must also be improved with more functionality. A new kind of event-driven FFC is

planned, which would allow GUItar to respond to events originated from an external

module or object, or allow the external module to respond to GUItar events. Algorithm

animation capabilities and a visual programming environment are also planned for

GUItar.
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Pouchet, and Jacques Sakarovitch. Inside vaucanson. In Tenth Inter-

national Conference on Implementation and Application of Automata,

volume 3845 of LNCS, pages 117–128. Springer-Verlag, 2005.

[Con09a] World Wide Web Consortium. SVG specification.

http://www.w3.org/Graphics/SVG/, Access date: 29.6.2009.

[Con09b] World Wide Web Consortium.

http://www.w3.org/, Access date: 7.7.2009.

85



86 BIBLIOGRAPHY

[Con10a] World Wide Web Consortium. Document Type Definition specification.

http://www.w3.org/TR/xml/#sec-prolog-dtd, Access date: 29.6.2010.

[Con10b] World Wide Web Consortium. XML 1.0 specification.

http://www.w3.org/TR/xml/, Access date: 29.6.2010.

[Con10c] World Wide Web Consortium. XSD specification.

http://www.w3.org/XML/Schema.html, Access date: 29.6.2010.

[Con10d] World Wide Web Consortium. XSL specification.

http://www.w3.org/Style/XSL/, Access date: 29.6.2010.

[Coo07] W. R. Cook. Applescript. In The Third Conference on History of

Programming Languages (HOPL III), 2007.

[Cor09] Microsoft Corporation. Microsoft Office.

http://office.microsoft.com, Access date: 7.7.2009.

[CP88] P.T. Cox and T. Pietrzykowski. Using a pictorial representation to

combine dataflow and object-orientation in a language independent

programming mechanism. In Proceedings of the International Computer

Science Conference, 1988.

[Fou09] Python Software Foundation. Python programming language.

http://www.python.org/, Access date: 29.6.2009.

[Gas09] Paul Gastin. GasTeX: Graphs and Automata Simplified in TeX.

http://www.lsv.ens-cachan.fr/ gastin/gastex/gastex.html,

Access date: 29.6.2009.

[Gro09] Vaucanson Group. VauCanSon-G: A LaTeX package for drawing automata

and graphs.

http://www-igm.univ-mlv.fr/ lombardy/Vaucanson-G/, Access date:

29.6.2009.



BIBLIOGRAPHY 87

[Gro10a] GraphML Project Group. The GraphML file format.

http://graphml.graphdrawing.org/, Access date: 29.6.2010.

[Gro10b] TeX Users Group. PSTricks.

http://tug.org/PSTricks/main.cgi, Access date: 5.6.2010.

[Gro10c] Vaucanson Group. FSMXML: An XML format proposal for the de-

scription of weighted automata, transducers, and regular expressions.

http://www.lrde.epita.fr/cgi-bin/twiki/view/Vaucanson/XML, Ac-

cess date: 29.6.2010.

[Him] Michael Himsolt. GML: A portable graph file format. Technical report,

Universität Passau.

[IdFC06] Roberto Ierusalimschy, Luiz Henrique de Figueiredo, and Waldemar Celes.

Lua 5.1 Reference Manual. Lua.org, 2006.

[Inc09] Apple Inc. Automator.

http://www.macosxautomation.com/automator/, Access date:

7.7.2009.

[Knu84] Donald E. Knuth. The TeXBook. Addison-Wesley Professional, 1984.

[Lam94] Leslie Lamport. LaTeX: A Document Preparation System, 2nd Edition.

Addison-Wesley Professional, 1994.

[Lan09] Ruby Programming Language.

http://www.ruby-lang.org/en/, Access date: 7.7.2009.

[MMP+95] O. Matz, A. Miller, A. Potthoff, W. Thomas, and E. Valkema. Report

on the program amore. Technical report, Institut für Informatik u. Prakt.

Mathematik, CAU Kiel, 1995, 1995.

[NB92] P. Newton and J.C. Browne. The code 2.0 graphical parallel programming

language. In Proceedings of ACM International Conference on Supercom-

puting, 1992.



88 BIBLIOGRAPHY

[Ope09] OpenOffice.

http://www.openoffice.org/, Access date: 7.7.2009.

[Ous94] John K. Ousterhout. Tcl and the Tk Toolkit. Addison-Wesley, 1994.

[Pro09] FAdo Project. FAdo: Tools for formal languages manipulation.

http://www.ncc.up.pt/FAdo/, Access date: 7.7.2009.

[PyG09] PyGraphViz.

http://networkx.lanl.gov/pygraphviz/, Access date: 7.7.2009.

[Res10a] AT&T Research. dot language specification.

http://www.graphviz.org/doc/info/lang.html, Access date:

24.6.2010.

[Res10b] AT&T Research. Graphviz. http://www.graphviz.org, Access date:

24.6.2010.

[RF06] Susan H. Rodger and Thomas W. Finley. JFLAP: An interactive formal

languages and automata package. Jones & Bartlett Publishers, 2006.

[Sch03] Sven-Bodo Scholz. Single Assignment C - Efficient Support for High-

level Array Operations in a Functional Setting. Journal of Functional

Programming, 2003.

[SPbdf08] Randal L. Schwartz, Tom Phoenix, and brian d foy. Learning Perl, Fifth

Edition. O’Reilly Media, 2008.

[Tea09] The LyX Team. LyX.

http://www.lyx.org/, Access date: 7.7.2009.

[vdV03] Eric van der Vlist. Relax NG. O’Reilly Media, 2003.

[wxP09] wxPython.

http://www.wxpython.org/, Access date: 7.7.2009.



BIBLIOGRAPHY 89

[XGM09] XGMML.

http://www.cs.rpi.edu/ puninj/XGMML/, Access date: 29.6.2009.

[yG10a] yWorks GmbH. yEd graph editor.

http://www.yworks.com/en/products yed about.html, Access date:

29.6.2010.

[yG10b] yWorks GmbH. yFiles - Java graph layout and visualization li-

brary. http://www.yworks.com/en/products yfiles about.html, Ac-

cess date: 29.6.2010.


