Implementation of Code Properties via
Transducers* **

Stavros Konstantinidis®, Casey Meijer!', Nelma Moreira?, and Rogério Reis?

! Saint Mary’s University, Halifax, Nova Scotia, Canada,
s.konstantinidis@smu.ca, dylanyoungmeijer@gmail.com

2 CMUP & DCC, Faculdade de Ciéncias da Universidade do Porto, Rua do Campo
Alegre, 4169-007 Porto Portugal {nam,rvr}@dcc.fc.up.pt

Abstract. The FAdo system is a symbolic manipulator of formal lan-
guage objects, implemented in Python. In this work, we extend its ca-
pabilities by implementing methods to manipulate transducers and we
go one level higher than existing formal language systems and imple-
ment methods to manipulate objects representing classes of independent
languages (widely known as code properties). Our methods allow users
to define their own code properties and combine them between them-
selves or with fixed properties such as prefix codes, suffix codes, error
detecting codes, etc. The satisfaction and maximality decision questions
are solvable for any of the definable properties. The new online system
LaSer allows one to query about a code property and obtain the answer
in a batch mode. Our work is founded on independence theory as well
as the theory of rational relations and transducers, and contributes with
improved algorithms on these objects.

Keywords: automata, codes, FAdo, implementation, language properties, reg-
ular languages, symbolic computation, transducers, program generation

1 Introduction

Several programming platforms are nowadays available, providing methods to
transform and manipulate various formal language objects: Grail/Grail+ [10,24],
Vaucanson 1 [5], Vaucanson-R [30], FAdo [1,9], JFLAP and OpenFST [22]. Some
of these systems allow one to manipulate such objects within simple script envi-
ronments. Grail for example, one of the oldest systems, provides a set of filters
manipulating automata and regular expressions on a UNIX command shell. Sim-
ilarly, FAdo provides a set of methods manipulating such objects on a Python

* Due to the page limit we chose to omit algorithmic details and proofs of correctness,
and focus on providing a somewhat comprehensive presentation on implementation
aspects and the new capabilities of FAdo. Details can be found in [17].

** N. Moreira and R. Reis are partially supported by CMUP (UID/MAT/00144/2013),
which is funded by FCT with national and European structural funds through the
programs FEDER, under the partnership agreement PT2020. S. Konstantinidis and
C. Meijer are supported by NSERC, Canada.

shell. Software environments for symbolic manipulation of formal languages are
widely recognized as important tools for theoretical and practical research. They
allow easy prototyping of new algorithms, testing algorithm performance with
large datasets, corroborate or disprove descriptional complexity bounds for ma-
nipulations of formal system representations, etc. Due to the combinatorial na-
ture of formal language representations, their calculations are almost impossible
without computational aid.

In this work, we extend the capabilities of FAdo and LaSer [8,19] by imple-
menting transducer methods and by going to the higher level of implementing
objects representing classes of independent formal languages, also known as code
properties. More specifically, the contributions of the present paper are as follows.
(a) Implementation of transducer objects and several transducer methods (var-
ious product constructions, rational operations, transducer functionality test)
(Sect. 3). (b) Definitions of objects representing code properties and methods
for their manipulation, which to our knowledge is a new development in soft-
ware related to formal language objects. In addition to some fixed code properties
(such as prefix code, infix code, hypercode), these methods can be used to con-
struct new code properties and combine existing properties, including various
error-detecting properties (Sect. 4). (c¢) Enhancement and implementation of
decision algorithms for code properties of regular languages. In particular, such
algorithms have been implemented and enhanced so as to provide witnesses in
case of a negative answer (Sect. 5). To our knowledge such implementations are
not openly available. (d) A mathematical definition of what it means to simulate
(and hence implement) a hierarchy of properties and the proof that there is no
complete simulation of the set of error-detecting properties (Sect. 4). (e) Gener-
ation of executable Python code based on the requested question about a given
code property. This is mostly of use in the online LaSer, which receives client
requests and attempts to compute answers (Sect. 6). (f) All the above classes
and methods are open source (GPL). Our work is founded on independence
theory [15,29] as well as the theory of rational relations and transducers [3,26].

2 Terminology and Background

Sets, alphabets, words, languages. If S is a set, then |S| denotes the car-
dinality of S, and 2° denotes the set of all subsets of S. An alphabet is a finite
nonempty set of symbols. In this paper, we write X, A for any arbitrary alpha-
bets. The set of all words, or strings, over an alphabet X' is written as X*, which
includes the empty word . A language (over X)) is any set of words. We use
standard operations and notation on words and languages [13,20,25].

Codes, properties, independent languages. A code property, or indepen-
dence, [15], is a set P of languages for which there is n € NU {RXg} such that
LeP, ifand only if I’ € P, for all L' C L with 0 < |L'| < n. If L is in P then
we say that L satisfies P. Thus, L satisfies P exactly when all nonempty subsets
of L with less than n elements satisfy P. A language L € P is called P-mazximal,
or a maximal P code, if L U{w} ¢ P for any word w ¢ L. We note that every

L satisfying P is included in a maximal P code [15]. As far as we know, all
code related properties in the literature [4,6,8,11,15,23,28] are code properties
as defined here. The focus of this work is on 3-independences that can also be
viewed as independences with respect to a binary relation in the sense of [29)].

Automata [26,32]. A nondeterministic finite automaton with e-transitions,
for short automaton or e-NFA, is a quintuple a = (Q, X, T, I, F') such that Q is
the finite set of states, X is an alphabet, I, F' C @ are the sets of start (or initial)
states and final states, respectively, and T'C @ x (X' Ue) x @ is the finite set of
transitions. The e-NFA a is called trim, if every state appears in some accepting
path of a. The automaton a is called an NFA, if no transition label is ¢, that is,
TCQExXYxQ.

Transducers and (word) relations [3,26,32]. A (word) relation over X
and A is a subset of X* x A* that is, a set of pairs (z,y) of words over the two
alphabets (respectively). The inverse of a relation p, denoted by p~1, is the rela-
tion {(y,z) | (x,y) € p}. A (finite) transducer is a sextuple t = (Q, X, A, T, I, F)
such that @, I, F are exactly the same as those in e-NFAs, Y is now called the
input alphabet, A is the output alphabet, and T' C Q x X* x A* x (Q is the finite
set of transitions. We write (p,x/y, q) for a transition — the label here is (z/y),
with « being the input and y being the output label. The size of (p,z/y,q) is
the number 1 + |z| + |y|. The size |t| of t is the sum of |@Q| and the sizes of all
transitions. The relation R(t) realized by the transducer t is the set of labels in
all the accepting paths of t. We write t(x) for the set of possible outputs of t on
input x, that is, y € t(z) iff (x,y) € R(t). The domain of t is the set of all words
w such that t(w) # 0. The inverse of a transducer t, denoted as t~!, realizes the
inverse of the relation realized by t. The transducer t is said to be in standard
form, if each transition (p,z/y, q) is such that x € (¥ Ue) and y € (AUe¢). If s
and t are transducers, then there is a transducer s V t realizing R(s) U R(t).

3 Transducer Object Classes and Methods

Here we discuss some aspects of the implementation of transducer objects and
related methods. These are contained in the module transducers.py and can
be imported as follows:

from FAdo.transducers import *

The FAdo class GFT, for General Form Transducer, is a subclass of NFA, which is
the FAdo class for e-NFAs. A transducer t = (Q, X, A, T, I, F) is implemented
as an object t with six instance variables States, Sigma, Output, delta,
Initial, Final corresponding to the six components of t. Specifically, States
is a list of unique state names, meaning that each state name has an index which
is the position of the state name in the list, with 0 being the first index value.
The variables Sigma, Output, Initial and Final are sets, where the latter
two are sets of state indexes. For efficiency reasons, the set of transitions 7T is
implemented as a Python dictionary

delta: {0,...,n — 1} — (Sigma — 20utPutx{0,...,n—1})

where n is the number of states. Thus, for any p € {0,...,n — 1}, deltalp]
is a dictionary, and for any input label x, deltalp] [z] is a set of pairs (y,q)
corresponding to all transitions {(p, z/y,q) € T | y € Output, ¢ is a state index}.

Standard form transducers are objects of the FAdo class SFT, which is a subclass
of GFT. The class SFT is very important from an algorithmic point of view, as
most product constructions require a transducer to be in standard form. The
conversion from GFT to SFT is done using the method toSFT().

Ezxample 1. The following code defines a string s containing a transducer de-
scription, and then constructs an SFT transducer t from s via a method of the
module fio, which contains input/output methods for formal language objects.
On input z, t returns the set of all proper suffixes of z—see also Fig 1.3 It has an
initial state 0 and a final state 1, and deletes at least one of the input symbols.

’@Transducer 1 * 0\n’\

’0 a @epsilon 0\nO b @epsilon O0\n’\
’0 a @epsilon 1\nO b @epsilon 1\n’\
’1 a a 1\nl b b 1\n’

t = fio.readOneFromString(s)

S

As usual, \n denotes the end of line character, so the string s consists of 7 lines:
the first indicates the type of object followed by the final states (in this case 1)
and the start states after * (in this case 0); the second line contains the transition
(0,a/e,0); the last line contains the transition (1,b/b, 1). Here t.Sigma={a,b}.

ofo

o/e
ﬁ& o/e

Fig. 1. On input z, the above transducer outputs any proper suffix of x.

Recall, for a transducer t and word w, t(w) is the set of possible outputs of t on
input w. Note that this set can be empty, finite, or even infinite. In any case, it
is always a regular language. The FAdo method t.runOnWord(w) assumes that
t is an SFT object and returns an automaton accepting the language t(w).

Ezxample 2. The following code is a continuation of Ex. 1. It prints the set of all
proper suffixes of the word ababb, which are all of length < 4.

t.runOnWord (’ ababb’)
len(’ababb’)
print a.enumNFA(n)

a
n

3 Note: In transducer figures, the input and output alphabets are equal. An arrow with
label o /o represents a set of transitions with labels o /o, for each alphabet symbol
o; and similarly for an arrow with label o/e. An arrow with label o /0’ represents a
set of transitions with labels o /o’ for all distinct alphabet symbols o, o

Assuming t is an SFT object, the following methods are available: “t.inverse()”
returns the inverse of t; “t.evalWordP((x,y))” returns True or False, depend-
ing whether the pair (x,y) belongs to the relation realized by t; “t .nonEmptyW()”
returns some word pair (x, y) which belongs to the relation realized by t, if
nonempty; otherwise, it returns the pair (None, None).

Product constructions [3,16, 32]. The next methods are adaptations of the
standard product construction [13] between two NFAs which produces an NFA
accepting the intersection of the corresponding languages. Assume that t and
s are SFT objects and a is an NFA object: “t.inIntersection(a)” returns a
transducer realizing all word pairs (x,y) such that x is accepted by a and (z,y)
is realized by t; “t.outIntersection(a)” as above except that y is accepted
by a ; “t.runOnNFA(a)” returns the NFA accepting the language UweL(a) t(w);
“t.composition(s)” returns a transducer realizing the composition R(t)oR(s).

Rational operations [3]. A relation p is a rational relation, if it is equal to
@, or {(z,y)} for some words z and y, or can be obtained from other ones
by using a finite number of times any of the three (rational) operators: union,
concatenation, Kleene star. A classic result on transducers says that a relation is
rational if and only if it can be realized by a transducer. The following methods
are now available in FAdo, where we assume that s and t are SF'T transducers:
t.union(s); t.concat(s); t.star(). The implementation of these methods
mimics the implementation of the corresponding methods on automata.

Witness of Transducer non-functionality. A transducer t is called func-
tional if [t(w)| < 1, for every word w. Transducer functionality can be tested in
polynomial time [2]. A triple of words (w, z,2’) is called a witness of t’s non-
functionality, if z # 2" and z, 2" € t(w). We have implemented the SFT method
t.nonFunctionalW(), which returns a witness of t’s non-functionality, or the
triple (None,None,None) if t is functional. Our method is based on the decision
test and uses extra bookkeeping for producing the desired witness.

Theorem 1. The FAdo method t.nonFunctionalW() computes a size O(|t|?)
witness of t’s non-functionality, if and only if one exists.

The proof of correctness can be found in [17]. There is a sequence (t,,) of trans-
ducers such that |t,,| — co and the minimal witness of each t,, is of size O(|t,|?).

4 Object Classes Representing Code Properties

In this section we discuss our implementation of objects representing code prop-
erties. We are interested in methods that allow one to formally describe code
properties. Three such formal methods are the implicational conditions of [14],
where a property is described by a first order formula of a certain type, the regu-
lar trajectories of [6], where a property is described by a regular expression over
{0,1}, and the transducers of [8], where a property is described by a transducer.
These formal methods can describe most properties of practical interest. The

formal methods of regular trajectories and transducers are implemented here, as
the transducer formal method follows naturally our implementation of transduc-
ers, and every regular expression of the regular trajectory formal method can be
converted efficiently to a transducer object of the transducer formal method.

Input-altering transducer properties [8]. A transducer t is input-altering
if, for all words w, w ¢ t(w). In this formal method such a transducer t describes
the code property P! consisting of all languages L such that

t(L)NL = 0. (1)

With this formal method we can define the suffix code property: L is a suffix code
if no L-word is a proper suffix of an L-word. The transducer defined in Ex. 1 is
input-altering and describes the suffix code property over the alphabet {a, b}.

Error-detecting properties via input-preserving transducers [8,16].
A transducer t is input-preserving if, for all words w in the domain of R(t),
w € t(w). Such a transducer t is also called a channel transducer, in the sense
that an input message w can be transmitted via t and the output can always be
w (no transmission error), or a word other than w (error). In this formal method
the transducer t describes the error-detecting for t property Pg¢ consisting of
all languages L over the input alphabet of t such that

t(w)N (L —w) =0, forall words w € L. (2)

Every input-altering transducer property is an error-detecting property [8].

o/o ofo olo

20

Fig. 2. On input x, tisup outputs either x, or any word that results by
substituting exactly one symbol in . On input «x, t1iq outputs either z, or
any word that results by deleting, or inserting, exactly one symbol in x.

Ezample 3. Consider the property I-substitution error-detecting code over {a,
b}, where error means the substitution of one symbol by another symbol. The fol-
lowing channel transducer defines this property—see also Fig 2. The transducer
will substitute at most one symbol of the input word with another symbol.

si = ’@Transducer 0 1 * 0\nO a a O\n0O b b 0\n’\
’0 b a 1\n0 a b 1\n1 a a 1\n1 b b 1\n’
tl = fio.readOneFromString(s1)

We note that the transducer approach to defining error-detecting code properties
is very powerful, as it allows one to model insertion and deletion errors, in
addition to substitution errors—see Fig 2. Codes for such errors are actively
under investigation—see [23], for instance.

4.1 Implementation in FAdo.

We have defined the Python classes TrajProp, IATProp and ErrDetectProp
corresponding to the types of properties discussed above. These property types
are described, respectively, by regular trajectory expressions, input-altering trans-
ducers, and input-preserving transducers. In all cases, given a transducer object,
an object of the class is created. An object p of the class IATProp, say, is de-
fined via some transducer t and represents a particular code property, that is,
the class of languages satisfying Eq. (1). The class ErrDetectProp is a super-
class of the others. These classes and all related methods and functions are in
the module codes.py and can be imported as follows.

import FAdo.codes as codes

Although each of the above four classes requires a transducer to create an object
of the class, we have defined a set of what we call build functions as a user
interface for creating code property objects. These build functions are shown
next in use with specific arguments from previous examples.

Ezample 4. Consider again Examples 1,3 in which the strings s and s1 are de-
fined containing, respectively, the proper suffixes transducer and the transducer
permitting up to 1 substitution error. The following object definitions are pos-
sible with the FAdo package

icp = codes.buildTrajPropS(’1%0*1x’, {’a’, ’b’})
scp = codes.buildIATPropS(s)

sldp = codes.buildErrorDetectPropS(sl)

pcp = codes.buildPrefixProperty({’a’, ’b’})

icp2 = codes.buildInfixProperty({’a’, ’b’})

In the first statement, icp represents the infix code property over the alphabet
{a, b} and is defined via the trajectory expression 1*0*1%. In the next two
statements, scp, sldp represent, respectively, the suffix code property and the
1-substitution error-detecting property. The last two statements are explained
below—pcp and icp2 represent the prefix code and infix code properties, respec-
tively.

Fized properties. We have created specific classes for the well-known properties
prefix, suffix, infix, outfix, and hypercodes. As before, users need only to know
about the build-interfaces for creating objects of these classes. For example,
buildPrefixProperty(Sigma) returns an object of the class PrefixProp that
represents all prefix codes over the alphabet Sigma.

4.2 Combining code properties

In many cases it is desirable to talk about languages satisfying more than one
property. For example, most of the practical 1-substitution error-detecting codes
are infix codes (in fact block codes, that is, those whose words are of the same

length). We have defined the operation & between any two error-detecting prop-
erties independently of how they were created. This operation returns an object
representing the class of all languages satisfying both properties. This object is
constructed via the transducer that results by taking the union of the two trans-
ducers describing the two properties—see Rational Operations in Section 3.

Ezample 5. Using the properties icp, sldp created above in Ex. 4, we can
create the conjunction p1 of these properties, and using the properties pcp, scp
we can create their conjunction bep which is known as the bifiz code property.
pl = icp & sidp
becp = pcp & scp
The object p1 is of type ErrDetectProp. If, however, the two properties involved
are input-altering then our implementation makes sure that the object returned
is also of type input-altering—this is the case for bcp.

Our top Python superclass is ErrDetectProp. When viewed as a set of (poten-
tial) objects, this class implements the set of properties

ped — {P,fd | t is an input-preserving transducer}. (3)

In fact, we have also implemented the methods ‘&’ and ‘<’ in a way that the
triple (ErrDetectProp, &, <) constitutes a syntactic hierarchy (see further be-
low). This means that ‘&’ simulates intersection between properties and ‘<’
simulates subset relationship between two properties such that the following
desirable statements hold true, for any ErrDetectProp objects p, q

p & p returns p; p<q ifandonlyif p & q returnsp

Our implementation associates to each ErrDetectProp object p a nonempty set
p-ID of names. If pis a fixed property object, p.ID has one hardcoded name. If
p is built from a transducer t, p.ID has one name, the name of t—this name is
based on a string description of t. If p = q&r, then p.ID is the union of q.ID
and r.ID minus any fixed property name N for which another fixed property
name M exists in the union such that the M-property is contained in the N-
property—see [17] for details.

Next we define what it means to simulate a set of code properties @ = {Q; |
J € J} via a syntactic hierarchy (G, &, <), which can ultimately be implemented
(as is the case here) in a programming language. The idea is that each g € G
represents a property [g] = Q;, for some index j, and G is the set of generators of
the semigroup ((G), &) whose operation ‘&’ simulates the process of combining
properties in Q, that is [z&y] = [x]N[y], and the partial order ‘<’ simulates subset
relation between properties, that is z < y implies [z] C [y], for all z,y € (G).
We show that there is an efficient simulation of the set of properties P°¢ in (3)
and that there can be no complete simulation of that set of properties.

Definition 1. A syntactic hierarchy is a triple (G, &, <) where G is a nonempty
set and (a) ((G), &) is the commutative semigroup generated by G with com-
putable operation ‘&’. (b) ((G), <) is a decidable partial order (reflexive, transi-
tive, antisymmetric). (c) For all z,y € (G), we have that x < y implies x&y = z,
and that &y < x.

Definition 2. Let Q@ = {Q; | j € J} be a set of properties, for some index
set J. A (syntactic) simulation of Q is a quintuple (G,&,<,[],¢) such that
(G,&,<) is a syntactic hierarchy; [] : (G) — Q is a surjective mapping; ¢ :
J = (G) with [p(j)] = Q;; for all x,y € (G), v <y implies [x] C [y]; and for
all x,y € (G), [x&y] = [z] N [y]. The simulation is called complete if, for all
x,y, [x] C [y] implies = < y. The simulation is called linear if J has a size
function | - | and (G) has a size function || - || such that ||p(j)] = O(|7]), for all
j€.J, and for allz,y, |aky] = O(lz] + y1)-

By a size function on a set X, we mean any function f of X into Ng.
Theorem 2. There is a linear simulation of the set of properties P°C.
Theorem 3. There is no complete simulation of the set of properties P.

The above result implies that for any FAdo ErrDetectProp objects p, q defined
via transducers t and s with Pg¢ C P it does not always hold that p < q.
On the other hand, our implementation of the set of the five fixed properties
constitutes a complete simulation of these properties, when the same alphabet
is used. Using the notation of Ex. 4, this implies that

pcp & icp2 returns icp2

5 Methods of Code Property Objects

In the context of the research on code properties, we consider the following three
algorithmic problems as fundamental. Satisfaction problem: Given the descrip-
tion of a code property and the description of a language, decide whether the
language satisfies the property. In the witness version of this problem, a neg-
ative answer is also accompanied by an appropriate set of words showing how
the property is violated. Maximality problem: Given the description of a code
property and the description of a language L, decide whether the language is
maximal with respect to the property. In the witness version of this problem,
a negative answer is also accompanied by a word w that can be added to the
language L. Construction problem: Given the description of a code property and
two positive integers n and ¢, construct a language that satisfies the property
and contains n words of length ¢ (if possible). It is assumed that the code prop-
erty can be implemented as p via a transducer t and, in the first two problems,
the language is given via an NFA a. Next we discuss the implementation of
methods for the satisfaction problem, all of which work in polynomial time. Due
to the page limit we omit details on the maximality problems. Aspects of the
construction problem are discussed in [18].

Methods p.satisfiesP(a). Eq. (1) implies that, if the property p is de-
scribed by an input-altering transducer t, the method p.satisfiesP(a) can be
implemented as follows, where & is NFA intersection

c = t.runOnNFA(a)
return (a & c).emptyP()

If p is an error-detecting property, the transducer t is input-preserving and
Eq. (2) is tested via transducer functionality. In FAdo this test can be done as
follows, where functionalP () returns whether a transducer is functional.

s = t.inIntersection(a)
return s.outIntersection(a).functionalP()

Methods with witnesses: p.notSatisfiesW(a). For input-altering transducer
and error-detecting properties, the witness version of p.satisfiesP(a) returns
either a pair of different words w,v € L(a) violating the property, that is,
v € t(u) or u € t(v), or they return the pair (None,None). In the former
case, the pair (u,v) is called a witness of the non-satisfaction of p by the lan-
guage L(a). We accomplish this by changing appropriately the implementations
of p.satisfiesP(a) shown before—see [17] for details.

Ezxample 6. The following Python interaction shows that a*b is a prefix and 1-
error-detecting code. The strings st, sl contain the descriptions of an NFA
accepting a*b, and a transducer allowing up to 1 substitution error on the input
word.

>>> a = fio.readOneFromString(st)

>>> pcp = codes.buildPrefixProperty({’a’,’b’})
>>> sldp = codes.buildErrDetectPropS(sl)

>>> p2 = pcp & sldp

>>> p2.notSatisfiesW(a)

(None, None)

Uniquely Decipherable Codes. The property of unique decipherability, UD
code property for short, is probably the first historically property of interest in
coding theory from the points of view of both information theory [27] as well
as formal languages [21]. This property is not defined via a transducer and is
treated differently. In particular the witness version of the satisfaction problem
is solved based on the decision algorithm of [12]—see [17] for details. Next we
only show an example of how one can use the satisfaction method.

Ezxample 7. The following Python interaction produces a witness of the non-
satisfaction of the UD code property by the finite language L = {ab, abba, bab}.

>>> a = L.toNFAQ)

>>> p = codes.buildUDCodeProp(a.Sigma)

>>> p.notSatisfiesW(a)

([’ab’, ’bab’, ’abba’, ’bab’], [’abba’, ’bab’, ’bab’, ’ab’])

The two word lists are different, but their concatenations form equal words.

6 LaSer and Program Generation

The first version of LaSer [8] was a limited and self-contained set of C++ au-
tomaton and transducer methods with a web interface having the following func-
tionality: a user uploads a file containing an automaton and a file containing

10

either a trajectory automaton, or an input altering-transducer, and LaSer would
respond with an answer to the witness version of the satisfaction problem for
input-altering transducer properties. The new version discussed here is based
on the FAdo set of automaton and transducer methods and allows clients to
request a response about the witness versions of the satisfaction and maximal-
ity problems for input-altering transducer, error-detecting and error-correcting
properties. We call the above type of functionality, where LaSer computes and
returns the answer, the online service of LaSer. A feature of the new version of
LaSer, which we believe to be original in the community of software on automata
and formal languages, is the program generation service. This is the capability to
generate a self-contained Python program that can be downloaded on the client’s
machine and executed on that machine returning thus the desired answer. This
feature is useful as the execution of certain algorithms, even of polynomial time
complexity, can be quite time consuming for a server software.

7 Concluding Remarks

There are a few directions for future research. First, the existing implemen-
tation of transducers is not always efficient when it comes to describing code
properties. For example, the transducer defined in Ex. 3 consists of 6 transi-
tions. In general, if the alphabet has size s, then that transducer would require
s+s(s—1)+s = s?+ s transitions. However, a symbolic notation for transitions
would be more compact and can possibly be used by modifying the appropriate
transducer methods—certain symbolic transducers are investigated in [31]. For-
mal methods for defining code properties need to be evolved further with the
aim of ultimately implementing these properties and answering efficiently the
satisfaction problem. These methods should be capable of allowing to express
properties that cannot be expressed in the transducer methods. In particular, as
all transducer properties in this work are 3-independences, they do not include
properties like comma-free code property. The formal method of [14] is quite ex-
pressive, using a certain type of first order formulae to describe properties. We
also note that if the defining method is too expressive then even the satisfaction
problem could become undecidable—see for example the method of [7].

References

1. Almeida, A., Almeida, M., Alves, J., Moreira, N., Reis, R.: FAdo and GUltar:
Tools for automata manipulation and visualization. In: Proceedings of 14th CIAA
2009. LNCS, vol. 5642, pp. 65-74. Springer (2009)

2. Béal, M.P., Carton, O., Prieur, C., Sakarovitch, J.: Squaring transducers: An effi-

cient procedure for deciding functionality and sequentiality. Theoretical Computer

Science 292(1), 45-63 (2003)

Berstel, J.: Transductions and Context-Free Languages. B.G. Teubner (1979)

4. Berstel, J., Perrin, D., Reutenauer, C.: Codes and Automata. Cambridge University
Press (2009)

®

11

12.

13.

14.
15.

16.

17.

18.

19.

20.

21.

22.
23.

24.

25.

26.
27.

28.

29.

30.

31.

32.

Claveirole, T., Lombardy, S., O’Connor, S., Pouchet, L., Sakarovitch, J.: Inside vau-
canson. In: Proceedings 10th CTAA 2005. LNCS, vol. 3845, pp. 116-128. Springer
(2005)

Domaratzki, M.: Trajectory-based codes. Acta Informatica 40, 491-527 (2004)
Domaratzki, M., Salomaa, K.: Codes defined by multiple sets of trajectories. The-
oretical Computer Science 366, 182-193 (2006)

Dudzinski, K., Konstantinidis, S.: Formal descriptions of code properties: decid-
ability, complexity, implementation. IJFCS 23:1, 67-85 (2012)

. FAdo: Tools for formal languages manipulation, http://fado.dcc.fc.up.pt/
10.
11.

Grail: Grail+, http://www.csit.upei.ca/~ccampeanu/Grail/

Hamming, R.W.: Error detecting and error correcting codes. The Bell System
Technical Journal 26(2), 147-160 (1950)

Head, T., Weber, A.: Deciding code related properties by means of finite transduc-
ers. In: Sequences II, Methods in Communication, Security, and Computer Science.
pp. 260-272. Springer-Verlag (1993)

Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley (1979)

Jirgensen, H.: Syntactic monoids of codes. Acta Cybernetica 14, 117-133 (1999)
Jiirgensen, H., Konstantinidis, S.: Codes. In: Rozenberg and Salomaa [25], pp.
511-607

Konstantinidis, S.: Transducers and the properties of error-detection, error-
correction and finite-delay decodability. JUCS 8, 278-291 (2002)

Konstantinidis, S., Meijer, C., Moreira, N., Reis, R.: Symbolic manipulation of
code properties. Computing Research Repository (2015), arXiv:1504.04715v1
Konstantinidis, S., Moreira, N., Reis, R.: Channels with synchroniza-
tion/substitution errors and computation of error control codes. Computing Re-
search Repository (2016), arXiv:1601.06312v1

LaSer: Independent LAnguage SERver, http://laser.cs.smu.ca/independence/
Mateescu, A., Salomaa, A.: Formal languages: an introduction and a synopsis. In:
Rozenberg and Salomaa [25], pp. 1-39

Nivat, M.: Elements de la théorie générale des codés. In: Automata Theory, pp.
278-294 (1966)

OpenFst: OpenFst Library, http://www.openfst.org/

Paluncic, F., Abdel-Ghaffar, K., Ferreira, H.: Insertion/deletion detecting codes
and the boundary problem. IEEE Trans. Info. Theory 59(9), 5935-5943 (2013)
Raymond, D., Wood, D.: Grail: A C++ library for automata and expressions.
Journal of Symbolic Computation 17(4), 341 — 350 (1994)

Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages, Vol. L
Springer-Verlag, Berlin (1997)

Sakarovitch, J.: Elements of Automata Theory. Cambridge University Press (2009)
Sardinas, A.A., Patterson, G.W.: A necessary and sufficient condition for the
unique decomposition of coded messages. IRE Int. Conven. Rec. 8, 104-108 (1953)
Shyr, H.J.: Free Monoids and Languages. Hon Min Book Company, Taichung,
second edn. (1991)

Shyr, H.J., Thierrin, G.: Codes and binary relations. In: Malliavin, M.P. (ed.)
Séminaire d’Algebre Paul Dubreil, Paris 1975-1976 (29éme Année). LNCS, vol.
586, pp. 180-188. Springer (1977)

Vaucanson: The Vaucanson Project, http://vaucanson-project.org/

Veanes, M.: Applications of symbolic finite automata. In: Proceedings of 18th CTIAA
2013. LNCS, vol. 7982, pp. 16-23. Springer (2013)

Yu, S.: Regular languages. In: Rozenberg and Salomaa [25], pp. 41-110

12

http://fado.dcc.fc.up.pt/
http://www.csit.upei.ca/~ccampeanu/Grail/
http://laser.cs.smu.ca/independence/
http://www.openfst.org/
http://vaucanson-project.org/

	Implementation of Code Properties via Transducers

