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Abstract. Synchronous Kleene algebra (SKA) is a decidable framework
that combines Kleene algebra (KA) with a synchrony model of concur-
rency. Elements of SKA can be seen as processes taking place within a
fixed discrete time frame and that, at each time step, may execute one
or more basic actions or then come to a halt. The synchronous Kleene
algebra with tests (SKAT) combines SKA with a Boolean algebra. Both
algebras were introduced by Prisacariu, who proved the decidability of
the equational theory, through a Kleene theorem based on the classical
Thompson ε-NFA construction. Using the notion of partial derivatives,
we present a new decision procedure for equivalence between SKA terms.
The results are extended for SKAT considering automata with transi-
tions labeled by Boolean expressions instead of atoms. This work con-
tinous previous research done for KA and KAT, where derivative based
methods were used in feasible algorithms for testing terms equivalence.
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1 Introduction

Synchronous Kleene algebra (SKA) combines Kleene algebra (KA) with the syn-
chrony model of concurrency of Milner’s Synchronous Calculus of Communica-
tion Systems (SCCS) [20]. Synchronous here means that two concurrent pro-
cesses execute a single action simultaneously at each time instant of a unique
global clock. Although this synchrony model seems to be a very weak model of
concurrency when compared with asynchronous interleaving models, its equa-
tional theory is powerful and the SCCS calculus includes the Calculus of Com-
munication Systems (CCS) as a sub-calculus. It also models the Esterel pro-
gramming language [5], a tool used by the industry [29].
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SKA was introduced by Prisacariu [25]. It consists of a KA to which a syn-
chrony operator and a notion of basic action are added. Using a Kleene’s style
theorem, Prisacariu proved the decidability of the equational theory. He also
generalized Kleene algebra with tests (KAT) [15], an equational system that
extends Kleene algebra with Boolean algebra. KAT is specially suited to cap-
ture and verify properties of simple imperative programs and, in particular,
subsumes propositional Hoare logic [16]. For the resulting algebra, called syn-
chronous Kleene algebra with tests (SKAT), the models considered were sets of
guarded synchronous strings and decidability was also proved using the so called
automata on guarded synchronous strings. SKAT can be seen as an alternative
to Hoare logic for reasoning about parallel programs with shared variables in a
synchronous system.

Decision procedures for Kleene algebra terms equivalence have been a subject
of intense research in recent years [1,12,19,21,7,27,22]. This is partially motivated
by the fact that regular expressions can be seen as a program logic that allows
to express nondeterministic choice, sequence, and finite iteration of programs.
Many proposed procedures decide equivalence based on the computation of a
bisimulation (or a bisimulation up-to) between the two expressions [1,21,7,27].
Broda et al. studied the average size of derivative based automata both for KA
and KAT [9]. For KAT terms, a coalgebraic decision procedure was presented by
Kozen [18]. There, derivatives are considered with respect to symbols vσ where
σ is an action symbol but v corresponds to a valuation of the Boolean tests. This
induces an exponential blow-up on the number of states or transitions of the au-
tomata and an accentuated exponential complexity when testing the equivalence
of two KAT expressions (as noted in [23,3]). A. Silva [28] introduced a class of
automata over guarded strings that avoids that blow-up. Broda et al. studied
the average size of some automata of that class [9] and extended finite automata
equivalence decision procedures to that class [10]. In this paper we continue this
line of work and present new decision procedures for SKA and SKAT equivalence,
based on the notion of partial derivatives. For SKA an ε-free NFA construction is
presented which leads to smaller automata than the one given by Prisacariu. For
SKAT we introduce a class of automata over guarded synchronous strings where
transitions are labeled by Boolean expressions instead of valuations. This fea-
ture significally improves the performance of the associated methods. For both
methods some experimental results are presented and discussed.

2 Deciding Synchronous Kleene Algebra

First we review some concepts related with SKA. A Kleene algebra (KA) is an
algebraic structure (A,+, ·, ∗, 0, 1), where + and · are binary operations on A,
∗ is a unary operation on A, and 0 and 1 belong to A, such that (A,+, ·, 0, 1)
is an idempotent semiring, and ∗ satisfies axioms (10)-(13) below. The natural
order ≤ in (A,+, ·, 0, 1) is defined by α ≤ β if and only if α+ β = β.

1 + αα∗ ≤ α∗ α+ β · γ ≤ γ → β∗ · α ≤ γ
1 + α∗α ≤ α∗ α+ γ · β ≤ γ → α · β∗ ≤ γ
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A synchronous Kleene algebra (SKA) over a finite set AB is given by a structure
(A,+, ·,×, ∗, 0, 1,AB), where AB ⊆ A, (A,+, ·, ∗, 0, 1) is a Kleene algebra, and ×
is a binary operator that is associative, commutative, distributive over +, with
absorvent element 0 and identity 1. Furthermore, it satisfies a×a = a ∀a ∈ AB,
as well as the synchrony axiom

(α× · α)× (β× · β) = (α× × β×) · (α× β) ∀α×, β× ∈ A×B ,

where the set A×B is the smallest subset of A that contains AB and is closed for
×. As usual, we will omit the operator · whenever it does not give rise to any
ambiguity and use the following precedence over the operators: + < · < × < ∗.

We think of the elements of SKA as processes taking place within a fixed
discrete time frame and that, at each time step, may execute one or more basic
actions in AB or then come to a halt.

The standard model of an SKA over AB is the set of languages over the
alphabet Σ = P(AB) \ {∅}, which we will call synchronous languages. Each
synchronous language represents a process described by its possible executions,
which are given by the words over Σ, each one a sequence of sets of basic actions
executed in a single time step. We call σ ∈ Σ a (synchronous) concurrent action.
The synchronous product of two words x = σ1 · · ·σm and y = τ1 · · · τn, with
n ≥ m, is defined by

x× y = y × x = (σ1 ∪ τ1 · · ·σm ∪ τm)τm+1 · · · τn.

In particular, the synchronous product of two letters in Σ is their union. The
synchronous product of two languages L1 and L2 is defined by

L1 × L2 = { x× y |x ∈ L1, y ∈ L2 }.

It is clear that the synchronous regular languages over AB contain the regular
languages over Σ. It turns out that they are exactly the same set, i.e., the regular
languages over Σ are also closed for ×. In [25], the classical Thompson construc-
tion for regular languages [30] is extended to build an automaton accepting the
synchronous product of two languages given by their automata.

We now introduce the SKA analogue of the regular expressions. We denote by
TSKA the set of SKA terms, containing 0 plus all terms generated by the grammar

α→ 1 | a | α+ α | α · α | α× α | α∗ (a ∈ AB). (1)

Note that we do not include in TSKA compound expressions that have 0 as a
subexpression. Given α ∈ TSKA, the language L(α) denoted by α is inductively
defined as follows, L(a) = {{a}}, L(0) = ∅, L(1) = {ε}, L(α∗) = L(α)∗, L(α +
β) = L(α) ∪ L(β), L(αβ) = L(α)L(β), L(α× β) = L(α)× L(β).

Example 1. Let AB = {a, b}, hence Σ = {{a}, {b}, {a, b}}, and consider the SKA
term α = (a(b+ a)∗)× (a+ bb)∗ over AB. Then

L(α) = {{a}, {a}{a}, {a}{b}, . . .} × {ε, {a}, {a}{a}, {b}{b}, . . .}
= {{a}, {a}{a}, {a}{b}, {a}{a, b}, {a, b}{b}, {a, b}{a, b}, . . .}.
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Given α, β ∈ TSKA, we say that they are equivalent if they denote the same
language, i.e., L(α) = L(β). We also define ε(α) = 1 if ε ∈ L(α), and ε(α) = 0
otherwise. A recursive definition of ε : TSKA −→ {0, 1} is given by the following,
ε(a) = ε(0) = 0, ε(1) = ε(α∗) = 1, ε(α + β) = ε(α) + ε(β), and ε(αβ) =
ε(α× β) = ε(α) · ε(β). We generalize ε for sets S ⊆ TSKA by ε(S) =

∑
α∈S ε(α).

2.1 Partial Derivative Automata for SKA

A nondeterministic finite automaton (NFA) is a tuple A = 〈S,Σ, S0, δ, F 〉, where
S is a finite set of states, Σ is a finite alphabet, S0 ⊆ S a set of initial states,
δ : S ×Σ −→ P(S) the transition function, and F ⊆ S a set of final states. The
transition function δ is extended to words and sets of states in the natural way.
A word x ∈ Σ∗ is accepted by A if and only if δ(S0, x)∩F 6= ∅. The language of
A is the set of words accepted by A and denoted by L(A).

In the context of SKA, we consider the alphabet Σ = P(AB)\{∅} and call the
NFA a nondeterministic automaton on synchronous strings. Prisacariu presented
a method of converting an SKA expression into an equivalent ε-NFA (in an ε-NFA
transitions may be labelled by ε), based on the classical Thompson construction.
Due to the local behaviour of the synchronization operator, in each step it is
necessary to eliminate all ε-transitions except those entering the final state. The
step for the synchronous product α × β involves the construction of a classic
product automaton from the automata corresponding to α and β, respectively.
This leads easily to large automata for relatively small expressions. We present
now a new method of converting of an SKA expression into an equivalent ε-free
NFA. This method extends the classical partial derivative automata construction
for regular expressions [4] and provides a new proof that the set of synchronous
regular languages over AB is precisely the set of regular languages over Σ.

As usual, the left-quotient of a synchronous language L w.r.t. a synchronous
concurrent action σ is the set σ−1L = { x | σx ∈ L }. The left quotient of
L w.r.t. a word x ∈ Σ∗ is inductively defined by ε−1L = L and (xσ)−1L =
σ−1(x−1L). Antimirov [4] introduced the notion of partial derivatives which we
now generalize to the set TSKA. Given sets S, T ⊆ TSKA, let S � T = { αβ | α ∈
S\{0}, β ∈ T\{0} } and S⊗T = { α× β | α ∈ S\{0}, β ∈ T\{0} }. We consider
α � S = {α} � S, and similarly for S � α, α ⊗ S and S ⊗ α. These definitions
serve the following.

Definition 2. The set of partial derivatives of a term α ∈ TSKA w.r.t. the letter
σ ∈ Σ, denoted by ∂σ(α), is inductively defined by

∂σ(0) = ∂σ(1) = ∅

∂σ(a) =

{
{1} if σ = {a}
∅ otherwise

∂σ(α∗) = ∂σ(α)� α∗
∂σ(α+ β) = ∂σ(α) ∪ ∂σ(β)
∂σ(αβ) = ∂σ(α)� β ∪ ε(α)� ∂σ(β)

∂σ(α× β) =
(⋃

σ1×σ2=σ
∂σ1

(α)⊗ ∂σ2
(β)
)
∪ ε(α)⊗ ∂σ(β) ∪ ε(β)⊗ ∂σ(α).

The set of partial derivatives of α ∈ TSKA w.r.t. a word x ∈ Σ∗ is inductively
defined by ∂ε(α) = {α} and ∂xσ(α) = ∂σ(∂x(α)), where, given a set S ⊆ TSKA,
∂σ(S) =

⋃
α∈S ∂σ(α).
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We denote by ∂(α) the set of all partial derivatives of α, ∂(α) =
⋃
x∈Σ∗ ∂x(α),

and by ∂+(α) the set of partial derivatives excluding the trivial derivative by ε,
∂+(α) =

⋃
x∈Σ+ ∂x(α). Given a set S ⊆ TSKA, we define L(S) =

⋃
α∈S L(α). It

is straightforward to show that for every TSKA term α and word x, L(∂x(α)) =
x−1L(α). The following lemma will be used to show that ∂(α) is finite, as in the
case for standard regular expressions.

Lemma 3. The set ∂+(α) satisfies the following.

∂+(0) = ∂+(1) = ∅
∂+(a) = {1} (a ∈ AB)
∂+(α∗) ⊆ ∂+(α)� α∗

∂+(α+ β) ⊆ ∂+(α) ∪ ∂+(β)
∂+(αβ) ⊆ ∂+(α)� β ∪ ∂+(β)

∂+(α× β) ⊆ ∂+(α)⊗ ∂+(β) ∪ ∂+(α) ∪ ∂+(β).

Proof. The proof proceeds by induction on the structure of α. It is clear that
for ∂+(0), ∂+(1) and, for ∂+(a), a ∈ AB, the result is true. Now, suppose the
claim is true for α and β, with |α|AB

6= 0 and |β|AB
6= 0. Otherwise, one has

|∂+(α)| = 0 and/or |∂+(β)| = 0, simplifying the arguments below. There are
four induction cases to consider, in which we will make use of the fact that,
for any SKA expression γ and letter σ ∈ Σ, the set ∂+(γ) is closed for taking
derivatives w.r.t. σ, i.e., ∂σ(∂+(γ)) ⊆ ∂+(γ).

i. One can check by induction on the length of x that, for x ∈ Σ+, ∂x(α+β) =
∂x(α) ∪ ∂x(β). Hence, ∂+(α+ β) = ∂+(α) ∪ ∂+(β).

ii. We will prove by induction on the length of x that ∂x(αβ) ⊆ ∂+(α) �
β ∪ ∂+(β) for every word x ∈ Σ+. The claim is true for σ ∈ Σ since
∂σ(αβ) = ∂σ(α) � β ∪ ε(α) � ∂σ(β). Assuming it is true for x, ∂xσ(αβ) =
∂σ(∂x(αβ)) ⊆ ∂σ(∂+(α)�β∪∂+(β)) ⊆ ∂σ(∂+(α))�β∪∂σ(β)∪∂σ(∂+(β)) ⊆
∂+(α)� β ∪ ∂+(β).

iii. We prove by induction on the length of x that, for every word x ∈ Σ+,
∂x(α × β) ⊆ ∂+(α) ⊗ ∂+(β) ∪ ∂+(α) ∪ ∂+(β). The claim is true for σ ∈ Σ
because ∂σ(α×β) =

⋃
σ1×σ2=σ

∂σ1
(α)⊗∂σ2

(β)∪ε(α)⊗∂σ(β)∪ε(β)⊗∂σ(α);
supposing it is true for x, ∂xσ(α × β) = ∂σ(∂x(α × β)) ⊆ ∂σ(∂+(α) ⊗
∂+(β)∪∂+(α)∪∂+(β)) ⊆ (

⋃
σ1×σ2=σ

∂σ1(∂+(α))⊗∂σ2(∂+(β)))∪∂σ(∂+(α))∪
∂σ(∂+(β)) ⊆ ∂+(α)⊗ ∂+(β) ∪ ∂+(α) ∪ ∂+(β).

iv. We show by induction on the length of x that ∂x(α∗) ⊆ ∂+(α) � α∗ for
x ∈ Σ+. It is true for σ ∈ Σ because ∂σ(α∗) = ∂σ(α) � α∗; supposing the
claim true for x, ∂σx(α∗) = ∂σ(∂x(α∗)) ⊆ ∂σ(∂+(α) � α∗) ⊆ ∂σ(∂+(α)) �
α∗ ∪ ∂σ(α∗) ⊆ ∂+(α)� α∗ ∪ ∂σ(α)� α∗ ⊆ ∂+(α)� α∗. ut

Now, it is easy to obtain the following upper bound for the size of ∂+(α).

Proposition 4. Given α ∈ TSKA, |∂+(α)| ≤ 2|α|AB − 1, where |α|AB
denotes the

number of occurrences of elements of AB in α. Thus, |∂(α)| ≤ 2|α|AB .

We note that this upper bound is exactly the same obtained for the number
of partial derivatives for regular expressions with the shuffle operator [11]. In the
latter case, however, the correspondent version of Lemma 3 establishes equalities
instead of inclusions.
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We extend to SKA terms the standard Antimirov automaton or partial deriva-
tive automaton. Given α ∈ TSKA, we define the partial derivative automaton asso-
ciated to α by A(α) = 〈∂(α), Σ, {α}, δα, Fα〉, where Fα = { γ ∈ ∂(α) | ε(γ) = 1 }
and δα(γ, σ) = ∂σ(γ). Then, it is easy to see that L(A(α)) = L(α).

Example 5. Consider again the expression α from Example 1 and let β = (b +
a)∗ and γ = (a + bb)∗, i.e. α = (aβ) × γ. Furthermore, let α0 = α, α1 =
β × γ, α2 = β × (bγ), α3 = β, α4 = bγ, and α5 = γ. The nonempty sets
of partial derivatives of α are the following: ∂{a}(α0) = {α1, α3}, ∂{a,b}(α0) =
{α2}, ∂{a}(α1) = {α1, α3, α5}, ∂{b}(α1) = {α2, α3, α4}, ∂{a,b}(α1) = {α1, α2},
∂{b}(α2) = {α1, α5}, ∂{a,b}(α2) = {α1}, ∂{a}(α3) = ∂{b}(α3) = {α3}, ∂{b}(α4) =
∂{a}(α5) = {α5}, ∂{b}(α5) = {α4}. Then, A(α) is the following.

α0

α3

α1

α2

α4

α5

{a}

{a}

{a, b}

{a}, {b}

{a}, {a, b}

{b}

{a}

{b}, {a, b}
{b}, {a, b}

{b}

{b}

{a}, {b} {a}

{b}

It is worthwhile to note that this automaton has 6 states and 19 transitions,
while the one obtained using Prisacariu’s Thompson-based construction has 16
states and 73 transitions, even after some necessary ε-transition eliminations.

2.2 Equivalence of SKA Expressions

We are interested in an algorithm that decides whether or not two SKA terms
represent the same regular language. Since we already know how to construct an
NFA that accepts a given SKA term, the problem is tantamount to deciding the
language equivalence of two automata. One possible approach is to search for
the existence of a bisimulation in the determinized NFAs (DFAs), as presented
by Hopcroft and Karp [14]. This algorithm can be easily extended to NFAs as
in Almeida et al. [1]. A presentation of this algorithm and an improved variant,
together with proofs of correctness, can be found in Bonchi and Pous [6].

2.3 Implementation and Experimental Results

A Python module for manipulating SKA terms and automata over synchronous
strings was implemented within the FAdo library [26], which includes several
algorithms for regular expressions and finite automata. For the efficient com-
putation of the set of partial derivatives of a term w.r.t. a symbol, in FAdo a
function is used, that given an expression α computes the set of pairs (σ, ∂σ(α))
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with σ ∈ Σ [4]. We extended it to the synchronous product,

f : TSKA → P(Σ × P(TSKA))

f(0) = f(1) = ∅ f(a) = {({a}, ε)} f(α∗) = f(α) · α∗

f(α+ β) = f(α) ∪ f(β) f(αβ) = f(α)� β ∪ f(β)� ε(α)

f(α× β) = { (σ1 ∪ σ2, α1 × α2) | (σ1, α1) ∈ f(α), (σ2, α2) ∈ f(β) }
∪ f(β)� ε(α) ∪ f(α)� ε(β)

where, as before, for α 6= 1, Γ � α = { (σ, α′α) | (σ, α′) ∈ Γ }.
For running some experiments we uniformly random generated SKA terms.

The FAdo random generator has as input a grammar, the size k of the alphabet,
and the size n of the words to be generated. A prefix notation version of the
grammar (1) was used in order to obtain terms, uniformly generated in the size
|α| of the syntactic tree (i.e. parentheses not counted). For each size, n = |α| and
k = |AB|, samples of 1000 terms were generated. We compared the sizes of the
partial derivative automata A(α) and the automata proposed by Prisacariu, a
variant of the Thompson construction, (Stho, Σ, Itho, δtho, Ftho). Table 1 presents
average values obtained for n ∈ {50, 100} and k ∈ {5, 10, 20}.

k |α| |Stho| |δtho| |∂(α)| |δα| |∂(α)|
|Stho|

|δα|
|δtho|

5 50 59 496 23 159 0.389 0.321

5 100 491 47288 128 4133 0.261 0.087

10 50 49 271 18 97 0.364 0.358

10 100 358 15096 96 1691 0.268 0.112

20 50 44 165 16 69 0.364 0.418

20 100 194 2126 60 559 0.309 0.263

Table 1. Experimental results for uniform random generated TSKA expressions

Analyzing the table, it seems that the partial derivative automaton is always
smaller than the Thompson-like construction, and that the exponential blow up
of the automaton size may not occur on average. For regular expressions it is
known that after eliminating ε-transitions from the Thompson automaton one
obtains the Glushkov automaton [13], of which the partial derivative automaton
is a quotient. Asymptotically and on average the size of the partial derivative au-
tomaton is half the size of the Glushkov automaton [8], which on the other hand
is linear on the size of the expression. As noticed before, for the synchronous
product the Thompson construction considers a product automaton and thus a
quadratic number of transitions is expected. We also note that for every synchro-
nisation ε-transitions are eliminated, reducing the size of the resulting automata
that otherwise should be much larger. No such procedures are needed for the
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partial derivative automata. For testing the equivalence of SKA terms we can
use one of the algorithms mentioned above.

3 Deciding Synchronous Kleene Algebra with Tests

Synchronous Kleene algebra with tests (SKAT) was also introduced by Prisacariu
as a natural extension of the Kleene algebra with tests to the synchronous setting.
The SKA axiomatization was extended to SKAT, whose standard models are
sets of guarded synchronous strings. Prisacariu defined automata over guarded
synchronous strings that were based on the ones considered by Kozen for guarded
strings [17]. In the synchronous case, automata were built in two layers: one that
processed a synchronous string and another to represent the valuations of the
boolean tests (called atoms, as defined below). Our contribution in this section
is to consider a much simpler notion of automata and to show that the derivative
based methods developed in the previous section for SKA can be extended to
SKAT. We use standard finite automata where transitions are labeled both with
action symbols and boolean tests (instead of atoms). This kind of automata for
KAT terms were introduced by Silva [28] and Broda et al. [9,10]. In the next
subsection, we revise the notions of SKAT and guarded synchronous strings.

3.1 SKAT and Guarded Synchronous Strings

Formally, an SKAT is a structure (A,B,+, ·,×, ∗,¬, 0, 1,AB,T), where T ⊆ B ⊆
A and AB and T are disjoint finite sets, (A,+, ·,×, ∗, 0, 1,AB ∪ T) is an SKA,
(B,+, ·,¬, 0, 1) and (B,+,×,¬, 0, 1) are Boolean algebras, and (B,+, ·,×, 0, 1) is
a subalgebra of (A,+, ·,×, 0, 1).

Similar to what was done for SKA, we consider the set BSKAT of boolean
expressions and the set TSKAT of SKAT expressions over AB ∪ T. BSKAT is the
set of terms finitely generated from T ∪ {0, 1} and operators +, ·,×,¬, while
TSKAT denotes the set of terms finitely generated from AB ∪ BSKAT and oper-
ators +, ·,×, ∗. Elements of BSKAT and TSKAT will be denoted by b, b1, . . . and
α, β, α1, . . ., respectively, and are generated by the following grammar

b→ 0 | 1 | t | b+ b | b · b | b× b | ¬b (t ∈ T),

α→ a | b | α+ α | α · α | α× α | α∗ (a ∈ AB).

The set At of atoms over T = {t0, . . . , tl−1}, with l ≥ 1, is the set of
all boolean assignments to all elements of T, i.e. At = { x0 · · ·xl−1 | xi ∈
{ti, ti}, ti ∈ T }. We denote elements of At by v, v1, etc. Note that each atom
v ∈ At has associated a binary word of l bits (w0 · · ·wl−1) where wi = 0 if
ti ∈ v, and wi = 1 if ti ∈ v. The standard model of SKAT consists of the sets of
guarded synchronous strings. The set of guarded synchronous strings over AB∪T
is GSS = (At ·Σ)∗ ·At, where, as before, Σ = P(AB)\{∅}. For x = v0σ1 · · ·σmvm
and y = v′0σ

′
1 · · ·σ′nv′n ∈ GSS, where m,n ≥ 0, vi, v

′
j ∈ At and σi, σ

′
j ∈ Σ, we

define the fusion product x�y = v0σ1 · · ·σmvmσ′1 · · ·σ′nv′n, if vm = v′0, leaving it
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undefined otherwise. Similarly, for m ≤ n the product x×y = y×x is defined only
if v0 = v′0, . . . , vm = v′m by x × y = v0(σ1 ∪ σ′1) · · · (σm ∪ σ′m)vmσ

′
m+1 · · ·σ′nv′n.

For sets X,Y ⊆ GSS, X � Y = { x � y | x ∈ X, y ∈ Y, x � y exists } and
X × Y = { x × y | x ∈ X, y ∈ Y, x × y exists }. Finally, let X0 = At and
Xn+1 = X �Xn, for n ≥ 0, and define X∗ =

⋃
n≥0X

n.
Given a SKAT expression α, we define GSS(α) ⊆ GSS inductively as follows,

GSS(a) = { v1{a}v2 | v1, v2 ∈ At }
GSS(b) = { v | v ∈ At ∧ v ≤ b }
GSS(α+ β) = GSS(α) ∪ GSS(β)

GSS(α · β) = GSS(α) � GSS(β)
GSS(α× β) = GSS(α)× GSS(β)
GSS(α∗) = GSS(α)∗,

where v ≤ b if v→ b is a propositional tautology. For T ⊆ TSKAT, let GSS(T ) =⋃
α∈TGSS(α). Given two TSKAT expressions α and β, we say that they are equiv-

alent if GSS(α) = GSS(β).

3.2 Automata for Guarded Synchronous Strings

We extend to for guarded synchronous strings the automata defined for KAT
in [28,9,10]. Besides their simplicity when compared with the two-level automata
of Prisacariu, their transitions are labeled with tests instead of atoms, avoiding in
this way the inevitable exponential blow-up on the size of the automata induced
by the number of valuations of tests.

A (nondeterministic) automaton with tests (NTA) over the alphabets Σ and
T is a tuple A = 〈S, s0, o, δ〉, where S is a finite set of states, s0 ∈ S is the initial
state, o : S → BSKAT is the output function, and δ ⊆ P(S × (BSKAT ×Σ)× S) is
the transition relation. A synchronous guarded string v0σ1 . . . σnvn, with n ≥ 0,
is accepted by the automaton A if and only if there is a sequence of states
s0, s1, . . . , sn ∈ S, where s0 is the initial state, and, for i = 0, . . . , n − 1, one
has vi ≤ bi for some (si, (bi, σi+1), si+1) ∈ δ, and vn ≤ o(sn). The set of all
guarded strings accepted by A is denoted by GSS(A). We say that an SKAT
expression α ∈ TSKAT is equivalent to an automaton A, and write α = A, if
GSS(A) = GSS(α).

3.3 Partial Derivatives for SKAT

In the following, we extend the notion of partial derivative, previously defined
in [10] for KAT, to SKAT expressions. The main novelty of the approach in [10]
is that derivatives are considered only w.r.t. action symbols σ instead of all
combinations vσ for v ∈ At and σ ∈ Σ.

Definition 6. For α ∈ TSKAT and σ ∈ Σ, the set ∂σ(α) of partial derivatives
of α w.r.t. σ is a subset of BSKAT × TSKAT inductively defined as follows,

∂σ(a) =

{
{(1, 1)} if σ = {a}
∅ otherwise

∂σ(b) = ∅

∂σ(α∗) = ∂σ(α)� α∗
∂σ(α+ β) = ∂σ(α) ∪ ∂σ(β)
∂σ(αβ) = ∂σ(α)� β ∪ out(α)� ∂σ(β)

∂σ(α× β) =
(⋃

σ1×σ2=σ
∂σ1(α)⊗ ∂σ2(β)

)
∪ out(α)⊗ ∂σ(β) ∪ out(β)⊗ ∂σ(α),
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where out : TSKAT −→ BSKAT is defined by

out(a) = 0 out(b) = b out(α∗) = 1 out(α+ β) = out(α) + out(β)
out(α · β) = out(α) · out(β) out(α× β) = out(α)× out(β),

and for S, T ⊆ BSKAT × TSKAT, α 6= 0 in TSKAT, and b 6= 0 in BSKAT, S � α =
{ (b′, α′α) | (b′, α′) ∈ S, α′ 6= 0 }, b � S = { (b · b′, α′) | (b′, α′) ∈ S, b′ 6= 0 },
S�0 = 0�S = ∅ and S⊗T = { (b×b′, α×α′) | (b, α) ∈ S, (b′, α′) ∈ T, b, b′, α, α′ 6=
0 }. Given α ∈ TSKAT and σ ∈ Σ we define the set of expressions derived from
α w.r.t. a letter σ by ∆σ(α) = { α′ | (b, α′) ∈ ∂σ(α) for some b }. The functions
∂σ, out, and ∆σ are naturally extended to sets of SKAT expressions and words
∈ Σ?.

Let ∆(α) =
⋃
x∈Σ∗ ∆x(α). Given α ∈ TSKAT, we define the partial derivative

automaton associated to α by A(α) = 〈∆(α), α, out, δα〉, where

δα = { (γ, (b, σ), γ′) | γ ∈ ∆(α), (b, γ′) ∈ ∂σ(γ) }.

In order to justify the correctness of the partial derivative automaton, i.e., to
show that GSS(A(α)) = GSS(α), we first note that, using an almost identical
proof as for Proposition 4 in Section 2, one can show by induction on the struc-
ture of α ∈ TSKAT that |∆+(α)| ≤ 2|α|AB − 1, where again ∆+(α) is the set
of expressions derived from α excluding the trivial derivation w.r.t. the empty
word ε. Thus, ∆(α) is finite. Finally, the correctness of the partial derivative
automaton is guaranteed by the following result.

Proposition 7. Let γ ∈ SKAT and x ∈ (At×Σ)∗ ·At. If x = v, then x ∈ GSS(γ)
if and only if v ≤ out(γ). Furthermore, if x = vσx′, then x ∈ GSS(γ) if and only
if there is some (b, γ′) ∈ ∂σ(γ), such that v ≤ b and x′ ∈ GSS(γ′).

Proof. The proof is by induction on the structure of γ. We only present for ii. the
cases for γ = αβ and γ = α×β. Let γ = αβ and x = vσx′. One has x ∈ GSS(αβ)
iff x ∈ GSS(α)�GSS(β). This means that either, v ∈ GSS(α) and x ∈ GSS(β), or
or x′ = x1�x2, with vσx1 ∈ GSS(α) and x2 ∈ GSS(β). The former is equivalent to
v ≤ out(α), v ≤ b and x′ ∈ GSS(γ′) for some (b, γ′) ∈ ∂σ(β), i.e. to v ≤ out(α)b
and x′ ∈ GSS(γ′) for some (out(α)b, γ′) ∈ ∂σ(αβ). The latter is equivalent to
v ≤ b, x1 ∈ GSS(γ′) and x2 ∈ GSS(β) for some (b, γ′) ∈ ∂σ(α), i.e. to v ≤ b and
x′ = x1 � x2 ∈ GSS(γ′) � GSS(β) = GSS(γ′β) for some (b, γ′β) ∈ ∂σ(αβ).

Consider γ = α× β and x = vσx′. One has x ∈ GSS(α× β) iff x ∈ GSS(α)×
GSS(β). This means that either, x = (vσ1x1)×(vσ2x2) for some vσ1x1 ∈ GSS(α),
vσ2x2 ∈ GSS(β) such that σ = σ1 ∪ σ2 and x′ = x1 × x2, or v ∈ GSS(α)
and x ∈ GSS(β), or v ∈ GSS(β) and x ∈ GSS(α). The proof for the two last
cases are analogous to the first case for the concatenation. On the other hand,
vσ1x1 ∈ GSS(α) and vσ2x2 ∈ GSS(β) is equivalent to v ≤ b1, x1 ∈ GSS(γ′1),
v ≤ b2 and x2 ∈ GSS(γ′2) for some (b1, γ

′
1) ∈ ∂σ1

(α) and (b2, γ
′
2) ∈ ∂σ2

(β), i.e. to
v ≤ b1 × b2 , x′ = x1 × x2 ∈ GSS(γ′1) × GSS(γ′2) = GSS(γ′1 × γ′2) for some
(b1 × b2, γ′1 × γ′2) ∈ ∂σ(α× β). ut
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Example 8. Consider the expressions α = (t1p)
?¬t1 and β = (t2pq+¬t2q), which

represent the programs while t1 do p and if t2 then p; q else q, respectively.
The partial derivative automaton for α × β, corresponding to the synchronous
execution of both programs is the following.

α × β q

α × q 1α

(¬t1t2, {p})

(t1t2, {p})

(¬t1¬t2, {q})
(t1¬t2, {p, q})

(1, {q})

(¬t1, {q})

(t1, {p, q})

1

(t1, {p})

¬t1

To test the equivalence of SKAT terms we can consider the algorithm that
tests the equivalence of NTAs as presented by Broda et al. [10], and implicitly
use the definition of the partial derivative automaton associated to an SKAT
expression.

4 Experimental results

We implemented (in Python) the algorithm by Broda et al. for testing NTAs
equivalence and performed some experiments 1. The implementation uses BDDs
(binary decision diagrams) for dealing with boolean functions. To compare the
performance of the new NTAs with respect to the ones that use explicitly deriva-
tives w.r.t vσ ∈ AtΣ we considered the same experiments as in Almeida [2,
Section 3.5.2]. Each sample has 10000 KAT expressions generated uniformly at
random of a given size. For each sample we performed two experiments: (1) we
tested the equivalence of each KAT expression against itself; (2) we tested the
equivalence of two consecutively generated KAT expressions. For each pair of
KAT expressions we measured: the number of pairs of derivatives generated (H),
the number of iterations (it), which gives an estimate of the boolean assignments
that must be tested for each program symbol, and the number (|α|T) of tests of
T in each expression. Table 2 summarizes both the results obtained and the ones
obtained by Almeida. Each row corresponds to a sample, where the three first
columns characterize the sample, respectively, |AB| (k), |T| (l), and the length
of each KAT expression generated. Rows a. to e. contain our results, and corre-
sponding ones obtained by Almeida are listed in rows f. to j. Column four has
the number of elements of T in each expression (|α|T). Columns five and seven
give the average size of H in the experiment (1) and (2), respectively. Columns
six and eight have the number of iterations. These two columns have no entries
for Almeida’s results, as in that algorithm all assignments of |At| are considered

1 Source code at http://www.dcc.fc.up.pt/~nam/web/resources/katexp.tgz
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for each symbol of |AB|. Finally, the last two columns are the average times, in
seconds, of each experiment. For Almeida’s results the implementation was in
Ocaml and the values where obtained with an Intel R© Xeon R© 5140 at 2.33 GHz
with 4 GB of RAM, whereas the new values were obtained with an AMD R©

Phenom(tm) R© II X4 955 ar 3.20 GHz with 32 GB of RAM. The most significa-
tive cases are the two last ones, in d. and e. and in i. and j. respectively, where
a substantial performance improvement was achieved with the new algorithm.

1 2 3 4 5 6 7 8 9 10

k l |α| |α|T H(1) it(1) H(2) it(2) Time(1) Time(2)

a. 5 5 50 10.33 9.21 149 0.49 0.19 0.08552 0.00148

b. 5 5 100 19.55 15.74 2854 0.66 0.88 2.7256 0.00278

c. 10 10 50 10.32 11.61 59.56 0.30 0.03 0.05424 0.0035

d. 10 10 100 19.89 20.87 516 0.35 0.09 1.1969 0.01274

e. 15 15 50 10.31 12.78 50.7 0.25 0.013 0.0616 0.00738

f. 5 5 50 9.98 7.35 n.a. 0.53 n.a. 0.0097 0.00087

g. 5 5 100 19.71 15.74 n.a. 0.76 n.a. 0.0875 0.00223

h. 10 10 50 11.12 8.30 n.a. 0.50 n.a. 0.5050 0.30963

i. 10 10 100 21.93 16.78 n.a. 0.67 n.a. 20.45 1.31263

j. 15 15 50 11.57 8.47 n.a. 0.47 n.a. 6.4578 55.22

Table 2. Experimental results for uniformly random generated KAT expressions

Damien Pous developed an equivalence test for symbolic automata [31] and
performed some tests for KAT terms [24]. To ensure equivalence of a pair of KAT
terms (α1, α2) he added AB

? to each term. We ran a similar test considering a
sample of 10000 pairs of KAT terms with k = 7, l = 7 and |α| = 100. The values
obtained were |α|T = 18.58, H = 41.34, it = 1745 and Time = 1.9456, which
are competitive with the ones in [24] (for Antimirov’s algorithm).

5 Conclusion

In this paper we extended the notion of derivative to sets of (guarded) syn-
chronous strings and showed that the methods based on derivatives lead to simple
and elegant decision procedures for testing SKA and SKAT expressions equiva-
lence. Based on our experiments, it may be worthwhile to study the average-case
size of the SKA automata, in the analytic combinatorics framework. We also im-
plemented the new class of SKAT automata based on NTAs automata. As the
performance of testing NTA equivalence seems competitive we believe that our
extension to SKAT automata is also much more efficient than the one proposed
by Prisacariu.
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