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Abstract

Kleene algebra with tests (KAT) is an equational system for program verification,

which is the combination of Boolean algebra (BA) and Kleene algebra (KA), the al-

gebra of regular expressions. In particular, KAT subsumes the propositional fragment

of Hoare logic (PHL) which is a formal system for the specification and verification of

programs, and that is currently the base of most tools for checking program correct-

ness. Both the equational theory of KAT and the encoding of PHL in KAT are known

to be decidable.

In spite of KAT’s success in dealing with several software verification tasks, there

are very few software applications that implement KAT’s equational theory and/or

provide adequate decision procedures. In this dissertation we present a new decision

procedure for the equivalence of two KAT expressions based on the notion of partial

derivatives. We provide some examples of proving the equivalence of two distinct

programs using the procedure defined. We also introduce the notion of derivative

modulo particular sets of equations. With this we extend the previous procedure for

deciding PHL. We present some experimental results, including the proof of correction

and the proof of safety of a program.
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Chapter 1

Introduction

The aim of this dissertation is to study, develop and implement a decision algorithm

to test the equivalence of two KAT (Kleene algebra with tests) expressions. KAT

is an equational algebraic system for reasoning about programs. In particular, KAT

subsumes the propositional fragment of Hoare logic (PHL), which is a formal system

for the specification and verification of programs. Testing if two KAT expressions

are equivalent is tantamount to prove that two programs are equivalent or that a

Hoare triple is valid. Deciding the equivalence of KAT expressions is as hard as

deciding the equivalence of regular expressions, i.e. PSPACE-complete [9]. In spite

of KAT’s success in dealing with several software verification tasks, there are very

few software applications that implement KAT’s equational theory and/or provide

adequate decision procedures. Most of them are within (interactive) theorem provers

or part of model checking systems. See [1, 13, 8] for some examples.

We start by approaching the decision problem for regular expressions, to which we

dedicate Chapter 2. This chapter should be viewed as an introduction to the decision

problem we wish to solve. Here we reimplement the algorithm defined by Almeida,

Moreira and Reis [3]. The problem of testing the equivalence of two regular expressions

is usually solved using automata. A common approach is to transform each regular

expression into an equivalent nondeterministic finite automaton (NFA), transforming

both automata to deterministic ones (DFA) and then either using a DFA minimization

algorithm (such as Hopcroft’s [15]) to make the two automata minimal and test if they

are isomorphic, or directly applying an equivalence test (such as the almost linear

algorithm presented by Hopcroft and Karp [14]) on the deterministic automata. One

can also prove the equivalence of two regular expressions in an axiomatic fashion [16].

However, this method is not easily automatized. The approach we follow in Chapter 2

8



CHAPTER 1. INTRODUCTION 9

consists in developing a functional approach to the Antimirov and Mosses rewrite

system for equivalence of regular expressions [6]. This approach is argued to lead to

a better average-case algorithm than those based on the comparison of the equivalent

deterministic finite automata, as some experimental results suggest [2].

Similarly to what happens with regular expressions, the equivalence of KAT ex-

pressions may be decided using a deductive system and a set of axioms [17] or by

minimization of deterministic automata [19]. In Chapter 3 we present a different

procedure based on partial derivatives, which is an extension of the procedure for

regular expressions in Chapter 2. Kozen [21] extended the notion of Brzozowski

derivatives to KAT to prove the existence of a coinductive equivalence procedure.

Our approach follows closely that work, but we explicitly define the notion of partial

derivatives for KAT, and we effectively provide a (inductive) decision procedure.

In Chapter 4 we extend the procedure from Chapter 3 to prove the correctness of

programs and to obtain other equivalence proofs in the presence of assumptions. We

present some examples, including examples of proof of correctness of programs and an

example of proof of safety of a program.

Some of the results and demonstrations in this dissertation are present in (Almeida,

Broda and Moreira, 2012), cf. [4].



Chapter 2

Equivalence of Regular Expressions

2.1 Introduction

The problem of deciding if two regular expressions are equivalent is usually solved

using automata. However, some experimental results indicate that a better average-

case execution time is achieved if one compares regular expressions directly [3]. In this

chapter we follow Almeida, Moreira and Reis, who developed a functional approach

to the Antimirov and Mosses rewrite system [6].

We begin with the definition of a Kleene Algebra (KA) and of the language of regular

expressions in Section 2.2. In Section 2.3 we describe the decision procedure to test

the equivalence of two regular expressions, addressing some essential concepts such

as Brzozowski’s derivatives and partial derivatives. We close this chapter with the

pseudo-code for all relevant implementations (Section 2.4).

2.2 Kleene Algebra and Regular Expressions

A Kleene algebra is an algebraic structure

K = (K,+, ·, ∗, 0, 1)

10



CHAPTER 2. EQUIVALENCE OF REGULAR EXPRESSIONS 11

satisfying the axioms (2.1-2.15) below.

r1 + (r2 + r3) = (r1 + r2) + r3 (2.1)

r1 + r2 = r2 + r1 (2.2)

r + 0 = r (2.3)

r + r = r (2.4)

r1(r2r3) = (r1r2)r3 (2.5)

1r = r (2.6)

r1 = r (2.7)

r1(r2 + r3) = r1r2 + r1r3 (2.8)

(r1 + r2)r3 = r1r3 + r2r3 (2.9)

0r = 0 (2.10)

r0 = 0 (2.11)

1 + rr∗ = r∗ (2.12)

1 + r∗r = r∗ (2.13)

r1 + r2r3 ≤ r3 → r2
∗r1 ≤ r3 (2.14)

r1 + r2r3 ≤ r2 → r1r3
∗ ≤ r2 (2.15)

In the above, ≤ refers to the natural partial order:

r1 ≤ r2 iff r1 + r2 = r2 .

The axioms (2.1-2.11) say that the structure is an idempotent semiring under +, ·, 0

and 1 and the remaining axioms (2.12-2.15) say that ∗ behaves like the Kleene star

operator of formal language theory.

Let Σ = {p1, . . . , pk}, with k ≥ 1, be an alphabet. A word w over Σ is any finite

sequence of letters. The empty word is denoted by 1. Let Σ∗ be the set of all words

over Σ. A language over Σ is a subset of Σ∗. The left quotient of a language L ⊆ Σ∗

by a word w ∈ Σ∗ is the language w−1L = {x ∈ Σ∗ | wx ∈ L}. The set of regular

expressions over Σ, RE, is given by the definition below.

Definition 2.1. The abstract syntax of a regular expression over an alphabet Σ is

given by the following grammar:

r1, r2 ∈ RE := 0 | 1 | p ∈ Σ | (r1 + r2) | (r1 · r2) | (r1
∗)

where the operator · (concatenation) and the unnecessary parentheses are often omit-

ted.
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Definition 2.2. The language defined by a regular expression r is a set of words

L ⊆ Σ∗ inductively defined as follows:

L(0) = ∅
L(1) = {1}
L(p) = {p}

L(r1 + r2) = L(r1) ∪ L(r2)

L(r1 · r2) = L(r1) · L(r2)

L(r∗) = ∪
n∈N

L(r)n

where L1 · L2 = {u · v | u ∈ L1 ∧ v ∈ L2 }, L0 = {1} and Ln+1 = L · Ln.

Based on this notion the equivalence of regular expressions is defined.

Definition 2.3. Two regular expressions r1,r2 are equivalent, and we write r1 = r2,

if and only if L(r1) = L(r2).

Let ACI be the set of axioms that includes (2.1), (2.2) and (2.4). We say that ACIA

is the set that contains the ACI axioms plus (2.5). In this chapter, the expressions of

RE are always considered modulo the ACIA axioms and the axioms (2.6), (2.7), (2.10)

and (2.11).

2.3 Deciding Equivalence in KA

The equivalence of regular expressions may be proven axiomatically, since Kozen has

shown that the axioms set (2.1)–(2.15), provided with an usual first-order deduction

system, constitutes a complete proof system for equivalence between regular expres-

sions [16]. However, without an automatic proof system this is not very handy.

This section describes the decision algorithm presented by Almeida et. al [3], which

addresses the equivalence via computation of the partial derivatives of the expressions.

The algorithm is based on the rewrite system of Antimirov and Mosses [6]. Before

describing the partial derivatives method, let us recall the classical Brzozowski’s

derivatives.



CHAPTER 2. EQUIVALENCE OF REGULAR EXPRESSIONS 13

2.3.1 Brzozowski’s Derivatives

The definition of the Brzozowski’s derivatives depends on the notion of the empty

word property. We say that a regular expression r has the empty word property if the

language it defines contains the empty word, i. e., if 1 ∈ L(r). To capture this notion

the following function is defined:

ε(r) =

{
1 , if r has the empty word property

0 , otherwise.

One may define ε inductively as follows:

ε : RE→{0, 1}
ε(1) = 1

ε(0) = 0

ε(p) = 0

ε(r1 + r2) = ε(r1) + ε(r2)

ε(r1 · r2) = ε(r1)ε(r2)

ε(r∗) = 1

The following function computes Brzozowski’s derivative of a regular expression r with

respect to a symbol p.

Dp : RE → RE

Dp(0) = 0

Dp(1) = 0

Dp(p) = 1

Dp1(p2) = 0 for p1 6= p2

Dp(r1 + r2) = Dp(r1) +Dp(r2)

Dp(r1r2) =

{
Dp(r1)r2 +Dp(r2) if ε(r1) = 1

Dp(r1)r2 otherwise

Dp(r
∗) = Dp(r)r

∗

These rules are extended to words w ∈ Σ∗ as follows:

D̂w : RE → RE

D̂1(r) = r

D̂wp(r) = Dp(D̂w(r))
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Brzozowski proved that, considering regular expressions modulo the ACI axioms and

the axioms (2.6), (2.7), (2.10) and (2.11), for every regular expression r, the set of

derivatives of r with respect to any word is finite. This is necessary to ensure the

termination of the algorithm in Section 2.3.3.

2.3.2 Partial Derivatives

Introduced by Antimirov, a partial derivative of a regular expression is regarded as

a non-deterministic variation of the Brzozowski’s derivative [5]. Let r be a regular

expression and p a symbol of Σ. The set of partial derivatives of r with respect to p

is defined as follows:

∂p : RE → P(RE)

∂p(0) = ∅
∂p(1) = ∅
∂p(p) = {1}

∂p1(p2) = ∅ for p1 6= p2

∂p(r1 + r2) = ∂p(r1) ∪ ∂p(r2)

∂p(r1r2) =

{
∂p(r1) · r2 ∪ ∂p(r2) if ε(r1) = 1

∂p(r1) · r2 otherwise.

∂p(r
∗) = ∂p(r) · r∗

where for Γ ⊆ RE and r ∈ RE, Γ · r = { r′r | r′ ∈ Γ } if r 6= 0 and r 6= 1, and Γ · 0 = ∅
and Γ · 1 = Γ, otherwise.

The notion of partial derivative of a regular expression r can be extended to words

u ∈ Σ∗ as follows:

∂̂1(r) = {r} ∂̂up(r) = ∪
x∈∂̂u(r)

∂p(x)

Let |r|Σ be the number of occurrences of symbols of Σ in the regular expression r. It

is known that for any expression r, we have |PD(r)| ≤ |r|Σ, where PD(r) is the set

of all syntactically different partial derivatives of r [5].
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2.3.3 A Decision Procedure for Regular Expressions Equiva-

lence

We now describe the decision algorithm introduced by Almeida et. al [3], together

with all necessary functions. However, the algorithm presented here has a slight

modification: every sum is represented by a set containing all subexpressions involved

in the operation, rather than by a single regular expression. Consequently, several

functions had to be rewritten to accommodate this change (see below). The pseudo-

code for all relevant implementations is available in Section 2.4.

As mentioned before, this algorithm tests the equivalence of expressions via compu-

tation of the sets of partial derivatives of the given expressions. This process relies

on the linearization of regular expressions. The term linearization is borrowed from

Antimirov and Mosses [3]. They defined a linear expression to be a regular expression

r of the form r = p1r1 + p2r2 + . . .+ pnrn, where pi ∈ Σ and ri ∈ RE. The symbols pi

are said to be the heads of r. The set of all heads of r is denoted by hd(r).

Linear expressions are represented by sets. Let Σ×RE be the set of pairs over an alpha-

bet Σ. A linear expression of the form p1r1+. . .+pnrn can be represented by a finite set

of pairs l ∈ P(Σ× RE), named linear form, such that l = {(p1, r1), . . . , (pn, rn)}. The

concatenation of l with an expression r′ is defined by l·r′ = {(p1, r1·r′), . . . , (pn, rn·r′)}.
Linearization is thus the process of converting a regular expression to a linear form

and is given by the following function:

f : RE→ P(Σ× RE)

f(0) = ∅
f(1) = ∅
f(p) = {(p, 1)}

f(r1 + r2) = f(r1) ∪ f(r2)

f(pr) = {(p, r)}
f(r1

∗ r2) = f(r1) · r1
∗ r2 ∪ f(r2)

f((r1 + r2)r3) = f(r1 r3) ∪ f(r2 r3)

f(r∗) = f(r) · r∗

The function f divides the case of concatenation in three different cases in order to

avoid the ε test. Since regular expressions are considered modulo ACIA and the axioms

(2.6), (2.7), (2.10) and (2.11), every concatenation is necessarily of one of these cases.
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The linearization of regular expressions is important to guarantee efficiency, since a

single call to f(r) computes all partial derivatives of r with respect to all symbols in

hd(r).

It is easy to see that the set of partial derivatives of r by p is the set of all r′ such that

(p, r′) ∈ f(r). This notion is formally given by the function

derp : RE→ P(RE)

derp(r) = { r′ | (p, r′) ∈ f(r) }.

To define the decision procedure we need to consider the functions derp, hd and ε from

Section 2.2 applied to sets of regular expressions.

ε : P(RE)→ RE

ε(R) = 1 iff ∃r∈R : ε(r) = 1

The functions derp and hd are extended as follows:

derp : P(RE)→ P(RE)

derp(R) = ∪
r∈R

derp(r).

and

hd : P(RE)→ P(Σ)

hd(R) = ∪
r∈R

hd(r).

Then, the function derivatives is defined so that given two (sets of) regular expressions

R1 and R2 it computes all pairs of sets of partial derivatives with respect to each

symbol p of the alphabet of expressions in R1 and R2, respectively. For efficiency

reasons it is enough to consider only the symbols at the heads of the expressions.

derivatives : P(RE)2 → P(P(RE)2)

derivatives(R1, R2) = { (derp(R1), derp(R2)) | p ∈ hd(R1 ∪R2) }

The function equiv returns True if and only if, given two (sets of) expressions r1 and r2,

we have r1 = r2. For two sets R1 and R2 the function returns True if ε(R1) = ε(R2)

and if, for every p, the partial derivative of R1 w.r.t. p is equivalent to the partial

derivative of R2 w.r.t. p.

equiv : P(P(RE)2)× P(P(RE)2)→ {True,False}
equiv(∅, H) = True

equiv({(R1, R2)} ∪ S,H) =

{
False if ε(R1) 6= ε(R2)

equiv(S ∪ S ′, H ′) otherwise,



CHAPTER 2. EQUIVALENCE OF REGULAR EXPRESSIONS 17

where

S ′ = {d | d ∈ derivatives(R1, R2) and d /∈ H ′} and H ′ = {(R1, R2)} ∪H.

The function equiv accepts two sets S and H as arguments. At each step, S contains

the pairs of (sets of) expressions that still need to be checked for equivalence, while

H contains the pairs of (sets of) expressions that have already been tested. The use

of the set H is important to ensure that the derivatives of the same pair of (sets of)

expressions are not computed more than once, and thus prevent a possibly infinite

loop.

To compare two expressions r1 and r2, the initial call must be equiv({({r1}, {r2})}, ∅).
At each step the function takes a pair (R1, R2) and verifies if ε(R1) = ε(R2). If the

test fails, then r1 6= r2 and the function halts, returning False. If the test succeeds,

then the function adds (R1, R2) to H and then replaces in S the pair (R1, R2) by the

pairs of its corresponding derivatives, provided that these are not in H already. The

return value of equiv will be the result of recursively calling equiv with the new sets

as arguments. If the function ever receives ∅ as S, then the initial call ensures that

r1 = r2, since all derivatives have been successfully tested, and the function returns

True.

The proof of correctness and termination of the algorithm can be found in [3].

2.4 Pseudo-code of Relevant Implementations

In this section we present the pseudo-code for all relevant functions presented in this

chapter and for the representation of regular expressions. The language chosen for

implementation was OCaml [25].

2.4.1 Representation of Regular Expressions

The data structure we used to represent regular expressions is defined as follows:

type re = Zero

| One

| Symb of int

| Or of (re set * bool)

| Conc of re list

| Star of re
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Every symbol pi of Σ is represented by its respective index i.

We represent sums by structures (set,flag), where set contains the expressions involved

in the operation and flag indicates if any of the expressions in set has the empty word

property. The value of this flag is defined during the parsing of the expressions. We

regard this as an optimization to facilitate the test ε(r1) = ε(r2) in the function equiv

(see Section 2.3.3). Concatenations are kept in lists of expressions.

2.4.2 Implementation of the Decision Procedure

In this subsection we present the pseudo-code for all relevant functions involved in the

decision procedure. There is a slight difference between the implementation and the

formal definition from Section 2.3.3, concerning how the sets of partial derivatives are

computed. Here we use an additional function, called g, that first invokes the function

f to calculate the linear form of an expression r but then rearranges the computed set

so that all expressions with common heads are kept in the same pair. This corresponds

to the determinization process of regular expressions [3]. Thus, when applied to an

expression r, instead of building a set containing all expressions r′ such that r′ ∈ f(r),

the function derp simply returns the set s such that (p, s) ∈ g(r), or Zero if that set

does not exist.

We begin with the pseudo-code for the function f, which converts an expression to a

linear form.

let f exp = match exp with

Zero −→ ∅
| One −→ ∅
| Symb p −→ {(p, One)}
| Or (set, f lag) −→ ∪ (map f (flattenConcats (fromSetToList set)))

| Star exp′ −→ map (concat exp) (f (flattenConcats exp′))

| Conc (Symb p) :: rs −→ {(p, buildConc rs)}
| Conc (Or (set, f lag)) :: rs −→ ∪ (map f (flattenConcats concatenations))

where

concatenations ← map (concat′ (buildConc rs)) (fromSetToList set)

| Conc (Star exp′ ) :: rs −→ (map (concat exp) (f (flattenConcats exp′))) ∪
(f (buildConc rs))

The function flattenConcats inspects expressions, recursively looking for concatena-

tion lists inside concatenation lists and flattening them, so that all expressions involved



CHAPTER 2. EQUIVALENCE OF REGULAR EXPRESSIONS 19

in the concatenation are at the same level.

The function concat accepts an expression exp and a pair (p, exp′) as arguments and

returns (p, exp · exp′).

The function buildConc constructs a concatenation of expressions from a list rs given

as argument, provided there are at least two expressions in the list. If rs contains only

one expression, then buildConc simply returns that element as the correct regular

expression instead of constructing a concatenation.

The function concat′ receives two expressions as arguments and concatenates the first

one to the end of the second one.

The following is the pseudo-code for the function g.

let g exp = fromListToSet [ (p, buildOr (g′ p lr)) | (p, ) ← lr ]

where

lr ← fromSetToList (f r)

and

let g′ p ls = [r | (p′, r) ← ls && p = p′ ]

As the name suggests, buildOr is a function that receives a list of expressions and builds

an Or with (set,flag), where set contains the elements in the list and flag indicates

whether there is at least one element in set that has the empty word property. But

if the list contains only one expression, then buildOr simply returns that expression

and no Or construct is created.

Now we present the pseudo-code for the function derivatives, which uses a comprehen-

sion list to compute the sets of all partial derivatives of the expressions.

let derivatives set1 set2 = [(p, derp ls1, derp ls2) | (p, )← (append ls1 ls2)]

where

ls1 ← fromSetToList set1

ls2 ← fromSetToList set2

and

let derp lr = match lr with

(p′, e) :: ls −→ if p′ = p then e else derp ls

| [ ] −→ Zero

Finally we present the pseudo-code for the function equiv. The function uses an aux-
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iliary function hasEmptyWordProp that, as the name suggests, verifies if a given ex-

pression has the empty word property.

let equiv S H =

if S=∅ then

(True,H)

else if (hasEmptyWordProp r1) != (hasEmptyWordProp r2) then

(False,H)

where

(r1, r2) ← S.firstElement

else

equiv (S \ (r1, r2) ∪ S ′) H ′

where

H ′ ← H ∪ (r1, r2)

S ′← fromListToSet [(der1, der2) | ( , der1, der2)← derivatives (g r1) (g r2)

&& (der1, der2) /∈ H ′]
end if



Chapter 3

Equivalence of KAT Expressions

3.1 Introduction

In this section we present a decision algorithm to test equivalence of expressions

in KAT. This decision procedure is an extension of the algorithm described in Sec-

tion 2.3.3 for deciding equivalence of regular expressions, that does not use the ax-

iomatic system. Equivalence of expressions is decided through an iterated process of

testing the equivalence of their partial derivatives.

We begin this chapter with the definition of a Kleene algebra with tests (KAT) in Sec-

tion 3.2. In Section 3.2.1 we define the syntax and the semantics of a KAT expression

and define the set of guarded strings denoted by a KAT expression. In Section 3.3.1

we present a definition of the derivative of a set of guarded strings with respect to a

symbol. In Section 3.3.2 we give the definitions for the derivatives of an expression

with respect to a symbol and with respect to a sequence of symbols. In Section 3.3.3

we introduce a decision algorithm to test the equivalence of two expressions. The

pseudo-code for all relevant implementations is available in Section 3.4. This chapter

closes with a presentation of results of several tests performed with the algorithm.

3.2 Kleene Algebra with Tests

A Kleene algebra with tests (KAT) is a Kleene algebra with an embedded Boolean

subalgebra

K = (K,B,+, ·, ∗, 0, 1,̄ )

21
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where ¯ denotes negation and is an unary operator defined only on B, such that

• (K,+, ·, ∗, 0, 1) is a Kleene algebra

• (B,+, ·,̄ , 0, 1) is a Boolean algebra (BA)

• (B,+, ·, 0, 1) is a subalgebra of (K,+, ·, 0, 1)

Thus, a KAT is an algebraic structure that satisfies the KA axioms (2.1)–(2.15) (see

Chapter 2) and the axioms for a Boolean algebra.

3.2.1 KAT Expressions and Guarded Strings

Let Σ = {p1, . . . , pk} be a non-empty set of (primitive) action symbols and T =

{t1, . . . , tl} be a non-empty set of (primitive) test symbols. The set of boolean expres-

sions over T is denoted by Bexp and the set of KAT expressions by Exp, with elements

b1, b2, . . . and e1, e2, . . ., respectively. The abstract syntax of KAT expressions over an

alphabet Σ ∪ T is given by the following grammar,

b ∈ Bexp := 0 | 1 | t ∈ T | (b) | (b1 + b2) | (b1 · b2)

e ∈ Exp := p ∈ Σ | b ∈ Bexp | (e1 + e2) | (e1 · e2) | (e1
∗).

As usual, we often omit the operator · in concatenations and in conjunctions, as well

as the unnecessary parentheses. The standard language-theoretic models of KAT are

regular sets of guarded strings over alphabets Σ and T [19]. Let T = {t | t ∈ T} and

let At be the set of atoms, i. e., of all truth assignments to T,

At = {b1 . . . bl | bi is either ti or ti for 1 ≤ i ≤ l and ti ∈ T}.

We reserve the symbols α1, α2, . . . for atoms. For an atom α and a BA expression b,

we write α ≤ b if α→ b is a propositional tautology. For every atom α and every test

t, we either have α ≤ t or α ≤ t.

Then the set of guarded strings over Σ and T is

GS = (At · Σ)∗ · At.

Guarded strings will be denoted by x, y, . . .. For x = α1p1α2p2 · · · pn−1αn ∈ GS,

where n ≥ 1, αi ∈ At and pi ∈ Σ, we define first(x) = α1 and last(x) = αn. If

last(x) = first(y), then the fusion product xy is defined by concatenating x and y,
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omitting the extra occurrence of the common atom. If last(x) 6= first(y), then xy does

not exist. For sets X, Y ⊆ GS of guarded strings, the set X � Y defines the set of all

xy such that x ∈ X and y ∈ Y . We have that X0 = At and Xn+1 = X �Xn, for n ≥ 0.

Every KAT expression e ∈ Exp denotes a set of guarded strings, GS(e) ⊆ GS. Given a

KAT expression e we define GS(e) inductively as follows,

GS(p) = {α1pα2 | α1, α2 ∈ At } p ∈ Σ (3.1)

GS(b) = {α ∈ At | α ≤ b } b ∈ Bexp (3.2)

GS(e1 + e2) = GS(e1) ∪ GS(e2) (3.3)

GS(e1e2) = GS(e1) � GS(e2) (3.4)

GS(e∗) = ∪
n≥0

GS(e)n. (3.5)

Based on this notion the equivalence of two KAT expressions is defined.

Definition 3.1. Two KAT expressions e1,e2 are equivalent, and we write e1 = e2, if

and only if GS(e1) = GS(e2).

Kozen has shown that one has e1 = e2 modulo the KAT axioms if and only if they are

equivalent [22]. Two sets of KAT expressions E,F ⊆ Exp are equivalent if and only if

GS(E) = GS(F ), where

GS(E) = ∪
e∈E

GS(e). (3.6)

3.3 Deciding Equivalence in KAT

3.3.1 Derivatives

Given a set of guarded strings R, its derivative with respect to αp ∈ At · Σ, denoted

by Dαp(R), is defined as being the left quotient of R by αp. As such, one considers

the following derivative functions,

D : At · Σ→ P(GS)→ P(GS) E : At→ P(GS)→ {0, 1}

consisting of components,

Dαp : P(GS)→ P(GS) Eα : P(GS)→ {0, 1}

defined as follows. For α ∈ At, p ∈ Σ and R ⊆ GS,

Dαp(R) = { y ∈ GS | αpy ∈ R } and Eα(R) =

{
1 if α ∈ R
0 otherwise.
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3.3.2 Partial Derivatives

Given α ∈ At, p ∈ Σ and e ∈ Exp, the set ∆αp(e) of partial derivatives of e with

respect to αp is inductively defined as follows,

∆αp : Exp → P(Exp)

∆αp(p
′) =

{
{1} if p = p′

∅ otherwise
(3.7)

∆αp(b) = ∅ (3.8)

∆αp(e1 + e2) = ∆αp(e1) ∪∆αp(e2) (3.9)

∆αp(e1e2) =

{
∆αp(e1) · e2 if Eα(e1) = 0

∆αp(e1) · e2 ∪∆αp(e2) if Eα(e1) = 1
(3.10)

∆αp(e
∗) = ∆αp(e) · e∗, (3.11)

where for Γ ⊆ Exp and e ∈ Exp, Γ · e = { e′e | e′ ∈ Γ } if e 6= 0 and e 6= 1, and Γ · 0 = ∅
and Γ · 1 = Γ, otherwise. We note that ∆αp(e) corresponds to an equivalence class

of Dαp(e) (the syntactic Brzozowski derivative, defined in [21]) modulo axioms (2.1)–

(2.4), (2.6), (2.7) and (2.9)–(2.11). Kozen calls such a structure a right presemiring.

The following syntactic definition of Eα : At → Exp → {0, 1} simply evaluates an

expression with respect to the truth assignment α [21].

Eα(p) = 0

Eα(b) =

{
1 if α ≤ b

0 otherwise

Eα(e1 + e2) = Eα(e1) + Eα(e2)

Eα(e1e2) = Eα(e1)Eα(e2)

Eα(e∗) = 1.

One can show that,

Eα(e) =

{
1 if α ≤ e

0 if α 6≤ e
=

{
1 if α ∈ GS(e)

0 if α /∈ GS(e).

The next proposition shows that for all KAT expressions e the set of guarded strings

corresponding to the set of partial derivatives of e w.r.t. αp ∈ At · Σ is the derivative

of GS(e) by αp.

Proposition 3.1. For all KAT expressions e, all atoms α and all symbols p,

Dαp(GS(e)) = GS(∆αp(e)).

Proof. The proof is obtained by induction on the structure of e. The base cases,

e ∈ Bexp or e ∈ Σ are trivial.



CHAPTER 3. EQUIVALENCE OF KAT EXPRESSIONS 25

• If e = e1 + e2 then

Dαp(GS(e)) = Dαp(GS(e1)) ∪ Dαp(GS(e2)).

applying the induction hypotheses

= (GS(∆αp(e1))) ∪ (GS(∆αp(e2)))

= GS(∆αp(e1) ∪∆αp(e2))

applying (3.9)

= GS(∆αp(e1 + e2))

= GS(∆αp(e)).

• If e = e1e2 then

Dαp(GS(e)) = Dαp(GS(e1) � GS(e2))

=

{
Dαp(GS(e1)) � GS(e2) if α /∈ GS(e1)

Dαp(GS(e1)) � GS(e2) ∪ Dαp(GS(e2)) if α ∈ GS(e1)

applying the induction hypothesis

=

{
(∪e′∈∆αp(e1)GS(e′)) � GS(e2) if Eα(e1) = 0

(∪e′∈∆αp(e1)GS(e′)) � GS(e2) ∪ GS(∆αp(e2)) if Eα(e1) = 1

applying (3.4)

=

{
∪e′∈∆αp(e1)GS(e′e2) if Eα(e1) = 0

(∪e′∈∆αp(e1)GS(e′e2)) ∪ GS(∆αp(e2)) if Eα(e1) = 1

applying (3.6)

=

{
GS(∆αp(e1) · e2) if Eα(e1) = 0

GS(∆αp(e1) · e2) ∪ GS(∆αp(e2)) if Eα(e1) = 1

applying (3.10)

= GS(∆αp(e1e2)) = GS(∆αp(e)).
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• If e = e1
∗ then

Dαp(GS(e)) = Dαp( ∪
n≥0

GS(e1)n)

applying (3.4)

= Dαp( ∪
n≥0

GS(en1 ))

= ∪
n≥0

Dαp(GS(en1 ))

applying the induction hypothesis

= ∪
n≥0

GS(∆αp(e
n
1 ))

= GS(∆αp(e1)) ∪ GS(∆αp(e1) · e1) ∪ GS(∆αp(e1) · e2
1) ∪ . . .

applying (3.4)

= ∪
n≥0

GS(∆αp(e1)) � GS(en1 )

applying (3.5)

= GS(∆αp(e1)) � GS(e1
∗)

applying (3.4)

= GS(∆αp(e1) · e1
∗)

applying (3.11)

= GS(∆αp(e1
∗)) = GS(∆αp(e))

where en = en−1e and e0 = 1.

The notion of partial derivative of an expression with respect to αp ∈ At · Σ can be

extended to words x ∈ (At · Σ)∗, as follows,

∆̂ : (At · Σ)∗ → Exp→ P(Exp)

∆̂1(e) = {e}
∆̂wαp(e) = ∆αp(∆̂w(e)).

Here, the notion of (partial) derivative has been extended to sets of KAT expressions

E ⊆ Exp, by defining, as expected, ∆αp(E) = ∪e∈E∆αp(e), for αp ∈ At·Σ. Analogously,

we also consider ∆̂x(E) and ∆̂R(E), for x ∈ (At · Σ)∗ and R ⊆ (At · Σ)∗.

The fact that for any e ∈ Exp the set ∆̂(At·Σ)∗(e) is finite ensures the termination of

the decision procedure presented in the next section.
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3.3.3 A Decision Procedure for KAT Expressions Equivalence

In this section we describe an algorithm for testing the equivalence of two KAT

expressions using partial derivatives. This algorithm is an extension of the algorithm

presented in Section 2.3.3 for regular expressions. The pseudo-code for all relevant

implementations can be found in Section 3.4.

Analogously to what we did in the previous chapter, we define the function f that

given an expression e computes the set of pairs (αp, e′), such that for each αp ∈ At ·Σ,

the corresponding e′ is a partial derivative of e with respect to αp.

f : Exp → P(At · Σ× Exp)

f(p) = { (αp, 1) | α ∈ At }
f(b) = ∅

f(e1 + e2) = f(e1) ∪ f(e2)

f(e1e2) = f(e1) · e2 ∪ { (αp, e) ∈ f(e2) | Eα(e1) = 1 }
f(e∗) = f(e) · e∗

where, as before, Γ · e = { (αp, e′e) | (αp, e′) ∈ Γ } if e 6= 0 and e 6= 1, and Γ · 0 = ∅
and Γ · 1 = Γ, otherwise. Also, we denote by hd(f(e)) = {αp | (αp, e′) ∈ f(e)} the set

of heads (i. e. first components of each element) of f(e). The function derαp, defined

in (3.12), collects all the partial derivatives of an expression e w.r.t. αp, that were

computed by function f.

derαp(e) = {e′ | (αp, e′) ∈ f(e)} (3.12)

Proposition 3.2. For all e, e′ ∈ Exp, α ∈ At and p ∈ Σ one has, derαp(e) = ∆αp(e).

Proof. We proceed by structural induction. The proof splits into cases according to

the structure of e. The cases when e ∈ Σ or e ∈ Bexp follow trivially from the

definitions of the derivative functions.
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• If e = e1 + e2 then

derαp(e) = { e′ | (αp, e′) ∈ f(e1) ∪ f(e2) }
= { e′ | (αp, e′) ∈ f(e1) } ∪ { e′ | (αp, e′) ∈ f(e2) }

applying (3.12)

= derαp(e1) ∪ derαp(e2)

applying the induction hypotheses

= ∆αp(e1) ∪∆αp(e2)

applying (3.9)

= ∆αp(e1 + e2) = ∆αp(e).

• If e = e1e2 then

derαp(e) =

{
{ e′ | (αp, e′) ∈ f(e1) · e2 } if Eα(e1) = 0

{ e′ | (αp, e′) ∈ f(e1) · e2 } ∪ { e′ | (αp, e′) ∈ f(e2) } if Eα(e1) = 1

applying (3.12)

=

{
derαp(e1) · e2 if Eα(e1) = 0

derαp(e1) · e2 ∪ derαp(e2) if Eα(e1) = 1

applying the induction hypotheses

=

{
∆αp(e1) · e2 if Eα(e1) = 0

∆αp(e1) · e2 ∪∆αp(e2) if Eα(e1) = 1

applying (3.10)

= ∆αp(e1e2) = ∆αp(e).

• If e = e1
∗ then

derαp(e) = { e′ | (αp, e′) ∈ f(e1) · e1
∗ }

= { e′ | (αp, e′) ∈ f(e1) } · e1
∗

applying (3.12)

= derαp(e1) · e1
∗

applying the induction hypotheses

= ∆αp(e1) · e1
∗

applying (3.11)

= ∆αp(e1
∗) = ∆αp(e).

Thus, we have proved that for every KAT expression e the two functions derαp and

∆αp produce the same derivatives, for the same αp.
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Similarly to what we did in Section 2.3.3, to define the decision procedure we need to

consider the functions hd and derαp applied to sets of expressions. The functions derαp

and hd are extended as follows:

derαp : P(Exp)→ P(Exp)

derαp(E) = ∪
e∈E

derαp(e)

and

hd : P(Exp)→ P(At · Σ)

hd(E) = ∪
e∈E

hd(e).

Then, we define the function derivatives that given two sets of KAT expressions E1

and E2 computes all pairs of sets of partial derivatives of E1 and E2 w.r.t. αp ∈ At ·Σ,

respectively.

derivatives : P(Exp)2 → P(P(Exp)2)

derivatives(E1, E2) = {(derαp(E1), derαp(E2)) | αp ∈ hd(E1 ∪ E2)}

Finally, we present the function equiv that tests if two (sets of) KAT expressions are

equivalent. For two sets of KAT expressions E1 and E2 the function returns True if,

for every α, Eα(E1) = Eα(E2) and if, for every αp, the partial derivative of E1 w.r.t. αp

is equivalent to the partial derivative of E2 w.r.t. αp.

equiv : P(P(Exp)2)× P(P(Exp)2)→ {True,False}
equiv(∅, H) = True

equiv({(E1, E2)} ∪ S,H) =

{
False if ∃α ∈ At : Eα(E1) 6= Eα(E2)

equiv(S ∪ S ′, H ′) otherwise

where

S ′ = {d | d ∈ derivatives(E1, E2) and d /∈ H ′} and H ′ = {(E1, E2)} ∪H.

The function equiv accepts two sets S and H as arguments. At each step, S contains

the pairs of (sets of) expressions that still need to be tested for equivalence, while

H contains the pairs of (sets of) expressions that have already been tested. The use

of the set H is important to ensure that the derivatives of the same pair of (sets of)

expressions are not computed more than once, and thus prevent a possibly infinite

loop.
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To compare two expressions e1 and e2, the initial call must be equiv({({e1}, {e2})}, ∅).
At each step the function takes a pair (E1, E2) and verifies if there exists an atom α

such that Eα(E1) 6= Eα(E2). If such an atom exists, then e1 6= e2 and the function

halts, returning False. If no such atom exists, then the function adds (E1, E2) to H

and then replaces in S the pair (E1, E2) by the pairs of its corresponding derivatives,

provided that these are not in H already. The return value of equiv will be the result of

recursively calling equiv with the new sets as arguments. If the function ever receives

∅ as S, then the initial call ensures that e1 = e2, since all derivatives have been

successfully tested, and the function returns True.

Next, we will show that the function equiv terminates. For every KAT expression e,

we define the set PD(e) and show that, for every KAT expression e, the set of partial

derivatives of e is a subset of PD(e), which on the other hand is clearly finite. The set

PD(e) coincides with the closure of a KAT expression e, defined by Kozen, and is also

similar to Mirkin’s prebases [24].

PD(b) = {b}
PD(p) = {p, 1}

PD(e1 + e2) = {e1 + e2} ∪ PD(e1) ∪ PD(e2)

PD(e1e2) = {e1e2} ∪ PD(e1) · e2 ∪ PD(e2)

PD(e∗) = {e∗} ∪ PD(e) · e∗.

Lemma 3.1. Let e, e′ ∈ Exp, α ∈ At and p ∈ Σ. If e′ ∈ PD(e), then ∆αp(e
′) ⊆ PD(e).

Proof. The proof is obtained by induction on the structure of e. We exemplify with

the case e = e1e2. Let e′ ∈ PD(e1e2) = {e1e2} ∪ PD(e1) · e2 ∪ PD(e2).

• If e′ ∈ {e1e2}, then ∆αp(e
′) ⊆ ∆αp(e1) · e2 ∪ ∆αp(e2). But e1 ∈ PD(e1) and

e2 ∈ PD(e2), so applying the induction hypothesis twice, we obtain ∆αp(e
′) ⊆

PD(e1) · e2 ∪ PD(e2) ⊆ PD(e).

• If e′ ∈ PD(e1) · e2, then e′ = e′1e2 such that e′1 ∈ PD(e1). So ∆αp(e
′) ⊆ ∆αp(e

′
1) ·

e2 ∪∆αp(e2) ⊆ PD(e1) · e2 ∪ PD(e2) ⊆ PD(e).

• Finally, if e′ ∈ PD(e2), again by the induction hypothesis we have ∆αp(e
′) ⊆

PD(e2) ⊆ PD(e).
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Proposition 3.3. For all x ∈ (At · Σ)∗, one has ∆̂x(e) ⊆ PD(e).

Proof. We prove this lemma by induction on the length of x. If |x| = 0, i. e. x = 1,

then ∆̂1(e) = {e} ⊆ PD(e). If x = wαp, then ∆̂wαp = ∪e′∈∆̂w(e)∆αp(e
′). By

induction hypothesis, we know that ∆̂w(e) ⊆ PD(e). By Lemma 3.1, if e′ ∈ PD(e),

then ∆αp(e
′) ⊆ PD(e). Consequently, ∪e′∈∆̂w(e)∆αp(e

′) ⊆ PD(e).

Corollary 3.1. For all KAT expressions e, the set ∆̂(At·Σ)∗(e) is finite.

It is obvious that the previous results also apply to sets of KAT expressions.

Proposition 3.4. The function equiv is terminating.

Proof. When the set S is empty it follows directly from the definition of the function

that it terminates. We argue that when S is not empty the function also terminates

based on these two aspects:

• In order to ensure that the set of partial derivatives of a pair of (sets of)

expressions are not computed more than once, the set H is used to store the

ones which have already been calculated.

• Each function call removes one pair (E1, E2) from the set S and appends the set

of partial derivatives of (E1, E2), which have not been calculated yet, to S. As

a consequence of Corollary 3.1, the set of partial derivatives, by any word, of a

set of expressions is finite, and so eventually S becomes ∅.

Thus, since at each call the function analyzes one pair from S, after a finite number

of calls the function terminates.

The next proposition states the correctness of our algorithm.

Proposition 3.5. For all KAT expressions e1 and e2,

GS(e1) = GS(e2) ⇔

{
Eα(e1) = Eα(e2), ∀α ∈ At and

GS(∆αp(e1)) = GS(∆αp(e2)), ∀αp ∈ At · Σ.

Proof. Let us first prove the ⇐ implication. If GS(e1) 6= GS(e2), then there is x ∈
GS, such that x ∈ GS(e1) and x /∈ GS(e2) (or vice-versa). If x = α, then we have

Eα(e1) = 1 6= 0 = Eα(e2) and the test fails. If x = αpw, such that w ∈ (At · Σ)∗ · At,
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then since αpw ∈ GS(e1) and αpw /∈ GS(e2), we have that w ∈ GS(∆αp(e1)) and

w /∈ GS(∆αp(e2)). Thus, GS(∆αp(e1)) 6= GS(∆αp(e2)).

Let us now prove the ⇒ implication. For α ∈ At, there is either α ∈ GS(e1) and

α ∈ GS(e2), thus Eα(e1) = Eα(e2) = 1; or α 6∈ GS(e1) and α 6∈ GS(e2), thus Eα(e1) =

Eα(e2) = 0. For αp ∈ At · Σ, by Proposition 3.1, one has GS(∆αp(e1)) = GS(∆αp(e2))

if and only if Dαp(GS(e1)) = Dαp(GS(e2)). This follows trivially from GS(e1) = GS(e2).

3.4 Pseudo-code of Relevant Implementations

In this section we present the pseudo-code for the representation of KAT expressions

and for all relevant functions presented in this chapter.

3.4.1 Representation of KAT Expressions

The data structure we used to represent KAT expressions is defined as follows:

type exp = P of int

| B of bexp

| Or of exp set

| Conc of exp list

| Star of exp

type bexp = Zero

| One

| T of int

| NegBexp of bexp

| Or of bexp set

| And of bexp set

Each symbol pi of Σ or ti of T is represented by its index i.

We represent sums, disjunctions and conjunctions by sets, since this is a natural way

of ensuring the idempotence property of the operations. Concatenations are kept in

lists of expressions.
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3.4.2 Implementation of the Decision Procedure

This section presents the pseudo-code for all relevant functions involved in the decision

procedure. Similarly to what we explained in the previous chapter, the implementation

of the algorithm treats the computation of the partial derivatives differently from what

follows from its formal definition. We use a function g that, for each expression e,

first computes f(e) and then rearranges the set so that all expressions with common

heads are stored in the same pair. Thus, when applied to an expression e, instead of

computing a set containing all expressions e′ such that e′ ∈ f(e), the function derαp

simply returns the set s such that (αp, s) ∈ g(e), or Zero if such set does not exist.

The set of atoms, at, is computed after the two expressions have been provided but

before calling the decision procedure.

We begin with the pseudo-code for the function f.

let f at exp = match exp with

Bexp b −→ ∅
| Prog p −→ fromListToSet [(atom, p, One) | atom← at]

| Or set −→ ∪ (map (f at) (fromSetToList set))

| Star exp′ −→ map (concat exp) (f at e′)

| Conc exp1 :: es −→ set1 ∪ set2

where

exp2 ← buildConc es

set1 ← map (concat exp2) (f at exp1)

set2 ← f ′ at exp1 exp2

The function concat accepts an expression exp and a tuple (atom, p, exp′) as arguments

and returns (atom, p, exp · exp′).

The function buildConc constructs a concatenation of expressions from a list es given

as argument, provided there are at least two expressions in the list. If es contains

only one expression, then the function simply returns that element as the correct

expression, instead of constructing a concatenation.

When called with arguments at, exp1 and exp2, the function f ′ behaves essentially

like f at exp2, except that it only allows the set to have tuples in which the atom α

satisfies Eα(exp1) = 1.

The following is the pseudo-code for the function g.
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let g at exp = fromListToSet [ (atom, p, buildOr (g′ atom p le)) | (atom, p, ) ← le ]

where

le ← fromSetToList (f at exp)

and

let g′ atom p ls = [e | (atom′, p′, e) ← ls && atom = atom′ && p = p′ ]

As the name suggests, buildOr is a function that receives a list of expressions and

builds Or set, where set contains the elements in the list. But if the list contains only

one element, then buildOr simply returns that element as the correct expression and

no Or construct is created.

Now we present the pseudo-code for the function derivatives, which uses a comprehen-

sion list to compute the set of all partial derivatives of the expressions.

let derivatives set1 set2 = [(atom, p , deratom p ls1, deratom p ls2) | (atom, p, ) ←
(append ls1 ls2)]

where

ls1 ← fromSetToList set1

ls2 ← fromSetToList set2

and

let deratom p le = match le with

(atom′, p′, e) :: ls −→ if atom′ = atom && p′ = p then e else deratom p ls

| [ ] −→ Zero

Finally, we present the pseudo-code for the function equiv. This function uses an aux-

iliary function hAll that takes two expressions e1 and e2 and returns True if, for every

atom α, we have Eα(e1) = Eα(e2) and False otherwise.

let equiv S H =

if S=∅ then

(True,H)

else if (hAll e1 e2) = False then

(False,H)

where

(e1, e2) ← S.firstElement

else

equiv (S \ (e1, e2) ∪ S ′) H ′
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where

H ′ ← H ∪ (e1, e2)

S ′← fromListToSet [(der1, der2) | ( , , der1, der2)← derivatives (g at e1) (g at e2)

&& (der1, der2) /∈ H ′]
end if

3.5 Experimental Results

This section presents the results of some performance tests we did with our algorithm.

We generated uniformly random expressions using FAdo, an open source software

library for the symbolic manipulation of automata, regular expressions and other

models of computation [10]. Following is the grammar in Polish notation we used

to generate KAT expressions. The values k and l can be any integers and are specified

for each sample.

r → + r c | c
c → · c s | s
s → ∗ s | q | p | t | t | b | r
p → p1 | p2 | . . . | pk
t → t1 | t2 | . . . | tl
b → 0 | 1

q → + q d | d
d → · d e | e
e → q | t | t | b | q

Figure 3.1: KAT Grammar in Polish notation used at the generation of uniformly

random expressions.

Next we describe the two types of tests we performed. The tests were all executed on

the same computer, an Intel R© Xeon R© 5140 at 2.33 GHz with 4 GB of RAM, running

a minimal 64 bit Linux system.

In the first subsection we present some test samples of syntactically different, but

at the same time equivalent, expressions. In the second subsection we present test

samples of syntactically equal expressions and of unequivalent expressions.
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3.5.1 Testing Equivalent Expressions

We considered some rewrite rules for KAT expressions as presented in the following

scheme, where t ∈ T , bi ∈ Bexp and ei ∈ Exp. Our purpose was to, given a generated

expression e, compute a syntactically different, but yet equivalent, expression e′ and

then test our algorithm with these two expressions.

(K1) (e1 + e2 + . . .+ en)∗ → (en
∗ . . . e2

∗e1
∗)∗en

∗

(K2) e∗ → e∗e∗

(K3) e1(e2 + . . .+ en) → e1e2 + . . .+ e1en

(B1) 1 → t+ t 0 → tt

and

t+ t → 1 tt → 0

(B2) b1 + b2b3 . . . bn → (b1 + b2)(b1 + b3) . . . (b1 + bn)

The rule K1 is a generalization of the denesting rule [17]. The rule K2 is an equivalence

that follows directly from the definition of the star operator ∗. The rule K3 is based

on the axiom (2.8). The rule B1 is based on the complementation axioms of BA. The

rule B2 is based on the BA axiom of the distributivity of the disjunction over the

conjunction.

The test consisted in rewriting each expression e according to the rules above. A

rule e1 → e2 applied to a given expression e reads as follows: every occurrence in

e of a subexpression of the form e1 was replaced by the corresponding expression e2.

Expressions in which none of the substitutions could be instantiated, and therefore

would result in the same expressions after application of the rules, were ignored in this

test. Moreover, substitutions that would result in an expression e′ with a syntactic

tree larger than 2,000 were skipped.

For each expression, our procedure applied the rules K1, K2, B1, B2 and K3,

following this sequence. If the application of the rule K1 on e resulted in an expression

e′ in which new substitutions were possible, the same rule was applied again, repeatedly

until either no more substitutions were possible or the maximum length of 2,000

was reached. Since each substitution increased the length of the expression and the

procedure stopped at a given length, this procedure was guaranteed to halt. The same

was done for the rules B2 and K3.

When there were no more rules to apply, the function equiv was called with the
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expressions e and e′. As expected, all tests were successful.

The following table schematizes the results obtained. All test samples were performed

for 10,000 expressions e. The length |e| is the number of symbols in the syntactic

tree of the expressions before applying the rules. The cardinalities of Σ and T (k and

l, respectively) give the number of different actions and tests, respectively, available

at the random generation of the expressions. The average cardinality of H gives the

number of pairs of expressions that, on average, were necessary to derive to verify that

e and e′ were equivalent. The last columns indicate how many times, on average, each

rule was applied on e to obtain e′.

Number of Times Used (Average)

|e| k l |H| K1 K2 K3 B1 B2

50 5 5 7.17 0.69 5.85 4.08 5.35 0.54

100 5 5 17.03 1.87 13.63 16.48 26.84 3.46

Table 3.1: Experimental results for tests of equivalent KAT expressions.

3.5.2 Tests with Random Expressions

The test samples detailed in this subsection consist in generating uniformly random

expressions and testing the equivalence of each expression with itself and of every two

consecutive expressions. We present some measures of the test, namely the number

of computed derivatives, the number of computed atoms and the time (in seconds) at

each test.

Each sample has 10,000 KAT expressions of a given length |e| (number of symbols in

the syntactic tree of e ∈ Exp). The size of each sample is more than enough to ensure

results statistically significant with 95% confidence level within a 5% error margin.

For each sample we performed two experiments: (1) we tested the equivalence of

each KAT expression against itself; (2) we tested the equivalence of two consecutive

KAT expressions. For each pair of KAT expressions we measured: the size of the

set H produced by equiv (that measures the number of iterations) and the number of

primitive tests in each expression (|e|T ). Table 3.2 summarizes the results obtained.

Each row corresponds to a sample, where the three first columns characterize the

sample, respectively, the number of primitive actions (k), the number of primitive

tests (l), and the length of each KAT expression generated. Column four has the

number of primitive tests in each expression (|e|T ). Columns five and six give the
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average size of H in the experiment (1) and (2), respectively. Column seven is the

ratio of the equivalent pairs in experiment (2). Finally, columns eight and nine are the

average times, in seconds, of each comparison in the experiments (1) and (2). These

experiments aimed to test the feasibility of the procedure. As expected, the main

bottleneck is the number of different primitive tests in the KAT expressions.

1 2 3 4 5 6 7 8 9

k l |e| |e|T H(1) H(2) =(2) Time(1) Time(2)

5 5 50 9.98 7.35 0.53 0.0042 0.0097 0.00087

5 5 100 19.71 15.74 0.76 0.0048 0.0875 0.00223

10 10 50 11.12 8.30 0.50 0.0008 0.5050 0.30963

10 10 100 21.93 16.78 0.67 0.0018 20.45 1.31263

15 15 50 11.57 8.47 0.47 0.0010 6.4578 55.22

Table 3.2: Experimental results for uniformly random generated KAT expressions.

We note that in all test samples the first test took longer than the second one (since

all possible derivatives of the expressions had to be calculated), except in the last

sample, where Time(2) was much larger than Time(1). We interpret this discrepancy

with the fact that |At|, when computed for the first test, was 2l
′
1 (where l′1 is the

number of different tests occurring in the expression e1), whereas At in the second

test (in which all different tests occurring in e1 or e2 had to be considered) was 2l
′
1+l′2 .

Thus, in average |At| was much larger in the second test than in the first test, which

contributed to the large value of Time(2).

3.6 Encoding Programs as KAT Expressions

In this section we introduce the encoding of programs as KAT expressions and give

some examples of proving the equivalence of two different programs.

We consider programs written in a minimal while language, where a program P is

given by the following grammar:

P ∈ Prog = x := v;

| P1; P2 P1,P2 ∈ Prog

| if b then P1 else P2 b ∈ Bexp,P1,P2 ∈ Prog

| while b do P1 b ∈ Bexp,P1 ∈ Prog
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In the above, x is a variable of the language and v is a value or another variable.

The assignment rule is not codifiable in KAT, therefore we simulate it considering an

atomic program p. If e1 and e2 are the encodings of programs P1 and P2, respectively,

the encoding of more complex constructs of a while program involving P1 and P2 is

given by the following rules.

P1 ; P2 ⇒ e1e2 (3.13)

if b then P1 else P2 ⇒ be1 + b̄e2 (3.14)

while b do P1 ⇒ (be1)∗b̄ (3.15)

Should we require a conditional test where the else clause is not necessary, we may

omit it in the expression. We regard it as a conditional test with a dummy else clause

1. So we would have:

if b then P ⇒ bep + b̄ . (3.16)

A justification of the definitions (3.13 - 3.16) has been provided by D. Kozen and J.

Tiuryn [23].

Next we present three examples of proving the equivalence of two simple programs

using the algorithm we defined. For each example we present the output of the

procedure, including the History set (H) containing the pairs of derivatives computed

to decide about the equivalence of the programs.

Example 3.1. Consider the two programs P1 and P2 below.

P1: do {

if t_1 then P2: while t_1 do

p_1;
p_1;

} while t_1

Encoding P1 and P2 in KAT we obtain the expressions e1 and e2, respectively:

e1 = (t1p1 + t1)(t1(t1p1 + t1))∗t1

and

e2 = (t1p1)∗t1.

Applying the decision procedure to the expressions e1 and e2 we obtain:
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> Answer : True

> History : {(t1(t1 + t1p1)∗t1, (t1p1)∗t1),

((t1 + t1p1)(t1(t1 + t1p1))∗t1, (t1p1)∗t1)}

Example 3.2. In the following, P3 and P4 correspond to the programs (34) and (35),

respectively, in [17], adapted to the notation we use.

P3: while t_1 do begin P4: if t_1 then begin

p_1; p_1;

while t_2 do p_2; while (t_1+t_2) do

end if t_2 then p_2; else p_1;

end

The KAT expressions corresponding to the programs P3 and P4 are respectively

e3 = (t1p1(t2p2)∗t2)∗t1

and

e4 = t1p1((t1 + t2)(t2p2 + t2p1))∗t1+t2 + t1.

Applying the decision procedure to the expressions e3 and e4 we obtain:

> Answer : True

> History : {((t1p1(t2p2)∗t2)∗t1, t1 + t1p1((t1 + t2)(t2p2 + t2p1))∗t1+t2),

((t2p2)∗t2(t1p1(t2p2)∗t2)∗t1, ((t1 + t2)(t2p2 + t2p1))∗t1+t2)}

Example 3.3. The following annotated programs are from [17], Section 3.5.

P5: p_3; P6: p_3;

t_1t_2+~t_1~t_2 t_1t_2+~t_1~t_2

while t_1 do begin while t_2 do begin

p_1;p_3; p_1;p_3;

t_1t_2+~t_1~t_2 t_1t_2+~t_1~t_2

end end

p_2; p_2;

The KAT expressions corresponding to the programs P5 and P6 are respectively

e5 = (t1t2 + t1t2)(t1p1(t1t2 + t1t2))∗t1
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and

e6 = (t1t2 + t1t2)(t2p1(t1t2 + t1t2))∗t2 .

Calling our program with the expressions e5 and e6 we obtain:

> Answer : True

> History : {((t1t2 + t1t2)(t1p1(t1t2 + t1t2))∗t1, ((t1t2 + t1t2)(t2p1(t1t2 + t1t2))∗t2)}



Chapter 4

Deciding Hoare Logic with KAT

4.1 Introduction

Hoare logic was first introduced in 1969, cf. [12], and is a formal system widely used

for the specification and verification of programs. Hoare logic uses triples to reason

about the correctness of programs. A triple is an assertion of the form {b1}P{b2} with

P being a program, and b1 and b2 logic formulas. We read such an assertion as if b1

holds before the execution of P, then b2 will necessarily hold at the end of the execution.

A deductive system of Hoare logic provides inference rules for deriving valid triples,

where rules depend on the program constructs. We consider programs written in the

while language as referred in Section 3.6.

Let us now consider the traditional Hoare logic system for partial correctness. Its

inference rules are defined as follows:

Assignment

{b[x 7→ e]} x := e {b}

Composition

{b1} P1 {b2} {b2} P2 {b3}
{b1} P1 ; P2 {b3}

Conditional

{b1 ∧ b2} P1 {b3} {¬b1 ∧ b2} P2 {b3}
{b2} if b1 then P1 else P2 {b3}

42
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While
{b1 ∧ b2} P1 {b2}

{b2} while b1 do P1 {¬b1 ∧ b2}

Weakening

b′1 → b1 {b1} P1 {b2} b2 → b′2
{b′1} P1 {b′2}

A triple {b1}P{b2} is called a partial correctness assertion and can be deduced using

the inference rules above, which can be done manually. However, we would like to make

this process automatic. In order to do that we need a system that has the sub-formula

property, i. e., a system in which the premises of a rule do not contain occurrences of

assertions (formulas) that do not occur in the conclusion of the rule. The traditional

Hoare logic system clearly does not satisfy this property, but the variation system

considered by M. Frade and J. Pinto serves our purpose [11]. Since the program P

must be annotated (which can be done using a WP algorithm [11]), the correction

assertions are no longer triples. The inference rules for this system are the following:

Skip

b1 → b2

{b1} skip {b2}

Assignment

b1 → b2[x 7→ e]

{b1} x := e {b2}

Composition

{b1} P1 {b2} {b2} P2 {b3}
{b1} P1 ; {b2} P2 {b3}

Conditional
{b1 ∧ b2} P1 {b3} {¬b1 ∧ b2} P2 {b3}
{b2} if b1 then P1 else P2 {b3}

While
{b1 ∧ bi} P1 {bi} b2 → bi (bi ∧ ¬b1)→ b3

{b2} while b1 do {bi}P1 {b3}
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4.2 Encoding Propositional Hoare Logic in KAT

The propositional fragment of Hoare logic (PHL), i. e., the fragment without the rule

for assignment, can be encoded in KAT [18]. The encoding of an annotated while

program P and of our inference system follow the same lines. The skip command

is encoded by a distinguished primitive symbol pskip. We extend the encoding rules

presented in 3.6 to while programs with annotations.

P1 ; {b} P2 ⇒ e1be2

if b then P1 else P2 ⇒ be1 + b̄e2

while b do {bi} P1 ⇒ (bbie1)∗b̄

Since the assignment construct is not codifiable in KAT, we simulate such instructions

by considering not only verification conditions but also atomic PCA’s {b′1}x := v{b′2}.

A PCA of the form {b1}P{b2} is encoded in KAT as an equational identity of the form

b1e = b1eb2 or equivalently by b1eb2 = 0,

where e is the encoding of the program P. Intuitively, we are saying that if b1 holds,

then it is redundant to test b2 after the execution of p because it will necessarily hold.

The rules above are encoded as the following equational implications:

Composition

b1e1 = b1e1b2 ∧ b2e2 = b2e2b3 → b1e1b2e2 = b1e1b2e2b3 (4.1)

Conditional

b1b2e1 = b1b2e1b3 ∧ b1b2e2 = b1b2e2b3 → b2(b1e1 + b1e2) = b2(b1e1 + b1e2)b3 (4.2)

While

b1bie1 = b1bie1bi ∧ b2 ≤ bi ∧ bib1 ≤ b3 → b2(b1bie1)∗b1 = b2(b1bie1)∗b1b3 (4.3)

Now, suppose we want to prove the PCA {b1}P{b2}. Since the inference system for

Hoare logic that we are using possesses the sub-formula property, one can generate

mechanically in a backward fashion the verification conditions that ensure the validity

of the PCA.
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Since in the KAT encoding we do not have the rule for assignment, besides verification

conditions (proof obligations) of the form b′1 → b′2 we will also have assumptions of

the form b′1pb
′
2 = 0.

One can generate a set of assumptions, Γ = Gen(b1eb2), backwards from b1eb2 = 0,

where Gen is inductively defined by:

Gen(b1 pskip b2) = {b1 ≤ b2}
Gen(b1 p b2) = {b1 p b2} pskip 6= p ∈ Σ

Gen(b1 e1 b2 e2 b3) = Gen(b1 e1 b2) ∪ Gen(b2 e2 b3)

Gen(b1 (b2e1 + b2e2) b3) = Gen(b1b2 e1 b3) ∪ Gen(b1b2 e2 b3)

Gen(b1 ((b2bie)
∗b2) b3) = Gen(bib2 e bi) ∪ {b1 ≤ bi, bib2 ≤ b3}

Note that Γ is necessarily of the form

Γ = {b1p1b′1 = 0, . . . , bmpmb′m = 0} ∪ {c1 ≤ c′1, . . . , cn ≤ c′n},

where p1, . . . , pm ∈ Σ and such that all b’s and c’s are Bexp expressions. In Section 4.3,

we show how one can prove the validity of b1eP b2 = 0 in the presence of such a set of

assumptions Γ, but first let us illustrate the encoding and generation of the assumption

set with a few small examples.

4.2.1 Some Small Examples

In this section we present some examples of encoding small annotated programs and

their corresponding sets of assumptions as KAT expressions.

Example 4.1. Consider the program P1 in Table 4.1, that calculates the triple of a

number. We wish to prove that, at the end of the execution, the variable y contains

the result of 3x. Thus, we aim to verify the assertion {True} P1 {y = 3x}.

Program P1 Annotated Program P′1 Symbols used

in the encoding

{x+ x+ x = 3x} t1

y := x; y := x; p1

y := x+ x+ y; {x+ x+ y = 3x} t2

y := x+ x+ y; p2

Table 4.1: A program to calculate the triple of a number
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In order to apply the inference rules we need to annotate program P1, obtaining program

P′1, which can be done using a WP algorithm. Manually, applying the inference rules

for deriving PCA’s in a backward fashion to {True} P′1 {y = 3x}, one easily generates

the corresponding set of assumptions provided by the annotated version of the program.

Thus the assumption set is

ΓP1 =

{
{True} → {x+ x+ x = 3x}, {x+ x+ x = 3x}y := x{x+ x+ y = 3x},
{x+ x+ y = 3x}y := x+ x+ y{y = 3x}

}
.

On the other hand, using the correspondence of KAT primitive symbols and atomic

parts of the annotated program P′1, as in Table 4.1, and additionally encoding True as

t0 and y = 3x as t3, the encoding of {True} P′1 {y = 3x} in KAT is

t0t1p1t2p2t3 = 0. (4.4)

The corresponding set of assumptions Γ in KAT is

Γ = {t0 ≤ t1, t1p1t2 = 0, t2p2t3 = 0}. (4.5)

Example 4.2. Consider the program P2 in Table 4.2, that finds the greatest of two

numbers. We wish to prove that, at the end of the execution, the variable MAX con-

tains the greatest number between x and y, i. e. to verify the assertion {True} P2 {MAX =

max(x, y)}.

Program P2 Symbols used

in the encoding

if x >= y then t1

MAX := x; p1

else

MAX := y; p2

Table 4.2: A program to find the greatest of two numbers

Since this is a simple if-then-else case, the program is the same annotated or not

annotated. Applying the inference rules for deriving PCA’s to {True} P2 {MAX =

max(x, y)}, the set of assumptions we obtain is

ΓP2 =

{
(True ∧ x ≥ y)→MAX = max(x, y),

(True ∧ ¬(x ≥ y))→MAX = max(x, y)

}
.
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Using the correspondence of KAT primitive symbols and atomic parts of program P2,

as in Table 4.2, and additionally encoding True as t0 and MAX = max(x, y) as t2,

the encoding of {True} P2 {MAX = max(x, y)} in KAT is

t0(t1p1 + t1p2)t3 = 0. (4.6)

The corresponding set of assumptions Γ in KAT is

Γ = {t0t1p1t3 = 0, t0t1p2t3 = 0}. (4.7)

Example 4.3. Consider the program P3 in Table 4.3, that calculates the factorial of a

non-negative integer. We wish to prove that, at the end of the execution, the variable

y contains the factorial of x, i. e. to verify the assertion {True} P3 {y = x!}.

Program P3 Annotated Program P′3 Symbols used

in the encoding

y := 1; p1

{y = 0!} t1

y := 1; z := 0; p2

z := 0; {y = z!} t2

while ¬z = x do while ¬z = x do t3

{ {
z := z+1; {y=z!} t2

y := y×z; z := z+1; p3

} {y×z = z!} t4

y := y×z; p4

}

Table 4.3: A program for the factorial

In order to apply the inference rules we need to annotate program P3, obtaining

program P′3. Applying the inference rules for deriving PCA’s in a backward fashion to

{True} P′3 {y = x!}, the set of assumptions we obtain is

ΓP3 =


{True}y := 1{y = 0!}, {y = 0!}z := 0{y = z!},
{y = z! ∧ ¬(z = x)}z := z + 1{y × z = z!}, {y × z = z!}y := y × z{y = z!},
y = z!→ y = z!, (y = z! ∧ ¬¬(z = x))→ y = x!

 .

Using the correspondence of KAT primitive symbols and atomic parts of the annotated

program P′3, as in Table 4.3, and additionally encoding True as t0 and y = x! as t5,
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the encoding of {True} P′3 {y = x!} in KAT is

t0p1t1p2t2(t3t2p3t4p4)∗t3t5 = 0. (4.8)

The corresponding set of assumptions Γ in KAT is

Γ = {t0p1t1 = 0, t1p2t2 = 0, t2t3p3t4 = 0, t4p4t2 = 0, t2 ≤ t2, t2t3 ≤ t5}. (4.9)

4.3 Deciding Hoare Logic

Rephrasing the observations in the last section, we are interested in proving in KAT

the validity of implications of the form

b1p1b′1 = 0 ∧ · · · ∧ bmpmb′m = 0 ∧ c1c′1 = 0 ∧ · · · ∧ cnc′n = 0 → bpb′ = 0. (4.10)

Note that cc′ = 0 is just a different way of writing c ≤ c′. The expression (4.10)

can be reduced to proving the equivalence of two KAT expressions, since it has been

shown, cf. [18], that for all KAT expressions r1, . . . , rn, e1, e2 over Σ = {p1, . . . , pk}
and T = {t1, . . . , tl}, an implication of the form

r1 = 0 ∧ · · · ∧ rn = 0 → e1 = e2

is a theorem of KAT if and only if

e1 + uru = e2 + uru (4.11)

where u = (p1 + · · ·+pk)
∗ and r = r1 + . . .+rn. Testing this last equality can of course

be done by applying our algorithm to e1 + uru and e2 + uru. However, in the next

subsection, we present an alternative method of proving the validity of implications

of the form 4.10. This method has the advantage of prescinding from the expressions

u and r, above.

4.3.1 Equivalence of KAT Expressions Modulo a Set of As-

sumptions

In the presence of a finite set of assumptions of the form

Γ = {b1p1b′1 = 0, . . . , bmpmb′m = 0} ∪ {c1 ≤ c′1, . . . , cn ≤ c′n} (4.12)
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we have to restrict ourselves to atoms that satisfy the restrictions in Γ. Thus, let

AtΓ = { α ∈ At | α ≤ c→ α ≤ c′, for all c ≤ c′ ∈ Γ }. (4.13)

Given a KAT expression e, the set of guarded strings modulo Γ, GSΓ(e), is inductively

defined as follows.

GSΓ(p) = {αpβ | α, β ∈ AtΓ ∧ ∀bpb′=0 ∈ Γ (α ≤ b→ β ≤ b′) }
GSΓ(b) = {α ∈ AtΓ | α ≤ b }

GSΓ(e1 + e2) = GSΓ(e1) ∪ GSΓ(e2)

GSΓ(e1e2) = GSΓ(e1) � GSΓ(e2)

GSΓ(e∗) = ∪n≥0GSΓ(e)n.

The following proposition characterizes the equivalence modulo a set of assumptions

Γ, and ensures the correctness of the new Hoare logic decision procedure.

Proposition 4.1. Let e1 and e2 be KAT expressions and Γ a set of assumptions as

in (4.12). Then,

KAT,Γ ` e1 = e2 iff GSΓ(e1) = GSΓ(e2).

Proof. By (4.11) one has KAT,Γ ` e1 = e2 if and only if e1 +uru = e2 +uru is provable

in KAT, where u = (p1 + · · ·+ pk)
∗ and r = b1p1b′1 + · · ·+ bmpmb′m + c1c′1 + · · ·+ cnc′n.

The second equality is equivalent to GS(e1 + uru) = GS(e2 + uru), i. e. GS(e1) ∪
GS(uru) = GS(e2) ∪ GS(uru). In order to show the equivalence of this last equality

and GSΓ(e1) = GSΓ(e2), it is sufficient to show that for every KAT expression e one

has GSΓ(e) = GS(e) \ GS(uru) (note that A ∪ C = B ∪ C ⇔ A \ C = B \ C).

First we analyze under which conditions a guarded string x is an element of GS(uru).

Given the values of u and r, it is easy to see that x ∈ GS(uru) if and only if in x

occurs an atom α such that α ≤ c and α 6≤ c′ for some c ≤ c′ ∈ Γ, or x has a substring

αpβ, such that α ≤ b and α 6≤ b′ for some bpb′ ∈ Γ. This means that x 6∈ GS(uru) if

and only if every atom in x is an element of AtΓ and every substring αpβ of x satisfies

(α ≤ b → β ≤ b′), for all bpb′ = 0 ∈ Γ. From this remark and by the definitions of

AtΓ and GSΓ, we conclude that GSΓ(e)∩GS(uru) = ∅. Note also that, since GSΓ(e) is

a restriction of GS(e), one has GSΓ(e) ⊆ GS(e). Now it suffices to show that for every

x ∈ GS(e) \ GS(uru), one has x ∈ GSΓ(e). This can be easily proved by induction on

the structure of e.
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We now define the set of partial derivatives of a KAT expression modulo a set of

assumptions Γ. Let e ∈ Exp. If α 6∈ AtΓ, then ∆Γ
αp(e) = ∅. For α ∈ AtΓ, let

∆Γ
αp(p

′) =

{
{Πb′ | bpb′ = 0 ∈ Γ ∧ α ≤ b } if p = p′

∅ if p 6= p′

∆Γ
αp(b) = ∅

∆Γ
αp(e1 + e2) = ∆Γ

αp(e1) ∪∆Γ
αp(e2)

∆Γ
αp(e1e2) =

{
∆Γ
αp(e1) · e2 if Eα(e1) = 0

∆Γ
αp(e1) · e2 ∪∆Γ

αp(e2) if Eα(e1) = 1

∆Γ
αp(e

∗) = ∆Γ
αp(e) · e∗.

Note, that by definition, Π b′ = 1 if there is no bp = bpb′ ∈ Γ such that α ≤ b and

α ∈ AtΓ. The next proposition states the correctness of the definition of ∆Γ
αp.

Proposition 4.2. Let Γ be a set of assumptions as above, e ∈ Exp, α ∈ At, and p ∈ Σ.

Then,

Dαp(GSΓ(e)) = GSΓ(∆Γ
αp(e)).

Proof. The proof is obtained by induction on the structure of e. We only show the

case e = p, since the other cases are similar to those in the proof of Proposition 3.1.

If α 6∈ AtΓ, then GSΓ(p) = ∅ = Dαp(GSΓ(p)). Also, ∆Γ
αp(p) = ∅ = GSΓ(∆Γ

αp(p)).

Otherwise, if α ∈ AtΓ, then GSΓ(p) = {αpβ | α, β ∈ AtΓ∧∀bpb′=0 ∈ Γ (α ≤ b→ β ≤ b′)},
thus Dαp(GSΓ(p)) = {β ∈ AtΓ | β ≤ b′ for all bpb′ = 0 ∈ Γ such that α ≤ b}. On

the other hand, ∆Γ
αp(p) = {Πb′ | bpb′ = 0 ∈ Γ ∧ α ≤ b}. Thus, GSΓ(∆Γ

αp(p)) =

GSΓ(c), where c =
∏

bpb′=0 ∈ Γ,α≤b b′. We conclude that GSΓ(c) = {β ∈ AtΓ | β ≤
b′ for all bpb′ = 0 ∈ Γ such that α ≤ b}.

4.3.2 Testing Equivalence Modulo a Set of Assumptions

The decision procedure for testing equivalence presented before can be easily adapted.

Given a set of assumptions Γ, the set AtΓ is obtained by discarding in At all atoms

that satisfy c but do not satisfy c′, for all c ≤ c′ ∈ Γ. The function f has to account

for the new definition of ∆Γ
αp.

We compared this new algorithm, equivΓ, with equiv when deciding the PCA’s pre-

sented in Section 4.2.1. The results are as follows:
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Example 4.1

First, we constructed expressions r and u from Γ as described above and proved the

equivalence of expressions t0t1p1t2p2t3 + uru and 0 + uru, with function equiv. In this

case |H |= 10. In other words, equiv needed to derive 10 pairs of expressions in order

to reach a conclusion about the correction of program P1. Then, we applied function

equivΓ directly to the pair (t0t1p1t2p2t3, 0) and Γ. In this case, |H |= 3.

Example 4.2

Again, we constructed the expressions r and u from Γ and proved the equivalence

of expressions t0(t1p1 + t1p2)t3 + uru and 0 + uru, with function equiv. In this case

|H | = 6. Then, we applied function equivΓ directly to the pair (t0(t1p1 + t1p2)t3, 0)

and Γ. In this case, |H |= 2.

Example 4.3

In the third example, we proved the equivalence of expressions t0p1t1p2t2(t3t2p3t4p4)∗t3t5+

uru and 0+uru, with function equiv. In this case |H |= 17. Then, we applied function

equivΓ directly to the pair (t0p1t1p2t2(t3t2p3t4p4)∗t3t5, 0) and Γ. In this case, |H |= 5.

Thus, in the three examples the second method required the computation of approxi-

mately less than a third of the number of derivatives required by the first method.

4.4 Commutativity Conditions

Besides the problem of deciding Hoare logic, there are other proofs of equivalence

in KAT that can only be achieved in the presence of assumptions. In this section we

present the equivalence of KAT expressions that depends on commutativity conditions.

Definition 4.1. In any KAT, given a symbol p of Σ and a logic expression b of Bexp,

we say that p and b commute if and only if

bp = pb.

Intuitively, we are saying that if the program p does not affect the value of b, then it

is indifferent to test b before or after the execution of p, because its value will be the

same.
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A different way of writing bp = pb is bpb̄ = 0 ∧ b̄pb = 0.

In the first subsection we present a small example of two programs that can only be

proved equivalent if such a commutativity condition holds. In the second subsection

we present a more complex example in which commutativity conditions are essential in

proving the safety of a code fragment that acquires and releases a lock on a resource.

4.4.1 A Simple Example

The following correspond to the programs (21) and (22) from [17].

P1: if t_1 then P2: p_1;

begin p_1;p_2; end if t_1 then

else p_2;

begin p_1;p_3; end else

p_3;

The KAT expressions corresponding to the programs P1 and P2 are respectively

e1 = t1p1p2 + t1p1p3

and

e2 = p1(t1p2 + t1p3) .

In the program above, we do not know if the value of t1 is preserved by p1, and therefore

if we test the equivalence giving the program nothing more than the expressions e1

and e2 the result is False, as one would expect. The solution is to give the following

commutativity condition as an assumption: Γ = {t1p1t1 =0, t1p1t1 =0}. In this case,

calling the function equivΓ with the expressions e1 and e2 and the axioms set Γ, the

program correctly returns True.

4.4.2 Proving the Safety of a Program

The following code fragment is from [7]. It consists of a loop that alternately acquires

and releases a lock on a resource.

If the driver currently holds the lock and tries to reacquire it, the driver will hang.

The same happens if the driver tries to release the lock when it does not hold it. We

wish to prove that the program is safe in that the driver never attempts to acquire the
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Program P Symbols used

in the encoding

do {

KeAcquireSpinLock(); p1

nPacketsOld = nPackets; p2

if (request) { t1

request = request->next; p3

KeReleaseSpinLock(); p4

nPackets++; p5

}

} while (nPackets != nPacketsOld) t2

KeReleaseSpinLock(); p4

Table 4.4: A code fragment from a device driver

lock when it is already in the locked state and never attempts to release the lock when

it is not in the locked state. The definition of commutativity conditions and other

assumptions is essential to the proof of safety and to do that we follow the approach

taken by Kozen [20].

First, we need to encode the program as a KAT expression. This requires extending

the list (3.13)–(3.15) of encoding rules for program constructs with a new rule [20].

do p; while b ⇒ p(bp)∗b̄ .

Now P can be encoded as the following expression.

e = p1p2(t1p3p4p5 + t1)(t2p1p2(t1p3p4p5 + t1))∗t2p4.

Let t0 be a new test representing the assertion that the driver is in the locked state.

We wish to guarantee both that before the driver acquires a lock it is not in the locked

state (t0 is False) and that before it releases the lock it is in the locked state (t0 is

True). So, the expression corresponding to the annotated program is as follows:

eA = t0p1p2(t1p3t0p4p5 + t1)(t2t0p1p2(t1p3t0p4p5 + t1))∗t2t0p4

To show that the program is safe, we need to prove that the following equivalence

holds:

t0e = t0eA. (4.14)

We prefix both encodings with t0, since the first critical operation performed by the

driver is acquiring the lock.
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Assumptions Interpretation

p1 = p1t0 Acquiring the lock acquires it

p4 = p4t0 Releasing the lock releases it

t2p5 = t2p5t2 If two variables are equal and we increment one, then they are no longer equal

p2 = p2t2 Assigning the value of one variable to another makes them equal

t0p2 = p2t0 commutativity condition

t0p3 = p3t0 commutativity condition

t0p5 = p5t0 commutativity condition

t2p3 = p3t2 commutativity condition

t2p4 = p4t2 commutativity condition

t2p1 = p1t2 commutativity condition

Table 4.5: Assumptions used to prove the safety of a device driver

Dexter Kozen has proved the equation (4.14) using KAT-ML [20], an interactive

theorem prover for KAT’s designed for ML [1]. Here we showed the equivalence by

calling function equivΓ with expressions t0e and t0eA and Γ containing the assumptions

in Table 4.5.



Chapter 5

Conclusion and Future Work

In this dissertation we studied and developed a decision algorithm for the equivalence

of KAT expressions. We started by reimplementing a decision procedure for regular

expressions which, as expected, revealed to be an adequate starting point to solve the

problem we wanted. We presented some experimental results of testing the equivalence

of uniformly random KAT expressions, focusing on measures such as the number of

derivatives computed and the time taken by each test.

We explained how programs written in a minimal imperative language can be encoded

as KAT expressions. This allowed us to address the proof of equivalence of two distinct

programs, which we exemplified with a few programs.

Even though it was not in our initial plans, the idea of adapting the decision procedure

to solve the Hoare logic problems - and, in general, other proofs of equivalence that can

only be shown in the presence of assumptions - became possible. Thus, we extended

the decision procedure to accommodate assumptions, which allowed us to prove not

only the correctness but also the safety of a program.

During the study and development of the algorithms some motivations for future work

arose. As we saw, when testing the equivalence of two KAT expressions the main

bottleneck is the number of atoms computed, which directly depends on the number

of different tests in the expressions. Therefore, it would be interesting to study a

method that reduces the number of atoms used in the test. Alternatively, resorting

this problem to an external SAT solver would also make the use of this method in

formal verification more feasible. Concerning Hoare logic, it would be interesting to

treat the assignment rule within a decidable first-order theory and to integrate the

decision procedure in an SMT solver.
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