
Significant Classes of 

NFA and their Random 

Generation
Miguel Ferreira
Mestrado em Ciência de Computadores 
Departamento de Ciência de Computadores 

2018

Orientador 
Rogério Reis, Professor Auxiliar,

Faculdade de Ciências da Universidade do Porto

Coorientador 
Nelma Moreira, Professora Auxiliar,

Faculdade de Ciências da Universidade do Porto



Todas  as  correções determinadas 

pelo júri, e só essas, foram efetuadas.

O Presidente do Júri,

Porto, ______/______/_________



To my family.

i





Acknowledgments

I would like to thank my supervisors, Nelma Moreira and Rogério Reis, for their support and
guidance during my degree. I would also like to thank the staff and lecturers of the Department
of Computer Science for their consistent will to help. I would like to thank all the friends I’ve
made while I studied in the Faculty of Sciences of the University of Porto, in particular, to
the members and coach of the competitive programming team I used to participate on - Os
Ancelistas: João Ramos, João Pires, Pedro Paredes and Pedro Ribeiro. I also would like to thank
my girlfriend, Catarina, for her persistent emotional support and patience. My final and most
important acknowledgedment is toward my family for their infinite support.

iii





Abstract

Random generation of non-deterministic finite automata (NFA) can be used to provide experi-
mental average case analysis of algorithms on NFA and as means to randomized unit testing
code that uses NFA. We study and implement known methods for random generation of NFA,
and for each method we provide experimental results and classify them according to properties a
uniform random generator should have.

Important properties of a good random NFA generator include: ability to generate NFA that
are non isomorphic, that is, always the same permutation of the NFA is generated; ability to fix
the number of states of the generated automata; tractable running time for sampling a large
number of instances, e.g. 10000, allowing the average case experiments to meet certain confidence
levels; ability to generate automata that are initially connected, i.e. all states are accessible.

Our research resulted in the identification of a specific class of NFA for which the aforemen-
tioned important properties are verified. Experimental results showed that this class is almost as
succinct as NFA, proving the generator to be a candidate for sampling NFAs for statistically
significant experiments.

v





Resumo

A geração aleatória de autómatos finitos não determinísticos (NFAs) pode ser utilizada para obter
análises de caso médio de algoritmos que operam em NFAs e como uma forma de aleatorização
de testes unitários que utilizem NFAs. Estudamos e implementamos métodos conhecidos para a
geração aleatória de NFAs e, para cada método, obtivemos resultados experimentais e classificações
dos métodos de acordo com as propriedades que um gerador aleatório deve ter.

As propriedades de um bom gerador aleatório de NFAs incluem: a habilidade de gerar NFAs
que são não isomorfos, isto é, é gerada sempre a mesma permutação do mesmo autómato; a
habilidade de fixar o número de estados dos autómatos gerados; um tempo de execução tratável
para gerar um número grande de instâncias, p.e. 10000, permitindo que as experiências do caso
médio tenham um determinado nível de confiança; a habilidade de gerar autómatos que são
inicialmente conexos, isto é, todos os estados são acessíveis.

A nossa investigação resultou na identificação de uma classe específica de NFAs para a qual as
propriedades referidas são verificadas. Resultados experimentais sugerem que esta classe é quase
tão sucinta como os NFAs, provando assim que o gerador seria um candidato para amostragem
de NFAs para experiências statisticamente significantes.

vii





Contents

Abstract v

Resumo vii

Contents x

List of Tables xi

List of Figures xiii

List of Algorithms xv

Acronyms xvii

1 Introduction 1

1.1 Set Operations, Relations and Graphs . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Finite Automata Theory and Regular Languages . . . . . . . . . . . . . . . . . . 3

1.3 Computational Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 The Graph Isomorphism Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.5 Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Random Generation of NFA 11

2.1 Random Generation of Regular Expressions . . . . . . . . . . . . . . . . . . . . . 11

2.2 Generation by Bitstreams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Generation by Markov Chains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

ix



2.4 Initially Connected Complete DFA . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5 Comparative Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Forward Injective Finite Automata 21

3.1 A Canonical State Order for FIFAs . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 Canonical String Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3 Counting FIFAs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.4 Uniform Random Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.5 Converting an NFA into a FIFA . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.6 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4 Conclusion 35

4.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

References 37

x



List of Tables

1.1 Samples sizes in funcion of confidence level with a 1% error margin. . . . . . . . 10

2.1 Average measures of p.d. NFA generated from random RE of length n with k

symbols. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 NFA properties with bitstream generation. . . . . . . . . . . . . . . . . . . . . . 14

2.3 NFA properties with bitstream and density generation. . . . . . . . . . . . . . . 14

2.4 NFA properties with Markov chain generation. . . . . . . . . . . . . . . . . . . . 16

2.5 DFA properties with uniform random generation up to isomorphism. . . . . . . 20

2.6 Comparison of properties of common NFA generators. . . . . . . . . . . . . . . . 20

3.1 Values of bk,n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 Execution times for the generation of 10000 random FIFA. . . . . . . . . . . . . . 29

3.3 Sizes of automata obtained from random RE . . . . . . . . . . . . . . . . . . . . 32

3.4 Ratio of PD NFA that are FIFA. . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

xi





List of Figures

1.1 Example 3-node graph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 DFA recognizing words ending in a. . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 NFA recognizing words ending in a. . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Two 3-node isomorphic graphs. . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.5 Example of a Markov chain digraph and corresponding transition matrix. . . . . 10

2.1 Example of a bitstream to 2-state automaton correspondence. . . . . . . . . . . . 14

3.1 Non-FIFA initially-connected NFA. . . . . . . . . . . . . . . . . . . . . . . . . . 21

xiii





List of Algorithms

1 NFA automorphism group size using labelings . . . . . . . . . . . . . . . . . . . . 9
2 Number of l-sized words for each production of a CNF grammar . . . . . . . . . 12
3 Sampling of n-state k-symbol NFA using bitstreams . . . . . . . . . . . . . . . . 13
4 Sampling of n-state k-symbol NFA using density . . . . . . . . . . . . . . . . . . 15
5 Converting an integer to n-state k-symbol ICDFA∅ . . . . . . . . . . . . . . . . 19
6 FIFA state order algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
7 Random FIFA∅ algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
8 An NFA to FIFA algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

xv





Acronyms

NFA Non-Deterministic Finite Automaton

DFA Deterministic Finite Automaton

FIFA Forward Injective Finite Automaton

ICDFA Initially Connect Complete
Deterministic Finite Automaton

TM Turing Machine

CNF Chomsky Normal Form

RPN Reverse Polish Notation

RE Regular Expression

PD Partial Derivative

BFS Breadth First Search

xvii





Chapter 1

Introduction

Random generation of NFAs can be used to provide experimental average case analysis of
algorithms on NFA and as means to randomized unit testing code that uses NFA. Different
methods of NFA generation convey different expected results when assessing average case measures.
We study a few methods of random NFA generation, and compare these in terms of performance,
bias and uniformity. We also present a novel method of efficiently generating a subclass of NFAs
up to isomorphism.

In this chapter we go through the fundamentals for understanding the concepts described in
this thesis. We start with concepts of formal languages and automata, some topics in relevant
algebraic structures, and some topics in statistics. For more information regarding automata
theory we refer the reader to Hopcroft and Ullman’s introductory book to automata theory [15].

On Chapter 2 we present some solutions to the random NFA generation problem and expose
and compare their advantages and limitations. We also provide new implementations and
experimental results of the studied solutions.

On Chapter 3 we present a novel method for generating NFA uniformly up to isomorphism
on a specific NFA class. We provide experimental results of typical usages of sampled automata
and advocate the advantages and limitations of using such class for random generation. The
results of this chapter were published in an international conference proceedings [11].

Finally, on Chapter 4 we conclude that there is empiric evidence that the specific class upon
we developed a random generator can be used for significant NFA experimental average case
study. This chapter ends with suggestions for future work on open problems regarding the class
of automata we defined and some implications of the solution to those problems.

The experimental results presented on this thesis were produced on an Intel® Core™ i7-8550U
with 16GB RAM and Ubuntu 18.04 64 bit (Linux 4.4) using Python 2.7 interpreted by Pypy
and version 1.3.5.1 of FAdo [10], unless stated otherwise, with 10000 sample instances of the
considered objects.

1



2 Chapter 1. Introduction

1.1 Set Operations, Relations and Graphs

Let L and R be sets, the relation of inclusion of set L in set R is expressed as L ⊆ R and means
that all elements of L are in R, i.e. (∀x)(x ∈ L⇒ x ∈ R). A stronger version of this notion is
called proper inclusion, represented by L ⊂ R, meaning that R contains more than just L, i.e.
(∀x)(x ∈ L⇒ x ∈ R ∧ ∃x ∈ R.x /∈ L).

The union of two sets L and R, denoted L ∪R, is a set containing all elements either in L or
R: L ∪R = { x | x ∈ L ∨ x ∈ R }.

Dualy, the intersection of two sets L and R is defined as the set containing the elements that
simultaneouslly occur in L and R: L ∩R = { x | x ∈ L ∧ x ∈ R }.

Given a domain U we can define the complement of a set S, represented S, as: S = { x | x ∈
U ∧ x /∈ S }.

The Cartesian product of two sets L and R is the following set of tuples: L×R = { (l, r) |
l ∈ L ∧ r ∈ R }.

The power set of a set S, denoted 2S , is the set of all subsets of S. Formally: 2S = { P | P ⊆
S }.

Relation A binary relation R between two sets S and P is a subset of its Cartesian product,
i.e. R ⊆ S × P . Two objects x and y are in the relation R if (x, y) ∈ R, denoted xRy.

A binary relation R on a set S can have the following properties:

• Reflexive: ∀a ∈ S.aRa,

• Irreflexive: ∀a ∈ S.¬aRa,

• Transitive: ∀a, b, c ∈ S.aRb ∧ bRc⇒ aRc,

• Symmetric: ∀a, b ∈ S.aRb⇒ bRa,

• Asymmetric: ∀a, b ∈ S.aRb⇒ ¬bRa.

A relation can be closed under a given property P. The P-closure of a relation R is the
smallest relation R′ that includes all pairs of R and satisfies P. The transitive closure of R,
denoted R+, is defined by:

• If (a, b) is in R then (a, b) is in R+,

• If (a, b) is in R+ and (b, c) is in R+ then (a, c) is in R+.



1.2. Finite Automata Theory and Regular Languages 3

Digraph A digraph, or directed graph, is a tuple (V,E) where V is the set of vertices and
the adjacency relation E ⊆ V × V is the set of edges. Figure 1.1 shows a graph with vertex set
V = {0, 1, 2} and edge set E = {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (2, 2)}.

Figure 1.1: Example 3-node graph.

1.2 Finite Automata Theory and Regular Languages

Semigroups and Monoids A semigroup is an algebraic structure consisting of a set and an
associative binary operation. A binary operation in a set R is a mapping from R×R to R. It is
associative if, given the binary operation ◦:

∀a, b, c ∈ R.(a ◦ b) ◦ c = a ◦ (b ◦ c).

A monoid is a semigroup (R, ◦) with an identity element ε ∈ R, such that:

∀a ∈ R.ε ◦ a = a ◦ ε = a.

Semirings A semiring is a set R with two binary operations + and ·, called addition and
multiplication, such that (R,+) is a commutative monoid with identity element 0, (R, ·) is a
monoid with identity element 1, the multiplication left and right distributes over addition and 0
is the null element of the multiplication: a · 0 = 0.

Strings and Languages An alphabet, typically denoted by Σ, is a set of symbols that compose
strings. Strings, or words, are finite sequences of symbols over an alphabet, e.g. on the alphabet
Σ = {a, b}, abba is a string. The set of all words over an alphabet Σ is denoted Σ?. Any subset
L of Σ? is called a language over the alphabet Σ.

Given two words w and w′ one can form the word ww′ that results from the juxtaposition of
ww′, called the concatenation of w and w′. There is a special word ε ∈ Σ? named “empty word”
and, for all words w on the alphabet Σ, we have: εw = wε = w.

The length of a string s is denoted |s| and it is the number of symbols that compose the
string. It is be defined as |as| = 1 + |s|, a ∈ Σ and |ε| = 0.

A language is a set of words over an alphabet Σ. Standard set operations are defined
for languages, such as union, intersection and complement, and also the inclusion relation.
Moreover, the operation of concatenation and star are defined for languages. Let R and L

be two languages, the language L · R is called the concatenation of L and R and is the set
L ·R = { ww′ | w ∈ L ∧ w′ ∈ R }, where ww′ is the juxtaposition of the words w and w′. Let L
be a language, the language L? is the called the star, or Kleene closure, of the language and is



4 Chapter 1. Introduction

defined as L? = ∪n≥0L
n, where L0 is {ε} and Ln = Ln−1 · L. Any language L over Σ is a subset

of Σ?, i.e. L ⊆ Σ? ⇐⇒ L is a language.

The tuple (Σ?, ·) is a semigroup and, when paired with the empty word ε, forms a monoid.

Regular Expressions Let Σ be an alphabet. The regular expressions over Σ are defined as
follows:

• ∅ is a regular expression denoting the empty language;

• ε is a regular expression denoting the language {ε};

• For each a ∈ Σ, a is a regular expression and denotes the language {a};

• If r and s are regular expressions representing the languages R and S, respectively, then
(r + s) is a regular expression representing the language R ∪ S = { w | w ∈ R ∨ w ∈ S };

• If r and s are regular expressions representing the languages R and S, respectively, then
(rs) is a regular expression representing the language RS = { ww′ | w ∈ R ∧ w′ ∈ S };

• If r is a regular expression representing the language R then r? is a regular expression
representing the language R? =

⋃∞
i=0 L

i, where L0 = {ε} and Li = LLi−1.

The expression (a+ b)?a represents the language of words over {a, b}? ending with an a.

A Kleene Algebra is a semiring with idempotent addition and a closure operator ? [17]. The
set of regular expressions forms a Kleene Algebra [18].

Deterministic Finite Automaton (DFA) A DFA A is a 5-tuple 〈Q,Σ, δ, q0, F 〉 where Q is
a finite set of states, Σ is a finite set of symbols named alphabet, δ : Q×Σ→ Q is the transition
function, q0 ∈ Q and F ⊆ Q are the initial and set of final states, respectively. The transition
function δ can be extended to words, i.e. δ : Q×Σ? 7→ Q with δ inductively defined as, by abuse
of notation:

δ(q, aw) = δ(δ(q, a), w),

δ(q, ε) = q.

The set of words recognized by a DFA A = 〈Q,Σ, δ, q0, F 〉 constitutes a language L(A) =
{ w | w ∈ Σ? ∧ δ(q0, w) ∈ F }. Two DFAs are equivalent if they recognize the same language.

Figure 1.2 contains a DFA recognizing the language of the words ending in a; the final states
are represented as double circle nodes; initial states have an inward arrow without source or
label; δ is represented as labeled edges of arrows between nodes. The automaton represented is
〈{0, 1}, {a, b}, {(0, a, 1), (0, b, 0), (1, a, 1), (1, b, 0)}, 0, {1}〉.



1.3. Computational Complexity 5

Figure 1.2: DFA recognizing words ending in a.

Any DFA has a unique equivalent with minimal number of states [15]. There is also a known
algorithm for minimizing DFA in O(n logn) time complexity [14]. Comparing the equivalence of
the languages recognized by DFA is simply a matter of minimizing both DFAs and comparing if
the resulting DFAs are equal up to renaming of the states.

Non-Deterministic Finite Automaton (NFA) An NFA A is a 5-tuple 〈Q,Σ, δ, I, F 〉 where
Q is a finite set of states, Σ is a finite set of symbols named alphabet, δ : Q × Σ → 2Q is the
transition function, I ∈ Q and F ⊆ Q are the set of initial and final states, respectively. The
transition function δ can be extended to words and sets of states, i.e. δ : 2Q × Σ? 7→ 2Q with δ
defined as, by abuse of notation:

δ(∅, w) = ∅,

δ(Q, ε) = Q,

δ(Q, aw) =
⋃

q∈δ(Q,a)
δ(q, w).

The set of words recognized by an NFA A = 〈Q,Σ, δ, I, F 〉 constitutes a language L(A) =
{ w | w ∈ Σ? ∧ δ(I, w)∩ F 6= ∅ }. Figure 1.3 contains a NFA of the language of the words ending
in a; the final states are represented as double circle nodes; initial states have an inward arrow
without source or label; δ is represented as labels of arrows between nodes. The automaton
represented is 〈{0, 1}, {a, b}, {(0, a, 0), (0, b, 0), (0, a, 1)}, {0}, {1}〉.

Figure 1.3: NFA recognizing words ending in a.

A DFA is an NFA with ∀q ∈ Q, σ ∈ Σ . |δ(q, σ)| ≤ 1. An NFA can be converted to a DFA
through a determinization algorithm. The complexity of such conversion is known to be O(2n)
[15] and witnesses of worst-case determinization exist for n-state binary NFA [22].

Regular Languages The languages that can be represented by regular expressions are called
regular languages. The set of languages denoted by regular expressions, deterministic or non-
deterministic finite automata is the same [15].

1.3 Computational Complexity

Big-Oh Notation The efficiency of an algorithm is typically measured as the number of basic
operations it performs as a function T : N 7→ N of its input length n. If f , g are two functions
from N to N, the O, Θ, Ω, ω and o notations are defined as follows [3]:



6 Chapter 1. Introduction

• (f = O(g))⇒ (∃c ∈ N)(f(n) < c · g(n)) for sufficiently large n;

• (f = Ω(g))⇒ g = O(f) ;

• (f = Θ(g))⇒ (f = O(g) ∧ g = O(f)) ;

• (f = o(g))⇒ (∀ε > 0)(f(n) ≤ ε · g(n)) for sufficiently large n;

• (f = ω(g))⇒ g = o(f).

To emphasize the input parameter, it is often written f(n) = O(g(n)) instead of f = O(g) and
similarly for Θ, Ω, ω and o.

Turing Machine Model A Turing machine is a simple mathematical model for the formal-
ization of an effective procedure [15]. The Churchs’s hypothesis suggests that this model is
equivalent to our intuitive notion of a computer.

Formally, a (deterministic) Turing machine (TM) is denoted

M = 〈Q,Σ,T, δ, q0, B, F 〉

where

• Q is the finite set of states;

• Σ, a subset of T not including B, is the set of input symbols;

• T is the finite set of allowable table symbols;

• δ is the transition function, a mapping from Q× T to Q× T× {L,R} ;

• B, a symbols of T is the blank symbol;

• F ⊆ Q is the set of accepting states.

• q0 in Q is the initial state;

On every move a TM, depending on the symbol scanned on the head and the current state of
the finite control:

• changes state,

• prints a symbol on the tape cell scanned, replacing what was written there, and

• moves its head left or right one cell, on the tape that is unlimited to the right.



1.3. Computational Complexity 7

The instantaneous description (ID) of a TM on the current state q, where α1, α2 are strings
in T? that are the contents of the tape up to the head and from the head to the rightmost
non-blank symbol, is α1qα2.

A TM move is defined as follows. Let X1X2 · · ·Xi−1qXi · · ·Xn be the ID of the TM. We
have two possible directions: if δ(q,Xi) = (p, Y, L) then we write X1X2 · · ·Xi−1qXi · · ·Xn M

X1X2 · · ·Y pXi−1Xi+1 · · ·Xn; if δ(q,Xi) = (p, Y,R) then we writeX1X2 · · ·Xi−1qXiXi+1 · · ·Xn M

X1X2 · · ·Xi−1Y pXi+1 · · ·Xn. If one ID a results from a finite number of moves from b we write
b ∗ a. The execution time for a halting run of a word is the number of moves of the TM.

The language accepted by a deterministic Turing machineM = 〈Q,Σ,T, δ, q0, B, F 〉 is denoted
L(M) and is:

L(M) = { w | w ∈ Σ? ∧ q0w ∗ α1pα2, p ∈ F, α1 ∈ T?, α2 ∈ T? }

A TM can be non-deterministic if we allow δ to perform several moves from the same source
ID in a single computation step. This computation model recognizes the same languages as the
deterministic TM.

The language accepted by a non-deterministic Turing machine M = 〈Q,Σ,T, δ′, q0, B, F 〉
where δ′ : Q × T 7→ 2Q×T×{L,R} are the words for which there is a witness - a finite sequence
of choices of one of the moves for each non-deterministic step - the word that leads the non-
deterministic TM into an accepting state.

Basic Complexity Classes A complexity class is a set of functions that can be computed
within given resource bounds. Let T : N 7→ N be a total function. A language L is in
DTIME(T (n)) if and only if there is a Turing machine that runs in time O(T (n)) and decides
L. Deciding a language L ⊆ {0, 1}? is equivalent to computing a function fL : {0, 1}? 7→ {0, 1}
where fL(x) = 1⇔ x ∈ L [3].

The class P is the class of problems decided by deterministic Turing machines with a running
time bounded by a polynomial:

P =
⋃
c≥1

DTIME(nc)

Let T : N 7→ N be a total function. A language L is in NTIME(T (n)) if and only if there
is a non-deterministic Turing machine that runs in time c · O(T (n)) for some constant c > 0
and decides L. The class of NP is the class of languages decidable in polynomial time by a
non-deterministic Turing machine [3]:

NP =
⋃
c≥1

NTIME(nc)

Whether P = NP is an open problem and of great importance in computer science and
mathematics.



8 Chapter 1. Introduction

1.4 The Graph Isomorphism Problem

Digraph Isomorphism Two directed graphs G = (V,E) and H = (V ′, E′) are isomorphic if
there is a bijection f : V 7→ V ′ such that (s, t) ∈ E if and only if (f(s), f(t)) ∈ E′. When G and
H are the same digraph, f is called an automorphism of G. The generic graph isomorphism
problem is applied to undirected graphs but we will focus on the isomorphism of graphs and
NFAs.

Two NFAs are isomorphic if there is a bijection ϕ between their sets of states preserving
the set of initial states, final states and transitions. Let A = 〈Q,Σ, δ, I, F 〉 be an NFA, ϕ(A) =
〈ϕ(Q),Σ, { (ϕ(s), k, ϕ(t)) | (s, k, t) ∈ δ }, ϕ(I), ϕ(F )〉.

Figure 1.4: Two 3-node isomorphic graphs.

It is not known if the graph isomorphism problem is solvable in polynomial time but it is
known that it is not NP-complete unless P = NP [24]. Isomorphism of specific classes of graphs
and automata are known to be polynomially solvable such as fixed bound degree graphs [20] and
initially connected DFAs [1]. However, it is known that the general graph isomorphism problem
for graphs, semigroups and automata (NFAs) are polynomially equivalent [6]. Moreover, the
graph isomorphism problem for digraphs polynomially reduces to general graph isomorphism
[23].

This means that testing isomorphism of generic NFA, for the purpose of random generation,
can be computationally expensive, although recent studies suggest that the generic problem for
n-node graphs can be solved, in theory, in quasipolinomial time - 2O((logn)3) [4, 13].

Let Cn be a class of n-node digraphs closed by isomorphism. There are n! possible bijections
on {1, . . . , n}. The automorphism group of a graph G is denoted Aut(G). The number of
isomorphism classes of a graph G is n!

|Aut(G)| . We will present some random generators of
automata that are uniform with respect of the isomorphism classes for n-state k-symbol finite
automata.

On the finite automata case, a practical solution for calculating the size of the automorphism
group of an NFA consists in using state labels [12].

Let An be a class of n-state NFA, a labeling is a computable function τ : An×{1, . . . , n} 7→ D,
such that if ϕ is an isomorphism between two NFA A andB, then for every i ∈ {1, . . . , n}, τ(A, i) =
τ(B,ϕ(i)). Algorithm 1 consists in finding functions ϕ that preserve the labeling τ . Commonly
used labels for NFA include states being final or not and states being initial or not.



1.5. Statistics 9

Algorithm 1 NFA automorphism group size using labelings
n
1: procedure CountAutomorphism(NFA A, labeling τ with image D = {α1, . . . , αl})
2: size← 0
3: for α ∈ D do
4: C[α]← ∅ . precomputed τ−1

5: for i ∈ {1, . . . , n} do
6: C[τ(A, i)] = C[τ(A, i)] ∪ {i}
7: for each permutation ρ1 of C(α1) do
8: for each permutation ρ2 of C(α2) do
9: . . .

10: for each permutation ρl of C(αl) do
11: if ρ = ρ1 . . . ρl ∈ Aut(A) then
12: size← size+ 1
13: . . .return size

1.5 Statistics

Sample Size Determination Because the size of the population of n-state k-symbol automata
grows very quickly it is necessary to take a statistically significant sample in order to estimate
average properties of the population.

By accepting an interval of error in our measure and a probability of the true value of the
property being within the confidence interval, i.e. the range of values of the measure in our
sample considering the accepted error, it is possible to estimate a sample size that satisfies the
accepted frequencies of error. The interval of error accepted in our measure is called margin
of error ε and the probability of the true value being within the confidence interval is called
confidence level γ.

According to [9], given a margin of error ε and an estimated proportion p of the population
we are interested in, we can obtain the sample size N = z2p(1−p)

ε2 where z is abscissa of the normal
curve such that for a confidence level γ: P (−z < Z < z) = γ, where Z is our standardized
measure. According to the central limit theorem, assuming the data is uniformly distributed and
because we know the population is large, we can assume p = 1

2 for maximum variability as we do
not know the proportion of classes that are interesting to the statistic beforehand. Therefore,
we obtain the equation N = z2

4ε2 . Refer to Table 1.1 for common values of confidence levels and
respective sample sizes used in sampling, accepting a 1% error margin.

Markov Chains A Markov chain in a finite set Ω is a sequence X0, . . . , Xt of random variables
on Ω such that P(Xt+1 = xt+1 | Xt = xt) = P(Xt+1 = xt+1 | Xt = xt, . . . , Xi = xi, . . . , X0 =
x0),∀xi ∈ Ω. The probability of the next element of the sequence depends only on the previous
element and not on the whole sequence.



10 Chapter 1. Introduction

γ N

0.99 16590
0.95 9604
0.90 6765

Table 1.1: Samples sizes in funcion of confidence level with a 1% error margin.

A Markov chain is defined by a transition matrix M , which is a transition function from
Ω × Ω into [0, 1] such that M(x, y) = P(Xt+1 = y | Xt = x). The transition matrix describes
a directed graph of the Markov chain and there is an edge from x to y if M(x, y) 6= 0 and
∀x ∈ Ω

∑
y∈ΩM(x, y) = 1.

M =
[
0.9 0.1
0.8 0.2

]

Figure 1.5: Example of a Markov chain digraph and corresponding transition matrix.

A Markov chain is irreducible if its digraph is strongly connected. It is aperiodic if for all
nodes x ∈ Ω, the greatest common divisor of the length of all the cycles visiting x is 1. In
particular, if M(x, x) 6= 0 then the Markov chain is aperiodic.

A Markov chain M is ergodic if it is irreducible and aperiodic and it is symmetric if
∀x, y ∈ Ω.M(x, y) = M(y, x). It is known that an ergodic chain has a unique stationary
distribution π, i.e. πM = π and if the chain is symmetric this distribution is uniform in Ω.

Let π be a stationary distribution on M , sampling random elements of Ω according to the
distribution π is known as the Monte-Carlo method. This method consists in choosing arbitrarily
X0 and computing a sequence X1, X2, . . . , Xt for t large enough. Calculating t can be done
using the concept of ε-mixing time: tmix(ε) = min{ t | maxx∈Ω||M t

x − π||TV ≤ ε }, where
||P −Q||TV = supA∈Ω |P (A)−Q(A)| is the total variation distance of the probability measure.

The Metropolis-Hastings algorithm is based on the Monte-Carlo technique and consists in
generating random elements of Ω by modifying the transition function in order to obtain a
particular stationary distribution ν. The Metropolis-Hastings chain Pν is defined as:

Pν(x, y) =

min{1, ν(y)
ν(x)}M(x, y) if x 6= y

1−
∑
z 6=x min{1, ν(z)

ν(x)}M(x, z) if x = y
.



Chapter 2

Random Generation of NFA

The average-case analysis of operations in automata is, in general, a difficult task. One approach
to this problem is to consider uniformly distributed random representations and to perform
statistically significant experiments requiring most of the times nonisomorphic sampled automata.
Specific classes of automata for which this problem was solved have been studied, e.g. initially
connected complete DFAs [1, 5]. However for NFAs, the problem seems unfeasible in general
as for n-state NFAs the size of the automorphism group can be n!, and this is polynomially
equivalent to testing if two NFAs are isomorphic.

The importance of the uniform distribution with respect to isomorphism classes when
sampling NFA is important because some automata can have less isomorphic representatives then
other automata, and because generators typically generate a specific permutation of a certain
automaton, e.g. the initial state always gets name 0, we need to generate this instance with a
probability weighted by the size of isomorphism class of the automaton.

In this chapter we will describe three distinct models of random NFA generation, including
one that is uniform up to isomorphism, which we implemented and provide comparative results.

2.1 Random Generation of Regular Expressions

A context free grammar (CFG) G is a 4-tuple G = 〈V,Σ, R, S〉 where V is the set of non-terminal
symbols, Σ is the set of terminal symbols, R ⊆ V × (V ∪ Σ)? is the set of production rules and
S ∈ V is the starting symbol. A production rule A is written as A→ α, A ∈ V , α ∈ (V ∪ Σ)?.
A word w ∈ Σ? belongs to the language recognized by a CFG if there is a derivation - a sequence
of rule applications - starting in S ∈ V and by applying production rules to non-terminals until
there is no terminals left w is yielded. The existence of such derivation is denoted S ⇒ w. See
[15] for more details.

Given a context-free grammar G for regular expressions and an integer n, one can generate
random words e of size n which are regular expressions [21]. Each random regular expression e can

11



12 Chapter 2. Random Generation of NFA

be converted to an NFA. The ratio between sizes of regular expressions and their corresponding
constructed NFA has been studied [7].

We assume a grammar G in Chomksy normal form (CNF) without ε-productions except for
the start symbol, so that all productions are of the form A → BC or A → a, where A, B, C
are non-terminal and a ∈ Σ is a terminal. It is possible to convert any context-free grammar to
Chomksy normal form [15]. For each non-terminal A, define ||A||l = |{ w | A⇒ w and |w| = l }|
and ||A → BC||l = |{ w | BC ⇒ w and |w| = l }|. Algorithm 2 implements the simple idea
behind sampling words from a CNF grammar uniformly at random, by counting the number
of l-sized words for each production of the grammar. The word generation phase, for length l
and nonterminal A, consists in choosing a production A→ BC with probability ||A→BC||l||A||l , and a
split 0 < k < l chosen with probability ||B||k||C||l−k

||A→BC||l . This split generates uniformly at random
two words b and c with lengths k and l − k, respectively, that concatenated form our uniformly
random l-sized word.

Algorithm 2 Number of l-sized words for each production of a CNF grammar
1: procedure CountWords(Productions in CNF)
2: for each nonterminal A do
3: Count[A, 1]← 0
4: for each production A→ a do
5: Count[A, 1]← Count[A, 1] + 1
6: for l← 2, up to n do
7: for each nonterminal A do
8: for each production A→ BC do
9: Count[A, l]← Count[A, l] +

∑
0<k<l Count[B, k].Count[C, l − k]

return Count

Table 2.1 shows some properties of the partial derivative automaton [2] constructed from a
set of 10000 random regular expressions with of n length in symbols and operators and k possible
alphabet symbols usefulS : number of states of the partial derivative automaton; T : number of
transitions of the partial derivative automaton; dfa: percentage of NFA that are DFA; minS :
number of states of the minimal DFA; minT : number of transitions of the minimal DFA; subsetS :
number of states of the subset constructed DFA; subsetT : number of transitions of the subset
constructed DFA; timeg: seconds required to randomly generate the all the 10000 instances;
timep: second required to process the 10000 instances. The context free grammar used was the
RPN for regular expressions, to avoid parenthesis being counted as symbols:

e→ + e e | . e e | ∗ e | a | ε| ∅ a ∈ Σ.

Table 2.1: Average measures of partial derivative NFA generated from 10000 random regular
expressions of RPN length n with k symbols.

For the purposes of random generation of NFA, this generator is typically paired with a NFA
construction method from regular expressions. Although generating fixed size regular expressions



2.2. Generation by Bitstreams 13

uniformly according to their valid infix or polish notations, from a given context-free grammar,
seems like a good bias, the choice of the construction method will generate NFA with predictable
properties depending on the construction method.

The random regular expression method has the advantage of being versatile and easily
adaptable for non-regular languages because it is based on a random word generator for context-
free languages.

2.2 Generation by Bitstreams

This method was used by van Zijl to generate random NFA [8, 25]. Bitstream NFA generation
consists in, according to the algorithm, given an alphabet Σ = {0, . . . , k − 1} = [0, k[ and the set
of states Q = {0, . . . , n− 1} = [0, n[:

• generating a uniform random string of bits of size kn2. If the bit at position ln2 + in+ j+ 1
is non-zero then there is a transition from state i to state j with label l.

• the state 1 is the single initial state.

• the set of final states is equiprobably chosen from the subsets of Q.

Algorithm 3 implements the bitstream NFA generator assuming that RandomBits(n) returns
a list of n random binary digits. Figure 2.1 shows a correspondence between a bitstream and a
2-state 2-symbol NFA.

Algorithm 3 Sampling of n-state k-symbol NFA using bitstreams
1: procedure BitstreamRandomNFA(n = |Q|, k = |Σ|)
2: δ ← ∅
3: b← RandomBits(kn2)
4: for l← 0 to k − 1 do
5: for i← 0 to n− 1 do
6: for j ← 0 to n− 1 do
7: if b[ln2 + in+ j + 1] = 1 then
8: δ ← δ ∪ {(i, l, j)}
9: F ← ∅

10: f ← RandomBits(n)
11: for i← 0 to n− 1 do
12: if f [i] = 1 then
13: F ← F ∪ {i}

return NFA ([0, n[, [0, k[, δ, {0}, F )

This generation model has the advantage of being simple and efficient, since it has O(kn2)
time and space complexity, but comes with many disadvantages. The objects generated by this
method have the disadvantage of not being necessarily initially connected neither uniform with



14 Chapter 2. Random Generation of NFA

respect to the set of automorphism groups of the n-state k-symbol NFAs. We provide some
properties of the NFAs from our implementation of the generator in Table 2.2. Our experiment
consisted in sampling 10000 NFAs using the van Zijl method and calculating: dfa - proportion
of the generated NFAs that are a DFA; minS - average number of states of the minimal DFA;
subsetS - average number of states of the subset constructed DFA; usefulS - average number of
reachable useful states; T - average number of transitions; timeg - time required to sample the
10000 NFAs; timep - time required to calculate properties on the 10000 NFAs.

1 1 0 0 0 0 1 1
1 2

1,11,22,12,21,11,22,12,2

1 2 3 4 5 6 7 8

i,j

idx

bit
l

Figure 2.1: Example of a bitstream to 2-state automaton correspondence.

A derived approach from the van Zijl one was proposed in [19], with the purpose of studying
the size of DFAs obtained by determinization in function of their transition density. It generates
NFAs by first randomly generating a connected structure, in order to end up with an accessible
automaton; a unique single state is chosen and then the transitions are randomly chosen: if a
transition appears twice, it is rejected and another one is chosen. The automata are generated
for a fixed number of states n, number of alphabet symbols k and number of transitions e. The
non-deterministic density d is given by d = e

mn2 .

This generation method has the advantage of having the same time and space complexity of
the bitstream generator O(kn2), and also the guarantee that the generated objects are initially
connected. Algorithm 4 implements density based NFA generator by assuming that Random(S)
returns a random element from set S and Random(a, b) returns a uniform random real number
in [a, b].

We provide some properties of the NFAs from our implementation of the generator in Table
2.3. Our experiment consisted in sampling 10000 NFAs using the method for initially connected
NFAs using bitstreams with 50% transition density and calculating: dfa - proportion of the
generated NFAs that are a DFA; minS - average number of states of the minimal DFA; subsetS -
average number of states of the subset constructed DFA; usefulS - average number of reachable
useful states; T - average number of transitions; timeg - time required to sample the 10000 NFAs;
timep - time required to calculate properties on the 10000 NFAs.

Table 2.2: NFA properties with bitstream generation.

Table 2.3: NFA properties with bitstream and density generation.



2.3. Generation by Markov Chains 15

Algorithm 4 Sampling of n-state k-symbol NFA using density
1: procedure LeslieRandomNFA(n = |Q|, k = |Σ|, t transitions)
2: δ ← InitiallyConnect([0, n[, [0, k[)
3: d← t−n+1

n2k

4: for s ∈ [0, n[ do
5: for σ ∈ [0, k[ do
6: for t ∈ [0, n[ do
7: r ← Random(0, 1)
8: if r ≤ d then
9: δ ← δ(s, σ, t)

10: F ← ∅
11: f ← RandomBits(n)
12: for i← 0 to n− 1 do
13: if f [i] = 1 then
14: F ← F ∪ {i}

return NFA ([0, n[, [0, k[, δ, {0}, F )
15: procedure InitiallyConnect(Q state set, Σ symbol set)
16: V ← {0}
17: δ ← ∅
18: while V 6= Q do
19: s← Random(V )
20: t← Random(Q \ V )
21: k ← Random(Σ)
22: δ ← δ ∪ (s, k, t)
23: V ← V ∪ {t}

return δ

2.3 Generation by Markov Chains

Several families of NFA which have symmetric ergodic Markov chains are proposed by Héam and
Pierre-Cyrille [12]. They define a Metropolis-Hastings Markov chain for a class of automata C by
the transition matrix SC

ρ1,ρ2,ρ3(x, y), where ρ1, ρ2, ρ3 are three real numbers satisfying 0 ≤ ρi ≤ 1
and ρ1 + ρ2 + ρ3 = 1:

• SC
ρ1,ρ2,ρ3(x, y) = ρ1

|Q| if y is the automaton x with setting/unsetting a state initial,

• SC
ρ1,ρ2,ρ3(x, y) = ρ2

|Q| if y is the automaton x with setting/unsetting a state final,

• SC
ρ1,ρ2,ρ3(x, y) = ρ3

|Σ||Q|2 if y is the automaton x by adding/removing a single transition
(p, a, q) ∈ Q× Σ×Q,

• SC
ρ1,ρ2,ρ3(x, x) = 1−

∑
y 6=x S

C
ρ1,ρ2,ρ3(x, y),

• otherwise SC
ρ1,ρ2,ρ3(x, y) = 0.

Let Cn be a class of n-state k-symbol automata closed by isomorphism and γn the number of
isomorphism classes on Cn:



16 Chapter 2. Random Generation of NFA

Proposition 1 ([12]). Randomly generating an element x of Cn with probability |Aut(x)|
γnn! provides

a uniform random generator of the isomorphism classes of Cn.

Proof Let H be an isomorphism class of Cn, H is generated with probability:

∑
x∈H

|Aut(x)|
γnn! =

∑
x∈H

1
γn|H|

= 1
γn|H|

∑
x∈H

1 = |H|
γn|H|

= 1
γn
.

It is not necessary to calculate γn in order to compute the Metropolis-Hastings Markov
chain, it is just necessary to calculate ν(x)

ν(y) = |Aut(y)|
|Aut(x)| . We obtain the following Markov chain that

uniformly generates automata up to isomorphism on a class C where ρ1 is the probability of
changing an initial state, ρ2 is the probability of changing a final state and ρ3 is the probability
of adding or removing a transition:

MC
ρ1,ρ2,ρ3(x, y) =

min{ 1, |Aut(y)|
|Aut(x)| }S

C
ρ1,ρ2,ρ3(x, y) if x 6= y

1−
∑
z 6=x min{ 1, |Aut(z)|

|Aut(x)| }S
C
ρ1,ρ2,ρ3(x, z) if x = y

.

We provide some properties of the NFA produced by implementation of this generator in
Table 2.4. Our experiment consisted in sampling 10000 NFAs using the Markov chain method,
where: dfa - proportion of the generated NFAs that are a DFA; minS - average number of states
of the minimal DFA; subsetS - average number of states of the subset constructed DFA; usefulS -
average number of reachable useful states; T - average number of transitions; timeg - seconds
required to sample the 10000 NFAs; timep - seconds required to calculate properties on 10000
NFAs. We used the values: ρ1 = n

2n+kn2 , ρ2 = n
2n+kn2 , ρ3 = 1− ρ1 − ρ3 and the class U of the

universe of all n-state k-symbol NFA.

Table 2.4: NFA properties with Markov chain generation.

This generation method has the advantage of being versatile, applicable to several automata
classes and generating objects up to isomorphism. However, it requires the user to provide the
probabilities for changes in the automaton, requires the calculation of a mixing time since it is a
Monte-Carlo sampling method and each movement in the modified Markov chain requires O(kn2)
computations of automorphism group sizes of NFA. Furthermore, it is proved that for output
bound degree NFAs, be it by maximum number of outgoing transitions or maximum number
of reached states, the isomorphism test problem of NFAs has polynomial time complexity [12],
regardless of having a single or multiple initial states.



2.4. Initially Connected Complete DFA 17

2.4 Initially Connected Complete DFA

A DFA A = 〈Q,Σ, δ, q0, F 〉 is initially connected if for every state q ∈ Q there is a word w ∈ Σ?

such that δ(q0, w) = q; it is complete if δ(q, σ) is defined for every state q ∈ Q and symbol σ ∈ Σ.

We suppose that ||Σ|| = k and that its elements are ordered some natural order. Given an
ICDFA, initially connected complete DFA, A = 〈Q,Σ, δ, q0, F 〉, a canonical order for Q can be
obtained by a breath-first traversal of A, starting with the initial state q0, and in each state
considering the transitions in the natural order of Σ.

There are several studies of the uniform random generation for this class of DFA [1, 5].
Let ICDFA∅ A∅ = 〈Q,Σ, δ, q0〉 be the semiautomaton of an ICDFA A = 〈Q,Σ, δ, q0〉, i.e. the
automaton discarding final states.

Example 2.4.1. Consider the ICDFA, A = 〈{A,B,C,D,E}, {a, b}, δ, E, {B}〉, a < b, and ϕ the
states renaming according to the induced order.

E A

D B

C
a

b a

b

a
b

ab

a
b ϕ A B C D E

1 3 4 2 0
.

The canonical string S(A) for the corresponding ICDFA∅ is 12︸︷︷︸
E

31︸︷︷︸
A

32︸︷︷︸
D

40︸︷︷︸
B

14︸︷︷︸
C

. Adding the

information pertaining to the final states as a sequence of bits, the canonical string for A is
123132401400010.

Uniform random generation of ICDFA up to isomorphism is done by first generating a random
uniform ICDFA∅ up to isomorphism and a random uniform subset of Q for the set of final states.
The following lemmas are hold [1]:

Lemma 2.4.1 ([1]). Given an ICDFA∅ A∅ = 〈Q,Σ, δ, q0〉, there is a bijection ϕ : Q 7→ [0, n[
where n = |Q|.

Lemma 2.4.2 ([1]). The bijection ϕ along with bijection Π : Σ 7→ [0, k[ where k = |Σ| defines
an isomorphism between the ICDFA∅ 〈Q,Σ, δ, q0〉 and 〈[0, n[, [0, k[,∆, q0〉, where ∆(i, σ) =
ϕ(δ(ϕ−1(i), σ)).

Because the states of an ICDFA∅ have a unique order, the canonical string that represents
the automaton is defined by:

(si)i∈[0,kn[ si ∈ [0, n[,

si = ∆(bi/kc,Π−1(i mod k)) i ∈ [0, kn[.



18 Chapter 2. Random Generation of NFA

Lemma 2.4.3 ([1]). Let A = 〈Q,Σ, δ, q0〉 be an ICDFA∅, with n = |Q|, k = |Σ| and let (si)i∈[0,kn[

be its canonical string. Then every string satisfying rules R0, R1 and R2 represents an ICDFA∅
with n states over an alphabet of k symbols.

(∃j ∈ [0, kn[) sj = n− 1, (R0)

(∀m ∈ [2, n[)(∀i ∈ [0, kn[)(si = m⇒ (∃j ∈ [0, i[) sj = m− 1), (R1)

(∀m ∈ [1, n[)(∃j ∈ [0, km[)sj = m. (R2)

It follows from the lemmas that there is a one-to-one mapping between strings satisfying R1
and R2 and non-isomorphic n-states k-symbols ICDFA∅s.

The flags of an automaton, concept introduced in [1], is the sequence: (fj) j∈[1,n], that is, the
index on the canonical string of the first occurrence of a state label j.

Theorem 2.4.1 (Th. 6 of [1]). Given k and n, the number of valid sequences (fj) j∈[1,n[, Fk,n,
is given by:

Fk,n =
k−1∑
f1=0

2k−1∑
f2=f1+1

. . .

k(n−1)−1∑
fn−1=fn−2+1

1 =
(
kn

n

)
1

(k − 1)n+ 1 = C(k)
n , (2.1)

where C(k)
n are the (generalized) Fuss-Catalan numbers.

To generate all possible ICDFA∅ canonical strings, one just has to “fill the spaces” on the
string for each configuration of flags (fj)j∈[1,n[, according to the following rules:

i < f1 ⇒ si = 0,

(∀j ∈ [1, n− 2])(fj < i < fj+1 ⇒ si ∈ [0, j]),

i > fn−1 ⇒ si ∈ [0, n[.

It follows that for each sequence of flags (fj)j∈[1,n] the number of canonical strings is

Πj∈[1,n]j
fj−fj−1 .

Theorem 2.4.2 (Th. 8 of [1]). The number of strings (si)i∈[0,kn[ representing ICDFA∅s with n
states over an alphabet of k symbols is given by

Bk,n =
k−1∑
f1=0

2k−1∑
f2=f1+1

. . .

k(n−1)−1∑
fn−1=fn−2+1

∏
j∈[1,n]

jfj−fj−1 , (2.2)

where fn = kn and f0 = −1.

Based on (2.1) and (2.2) it is possible to define a recursive form Nm,j that counts the number
of ICDFA∅s with prefix s0s1 . . . si with the first occurrence of symbol m in position j.

Nn−1,j = nnk−1−j with j ∈ [n− 2, (n− 1)k[ (2.3)

Nm,j =
(m+1)k−j−2∑

i=0
(m+ 1)iNm+1,j+i+1 with m ∈ [1, n− 1], j ∈ [m− 1,mk[ (2.4)



2.4. Initially Connected Complete DFA 19

Theorem 2.4.3 (10 of [1]). Given the number of states n and the number of alphabet symbols
k, the number of distinct ICDFA∅ Bk,n can be expressed in function of Nm,j :

Bk,n =
k−1∑
l=0

N1,l.

Random generation of n-state k-symbol ICDFA∅ up to isomorphism consists in:

• uniformly choosing a random integer from [0, Bk,n[.

• calculating the parameters m and j of all the recursive calls to (2.3), effectively extracting
the values of the flags (fi)i∈[1,n] of the canonical string of the ICDFA∅. This can be done
in O(n2k) complexity using dynamic programming techniques when evaluating Nm,j .

• calculating the remaining non-flagged symbols of the canonical string using remainders of
integer divisions. Refer to Algorithm 5 for the conversion of an integer to an ICDFA∅.

Algorithm 5 Converting an integer to n-state k-symbol ICDFA∅
1: procedure IntToFlags(m, n = |Q|, k = |Σ|)
2: s← 1
3: for i ∈ [1, n[ do
4: j ← ik − 1
5: p← ij−fi−1−1

6: while j ≥ i− 1 ∧m ≥ ps×Ni,j do
7: m← m− ps×Ni,j

8: j ← j − 1
9: p← p/i

10: s← s× ij−fi−1−1

11: fi ← j
return (fi)i∈[1,n]

12: procedure IntToIcdfa∅String(m, n = |Q|, k = |Σ|)
13: i← kn− 1
14: j ← n− 1
15: f ← IntToFlags(m,n, k)
16: while m > 0 ∧ j > 0 do
17: while m > 0 ∧ i > fj do
18: si ← m mod (j + 1)
19: m← m/(j + 1)
20: i← i− 1
21: i← i− 1
22: j ← j − 1

return (si)i∈[0,kn[

Although this not a generator for NFA, it deserves special attention because it serves as a
base for the uniform random generator of an NFA class proposed in Chapter 3. This generator
has the advantage of being efficient and uniformly generating up to isomorphism, and also counts
the number of n-state k-symbol ICDFA∅ or ICDFA.



20 Chapter 2. Random Generation of NFA

We provide some properties of the ICDFA from the FAdo implementation of the generator
in Table 2.5. Our experiment consisted in sampling 10000 ICDFAs using the method described
in this section, with: minS - average number of states of the minimal DFA; minT - average
number of transitions of the minimal DFA; usefulS - average number of reachable useful states;
T - average number of transitions; timeg - time in seconds required to sample the 10000 NFAs;
timep - time in seconds required to process the 10000 NFAs.

Table 2.5: DFA properties with uniform random generation up to isomorphism.

2.5 Comparative Analysis

From the Tables 2.1, 2.2, 2.4 and 2.5 one notices that the Markov chain quickly becomes intractable
for high confidence level (10000 instances) experiments as either n grows or k increases.

We summarize the main common properties of the studied generators on Table 2.6. The
columns have the following interpretation: n - number of states of the automaton; m - number
of symbols of the regular expression; k - size of the alphabet of the automaton; Isomorphism -
whether the generator uniformly generates the automata up to isomorphism; Fixed n - whether
the generator allows to fix the number of states of the resulting automaton; Initially Connected -
whether all the generated automata are initially connected; Time Complexity - asymptotic time
complexity of generating a single automaton; NFA - whether NFAs are generated or DFAs. We
denote MIX(C, n) the asymptotic mixing time of the Markov chain for a given class C of NFA
and AUT(n) the asymptotic time complexity of n-state NFA automorphism counting problem.

Isomorphism Fixed n Initially Connected Time Complexity NFA
Regular
Expressions No No Yes O(m2) Yes

Bitstream No Yes
No. Except if
density is enforced.

O(n2k) Yes

Markov chain Yes Yes
Depends on
chosen class

O(MIX(C, n) · n2k ·AUT(n)) Yes

ICDFA Yes Yes Yes O(n2k) No

Table 2.6: Comparison of properties of common NFA generators.



Chapter 3

Forward Injective Finite Automata

This class consists of initially connected NFAs, with a single initial state such that whenever
unvisited states are reached from an already visited state in breadth-first search order, we must
ensure that the set of transition labels from the current state to the newly reached states are
pairwise distinct [11]. We denote NFAs with this property as forward injective finite automata
(FIFA).

Given an NFA transition function δ(x, σ) : Q × Σ → 2Q, let δ(x) : Q → 2Q be the set of
reached states from state x, i.e. , δ(x) = ∪σ∈Σδ(x, σ). Let `(x, y) : Q × Q → 2Σ be the set of
labels of transitions that reach state y from state x. Let `x(y) = `(x, y) for a fixed x. A FIFA is
defined as:

Definition 1 ([11]). Let A = 〈Q,Σ, δ, q0, F 〉 be an initially-connected NFA and Π the bijection
from 2Σ to [0, 2k[, induced by the order on Σ. Consider the breadth-first search traversal of A,
induced by the bitmask order on 2Σ, that starts in the initial state q0. For each state s ∈ Q, let
S(s) be the set of states that are image of a transition starting from a state already visited by the
BFS. The labels for the transitions departing from s to any state in δ(s) \ S(s) need to be unique.
The automaton A is a forward injective finite automaton if it holds that:

(∀p, q ∈ δ(s) \ S(s))(p 6= q ⇒ `(s, p) 6= `(s, q)). (3.1)

This class of automata is expressive enough to recognize all regular languages, because
deterministic automata trivially satisfy (3.1). However, not all (initially-connected) NFAs are
FIFAs, e.g. on Figure 3.1.

Figure 3.1: Non-FIFA initially-connected NFA.

Some experimental results suggest that, for alphabets of size at least 2, one can find a FIFA
equivalent to an NFA that is not much larger than the NFA. Because of the existence of uniform
random generator for this class, one can use this model to obtain estimates of average performance
of algorithms that manipulate NFAs.

21



22 Chapter 3. Forward Injective Finite Automata

3.1 A Canonical State Order for FIFAs

Given a FIFA it is possible to obtain a canonical state order ϕ through a breadth first traversal
starting in the initial state and ordering the newly reached states according to the total order
defined in 2Σ. For that, one can disregard the set of final states and consider the semiautomaton
FIFA∅. The canonical state order for a FIFA∅ can be computed through Algorithm 6, where Π is
the bijection from 2Σ to [0, 2k[, sorted is a function that sorts integers in increasing order, and
ϕ : Q→ [0, n[ is the computed bijection. Note that (at line 7) `−1

ϕ−1(s)(Π
−1(j)) is a single value

by the injectivity of ` restricted to the newly seen states in a FIFA.

Algorithm 6 FIFA state order algorithm
1: procedure StateOrder(FIFA∅ 〈Q,Σ, δ, q0〉)
2: ϕ(q0)← 0
3: i← 0; s← 0
4: do
5: M ← sorted{ Π(S) | ∅ 6= S = `(ϕ−1(s), q) ∧ q ∈ Q \ ϕ−1([0, i]) }
6: for j ∈M do
7: ϕ(`−1

ϕ−1(s)(Π
−1(j))← i+ 1

8: i← i+ 1
9: s← s+ 1

10: while s < i

return ϕ

Proposition 2 ([11]). Let A = 〈Q,Σ, δ, q0〉 be a FIFA∅ with n states and k = |Σ|, there is
a bijection ϕ : Q → [0, n[ that defines an isomorphism between A and 〈[0, n[,Σ, δ′, 0〉 with
δ′(i, σ) = { ϕ(s) | s ∈ δ(ϕ−1(i), σ) }, for i ∈ [0, n[ and σ ∈ Σ.

Proof. The proof follows the lines of a similar result for ICDFAs. Let ϕ be the function defined
by the Algorithm 6. That ϕ is injective is trivial because different values are always assigned to
different elements of Q. To prove that ϕ is surjective, let q ∈ Q. Because A is initially connected
there exist a sequence (q′i)i∈[0,j] of states and a sequence (σi)i∈[0,j−1] of symbols, for some j < |Q|,
such that q′m+1 ∈ δ(q′m, σm) for m ∈ [0, j[, q′0 = q0 and q′j = q. We have ϕ(q′0) = 0. For m ∈ [0, j[,
let ϕ(q′m) = im. Then either q′m+1 ∈ ϕ−1([0, im]) or q′m+1 will be given the value ϕ(q′m+1) in line 7
when s = im and j = Π(`(q′m, q′m+1)). That there exists a unique value q′m+1 = `−1

q′m
(Π−1(j)) is

ensured by the injectivity of ` restricted to the states newly seen in state q′m (i.e satisfying (3.1)).
Thus, one can conclude that ϕ−1([0, n[) = Q. By the definition of δ′, ϕ defines a (semi)automaton
isomorphism.

Throughout the chapter we will now consider FIFA∅ to have its states in their canonical
order: A = 〈[0, n[,Σ, δ, 0〉.



3.2. Canonical String Representation 23

3.2 Canonical String Representation

Let A = 〈[0, n[,Σ, δ, 0, F 〉 be a FIFA such that 〈[0, n[,Σ, δ, 0〉 is a FIFA∅. We can represent A by
the canonical representation of its FIFA∅ concatenated with the bitmap of the state finalities.
The canonical representation of a FIFA∅ is defined as follows.

Definition 2. Given a FIFA∅ 〈[0, n[,Σ, δ, 0〉 with |Σ| = k, its canonical representation is a
sequence (ri)i∈[0,n[ such that for each state i,

ri = si,1si,2 . . . si,miui,1 . . . ui,mi ,

and where mi is the number of previously seen states, mi is the number of newly seen states,
si,j = Π(`(i, j− 1)) for j ∈ [1,mi], and ui,j = Π(`(i,mi + j− 1)) for j ∈ [1,mi]. This means that,
for each state i, si,j correspond to the sets of transitions to states already seen (back transitions)
and ui,j correspond to the sets of transitions to newly seen states from state i (forward transitions).

Example 3.2.1. Consider the following FIFA on the left.

E A

D B

C

F

a

b

a

b
b

b

a
b

a

a, b

b

a
b

ϕ A B C D E F

1 3 4 2 0 5
.

Let Π(∅) = 0, Π({a}) = 1, Π({b}) = 2 and Π({a, b}) = 3. The state renaming according to the
induced order on the states is given above. The canonical string (ri)i∈[0,5] for the corresponding
FIFA∅ is

[1][1, 2]︸ ︷︷ ︸
E

[2, 2, 0][2]︸ ︷︷ ︸
A

[0, 0, 2, 1][]︸ ︷︷ ︸
D

[0, 0, 0, 0][1, 3]︸ ︷︷ ︸
B

[0, 1, 0, 0, 2, 0][]︸ ︷︷ ︸
C

[0, 0, 0, 0, 2, 0][]︸ ︷︷ ︸
F

,

where the transitions for each state are as indicated. The FIFA can be represented by its
semiautomaton canonical string with the state finalities appended. Thus, this FIFA canonical
string is

[1][1, 2][2, 2, 0][2][0, 0, 2, 1][][0, 0, 0, 0][1, 3][0, 1, 0, 0, 2, 0][][0, 0, 0, 0, 2, 0][][0, 0, 0, 1, 0, 0].

Lemma 3.2.1. Let A = 〈[0, n[,Σ, δ, 0〉 be a FIFA∅ with k = |Σ|. Let (ri)i∈[0,n[ with ri =
si,1si,2 · · · si,miui,1ui,2 · · ·ui,mi be the canonical representation for A as given above. Then the



24 Chapter 3. Forward Injective Finite Automata

following rules are satisfied:

si,j ∈ [0, 2k[, ∀i ∈ [0, n[, ∀j ∈ [1,mi], (F1)

ui,j ∈ [1, 2k[, ∀i ∈ [0, n[, ∀j ∈ [1,mi], (F2)

j < l⇒ ui,j < ui,l, ∀i ∈ [0, n[, ∀j, l ∈ [1,mi], (F3)

m0 = 1, (F4)

mi = mi−1 +mi−1, ∀i ∈ [1, n[, (F5)

i < mi ≤ n, ∀i ∈ [1, n[, (F6)

mn−1 = 0. (F7)

Proof. The rule (F1) describes how transitions to previously seen states are represented, i.e.
si,j = Π(`(i, j− 1)), possibly with si,j = 0. The rule (F2) considers the transitions from state i to
states ti,j = mi+j−1 visited for the first time in i, which implies that `(i, ti,j) 6= ∅. Consequently,
ui,j ∈ [1, 2k[. For representation purposes, rule (F3) states that the set of states visited for the
first time is represented with its transitions sorted in ascending order. This is a representation
choice that ensures that all ui,j are distinct. Rule (F4) is obvious as one starts at state 0 and
thus 0 is the only seen state. Rule (F5) is a direct consequence of the definition of mi in Equation
(2), and implies that mi = 1 +

∑i−1
j=0mj for i ∈ [1, n[. Rules (F6) and (F7) ensures that all states

are seen, and that the FIFA∅ is initially connected. It is a consequence of the definition of ϕ and
also ensures that a state must be seen before its representation is given. Rule (F6) implies that
mn−1 = n. By contradiction, suppose that there is i such that mi ≤ i, for i ∈ [1, n[. Then, there
exists 1 ≤ j ≤ i such that j is not accessible from 0 in paths that use states only in [0, i[. But
that contradicts the definition of ϕ.

Lemma 3.2.2. Every string (ri)i∈[0,n[ satisfying rules (F1)-(F7) represents a FIFA∅ with states
[0, n[ over an alphabet of k symbols.

Proof. There is at least one transition reaching each state in [1, n[ and there is at least one
transition from the state 0 to state 1. The transition function is defined by `(i, j − 1) = Π−1(si,j)
for i ∈ [0, n[ and j ∈ [1,mi], and `(i,mi + j − 1) = Π−1(ui,j) for i ∈ [0, n[ and j ∈ [1,mi]. The
proof that the FIFA∅ is initially connected is analogous to the one in Lemma 3.2.1.

From these lemmas the following theorem holds.

Theorem 3.2.1. For each n > 0 and k > 0, there is a one-to-one mapping from sequences
(ri)i∈[0,n[ satisfying rules (F1)–(F7) and non-isomorphic FIFA∅s with n states over an alphabet
of k symbols.

The canonical form for FIFA∅ is not a simple extension of the one for ICDFA∅s reviewed in
Section 2.4 for several reasons. One needs to consider instead of the alphabet its power set,
there are no restrictions for transitions to already seen states, and transitions to newly seen
states must have different labels. However, the first occurrences of each state satisfy exactly the



3.3. Counting FIFAs 25

same rules (over an alphabet of 2k symbols) observed in the canonical representation of ICDFA∅s.
This will be made evident in the next section.

3.3 Counting FIFAs

Our aim is to enumerate (exactly generate) and count all the nonisomorphic FIFA∅ with n states
and k symbols. This will also allow us to obtain a uniform random generator for the class of
FIFAs.

Let Ψ : [0, n[×[1, 2k[→ [0, n(2k − 1)[, be defined by Ψ(i, j) = i(2k − 1) + j − 1. The mapping
Ψ is a bijection with Ψ−1(p) =

(⌊
p/(2k − 1)

⌋
, (p mod (2k − 1)) + 1

)
.

Let (ri)i∈[0,n[ be a sequence satisfying rules (F1)–(F7), thus, representing a FIFA∅. Let us
denote by flag of a state t ∈ [1, n[ the pair (i, ui,j), occurring in state i, such that t = mi + j − 1
(and `(i, t) = Π−1(ui,j)).

According to (F3), if in a state i two different flags (i, ui,j) and (i, ui,l) occur, we know that
j < l⇒ ui,j < ui,l. For the sake of readability, given t ∈ [1, n[, we denote by (it, ut) its flag, and
let Ψ(it, ut) = ft. Then, by (F3), one has

(∀t ∈ [2, n[)(it = it−1 ⇒ ut > ut−1) ∨ (it > it−1),

which implies

(∀t ∈ [2, n[)(ft > ft−1), (G1)

(∀t ∈ [1, n[)(ft < t(2k − 1)). (G2)

Rules (G1)–(G2) are the ones satisfied by the positions of the first occurrence of a state in
the canonical strings for ICDFA∅s, considering k instead of 2k − 1 in rule (G2). The following
theorem computes the number of sequences of flags that are allowed.

Proposition 3 (Theorem 6 of [1]). Given k > 0 and n > 0, the number of sequences (ft)t∈[1,n[,
F2k−1,n, is given by:

F2k−1,n =
2k−1−1∑
f1=0

2(2k−1)−1∑
f2=f1+1

. . .

(2k−1)(n−1)−1∑
fn−1=fn−2+1

1 = C(2k−1)
n ,

where C(2k−1)
n =

(n(2k−1)
n

) 1
(2k−2)n+1 are the generalized Fuss-Catalan numbers.

Example 3.3.1. For the FIFA of Example 3.2.1, ((0, 1), (0, 2), (1, 2), (3, 1), (3, 3)) is the sequence
of flags and (ft)t∈[1,5] = (0, 1, 4, 9, 11).

Given a sequence of flags (ft)t∈[1,n[, the set of possible canonical strings that represent FIFA∅s
can be easily enumerated: each state i has unconstrained transitions for states already seen (mi)



26 Chapter 3. Forward Injective Finite Automata

and has the transitions to new states given by the flags occurring in its description (forward
transitions). It is trivial that one can obtain Qi+1 \Qi from the flags and hence mi. The number
of canonical strings with a given sequence of flags is given by∏

i∈[0,n[
(2k)mi

. (3.2)

Thus, the following theorem holds.

Theorem 3.3.1. The total number of FIFA∅s with n states over an alphabet of k symbols is

bk,n =
2k−1−1∑
f1=0

2(2k−1)−1∑
f2=f1+1

. . .

(n−1)(2k−1)−1∑
fn−1=fn−2+1

∏
i∈[0,n[

(2k)mi
,

where mi = 1 +
∑i−1
j=0mj and mj = |{ ft | it = j}| for i ∈ [0, n[ and j ∈ [1, n[.

This can be adapted for the exact generation/enumeration of all canonical representations.
Each FIFA∅ corresponds to a number between 1 and bk,n. In Table 3.1 we present the values of
bk,n for n ∈ [2, 7] and k ∈ [2, 3]. An equivalent recursive definition for bk,n is given in the next
section for uniform random generation.

Table 3.1: Values of bk,n

n k = 2 k = 3

2 192 3584
3 86016 56885248
4 321912832 32236950781952
5 10382009696256 738091318939425439744
6 3073719939819896832 733871593861464877408622477312
7 8715818304405159932854272 32686722749179979231494144786993701191680

Corollary 3.3.1. The number of non-isomorphic FIFAs with n states and k alphabetic symbols
is Bk,n = bk,n2n.

Bk,n = bk,n2n. (3.3)

3.4 Uniform Random Generation

The canonical representation for FIFAs allows an easy uniform random generation for this class
of automata. Given the number of flags occurring in a prefix of a canonical string we count
the number of valid suffixes. To count the number of automata with a given prefix a recursive
counting formula for FIFA∅ is needed. With these partial values, we can reconstruct any FIFA∅
by knowing its number, which varies from 1 to bk,n. The process of uniform randomly generating



3.5. Converting an NFA into a FIFA 27

a FIFA consists, thus, in four steps: creation of a table with partial counts for each prefix;
uniformly sample a number between 1 and bk,n; construct the FIFA∅ representation using the
table; random generation of values from 0 to 2n − 1 for the state finalities and return the FIFA.

1. creation of a table with partial counts for each prefix;

2. uniformly sample a number from 1 to bk,n;

3. reconstruct the FIFA∅ using the table;

4. random generation of values from 0 to 2n − 1 for the state finalities and return the FIFA.

Let m be the number of already seen states for the state i of a canonical string of a FIFA∅. We
count the number Nm,i of FIFA∅s for each value of m and i. This gives us the following recursive
formula for fixed n and k:

Nm,i = (2k)m
∑n−m
j=0

(2k−1
j

)
Nm+j,i+1, m ∈ [1, n], i ∈ [0,m[,

Nm,i = 0, m ∈ [1, n], i /∈ [0,m[,
Nn,n = 1.

Proposition 4. bk,n = N1,0, for all k ≥ 1 and n ≥ 1.

Proof. Immediate consequence of the canonical representation and Theorem 3.3.1.

Proposition 5. Algorithm 7 presents a uniform random generator for a FIFA∅ with n states
and k symbols.

To obtain a random FIFA from the FIFA∅ we can generate a random number from [0, 2n[ and
reconstruct the state finalities according to the corresponding choice. Using dynamic programming
techniques it is possible to generate a table indexed by the values of m and i (Nm,i) with time
complexity O(n3 log((2k)n2)) = O(n5k). The amount of memory used is O(n4k), and this is a
limiting factor for the dimension of the FIFA∅ being generated. This is justified by the huge
number of FIFA∅s for a given n and k. For example, b2,100 is greater than 1011531. In Table 3.2
we present the execution times for the generation of 10000 FIFAs for n ∈ {1, 20, 30, 50, 75, 100}
and k ∈ {1, 2, 3, 4}, using Python 2.7 interpreted by Pypy, with a Intel Xeon CPU X5550 at
2.67GHz. Comparing with some experiments presented by Héam and Joly [12, Table 1], these
times correspond, approximately, to the generation of a single NFA.

3.5 Converting an NFA into a FIFA

In this section we discuss a process of converting an arbitrary NFA to a FIFA and the asymptotic
time complexity bounds of such a procedure. The algorithm has an NFA as input and outputs an
equivalent FIFA. It is based on the subset construction for NFA determinisation, with addition



28 Chapter 3. Forward Injective Finite Automata

Algorithm 7 Random FIFA∅ algorithm.
1: procedure randomFifa(n, k)
2: r ← Random(0, N1,0 − 1) . number of the FIFA∅
3: m0 ← 1
4: for q ∈ [0, n− 1[ do . reconstruct FIFA∅ flags
5: mq ← 0
6: ac← 0
7: while ac ≤ r do
8: mq ← mq + 1
9: ac← (2k)mq

(2k−1
mq

)
Nq,mq+mq

10: mq+1 ← mq +mq

11: b← r mod (2k)mq . number representing back transitions
12: r ← (r − b)/(2k)mq

13: f ← r − (2k)mq
∑mq−1

i=0
(2k−1

i

)
Nmq+i,q+1

14: f ← f/(2k)mq . number representing forward transitions
15: r ← (f − f mod

(2k−1
mq

)
)/
(2k−1

mq

)
16: for p ∈ [1,mq] do . reconstruct back transitions
17: sq,p ← b mod 2k

18: b← b/2k

19: if mq 6= 0 then
20: c←

(2k−1
mq

)
21: t← f mod c
22: f ← f/c

23: for p ∈ [1,mq] do
24: uq,p ← t mod (2k − 1)
25: t← bt/(2k − 1)c
26: for p ∈ [1, n] do . reconstruct back transitions
27: sn−1,p ← r mod 2k

28: r ← r/2k

return (si,1si,2 · · · si,mi
ui,1ui,2 · · ·ui,mi

)i∈[0,n[

of an heuristic that attempts to create back transitions whenever possible. This gives us a FIFA
that is not only forward injective but also forward deterministic. It may be also possible to
add an heuristic for nondeterministic forward injective transitions or to have other procedures
that are not based on the subset construction. However this one had a good performance in our
experiments.

We present a method of converting an NFA 〈Q,Σ, δ, I, F 〉 into a FIFA 〈Q′,Σ, δ′, I, F ′〉 such
that: Q′ ⊆ 2Q, δ′ ⊆ Q′ × Σ× 2Q′ , F ′ = { S | S ∈ Q′, S ∩ F 6= ∅ } and δ′(S, a) satisfies (3.1) by
having at most one forward transitions for all S ∈ Q′ and a ∈ Σ. This method in implemented
in Algorithm 8.

The following lemmas apply to Algorithm 8:

Lemma 3.5.1. For all a ∈ Σ and S ∈ Q′, δ′ contains at most one forward transition (to state
P ∈ Q′) and a series of transitions for m previously seen states R1, . . . , Rm with Ri ∈ Q′.



3.5. Converting an NFA into a FIFA 29

Table 3.2: Execution times for the generation of 10000 random FIFA.

Times k = 1 k = 2 k = 3 k = 4

n = 10 0.77s 1.05s 0.95s 8.59s
n = 20 1.06s 2.33s 3.13s 3.96s
n = 30 1.15s 5.01s 7.38s 9.52s
n = 50 2.84s 16.86s 26.64s 40.43s
n = 75 7.11s 47.62s 71.92s 91.70s
n = 100 15.86s 100.25s 156.24s 202.41s

Algorithm 8 An NFA to FIFA algorithm
1: procedure NfaToFifa(NFA 〈Q, Σ, δ, I, F 〉)
2: Q′ ← {I}
3: w ← {I} . states to be processed
4: while w 6= ∅ do
5: S ← Pop(w) . popping S from w

6: for σ ∈ Σ do
7: P ← ∅
8: δ′(S, σ)← ∅
9: for s ∈ S do

10: P ← P ∪ δ(s, σ)
11: for R ∈ sortedBySizeDesc(Q′) do
12: if R ⊆ P then . nondeterministic back transitions
13: δ′(S, σ)← δ′(S, σ) ∪ {R}
14: P ← P \R
15: if P 6= ∅ then . forward transition
16: Q′ ← Q′ ∪ {P}
17: w ← w ∪ {P}
18: δ′(S, σ)← δ′(S, σ) ∪ {P}
19: return FIFA 〈Q′, Σ, δ′, I, {S ∩ F 6= ∅, S ∈ Q′}〉

Proof. Direct consequence of δ′ constructed in lines 11-14 in Algorithm 8 satisfying (3.1).

Lemma 3.5.2. The following equality holds for all R ∈ Q′ and a ∈ Σ:

δ(R, a) =
⋃

S∈δ′(R,a)
S (3.4)

Proof. By definition, δ : 2Q × Σ 7→ 2Q is:

δ(R, a) =
⋃
s∈R

δ(s, a), R ⊆ Q, a ∈ Σ

= R1 ∪ . . . ∪Rm ∪ P, according to Lemma 3.5.1.



30 Chapter 3. Forward Injective Finite Automata

0 1

23

a

b

a
bb

0 1, 2

3

a

b

b

b 0 1

2

a, b

a, b

0 1

22′

a, b

a
b

Furthermore, for δ′ : Q′ × Σ 7→ 2Q′ we have:

δ′(R, a) = {R1, . . . , Rm, P}, R ∈ Q′, a ∈ Σ.

We are now capable of proving the following lemma:

Lemma 3.5.3. The following equality holds for all R ∈ Q′ and w ∈ Σ?:

δ(R,w) =
⋃

S∈δ′({R},w)
S, R ∈ Q′, w ∈ Σ?. (3.5)

Proof. The proof will follow by induction on the size of the word w.

Base case (word = ε) By definition of the extension of δ to words and sets: δ(R, ε) = {R}. We
also have that

⋃
S∈δ′({R},ε) S =

⋃
S∈{R} S = {R}, because δ′ naturally extends to 2Q′ ×Σ? 7→ 2Q′ .

Induction step (word = wa)

δ(R,wa) = δ(δ(R,w), a)

= δ

 ⋃
S∈δ′({R},w)

S, a


=

⋃
S∈δ′({R},w)

δ(S, a)

= R1 ∪ . . . ∪Rm ∪ P, Ri, P ∈ δ′(δ′({R}, w), a)

= R1 ∪ . . . ∪Rm ∪ P, Ri, P ∈ δ′({R}, wa)

=
⋃

S∈δ′({R},wa)
S.

Theorem 3.5.1. Let A be an NFA A = 〈Q,Σ, δ, I, F 〉 and A′ be the constructed FIFA A′ =
〈Q′,Σ, δ′, I, F ′〉:

L(A) = L(A′).



3.5. Converting an NFA into a FIFA 31

Proof.

w ∈ L(A)⇒ δ({q0}, w) ∩ F 6= ∅

⇒
⋃

S∈δ′({q′0},w)
S ∩ F 6= ∅ by Lemma 3.5.3

⇒ (∃S ∈ Q′)(S ∈ δ′({q′0}, w) ∧ S ∩ F 6= ∅)

⇒ (∃S ∈ δ′({q′0}, w))S ∈ F ′ by definition of F ′

⇒ w ∈ L(A′),

w ∈ L(A′)⇒ δ′({q′0}, w) ∩ F ′ 6= ∅

⇒ (∃S ∈ δ′({q′0}, w))S ∈ F ′

⇒ (∃S ∈ δ′({q′0}, w))S ∩ F 6= ∅ by definition of F ′

⇒

∃R ⊆ ⋃
S∈δ′({q′0},w)

S

R ∩ F 6= ∅ by Lemma 3.5.3

⇒

 ⋃
S∈δ′({q′0},w)

S

 ∩ F 6= ∅
⇒ δ({q0}, w) ∩ F 6= ∅

⇒ w ∈ L(A).

Proposition 6. The procedure NfaToFifa in Algorithm 8 computes a FIFA equivalent to a
given NFA.

Proof. Algorithm 8 is the same as the subset construction for NFA determinisation, with addition
of an heuristic that attempts to create back transitions whenever possible, in lines 11-14, by setting
for a given reached subset S of Q and a symbol a of Σ the constructed δ′(S, a) = {Ri, . . . , Rm, P}
where:

Ri ∩Rj = ∅ i, j ∈ {1, . . . ,m},

Ri ∩ P = ∅ i ∈ {1, . . . ,m},

δ(S, a) =
⋃

R∈δ′(S,a)
R S ∈ Q′, a ∈ Σ.

It follows that from the construction in Lemma 3.5.1 and Theorem 3.5.1 that the constructed
automaton will be a FIFA with at most one newly reached state for each s ∈ Σ and source state
S ∈ Q′ and will recognize the same language as the input NFA.

This algorithm has time complexity O(|Σ||Q|22|Q|), which is justified by |Q′| having space
complexity O(2|Q|), due to the determinisation based algorithm. The |Σ| factor comes from the



32 Chapter 3. Forward Injective Finite Automata

outer loop in line 6 and the |Q| factor comes from the comparison based algorithm for sorting
Q′ with time complexity O(2|Q| log (2|Q|)) = O(|Q|2|Q|). The extra 2|Q| factor comes from the
maximum size of the working queue w. It is an open problem whether these bounds are tight for
this algorithm.

3.6 Experimental Results

The algorithm defined in the previous section was implemented within the FAdo package [10]. We
performed some experiments to compare the sizes of the input and output automata. The input
NFAs were obtained from partial derivative construction over uniform random generated regular
expressions, for a fixed (standard) grammar, of a given syntactic tree size m over an alphabet of
k symbols. The conversion method used was the partial derivative automata [2]. For each m and
k, 10000 random regular expressions were generated to ensure a 95% confidence level within a
1% error margin [16, pp. 38–41]. For each sample, we calculated the minimal, the average and
the maximum sizes of the obtained automata. For each partial derivative automaton (PD) we
applied the algorithm NFAtoFIFA and obtained a FIFA (FIFA). We also computed the DFA
obtained by determinisation of PD, by the usual subset construction, (DT), and the minimal
DFA (MIN). Results for m ∈ {50, 100, 250, 500} and k ∈ {2, 3, 10} are presented in Table 3.3. In
general the FIFA computed is not much larger than the PD, although the determinised automata
can be significantly larger.

Table 3.3: State complexities of automata where m, syntactic size of RE; k, size of alphabet; PD,
size of partial derivative NFA; DT size of DFA from PD; MIN, size of minimal DFA; FIFA, size
of FIFA from PD.

m, k Type min avg max

50, 2 FIFA 3 10.1684 25
DT 3 10.1338 62

MIN 1 5.0762 51
PD 3 10.6904 19

100, 2 FIFA 3 19.2113 46
DT 3 19.7193 158

MIN 1 6.2814 116
PD 9 20.0239 30

250, 2 FIFA 9 48.3731 107
DT 12 185.6424 1120

MIN 1 7.0256 630
PD 34 47.998 66

500, 2 FIFA 35 99.8889 189
DT 13 186.1518 6451

MIN 1 6.8369 745
PD 72 94.6422 124

m, k Type min avg max

50, 3 FIFA 3 12.4948 25
DT 3 13.9339 56

MIN 1 9.1225 41
PD 4 11.6522 19

100, 3 FIFA 5 24.3173 45
DT 5 34.289 166

MIN 1 18.2094 148
PD 11 21.8518 32

250, 3 FIFA 23 60.7792 110
DT 12 185.6424 1586

MIN 1 59.0185 988
PD 34 52.5888 70

500, 3 FIFA 42 122.2247 198
DT 37 1143.2134 11687

MIN 1 92.8985 2343
PD 79 103.6871 126

m, k Type min avg max

50, 10 FIFA 6 14.1252 24
DT 7 15.3764 33

MIN 1 13.8138 30
PD 6 13.3556 21

100, 10 FIFA 14 27.4189 43
DT 15 32.5608 66

MIN 1 28.7841 58
PD 13 25.2294 36

250, 10 FIFA 44 67.8454 99
DT 55 102.6683 329

MIN 1 88.8932 253
PD 41 60.8428 78

500, 10 FIFA 102 135.1439 170
DT 128 277.5053 1122

MIN 1 237.4012 869
PD 94 120.0465 150



3.6. Experimental Results 33

Table 3.4: Ratio of PD NFA that are FIFA.

m = 25 m = 50 m = 75 m = 100

k = 2 0.359 0.257 0.242 0.232
k = 4 0.570 0.429 0.406 0.369





Chapter 4

Conclusion

We presented some of the most common random generators of deterministic and non-deterministic
finite automata. It can be seen on Table 2.6 that there is a trade off in asymptotic time complexity
and universe of the automata class being generated.

Our research resulted in the classification of a specific NFA class, named FIFA, that would
provide us all of common properties taken into consideration on Table 2.6. The n-state k-
symbol automata in this class can be counted, randomly generated up to isomorphism and their
isomorphism can be tested in polynomial time, assuming a fixed k.

Experimental results on NFA operations located on Table 3.3 show that the average increase
on number of states in determinizing an NFA and determinizing the FIFA constructed from the
same NFA is very similar. These results support our hypothesis of FIFA being a good candidate
for significant experimental average case analysis of operations in NFA, with random generation
of the sample being done in useful time.

4.1 Future Work

Future work includes estimating asymptotic bounds for the number of n-state k-symbol FIFAs,
as Table 3.1 suggests this number quickly becomes intractable.

Upper bounds for the size of the minimal FIFAs for a given language will be of major interest.
State complexity results on the operations with FIFAs is also an open and important problem,
as it would be a key step in providing a formal argument on the validity of using FIFAs to
empirically estimate average case properties of NFAs.

35





References

[1] Marco Almeida, Nelma Moreira, and Rogério Reis. Enumeration and generation with a
string automata representation. Theoretical Computer Science, 387(2):93–102, 2007. ISSN:
03043975. doi:10.1016/j.tcs.2007.07.029.

[2] Valentin Antimirov. Partial derivatives of regular expressions and finite automaton
constructions. Theoretical Computer Science, 155(2):291 – 319, 1996. ISSN: 0304-3975.
doi:10.1016/0304-3975(95)00182-4.

[3] Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern Approach. Cambridge
University Press, New York, NY, USA, 1st edition, 2009. ISBN: 0521424267, 9780521424264.

[4] László Babai. Graph isomorphism in quasipolynomial time [extended abstract]. In
Proceedings of the Forty-eighth Annual ACM Symposium on Theory of Computing,
STOC ’16, pages 684–697, New York, NY, USA, 2016. ACM. ISBN: 978-1-4503-4132-
5. doi:10.1145/2897518.2897542.

[5] Frédérique Bassino and Cyril Nicaud. Enumeration and random generation of accessible
automata. Theoretical Computer Science, 381(1-3):86–104, 2007. ISSN: 03043975.
doi:10.1016/j.tcs.2007.04.001.

[6] Kellogg S. Booth. Isomorphism testing for graphs, semigroups, and finite automata are poly-
nomially equivalent problems. SIAM J. Comput., 7(3):273–279, 1978. doi:10.1137/0207023.

[7] Sabine Broda, António Machiavelo, Nelma Moreira, and Rogério Reis. Average Size of
Automata Constructions from Regular Expressions. Bulletin of the EATCS, 116, 2015.

[8] Jean-Marc Champarnaud, Georges Hansel, Thomas Paranthoën, and Djelloul Ziadi. Random
Generation Models for NFA’s. J. Autom. Lang. Comb., 9(2-3):203–216, September 2004.
ISSN: 1430-189X.

[9] W.G. Cochran. Sampling Techniques, 3Rd Edition. A Wiley publication in applied statistics.
Wiley India Pvt. Limited, 2007. ISBN: 9788126515240.

[10] Project FAdo. FAdo: tools for formal languages manipulation. http://fado.dcc.up.pt, Access
date:1.3.2018.

37

http://dx.doi.org/10.1016/j.tcs.2007.07.029
http://dx.doi.org/10.1016/j.tcs.2007.07.029
http://dx.doi.org/10.1016/0304-3975(95)00182-4
http://dx.doi.org/10.1016/0304-3975(95)00182-4
http://dx.doi.org/10.1145/2897518.2897542
http://dx.doi.org/10.1016/j.tcs.2007.04.001
http://dx.doi.org/10.1016/j.tcs.2007.04.001
http://dx.doi.org/10.1137/0207023
http://dx.doi.org/10.1137/0207023
http://bulletin.eatcs.org/index.php/beatcs/article/view/352
http://bulletin.eatcs.org/index.php/beatcs/article/view/352
http://dl.acm.org/citation.cfm?id=1103362.1103366
http://dl.acm.org/citation.cfm?id=1103362.1103366
https://books.google.pt/books?id=xbNn41DUrNwC
http://fado.dcc.up.pt


38 References

[11] Miguel Ferreira, Nelma Moreira, and Rogério Reis. Forward injective finite automata: Exact
and random generation of nonisomorphic nfas. In Descriptional Complexity of Formal
Systems - 20th IFIP WG 1.02 International Conference, DCFS 2018, Halifax, NS, Canada,
July 25-27, 2018, Proceedings, pages 88–100, 2018. doi:10.1007/978-3-319-94631-3_8.

[12] Pierre-Cyrille Héam and Jean-Luc Joly. On the uniform random generation of non
deterministic automata up to isomorphism. In Frank Drewes, editor, Implementation
and Application of Automata, pages 140–152, Cham, 2015. Springer International Publishing.
ISBN: 978-3-319-22360-5. doi:10.1007/978-3-319-22360-5_12.

[13] Harald Andrés Helfgott. Isomorphismes de graphes en temps quasi-polynomial (d’après
Babai et Luks, Weisfeiler-Leman...). Séminaire Bourbaki, 2017.

[14] John E. Hopcroft. An n log n algorithm for minimizing states in a finite automaton. In
The Theory of Machines and Computations, pages 189–196, 1971. ISBN: 9780124177505.
doi:10.1016/B978-0-12-417750-5.50022-1.

[15] John E. Hopcroft and Jeffrey D. Ullman. Introduction To Automata Theory, Languages,
And Computation. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1st
edition, 1990. ISBN: 020102988X.

[16] Donald E. Knuth. The Art of Computer Programming, Volume 2 (3rd Ed.): Seminumerical
Algorithms. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1997. ISBN:
0-201-89684-2.

[17] Dexter Kozen. On kleene algebras and closed semirings. In Branislav Rovan, editor,
Mathematical Foundations of Computer Science 1990, pages 26–47, Berlin, Heidelberg, 1990.
Springer Berlin Heidelberg. ISBN: 978-3-540-47185-1. doi:10.1007/BFb0029594.

[18] Dexter Kozen. A completeness theorem for kleene algebras and the algebra of reg-
ular events. Information and Computation, 110(2):366–390, 1994. ISSN: 10902651.
doi:10.1006/inco.1994.1037.

[19] Ted Leslie. Efficient Approaches to Subset Construction. Technical report, University of
Western Ontario, 1995.

[20] E. M. Luks. Isomorphism of graphs of bounded valence can be tested in polynomial time.
In 21st Annual Symposium on Foundations of Computer Science (sfcs 1980), pages 42–49,
Oct 1980. doi:10.1109/SFCS.1980.24.

[21] Harry G. Mairson. Generating words in a context-free language uniformly at random.
Information Processing Letters, 49(2):95–99, 1994. ISSN: 00200190. doi:10.1016/0020-
0190(94)90033-7.

[22] A. R. Meyer and M. J. Fischer. Economy of Description by Automata, Grammars, and
Formal Systems. Proceedings of the 12th Annual Symposium on Switching and Automata
Theory (Swat 1971), pages 188–191, 1971. doi:10.1109/SWAT.1971.11.

http://dx.doi.org/10.1007/978-3-319-94631-3_8
http://dx.doi.org/10.1007/978-3-319-94631-3_8
http://dx.doi.org/10.1007/978-3-319-22360-5_12
http://dx.doi.org/10.1007/978-3-319-22360-5_12
http://arxiv.org/abs/1701.04372
http://arxiv.org/abs/1701.04372
http://dx.doi.org/10.1016/B978-0-12-417750-5.50022-1
http://dx.doi.org/10.1007/BFb0029594
http://dx.doi.org/10.1006/inco.1994.1037
http://dx.doi.org/10.1006/inco.1994.1037
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.8.7435&rep=rep1&type=pdf
http://dx.doi.org/10.1109/SFCS.1980.24
http://dx.doi.org/10.1016/0020-0190(94)90033-7
http://dx.doi.org/10.1109/SWAT.1971.11
http://dx.doi.org/10.1109/SWAT.1971.11


References 39

[23] Gary L. Miller. Graph isomorphism, general remarks. In Proceedings of the Ninth Annual
ACM Symposium on Theory of Computing, STOC ’77, pages 143–150, New York, NY, USA,
1977. ACM. doi:10.1145/800105.803404.

[24] Uwe Schöning. Graph isomorphism is in the low hierarchy. In Franz J. Brandenburg, Guy
Vidal-Naquet, and Martin Wirsing, editors, STACS 87, pages 114–124, Berlin, Heidelberg,
1987. Springer Berlin Heidelberg. ISBN: 978-3-540-47419-7. doi:10.1007/BFb0039599.

[25] Lynette van Zijl, John-Paul Harper, and Frank Olivier. The MERLin Environment Applied
to ?-NFAs. In Shen Yu and Andrei Păun, editors, Implementation and Application of
Automata, pages 318–326, Berlin, Heidelberg, 2001. Springer Berlin Heidelberg. ISBN:
978-3-540-44674-3. doi:10.1007/3-540-44674-5_28.

http://dx.doi.org/10.1145/800105.803404
http://dx.doi.org/10.1007/BFb0039599
http://dx.doi.org/10.1007/3-540-44674-5_28
http://dx.doi.org/10.1007/3-540-44674-5_28

	Abstract
	Resumo
	Contents
	List of Tables
	List of Figures
	List of Algorithms
	Acronyms
	1 Introduction
	1.1 Set Operations, Relations and Graphs
	1.2 Finite Automata Theory and Regular Languages
	1.3 Computational Complexity
	1.4 The Graph Isomorphism Problem
	1.5 Statistics

	2 Random Generation of NFA
	2.1 Random Generation of Regular Expressions
	2.2 Generation by Bitstreams
	2.3 Generation by Markov Chains
	2.4 Initially Connected Complete DFA
	2.5 Comparative Analysis

	3 Forward Injective Finite Automata
	3.1 A Canonical State Order for FIFAs
	3.2 Canonical String Representation
	3.3 Counting FIFAs
	3.4 Uniform Random Generation
	3.5 Converting an NFA into a FIFA
	3.6 Experimental Results

	4 Conclusion
	4.1 Future Work

	References

