
FAdo and GUItar: tools for automata
manipulation and visualization?

André Almeida Marco Almeida?? José Alves Nelma Moreira
Rogério Reis

{bernarduh,sobuy,mfa,nam,rvr}@ncc.up.pt

DCC-FC & LIACC, Universidade do Porto
R. do Campo Alegre 1021/1055, 4169-007 Porto, Portugal

Abstract. FAdo is an ongoing project which aims to provide a set
of tools for symbolic manipulation of formal languages. To allow high-
level programming with complex data structures, easy prototyping of
algorithms, and portability (to use in computer grid systems for exam-
ple), are its main features. Our main motivation is the theoretical and
experimental research, but we have also in mind the construction of a
pedagogical tool for teaching automata theory and formal languages. For
the graphical visualization and interactive manipulation a new interface
application, GUItar, is being developed. In this paper, we describe the
main components of the FAdo system as well as the basics of the graphi-
cal interface and editor, the export/import filters and its generic interface
with external systems, such as FAdo.

1 Introduction

The FAdo [pro08] project aims to provide an open source extensible
high-performance software library for the symbolic manipulation of au-
tomata and other models of computation. A first implementation cur-
rently includes most standard operations for the manipulation of regu-
lar languages [MR05], a Turing machine simulator and parsing tools for
context-free languages. An automata random generator package was re-
leased, based on previous theoretical work on enumeration and generation
of initially connected deterministic finite automata (ICDFA) [AMR07].
Although there are several software packages for the symbolic manip-
ulation of formal languages they either are not open source, have re-
stricted purposes, or are no longer being maintained. Examples include:
Grail+ [RW94,Yu09], Automate [CH91], Amore [JPTW90], Fire Sta-
tion [FW09] and OpenFst [Ril09]. An exception to this is the Vaucanson
? This work was partially funded by Fundação para a Ciência e Tecnologia (FCT) and

Program POSI, and by project ASA (PTDC/MAT/65481/2006).
?? Marco Almeida is funded by FCT grant SFRH/BD/27726/2006.



package [LRGS04] whose basic structures, due to its orientation to more
algebraic applications of automata, are too heavy for the combinatorial
and algorithmic simulations we think useful for complexity studies of
formal languages. JFLAP [RF06] is a specialized pedagogical tool with
an extensive coverage of formal language topics taught in undergraduate
computer science courses. The possibility of interactively experimenting
with the construction proofs is a major feature of this system. The FAdo
system was first developed for pedagogical purposes. However the neces-
sity of easily prototyping new algorithms, testing algorithm performance
with large datasets, and the combinatorial nature of formal languages rep-
resentations led us to continue FAdo development. The use of Python,
a high-level object-oriented language with high-level data types and dy-
namic typing, ensures a system which is modular, extensible, clearly and
easily implemented, and portable. Specialized and optimized data struc-
tures and performance critical algorithms may be written in a low-level
language like C, and easily interfaced with Python, via the Cython lan-
guage extension [BB09]. Here, we will describe the main components of
the FAdo system for regular languages manipulation.

GUItar is a visualization software tool for various types of automata
(standard, weighted, pushdown, transducers, Turing machines, etc.). Its
purposes include automatic and assisted diagram drawing, algorithm an-
imation, interactive editing and export/import filters. Automatic graph
drawing has been a very active research area and several commercial
software packages are now available for general and specific applications
(database design, information systems, bioinformatics, social networks,
etc.) [BERT99,Gra08,JM04]. In contrast, automata diagrams (labelled
multi-digraphs) require additional aesthetics and graphical constraints:
left-to-right reading, initial states on the left and final states on the right,
edge shapes and label placements, etc. We intend to design and implement
tools for automatic drawing of automata diagrams according to common
accepted aesthetics principles. As a first step, in this paper, we describe
the basic GUItar framework that includes assisted diagram drawing,
interactive editing, and export/import filters.

2 FAdo: tools for regular languages manipulation

Regular languages can be represented by regular expressions (r.e.) or finite
automata, among other formalisms. Finite automata may be determin-
istic (DFA) or non-deterministic (NFA). In FAdo these representations
are implemented as Python classes, as presented in Figure 1. The class



AbsRE

ACIRERE

FA

NFA DFA

EFA

ICDFA
generator

ADFA
generator

Large 
sets DB

Random 
generators

RE 
random 

generator

Fig. 1. FAdo classes for regular languages.

FA implements the basic structure of a finite automaton shared by DFAs
and NFAs. This class also provides methods for manipulating these struc-
tures. The class DFA and NFA implements DFAs and NFAs, respectively.
The class EFA implements generalized NFAs that are used in the con-
version between finite automata and r.e. There are two representations
for r.e.: the class RE implements, in a object-oriented manner, the usual
inductive definition (it is elegant, but not efficient) and the class ACIRE
implements irreducible regular expressions modulo ACIA, i.e., associativ-
ity of the concatenation and disjunction, commutativity of the disjunc-
tion, and idempotence of both disjunction and Kleene star operations.
Disjunctions are represented as sets, which are efficiently implemented
in Python. Concatenated r.e. are kept in an ordered list. The idempo-
tence of the Kleene star is assured by not allowing double stared r.e.
Whether or not a r.e. accepts the empty word is tabulated as a ACIRE
attribute, to avoid unnecessary recursive calls. Elementary regular lan-
guages operations as union, intersection, concatenation, complementation
and reverse are implemented for each class. Several conversions between
these representations are implemented: NFA → DFA: subset construc-
tion; NFA → RE: recursive method; EFA → RE: state elimination,
with possible choice of state orderings; RE → NFA: Thompson method,
Glushkov method, follow, Brzozowski, and partial derivatives.

For DFAs several minimization algorithms are available (some with
C implementations): Moore, Hopcroft, incremental algorithms of Watson
and Daciuk. Brzozowski minimization is available for NFAs. Language



equivalence of two DFAs can be determined by reducing their correspon-
dent minimal DFA to a canonical form [AMR07], or by the Hopcroft
and Karp algorithm. Language equivalence of two r.e. is implemented in
the ACIRE class using variants of a rewrite system [AMR08a]. The class
ACIRE has also several simplification methods for r.e.

2.1 Generators and Random samples

We have designed and implemented several exact and random generators
for some classes of automata and regular expressions. An exact and a
uniform random generator are available for ICDFAs [AMR07]. Based on
new canonical forms we also developed exact generators for acyclic (trim)
deterministic finite automata (ADFA)[AMR08b], and for minimal ADFA
(MADFA) [AMR08c]. For the uniform generation of random r.e. we im-
plemented the method described by Mairson [Mai94] for the generation of
context-free languages. Random (non-uniform) generators for NFAs that
allow to generate initially connected NFAs (with one initial state) and to
control the transition density are also implemented.

For a given number of states and symbols, the number of DFAs grows
in a way that experimental tests over the complete universe quickly be-
come impractical [AMR07]. For statistical analysis (or experimental re-
sults), a subset of manageable size from which we can make inferences or
extrapolations to the whole universe may be used.

As the probability of any individual member of the universe being
selected is exactly the same as any other individual member, a uniform
random generator produces a true, unbiased, random sample. In order to
have a reasonable sized (enough for statistically significant results), con-
sistent, random sample readily available, we designed and implemented
an SQL database to store the uniformly generated DFAs (and r.e.). We
used the PostgreSQL open source relational database system [DBM08] to
store the random samples of both DFAs and r.e.

Database The ICDFAs database keeps and makes available random sam-
ples of automata with n ∈ {10, 20, . . . , 90, 100} states, each over an al-
phabet of k ∈ {2, 3, 4, . . . , 18, 20, 25, 30, . . . , 45, 50} symbols. Besides the
automaton structure, the database stores some properties such as mini-
mality, being trimmed, acyclic, etc. This allows to obtain, with a simple
SQL query, some automata datasets with specific properties. For efficiency
reasons, besides its unique string representation [AMR07], the database is
used to store the pre-parsed internal FAdo representation of each ICDFA.



This avoids the need to parse an automaton’s description every single
time we need to manipulate it. By similar reasons, each automaton’s fi-
nal states set is stored in two different ways: as a comma separated list
of integers and as a bitmap.

REs Database The r.e. database is similar to the ones pertaining to
finite automata. Pre-parsed representations of each object is kept in the
database, both in the ACIRE and RE representation, to avoid overhead
parsing time in any algorithm process.

3 GUItar: interactive visualization

The GUItar graphical interface allows the interactive visualization of
generic graph diagrams and the execution of external graph manipulation
tools. It is implemented with the wxPython [SRZD06] graphical toolkit.
Figure 2 shows the interactive diagram editor. The basic frame has a
menu bar, a tool bar, and a notebook that manipulates multiple pages.
The menu bar and the tool bar are dynamically built from XML [Con08a]
configuration files and event handler files, allowing an easy extensibility
and modularity. Each notebook page contains a canvas for diagram draw-
ing and manipulation. The canvas is based on the wxPython’s Floatcanvas
component [Bar08] which allows to draw and to interact with graphic ob-
jects. It provides zooming, panning and binding mouse clicks on object to
callbacks. It allows the addition of new objects and to alter its interactive
behavior. To draw graph transitions a new FloatCanvas object called Ar-
rowSpline was created. This object defines splines with or without arrow
heads. It allows the access to the spline interpolation points, which was
not possible in the native implementation. The main classes of GUItar
are presented in Figure 3, and are summarized in the next subsections.

3.1 Drawing a graph

A graph is defined by a set of nodes and a set of edges. The class Draw-
Graph allows the display and the editing of a graph diagram, and its main
components are a canvas, a set of node objects, a set of edge objects and
a grid. Nodes and edges can be added, edited, moved or deleted. Node
labels can be automatically generated according to a given specification.
The grid uses a general coordinate system to manage node positions and
prevent objects to overlap. Each object can occupy several grid cells. To
assist diagram editing a specialized graphical user interface (GUI) mode,



Fig. 2. GUItar graphical interface.

a draw assistant and an undo/redo manager were implemented. Objects
properties can be inspected and changed in the properties panel.
Nodes The Node class has an identifier (ID), a position, canvas objects
and a style. This class has methods to change node position and to de-
termine borders for docking edges.
Edges The Edge class has an ID, an origin and an target nodes, a canvas
ArrowSpline object, and a label object (with side and position).This class
has methods to edit ArrowSpline control points, change nodes dock points
and change label location.
Labels A label can be simple (text string) or composed of several com-
ponents.
Embeddings The embedding is the layout of the nodes and edges in the
plane. Currently a integer coordinate embedding is provided.

Editing Mode The GUIFAMode class implements an user interface that
allows several interactions with the graphical objects, essentially mouse
based events, such as addition, deletion, selection, or movement of objects,
as well as activation of pop-up menus. It also provides movement in the
canvas viewport. The DrawAssistant class helps to place the edges and
the loops. The edges can be edited by dragging their control points freely
or using stepwise movements. To support undo and redo actions, the
Undo/Redo manager assigns an ID to each kind of action, a method that



Guitar

NoteBook

DrawGraph

PropertiesPanel

GuiFAModeFloatCanvas

GraphClassifierUIGraphClassifier

NodeManager

EdgeManager
NodeStyle

EdgeStyle

FAStyle

UndoRedo

Grid

DiagramGrid
DotGrid

Node

Edge

LabelGenerator

DrawAssistant

Embedding

User

ToolBar

MenuBar

ExportImport

FFC

Fig. 3. A GUItar overview.

handles the undo event, and the ID of the reverse action. The handler
method receives as an argument the information needed to undo/redo the
action. For each performed action, its ID and the information that the
Undo handler method needs are pushed into the Undo stack. The Undo
and the Redo methods pop an action from the stack and call the handler
method with the appropriated information.
Complex style managers In general, automata diagrams provide sev-
eral graphical information on state or transition representations. For in-
stance, an initial state representation can have a side arrow, or a final
state representation can have a doubled line border. Instead of having a
few special styles built-in, GUItar provides a Node Style Manager that
allows the construction of node styles with complex graphical objects. A
node style can have several graphic objects, as components. Two of these



are mandatory: the primary object and the primary label. Primary ob-
jects must be ellipses or rectangles, and they ensure that there is always
a docking object for the edges. The primary label must be text. For each
object, its usual style properties such as line color, line width, line style,
fill color, fill style, sizes, fonts, etc. can be defined. A node style can be
previewed while it is being defined (or edited), and saved in the GUItar
internal database. A set of tags (key/value pairs) may also be associated
with each node style. The Edge Style Manager permits the definition of
edge styles. An edge style is characterized by the graphical properties of
the edge’s ArrowSpline canvas object. It is possible to specify the number
of heads and their shapes, line style properties, and loop properties.
Graph Classifier The GraphClassifer class allows the definition of
graph classes by specifying graphic properties of each object. The Graph-
ClassificationUI class provides an user interface to visualize and to create
new classes. Graph, digraph, or multidigraph are the default classes.
Automatic graph drawing A simple layout algorithm for visualizing
graphs without any embedding information is implemented. An automatic
placement based on physical forces simulation is also available.

3.2 Foreign Function Calls

GUItar provides a generic foreign function calls (FFC) interface be-
tween the diagram graphical editor and external manipulation tools, as
the FAdo toolkit. The FFCs have two components: a description on a
XML configuration file and a Python module. The description includes
the module path and the methods that will be imported by GUItar. Each
method must have a name, a return type, and, for each argument its type
and a possible default value. Each module may have a menu in the main
GUItar’s frame, or be accessed from a general FFC menu. At startup,
GUItar loads the FFC configurations and builds the FFC menus.

3.3 Export/Import

Diagram descriptions and embeddings are saved in a XML format that
was defined as a dialect of the GraphML language [Gro08]. GraphML is
a simple language to describe the structural properties of a graph and
has a flexible extension mechanism to add application-specific data. Ex-
tensions are provided by a key/data mechanism that can be added to
each graph element. For efficiency reasons, for the GUItar internal in-
formation our dialect encodes this mechanism directly. A fragment of the
GUItar Relax NG schema, is presented below, where diag data repre-
sent the embedding information, and draw data correspond to general
drawing information.



include "styles.rnc"

guitar = element guitar {

attribute version {text},

graph*

}

graph = element graph {

attribute id {text},

element node {

attribute id {text},

label,

node_diag,

node_draw,

node_automata

}*,

element edge {

attribute id {text},

attribute source {text},

attribute target {text},

label,

edge_diag,

edge_draw

}*,

graph_diag,

graph_class,

style*

}

node_diag = element diag_data {

attribute x {text},

attribute y {text}}

node_draw = element draw_data {

attribute style {text},

attribute x {text},

attribute y {text} }

node_auto = element auto_data {

attribute initial {1 | 0},

attribute final {1 | 0} }

edge_draw = element draw_data {

attribute style {text},

element point{

attribute x {text},

attribute y {text}} * }

label = element label {

attribute type {"sim"|"com"},

(dict*|text),

label_draw }

GUItar exports its objects in three other formats: basic GraphML,
dot and Vaucanson-g [LS08]. GUItar can also import from GraphML and
FAdo automata format. These export/import methods are implemented
as XSLT transformations [Con08b] from the GUItar format. We are
developing XSLT transformations for the fsmxml format [Gro09].

4 Conclusions

The development of a solid and reliable symbolic manipulation package
for formal languages is not a simple task. Being written in a high-level
programming language and kept in an free software license promotes its
usability by the scientific community. Visualization tools, and specially
automatic drawing of automata diagrams, are challenging and important
for both research and pedagogical purposes.

References

[AMR07] M. Almeida, N. Moreira, and R. Reis. Enumeration and generation with
a string automata representation. Theoret. Comput. Sci., 387(2):93–102,
2007.

[AMR08a] M. Almeida, N. Moreira, and R. Reis. Antimirov and Mosses’s rewrite
system revisited. In O. Ibarra and B. Ravikumar, editors, CIAA 2008,
number 5448 in LNCS, pages 46–56. Springer-Verlag, 2008.



[AMR08b] M. Almeida, N. Moreira, and R. Reis. Exact generation of acyclic deter-
ministic finite automata. In DCFS’08, Charlottetown, Canada, 2008.

[AMR08c] M. Almeida, N. Moreira, and R. Reis. Exact generation of minimal acyclic
deterministic finite automata. I. J. of F. of Com. Sci., 19(4):751–765, 2008.

[Bar08] C. Barker. Floatcanvas. http://morticia.cs.dal.ca/FloatCanvas/, Ac-
cess date:1.12.2008.

[BB09] S. Behnel and R. Bradshaw. Cython: C-extensions for Python.
http://www.cython.org/, Access date:03.01.2009.

[BERT99] G. Battista, P. Eades, R.Tamassia, and I. G. Tolli. Graph Drawing, Algo-
rithms for the Visualisation of Graphs. Prentice Hall, 1999.

[CH91] J. M. Champarnaud and G. Hanset. AUTOMATE, a computing package
for automata and finite semigroups. J. of Symb. Comput., 12:197–220, 1991.

[Con08a] World Wide Web Consortium. XML specification WWW page.
http://www.w3.org/TR/xml, Access date:1.12.2008.

[Con08b] World Wide Web Consortium. XSLT specification WWW page.
http://www.w3.org/TR/xslt, Access date:1.12.2008.

[DBM08] PostgreSQL DBMS. PostgreSQL website. http://www.postgressql.org,
Access date:1.12.2008.

[FW09] M. Frishert and B. W. Watson. Fire Station. http://www.fastar.org/,
Access date:1.4.2009.

[Gra08] Graphviz — Graph Visualization Software. The dot language.
http://www.graphviz.org/, Access date:1.12.2008.

[Gro08] GraphML Working Group. Graphml file format.
http://graphml.graphdrawing.org/, Access date: 01.12.2008.

[Gro09] Vaucanson Group. FSMXML format. http://www.lrde.epita.fr/cgi-
bin/twiki/view/Vaucanson/XML, Access date:1.3.2009.

[JM04] M. Jünger and P. Mutzel, editors. Graph Drawing Software. Mathematics
and visualization. Springer-Verlag, 2004.

[JPTW90] V. Jansen, A. Potthoff, W. Thomas, and U. Wermuth. A short guide to
the AMoRE system. Aachener informatik-berichte (90) 02, Lehrstuhl fur
Informatik II, Universitat Aachen, January 1990.

[LRGS04] S. Lombardy, Y. Régis-Gianas, and J. Sakarovitch. Introducing Vaucanson.
Theoret. Comput. Sci., 328:77–96, 2004.

[LS08] S. Lombardy and J. Sakarovitch. Vaucanson-G. http://igm.univ-mlv.fr/
lombardy/, Access date:1.12.2008.

[Mai94] H. G. Mairson. Generating words in a context-free language uniformly at
random. Information Processing Letters, 49:95–99, 1994.

[MR05] N. Moreira and R. Reis. Interactive manipulation of regular objects with
FAdo. In ITiCSE 2005, pages 335–339. ACM, 2005.

[pro08] FAdo project. FAdo: tools for formal languages manipulation.
http://www.ncc.up.pt/FAdo, Access date:1.12.2008.

[RF06] S. Rodger and T. Finlea. JFLAP - An Interactive Formal Languages and
Automata Package. Jones and Bartlett, 2006.

[Ril09] M. Riley. OpenFst. http://www.openfst.org, Access date:1.4.2009.
[RW94] D. Raymond and D. Wood. Grail: A C++ Library for automata and ex-

pressions. J. Symb. Comp., 17(4):341–350, 1994.
[SRZD06] Julian Smart, Robert Roebling, Vadim Zeitlin, and Robin Dunn. wxWidgets

2.6.3: A portable C++ and Python GUI toolkit, 2006.
[Yu09] S. Yu. Grail+. http://www.csd.uwo.ca/Research/grail/, Access

date:1.3.2009.


