
Regular Expressions and Transducers over
Alphabet-invariant and User-defined Labels?

Stavros Konstantinidis1, Nelma Moreira2, Rogério Reis2, and Joshua Young1

1 Saint Mary’s University, Halifax, Nova Scotia, Canada,
s.konstantinidis@smu.ca, jyo04@hotmail.com

2 CMUP & DCC, Faculdade de Ciências da Universidade do Porto, Rua do Campo
Alegre, 4169-007 Porto, Portugal {nam,rvr}@dcc.fc.up.pt

Abstract. We are interested in regular expressions and transducers that
represent word relations in an alphabet-invariant way—for example, the
set of all word pairs u,v where v is a prefix of u independently of what
the alphabet is. Current software systems of formal language objects do
not have a mechanism to define such objects. We define transducers in
which transition labels involve what we call set specifications, some of
which are alphabet invariant. In fact, we consider automata-type objects,
called labelled graphs, where each transition label can be any string, as
long as that string represents a subset of a certain monoid. Then, the
behaviour of the labelled graph is a subset of that monoid. We do the
same for regular expressions. We obtain extensions of known algorithmic
constructions on ordinary regular expressions and transducers, including
partial derivative based methods, at the broad level of labelled graphs
such that the computational efficiency of the extended constructions is
not sacrificed. Then, for regular expressions with set specs we obtain a
direct partial derivative method for membership. For transducers with
set specs we obtain further algorithms that can be applied to questions
about independent regular languages, in particular the witness version
of the property satisfaction question.

Keywords: Alphabet-invariant transducers, regular expressions, partial
derivatives, algorithms, monoids

1 Introduction

We are interested in 2D regular expressions and transducers over alphabets
whose cardinality is not fixed, or whose alphabet is even unknown. In particular,
assume that the alphabet is Γ = {0, 1, . . . , n − 1} and consider the 2D regular
expression (

0/0 + · · ·+ (n− 1)/(n− 1)
)∗(

0/e + · · ·+ (n− 1)/e
)∗
,

? Research supported by NSERC (Canada) and by FCT project UID/-
MAT/00144/2013 (Portugal). Reference [16] is a detailed version of this paper.

where e is the symbol for the empty string. This 2D regular expression has
O(n) symbols and describes the prefix relation: all word pairs (u, v) such that
v is a prefix of u. Similarly, consider the transducer in Fig. 1, which has O(n2)
transitions. Current software systems of formal language objects require users to
enter all these transitions in order to define and process the transducer. We want
to be able to use special labels in transducers such as those in the transducer t̂sub2
in Fig. 2 (page 10). In that figure, the label (∀/=) represents the set {(a, a) | a ∈
Γ} and the label (∀/∀6=) represents the set {(a, a′) | a, a′ ∈ Γ, a 6= a′}. Moreover
that transducer has only a fixed number of 5 transitions. Similarly, using these
special labels, the above 2D regular expression can be written as (∀/=)∗(∀/e)∗.
Note that the new regular expression as well as the new transducer in Fig. 2 are
alphabet invariant as they contain no symbol of the intended alphabet Γ—precise
definitions are provided in the next sections.

0 1 2
a/a′

(∀a, a′ ∈ Γ : a 6= a′)

a/a′

(∀a, a′ ∈ Γ : a 6= a′)

a/a (∀a ∈ Γ) a/a (∀a ∈ Γ) a/a (∀a ∈ Γ)

Fig. 1: The transducer realizes the relation of all (u, v) such that
u 6= v and the Hamming distance of u, v is at most 2.

We also want to be able to define algorithms that work directly on regular
expressions and transducers with special labels, without of course having to
expand these labels to ordinary ones. Thus, for example, we would like to have an
efficient algorithm that computes whether a pair (u, v) of words is in the relation
realized by the transducer in Fig. 2, and an efficient algorithm to compute the
composition of two transducers with special labels.

We start off with the broad concept of a set B of special labels, called label set,
where each special label β ∈ B is simply a string that represents a subset I(β) of
a monoid M . Then we define type B automata (called labelled graphs) in which
every transition label is in B. Similarly we consider type B regular expressions
whose base objects (again called labels) are elements of B and represent monoid
subsets. Our first set of results apply to any user-defined set B and monoid
M . Then, we consider further results specific to the cases of (i) 1D regular
expressions and automata (monoid M = Γ ∗), (ii) 2D regular expressions and
transducers (monoid M = Γ ∗ × Γ ∗) with special labels (called set specs). We
note that a concept of label set similar to the one defined here is considered in
[12]. In particular, [12] considers label sets with weights, and the objectives of
that work are different from the ones here.

We emphasize that we do not attempt to define regular expressions and
automata outside of monoids; rather we use monoid-based regular expressions
and automata as a foundation such that (i) one can define such objects with

2

alphabet invariant labels or with a priori unknown label sets B, as long as
each of the labels represents a subset of a known monoid; (ii) many known
algorithms and constructions on monoid-based regular expressions and automata
are extended to work directly and as efficiently on certain type B objects.

We also mention the framework of symbolic automata and transducers of
[24,23]. In that framework, a transition label is a logic predicate describing a
set of domain elements (characters). The semantics of that framework is very
broad and includes the semantics of label sets in this work. As such, the main
algorithmic results in [24,23] do not include time complexity estimates. Moreover,
outside of the logic predicates there is no provision to allow for user-defined labels
and related algorithms working directly on these labels.

The paper is organized as follows. The next section makes some assumptions
about alphabets Γ of non-fixed size. Sect. 3 defines two specific label sets: the set
of set specs, in which each element represents a subset of Γ or the empty string,
and the set of pairing specs that is used for transducer-type labelled graphs.
Some of these label sets can be alphabet invariant. Sect. 4 discusses the general
concept of a label set B, which has a behaviour I and refers to a monoid monB;
that is, I(β) is a subset of monB for any label β ∈ B. Sect. 5 defines type
B labelled graphs ĝ and their behaviours I(ĝ). When B is the set of pairing
specs then ĝ is a transducer-type graph and realizes a word relation. Sect. 6
defines regular expressions r over any label set B and their behaviour I(r), and
establishes the equivalence of type B graphs and type B regular expressions
(Theorem 1) as well as the partial derivative automaton corresponding to r via
the concept of linear form of r (Theorem 3). Then, for a regular expression r
over set specs it presents the partial derivative machinery for deciding directly if
a word is in L(r) (Lemma 11). Sect. 7 considers the possibility of defining ‘higher
level’ versions of product constructions that work on automata/transducers over
known monoids. To this end, we consider the concept of polymorphic operation ‘�’
that is partially defined between two elements of some labels sets B,B′, returning
an element of some label set C, and also partially defined on the elements of the
monoids monB and monB′, returning an element of the monoid monC. In this
case, if � is known to work on automata/transducers over monB,monB′ then
it would also work on type B,B′ graphs (Theorem 4). Sect. 8 presents some
basic algorithms on automata with set specs and transducers with set specs.
Sect. 9 defines the composition of two transducers with set specs such that the
complexity of this operation is consistent with the case of ordinary transducers
(Theorem 5). Sect. 10 considers the questions of whether a transducer with set
specs realizes an identity and whether it realizes a function. It is shown that both
questions can be answered with a time complexity consistent with that in the
case of ordinary transducers (Theorem 6 and Theorem 7). Sect. 11 shows that,
like ordinary transducers, transducers with set specs that define independent
language properties can be processed directly (without expanding them) and
efficiently to answer the witness version of the property satisfaction question
for regular languages (Corollary 2 and Example 12). Finally, the last section
contains a few concluding remarks and directions for future research.

3

2 Terminology and Alphabets of Non-fixed Size

The set of positive integers is denoted by N. Then, N0 = N ∪ {0}. Let S be a
set. We denote the cardinality of S by |S| and the set of all subsets of S by 2S .
To indicate that φ is a partial mapping of a set S into a set T we shall use the
notation φ : S 99K T. We shall write φ(s) = ⊥ to indicate that φ is not defined
on s ∈ S.

An alphabet space Ω is an infinite and totally ordered set whose elements are
called symbols. We shall assume that Ω is fixed and contains the digits 0, 1, . . . , 9,
which are ordered as usual, as well as the special symbols

∀ ∃ /∃ = 6= / e ⊕ �

We shall denote by ‘<’ the total order of Ω. As usual we use the term string or
word to refer to any finite sequence of symbols. The empty string is denoted by
ε. For any string w we say that w is sorted if the symbols contained in w occur
in the left to right direction according to the total order of Ω. For example, the
word 012 is sorted, but 021 is not sorted. For any set of symbols S, we use the
notation wo(S) = the sorted word consisting of the symbols in S. For example,
if S = {0, 1, 2}, then wo(S) = 012 and wo({2, 0}) = 02.

Let g ∈ Ω and w be a string. The expression |w|g denotes the number of
occurrences of g in w, and the expression alphw denotes the set {g ∈ Ω : |w|g >
0}, that is, the set of symbols that occur in w. For example,

alph(1122010) = {0, 1, 2}.

An alphabet is any finite nonempty subset of Ω. In the following definitions
we consider an alphabet Γ , called the alphabet of reference, and we assume that
Γ contains at least two symbols and no special symbols.

Algorithmic convention about alphabet symbols. We shall consider al-
gorithms on automata and transducers where the alphabets Γ involved are not
of fixed size and, therefore, |Γ | → ∞; thus, the alphabet size |Γ | is accounted
for in time complexity estimates. Moreover, we assume that each Γ -symbol is of
size O(1). This approach is also used in related literature (e.g., [1]), where it is
assumed implicitly that the cost of comparing two Γ -symbols is O(1).

In the algorithms presented below, we need operations that require to access
only a part of Γ or some information about Γ such as |Γ |. We assume that Γ
has been preprocessed such that the value of |Γ | is available and is O(log |Γ |)
bits long and the minimum symbol minΓ of Γ is also available. In particular, we
assume that we have available a sorted array ARRΓ consisting of all Γ -symbols.
While this is a convenient assumption, if in fact it is not applicable then one can
make the array from Γ in time O

(
|Γ | log |Γ |

)
. Then, the minimum symbol of Γ

is simply ARRΓ [0]. Moreover, we have available an algorithm notIn(w), which
returns a symbol in Γ that is not in alphw, where w is a sorted word in Γ ∗ with
0 < |w| < |Γ |. Next we explain that the desired algorithm

notIn(w) can be made to work in time O(|w|).
The algorithm notIn(w) works by using an index i, initially i = 0, and incre-
menting i until ARRΓ [i] 6= w[i], in which case the algorithm returns ARRΓ [i].

4

3 Set Specifications and Pairing Specifications

Here we define expressions, called set specs, that are used to represent subsets of
the alphabet Γ or the empty string. These can be used as labels in automata-type
objects (labelled graphs) and regular expressions defined in subsequent sections.

Definition 1. A set specification, or set spec for short, is any string of one of
the four forms

e ∀ ∃w /∃w

where w is any sorted nonempty string containing no repeated symbols and no
special symbols. The set of set specs is denoted by SSP.

Let F,∃u, /∃u,∃v, /∃v be any set specs with F 6= e. We define the partial
operation ∩ : SSP×SSP 99K SSP as follows.

e ∩ e = e, e ∩ F = F ∩ e = ⊥
∀ ∩ F = F ∩ ∀ = F

∃u ∩ ∃v = ∃wo
(

alphu ∩ alph v
)
, if

(
alphu ∩ alph v

)
6= ∅

∃u ∩ ∃v = ⊥, if
(

alphu ∩ alph v
)

= ∅
/∃u ∩ /∃v = /∃wo

(
alphu ∪ alph v

)
∃u ∩ /∃v = ∃wo

(
alphu \ alph v

)
, if

(
alphu \ alph v

)
6= ∅

∃u ∩ /∃v = ⊥, if
(

alphu \ alph v
)

= ∅
/∃u ∩ ∃v = ∃v ∩ /∃u

Example 1. As any set spec X is a string, it has a length |X|. We have that
|∀| = 1 and |∃w| = 1 + |w|. Also,

∃035 ∩ ∃1358 = ∃35, /∃035 ∩ ∃1358 = ∃18, /∃035 ∩ /∃1358 = /∃01358.

Lemma 1. For any given set specs G and F , G ∩ F can be computed in time
O(|G|+ |F |).

Definition 2. Let Γ be an alphabet of reference. We say that a set spec F
respects Γ , if the following restrictions hold when F is of the form ∃w or /∃w:

w ∈ Γ ∗ and 0 < |w| < |Γ |.

In this case, the language L(F) of F (with respect to Γ) is the subset of Γ ∪{ε}
defined as follows:

L(e) = {ε}, L(∀) = Γ, L(∃w) = alphw, L(/∃w) = Γ \ alphw.

The set of set specs that respect Γ is denoted as follows

SSP[Γ] = {α ∈ SSP | α respects Γ}.

Remark 1. In the above definition, the requirement |w| < |Γ | implies that there
is at least one Γ -symbol that does not occur in w. Thus, to represent Γ we must
use ∀ as opposed to the longer set spec ∃wo(Γ).

5

Lemma 2. Let Γ be an alphabet of reference and let F 6= e be a set spec re-
specting Γ . The following statements hold true.

1. For given g ∈ Γ , testing whether g ∈ L(F) can be done in time O(log |F |).
2. For given g ∈ Γ , testing whether L(F)\{g} = ∅ can be done in time O(|F |).
3. For any fixed k ∈ N, testing whether |L(F)| ≥ k can be done in time O(|F |+

log |Γ |), assuming the number |Γ | is given as input along with F .
4. Testing whether |L(F)| = 1 and, in this case, computing the single element

of L(F) can be done in time O(|F |).
5. Computing an element of L(F) can be done in time O(|F |).
6. If |L(F)| ≥ 2 then computing two different L(F)-elements can be done in

time O(|F |).
Now we define expressions for describing certain finite relations that are

subsets of (Γ ∪ {ε})× (Γ ∪ {ε}).
Definition 3. A pairing specification, or pairing spec for short, is a string of the
form

e/e e/G F/e F/G F/= F/G 6= (1)

where F,G are set specs with F,G 6= e. The set of pairing specs is denoted by
PSP. The inverse p−1 of a pairing spec p is defined as follows depending on the
possible forms of p displayed in (1):

(e/e)−1 = (e/e), (e/G)−1 = (G/e), (F/e)−1 = (e/F),

(F/G)−1 = (G/F), (F/=)−1 = (F/=), (F/G 6=)−1 = (G/F 6=).

Example 2. As a pairing spec p is a string, it has a length |p|. We have that
|∀/e| = 3 and |∃u//∃v| = 3 + |u|+ |v|. Also, (∀/e)−1 = (e/∀) and (∃u/∀6=)−1 =
(∀/∃u 6=).

Definition 4. A pairing spec is called alphabet invariant if it contains no set
spec of the form ∃w, /∃w. The set of alphabet invariant pairing specs is denoted
by PSPinvar.

Definition 5. Let Γ be an alphabet of reference and let p be a pairing spec. We
say that p respects Γ , if any set spec occurring in p respects Γ . The set of pairing
specs that respect Γ is denoted as follows

PSP[Γ] = {p ∈ PSP : p respects Γ}.

The relation R(p) described by p (with respect to Γ) is the subset of Γ ∗ × Γ ∗
defined as follows.

R(e/e) = {(ε, ε)}; R(e/G) = {(ε, y) | y ∈ L(G)};
R(F/e) = {(x, ε) | x ∈ L(F)}; R(F/G) = {(x, y) | x ∈ L(F), y ∈ L(G)};
R(F/=) = {(x, x) | x ∈ L(F)};
R(F/G 6=) = {(x, y) | x ∈ L(F), y ∈ L(G), x 6= y}.

Remark 2. All the alphabet invariant pairing specs are

e/e e/∀ ∀/e ∀/∀ ∀/= ∀/∀6=
Any alphabet invariant pairing spec p respects all alphabets of reference Γ , as
p contains no set specs of the form ∃w or /∃w.

6

4 Label Sets and their Behaviours

We are interested in automata-type objects (labelled graphs) ĝ in which every
transition label β represents a subset I(β) of some monoid M . These subsets
are the behaviours of the labels and are used to define the behaviour of ĝ as a
subset of M—see next section for labelled graphs. We shall use the notation

εM for the neutral element of the monoid M .

If S, S′ are any two subsets of M then, as usual, we define

SS′ = {mm′ | m ∈ S, m′ ∈ S′} and Si = Si−1S and S∗ = ∪∞i=0S
i,

where S0 = {εM} and the monoid operation is denoted by simply concatenating
elements. We shall only consider finitely generated monoids M where each m ∈M
has a unique canonical (string) representation m. Then, we write M = {m | m ∈
M}.

Example 3. We shall consider two standard monoids. First, the free monoid Γ ∗

(or Σ∗) whose neutral element is ε. The canonical representation of a nonempty
word w is w itself and that of ε is e: ε = e. Second, the monoid Σ∗ × ∆∗ (or
Γ ∗×Γ ∗) whose neutral element is (ε, ε). The canonical representation of a word
pair (u, v) is u/v. In particular, (ε, ε) = e/e.

A label set B is a nonempty set of nonempty strings (over Ω). A label be-
haviour is a mapping I : B → 2M , where M is a monoid. Thus, the behaviour
I(β) of a label β ∈ B is a subset of M . We shall consider label sets B with fixed
behaviours, so we shall

denote by monB the monoid of B via its fixed behaviour.

Notational Convention. We shall make the convention that for any label sets
B1, B2 with fixed behaviours I1, I2, we have:

if monB1 = monB2 then I1(β) = I2(β), for all β ∈ B1 ∩B2.

With this convention we can simply use a single behaviour notation I for all label
sets with the same behaviour monoid, that is, we shall use I for any B1, B2 with
monB1 = monB2. This convention is applied in the example below: we use L
for the behaviour of both the label sets Σe and SSP[Γ].

Example 4. We shall use some of the following label sets and their fixed label
behaviours.

1. Σe = Σ ∪ {e} with behaviour L : Σe → 2Σ
∗

such that L(g) = {g}, if g ∈ Σ,
and L(e) = {ε}. Thus, monΣe = Σ∗.

2. Σ with behaviour L : Σ → 2Σ
∗

such that L(g) = {g}, for g ∈ Σ. Thus,
monΣ = Σ∗.

3. SSP[Γ] with behaviour L : SSP[Γ] → 2Γ
∗
, as specified in Def. 2. Thus,

mon SSP[Γ] = Γ ∗.
4. REGΣ = REGΣe = all regular expressions over Σ with behaviour L :

REGΣ → 2Σ
∗

such that L(r) is the language of the regular expression r.
Thus, mon(REGΣ) = Σ∗.

7

5. [Σe, ∆e] = {x/y | x ∈ Σe, y ∈ ∆e} with behaviour R : [Σe, ∆e] →
2Σ
∗×∆∗ such that R(e/e) = {(ε, ε)}, R(x/e) = {(x, ε)}, R(e/y) = {(ε, y)},

R(x/y) = {(x, y)}, for any x ∈ Σ and y ∈ ∆. Thus, mon[Σe, ∆e] = Σ∗×∆∗.
6. PSP[Γ] with behaviour R : PSP[Γ] → 2Γ

∗×Γ∗ as specified in Def. 5. Thus,
mon PSP[Γ] = Γ ∗ × Γ ∗.

7. PSPinvar with behaviour R⊥ : PSPinvar → {∅}. Thus, I(β) = ∅, for any
β ∈ PSPinvar.

8. If B1, B2 are label sets with behaviours I1, I2, respectively, then [B1, B2] is
the label set {β1/β2 | β1 ∈ B1, β2 ∈ B2} with behaviour and monoid such
that I(β1/β2) = I1(β1)× I2(β2) and mon[B1, B2] = monB1 ×monB2.

9. [REGΣ,REG∆] with behaviourR in the monoidΣ∗×∆∗ such thatR(r/s) =
L(r)× L(s), for any r ∈ REGΣ and s ∈ REG∆.

For any monoid of interest M , M is a label set such that

monM = M and I(m) = {m}.

Thus for example, as mon PSP[Γ] = monΓ ∗ × Γ ∗ = Γ ∗×Γ ∗ and the behaviour
of PSP is denoted by R, we have R((0, 1)) = R(0/1) = {(0, 1)} = R(∃0/∃1).

Remark 3. We shall not attempt to define the set of all labels. We limit ourselves
to those of interest in this paper. Of course one can define new label setsX at will,
depending on the application; and in doing so, one would also define concepts
related to those label sets, such as the monX.

5 Labelled Graphs, Automata, Transducers

Let B be a label set with behaviour I. A type B graph is a quintuple

ĝ =
(
Q,B, δ, I, F

)
such that Q is a nonempty set whose elements are called states; I ⊆ Q is the
nonempty set of initial, or start states; F ⊆ Q is the set of final states; δ is a
set, called the set of edges or transitions, consisting of triples (p, β, q) such that
p, q ∈ Q and β is a nonempty string of Ω-symbols; the set of labels Labels(ĝ) =
{β | (p, β, q) ∈ δ} is a subset of B.

We shall use the term labelled graph to mean a type B graph as defined above,
for some label set B. The labelled graph is called finite if Q and δ are both finite.
Unless otherwise specified, a labelled graph, or type B graph, will be assumed to
be finite.

As a label β is a string, the length |β| is well-defined. Then, the size |e| of an
edge e = (p, β, q) is the quantity 1+ |β| and the size of δ is ‖δ‖ =

∑
e∈δ |e|. Then

the graph size of ĝ is the quantity |ĝ| = |Q|+ ‖δ‖. A path P of ĝ is a sequence of
consecutive transitions, that is, P = 〈qi−1, βi, qi〉`i=1 such that each (qi−1, βi, qi)
is in δ. The path P is called accepting , if q0 ∈ I and q` ∈ F . If ` = 0 then P
is empty and it is an accepting path if I ∩ F 6= ∅. A state is called isolated , if
it does not occur in any transition of ĝ. A state is called useful , if it occurs in

8

some accepting path. Note that any state in I ∩F is useful and can be isolated.
The labelled graph ĝ is called trim, if

every state of ĝ is useful, and ĝ has at most one isolated state in I ∩ F .

Definition 6. Let ĝ =
(
Q,B, δ, I, F

)
be a labelled graph, for some label set B

with behaviour I. We define the behaviour I(ĝ) of ĝ as the set of all m ∈ monB
such that there is an accepting path 〈qi−1, βi, qi〉`i=1 of ĝ with

m ∈ I(β1) · · · I(β`).

The expansion exp ĝ of ĝ is the labelled graph
(
Q,monB, δexp, I, F

)
such that

δexp = {(p,m, q) | ∃ (p, β, q) ∈ δ : m ∈ I(β)}.

In some cases it is useful to modify ĝ by adding the transition (q, εmonB , q) (a
self loop) for each state q of ĝ. The resulting labelled graph is denoted by ĝε.

Remark 4. The above definition remains valid with no change if the labelled
graph, or its expansion, is not finite. The expansion graph of ĝ can have infinitely
many transitions—for example if ĝ is of type REGΣ.

Lemma 3. For each type B graph ĝ = (Q,B, δ, I, F), we have that

I(ĝ) = I(exp ĝ) and I(ĝ) = I(ĝε).

Definition 7. Let Σ,∆, Γ be alphabets.

1. A nondeterministic finite automaton with empty transitions, or ε-NFA for
short, is a labelled graph â = (Q,Σe, δ, I, F). If Labels(â) ⊆ Σ then â is
called an NFA. The language L(â) accepted by â is the behaviour of â with
respect to the label set Σe.

2. An automaton with set specs is a labelled graph b̂ = (Q,SSP[Γ], δ, I, F). The

language L(b̂) accepted by b̂ is the behaviour of b̂ with respect to SSP[Γ].
3. A transducer (in standard form) is a labelled graph t̂ = (Q, [Σe, ∆e], δ, I, F).

The relation R(t̂) realized by t̂ is the behaviour of t̂ with respect to [Σe, ∆e].
4. A transducer with set specs is a labelled graph ŝ = (Q,PSP[Γ], δ, I, F). The

relation R(ŝ) realized by ŝ is the behaviour of ŝ with respect to PSP[Γ].
5. An alphabet invariant transducer is a labelled graph î = (Q,PSPinvar, δ, I, F).

If Γ is an alphabet then the Γ -version of î is the transducer with set specs
î[Γ] = (Q,PSP[Γ], δ, I, F).

Remark 5. The above definitions about automata and transducers are equivalent
to the standard ones. The only slight deviation is that, instead of using the empty
word ε in transition labels, here we use the empty word symbol e. This has two
advantages: (i) it allows us to make a uniform presentation of definitions and
results and (ii) it is consistent with the use of a symbol for the empty word in
regular expressions. As usual about transducers t̂, we denote by t̂(w) the set of
outputs of t̂ on input w, that is,

t̂(w) = {u | (w, u) ∈ R(t̂)}.
Moreover, for any language L, we have that t̂(L) = ∪w∈Lt̂(w).

9

Lemma 4. If b̂ is an automaton with set specs then exp b̂ is an ε-NFA. If ŝ is
a transducer with set specs then exp ŝ is a transducer (in standard form).

Convention. Let Φ(û) be any statement about the behaviour of an automaton
or transducer û. If v̂ is an automaton or transducer with set specs then we make
the convention that the statement Φ(v̂) means Φ(exp v̂). For example, “ŝ is an
input-altering transducer” means that “exp ŝ is an input-altering transducer”—a
transducer t̂ is input-altering if u ∈ t̂(w) implies u 6= w, or equivalently (w,w) /∈
R(t̂), for any word w.

Example 5. The transducers in Fig. 2 are alphabet invariant. Both transducers
are much more succinct compared to their expanded Γ -versions, as |Γ | → ∞:

| exp t̂sub2[Γ]| = O(|Γ |2) and | exp t̂px[Γ]| = O(|Γ |).

0t̂sub2 : 1 2
∀/∀6= ∀/∀6=

∀/= ∀/= ∀/=

0t̂px : 1
∀/e

∀/= ∀/=

Fig. 2: The left transducer realizes the relation of all (u, v) such that u 6=
v and the Hamming distance of u, v is at most 2. The right transducer
realizes the relation of all (u, v) such that v is a proper prefix of u.

Following [25], if t̂ = (Q, [Σe, ∆e], δ, I, F) is a transducer then t̂−1 is the
transducer (Q, [∆e, Σe], δ′, I, F), where δ′ = {(p, y/x, q) | (p, x/y, q) ∈ δ}, such
that R(t̂−1) = R(t̂)−1.

Lemma 5. For each transducer ŝ with set specs we have that exp(ŝ−1) = (exp ŝ)−1

and R(ŝ−1) = R(ŝ)−1.

6 Regular Expressions over Label Sets

We extend the definitions of regular and 2D regular expressions to include set
specs and pairing specs, respectively. We start off with a definition that would
work with any label set (called set of atomic formulas in [20]).

Definition 8. Let B be a label set with behaviour I such that no β ∈ B contains
the special symbol �. The set REGB of type B regular expressions is the set of
strings consisting of the 1-symbol string � and the strings in the set Z that is
defined inductively as follows.

– εmonB is in Z, and every β ∈ B is in Z.

10

– If r, s ∈ Z then (r + s), (r · s), (r∗) are in Z.

The behaviour I(r) of a type B regular expression r is defined inductively as
follows.

– I(�) = ∅ and I(εmonB) = εmonB;
– I(β) is the subset of monB already defined by the behaviour I on B;
– I(r + s) = I(r) ∪ I(s); I(r · s) = I(r)I(s); I(r∗) = I(r)∗.

Example 6. Let Σ,∆ be alphabets. Using Σ as a label set, we have that REGΣ
is the set of ordinary regular expressions over Σ. For the label set [Σe, ∆e], we
have that REG[Σe, ∆e] is the set of rational expressions over Σ∗ × ∆∗ in the
sense of [20].

Example 7. Consider the UNIX utility tr. For any strings u, v of length ` > 0,
the command tr u v can be ‘simulated’ by the following regular expression of
type PSP[ASCII](

(/∃u/=) + (∃u[0]/∃v[0]) + · · ·+
(
∃u[`− 1]/v[`− 1]

))∗
where ASCII is the alphabet of standard ASCII characters. Similarly, the com-
mand tr −d u can be ‘simulated’ by the type PSP[ASCII] regular expression(
∃u/e + /∃u/=

)∗
.

The Thompson method, [22], of converting an ordinary regular expression
over Σ—a type Σe regular expression in the present terminology—to an ε-NFA
can be extended without complications to work with type B regular expressions,
for any label set B. Similarly, the state elimination method of automata, [6],
can be extended to labelled graphs of any type B.

Theorem 1. Let B be a label set with behaviour I. For each type B regular
expression r, there is a type B graph ĝ(r) such that

I(r) = I
(
ĝ(r)

)
and |ĝ(r)| = O(|r|).

Conversely, for each type B graph ĝ there is a type B regular expression r such
that I(ĝ) = I(r).

Derivatives based methods for the manipulation of regular expressions have
been widely studied [7,2,18,17,5,10,8]. In recent years, partial derivative au-
tomata were defined and characterised for several kinds of expressions. Not
only they are in general more succinct than other equivalent constructions but
also for several operators they are easily defined (e.g. for intersection [3] or tu-
ples [11]). The partial derivative automaton of a regular expression over Σ∗

was introduced independently by Mirkin [18] and Antimirov [2]. Champarnaud
and Ziadi [9] proved that the two formulations are equivalent. Lombardy and
Sakarovitch [17] generalised these constructions to weighted regular expressions,
and recently Demaille [11] defined derivative automata for multitape weighted
regular expressions.

11

Here we define the partial derivative automaton for a regular expressions of
a type B. Given a finite set S of expressions we define its behaviour as I(S) =⋃

s∈S I(s). We say that two regular expressions r, s of a type B are equivalent,
r ∼ s, if I(r) = I(s). Let the set of labels of an expression r be the set SS(r) =
{ β | β ∈ B and β occurs in r }. The size of an expressions r is ‖r‖ = |SS(r)|; it
can be inductively defined as follows:

‖� ‖ = 0, ‖εmonB‖ = 0, ‖β‖ = 1

‖r + s‖ = ‖r‖+ ‖s‖
‖rs‖ = ‖r‖+ ‖s‖
‖r∗‖ = ‖r‖.

We define the constant part c : REGB → {εmonB ,�} by c(r) = εmonB if
εmonB ∈ I(r), and c(r) = � otherwise. This function is extended to sets of
expressions by c(S) = εmonB if and only if exists r ∈ S such that c(r) = εmonB .

The linear form of a regular expression r, n(r), is given by the following
inductive definition:

n(�) = n(εmonB) = ∅,
n(β) = {(β, εmonB)},

n(r + r′) = n(r) ∪ n(r′),

n(rr′) =

{
n(r)r′ ∪ n(r′) if c(r) = εmonB ,

n(r)r′ otherwise,

n(r∗) = n(r)r∗,

where for any S ⊆ B ×REGB, we define SεmonB = εmonBS = S, S� = �S =
�, and Ss = { (β, rs) | (β, r) ∈ S } if s 6= εmonB (and analogously for sS). Let
I(n(r)) =

⋃
(β,s)∈n(r) I(β)I(s).

Lemma 6. For all r ∈ REGB, r ∼ c(r) ∪ n(r).

Proof. The proof is trivial proceeding by induction on r. ut

For a regular expression r and β ∈ SS(r), the set of partial derivatives of r
w.r.t. β is

∂̂β(r) = { s | (β, s) ∈ n(r) }.
It is clear that we can iteratively compute the linear form of an expression

s ∈ ∂̂β(r), for β ∈ SS(r). The set of all the resulting expressions is denoted by
π(r), and PD(r) = π(r) ∪ {r} is the set of partial derivatives of r.

The partial derivative graph of r is the labeled graph

âPD(r) =
(
PD(r), B, δPD, {r}, F

)
,

where F = { r1 ∈ PD(r) | c(r1) = εmonB }, δPD = ϕ(r) ∪ F(r) with ϕ(r) = {r′ |
(β, r′) ∈ n(r)} and F(r) = { (r1, β, r2) | r1 ∈ π(r) ∧ β ∈ SS[r] ∧ r2 ∈ ∂̂β(r1) }.

The following lemma generalizes from ordinary regular expressions [18,9,5],
and shows that the set of (strict) partial derivatives is finite.

12

Lemma 7. π satisfies the following:

π(�) = π(εmonB) = ∅,
π(β) = {εmonB},
π(r∗) = π(r)r∗.

π(r1 + r2) = π(r1) ∪ π(r2),
π(r1r2) = π(r1)r2 ∪ π(r2),

Theorem 2. We have that |π(r)| ≤ ‖r‖ and |PD(r)| ≤ ‖r‖+ 1.

Proof. Direct consequence of Lemma 7 using induction on r. ut

The proof of the following result is analogous to the ones for ordinary regular
expressions [18,2].

Theorem 3. I(âPD(r)) = I(r).

A direct algorithm to decide if an element of monB belongs to I(r) depends
on the the behaviour I of the particular label set B.

6.1 Regular Expressions with Set Specifications

Here we consider regular expressions of type SSP[Σ] whose fixed behaviours are
languages over the alphabet Σ. We want a direct algorithm to decide if a word
belongs to the language represented by the expression. Given L1, L2 ⊆ Σ∗ and
x ∈ Σ, the quotient of a language3 w.r.t x satisfies the following relations

x−1(L1 ∪ L2) = x−1L1 ∪ x−1L2, x−1L∗1 = (x−1L1)L∗1,
x−1(L1 L2) = (x−1L1)L2 if ε /∈ L1 or (x−1L1)L2 ∪ x−1L2 if ε ∈ L1.

Quotients can be extended to words and languages: ε−1L = L, (wx)
−1
L =

x−1(w−1L) and L1
−1L =

⋃
w∈L1

w−1L. If L1 ⊆ L2 ⊆ Σ∗ then L1
−1L ⊆ L2

−1L

and L−1L1 ⊆ L−1L2.
Given two set specifications F,G ∈ SSP[Σ] \ {e} we extend the notion of

partial derivative to the set of partial derivatives of F w.r.t G with possible
F 6= G, by

∂F (G) =

{
{e} if F ∩G 6= ⊥,
∅ otherwise.

and ∂F (r) = ∂̂F (r) for all other cases of r.
The set of partial derivatives of r ∈ REG SSP[Σ] w.r.t. a word x ∈ (SSP[Σ] \

{e})? is inductively defined by ∂ε(r) = {r} and ∂xF (r) = ∂F (∂x(r)), where,
given a set S ⊆ REG SSP[Σ], ∂F (S) =

⋃
r∈S ∂F (r). Moreover one has L(∂x(r)) =⋃

r1∈∂x(r) L(r1).

Lemma 8. For two set specifications F,G ∈ SSP[Σ], L(F)
−1L(G) = {ε} if

F ∩G 6= ⊥, and L(F)
−1L(G) = ∅ otherwise.

3 It is customary to use x−1L for denoting quotients; this should not be confused with
the inverse p−1 of a pairing spec.

13

For instance, if ∃w ∩ /∃u 6= ⊥ then

L(∃w)
−1L(/∃u) =

⋃
x∈alphw

x−1(Σ \ alphu) = {ε}.

Lemma 9. For all r ∈ REG SSP[Σ] and F ∈ SSP[Σ], L(F)
−1L(r) = L(∂F (r)).

Proof. For r = ∅ and r = e it is obvious. For r = G the result follows from
Lemma 8. In fact, if L(F)

−1L(G) = {ε} then ∂F (G) = {e} and thus L(∂F (r)) =

{ε}; otherwise if L(F)
−1L(G) = ∅ then ∂F (G) = ∅, and also L(∂F (r)) = ∅. The

remaining cases follow by induction as with ordinary regular expressions. ut

Lemma 10. For all g ∈ (SSP[Σ] \ {e})∗, L(g)
−1L(r) = L(∂g(r)).

Proof. By induction on |g| using Lemma 9. ut

Lemma 11. For all w ∈ Σ∗, the following propositions are equivalent:

1. w ∈ L(r)
2. w = x1 · · ·xn and there exists s(w) = F1 · · ·Fn with Fi ∈ SS(r), ∃xi∩Fi 6= ⊥

and c(∂s(w)(r)) = ε.

7 Label Operations and the Product Construction

We shall consider partial operations � on label sets B,B′ such that, when de-
fined, the product β�β′ of two labels belongs to a certain label set C. Moreover,
we shall assume that � is also a partial operation on monB,monB′ such that,
when defined, the product m �m′ of two monoid elements belongs to monC.
We shall call � a polymorphic operation (in analogy to polymorphic operations
in programming languages) when I(β� β′) = I1(β)�I1(β′) where I1, I2, I are
the behaviours of B,B′, C. This concept shall allow us to also use � as the name
of the product construction on labelled graphs that respects the behaviours of
the two graphs.

Example 8. We shall consider the following monoidal operations, which are bet-
ter known when applied to subsets of the monoid.

– ∩ : Σ∗ ×Σ∗ 99K Σ∗ such that u∩ v = u if u = v; else, u∩ v = ⊥. Of course,
for any two languages K,L ⊆ Σ∗, K ∩ L is the usual intersection of K,L.

– ◦ : (Σ∗1 ×∆∗)× (∆∗ ×Σ∗2) 99K (Σ∗1 ×Σ∗2) such that (u, v) ◦ (w, z) = (u, z) if
v = w; else, (u, v) ◦ (w, z) = ⊥. For any two relations R,S, R ◦S is the usual
composition of R,S.

– ↓: (Σ∗×∆∗)×Σ∗ 99K (Σ∗×∆∗) such that (u, v) ↓ w = (u, v) if u = w; else,
(u, v) ↓ w = ⊥. For a relation R and language L,

R ↓ L = R ∩ (L×∆∗). (2)

14

– ↑: (Σ∗×∆∗)×Σ∗ 99K (Σ∗×∆∗) such that (u, v) ↑ w = (u, v) if v = w; else,
(u, v) ↓ w = ⊥. For a relation R and language L,

R ↑ L = R ∩ (Σ∗ × L). (3)

Definition 9. Let B,B′, C be label sets with behaviours I1, I2, I, respectively. A
polymorphic operation � over B,B′, C, denoted as “� : B×B′ ⇒ C”, is defined
as follows.

– It is a partial mapping: � : B ×B′ 99K C.
– It is a partial mapping: � : monB ×monB′ 99K monC.
– For all β ∈ B and β′ ∈ B′ we have

I(β � β′) = I1(β)� I2(β′),

where we assume that I(β � β′) = ∅, if β � β′ = ⊥; and we have used
the notation S � S′ = {m � m′ | m ∈ S,m′ ∈ S′,m � m′ 6= ⊥}. for any
S ⊆ monB and S′ ⊆ monB′.

Example 9. The following polymorphic operations are based on label sets of
standard automata and transducers using the monoidal operations in Ex. 8.

– “∩ : Σe ×Σe ⇒ Σe” is defined by
• the partial operation ∩ : Σe ×Σe 99K Σe such that x ∩ y = x, if x = y,

else x ∩ y = ⊥; and
• the partial operation ∩ : Σ∗ ×Σ∗ 99K Σ∗.

Obviously, L(x ∩ y) = L(x) ∩ L(y).
– “◦ : [Σe, ∆e]× [∆e, Σ

′
e]⇒ [Σe, Σ

′
e]” is defined by

• the operation ◦ : [Σe, ∆e] × [∆e, Σ
′
e] 99K [Σe, Σ

′
e] such that (x/y1) ◦

(y2/z) = (x/z) if y1 = y2, else (x/y1) ◦ (y2/z) = ⊥; and
• the operation ◦ : (Σ∗ ×∆∗)× (∆∗ ×Σ′∗) 99K (Σ∗ ×Σ′∗).

Obviously, R((x, y1) ◦ (y2, z)) = R((x, y1)) ◦ R((y2, z)).
– “↓: [Σe, ∆e]×Σe ⇒ [Σe, ∆e]” is defined by
• the operation ↓: [Σe, ∆e]×Σe 99K [Σe, ∆e] such that (x/y) ↓ z = (x/y)

if x = z, else (x/y) ↓ z = ⊥; and
• the operation ↓: (Σ∗ ×∆∗)×Σ∗ 99K (Σ∗ ×∆∗).

Obviously, R((x/y) ↓ z) = R(x/y) ↓ L(z).
– “↑: [Σe, ∆e]×∆e ⇒ [Σe, ∆e]” is defined by
• the operation ↑: [Σe, ∆e]×∆e 99K [Σe, ∆e] such that (x/y) ↑ z = (x/y)

if x = z, else (x/y) ↑ z = ⊥; and
• the operation ↑: (Σ∗ ×∆∗)×Σ∗ 99K (Σ∗ ×∆∗).

Obviously, R((x/y) ↑ z) = R(x/y) ↑ L(z).

Example 10. The following polymorphic operations are based on label sets of
automata and transducers with set specs.

– “∩ : SSP[Γ] × SSP[Γ] ⇒ SSP[Γ]” is defined by the partial operation ∩ :
SSP[Γ]× SSP[Γ] 99K SSP[Γ], according to Def. 1, and the partial operation
∩ : Γ ∗×Γ ∗ 99K Γ ∗. For any B,F ∈ SSP[Γ], we have L(B∩F) = L(B)∩L(F).

15

– “↓: PSP[Γ] × Γe ⇒ PSP[Γ]” is defined as follows. First, by the partial
operation ↓: PSP[Γ]× Γe 99K PSP[Γ] such that

p ↓ x =


e/ right p, if x = e and left p = e;

∃x/ right p, if x, left p 6= e and x ∈ L(left p);

⊥, otherwise.

Second, by the partial operation ↓: (Σ∗×∆∗)×Σ∗ 99K (Σ∗×∆∗). We have
that R(p ↓ x) = R(p) ↓ L(x). Moreover we have that p ↓ x can be computed
from p and x in time O(|p|).

– “↑: PSP[Γ] × ∆e ⇒ PSP[Γ]” is defined as follows. First, by the partial
operation ↑: PSP[Γ] × ∆e 99K PSP[Γ] such that p ↑ x = (p−1 ↓ x)−1.
Second, by the partial operation ↑: (Σ∗×∆∗)×∆∗ 99K (Σ∗×∆∗). We have
that R(p ↑ x) = R(p) ↑ L(x). Moreover we have that p ↑ x can be computed
from p and x in time O(|p|).

Further below, in Sect. 9, we define the polymorphic operation ‘◦’ between pair-
ing specs.

Definition 10. Let ĝ = (Q,B, δ, I, F) and ĝ′ = (Q′, B′, δ′, I ′, F ′) be type B and
B′, respectively, graphs and let “� : B × B′ ⇒ C” be a polymorphic operation.
The product ĝ � ĝ′ is the type C graph(

P,C, δ � δ′, I × I ′, F × F ′
)

defined as follows. First make the following two possible modifications on ĝ, ĝ′: if
there is a label β in ĝ such that εmonB ∈ I(β) then modify ĝ′ to ĝ′ε; and if there
is a label β′ in ĝ′ (before being modified) such that εmonB′ ∈ I(β′) then modify
ĝ′ to ĝ′ε. In any case, use the same names ĝ and ĝ′ independently of whether
they were modified. Then P and δ � δ′ are defined inductively as follows:

1. I × I ′ ⊆ P .
2. If (p, p′) ∈ P and there are (p, β, q) ∈ δ and (p′, β′, q′) ∈ δ′ with β � β′ 6= ⊥

then (q, q′) ∈ P and
(
(p, p′), β � β′, (q, q′)

)
∈ δ � δ′.

Example 11. Here we recall three known examples of product constructions in-
volving automata and transducers.

1. For two ε-NFAs â, â′, using the polymorphic operation “∩ : Σe×Σe ⇒ Σe”,
the product construction produces the ε-NFA â ∩ â′ such that L(â ∩ â′) =
L(â) ∩ L(â′). Note that if â, â′ are NFAs then also â ∩ â′ is an NFA.

2. For two transducers t̂, t̂′, using the polymorphic operation “◦ : [Σe, ∆e] ×
[∆e, Σ

′
e]⇒ [Σe, Σ

′
e]”, the product construction produces the transducer t̂◦ t̂′

such that R(t̂ ◦ t̂′) = R(t̂) ◦ R(t̂′).
3. For a transducer t̂ and an automaton â, using the polymorphic operation

“↓: [Σe, ∆e]×Σe ⇒ [Σe, ∆e]”, the product construction produces the trans-
ducer t̂ ↓ â such that R(t̂ ↓ â) = R(t̂) ↓ L(â). Similarly, using the polymor-
phic operation “↑: [Σe, ∆e] × ∆e ⇒ [Σe, ∆e]”, the product construction

16

produces the transducer t̂ ↑ â such that R(t̂ ↑ â) = R(t̂) ↑ L(â). These prod-
uct constructions were used in [14] to answer algorithmic questions about
independent languages—see Sect. 11.

Lemma 12. The following statements hold true about the product graph ĝ�ĝ′ =
(P,C, δ�δ′, I×I ′, F ×F ′) of two trim labelled graphs ĝ, ĝ′ as defined in Def. 10.

1. |P | = O(|δ||δ′|) and |δ � δ′| ≤ |δ||δ′|.
2. If the value β � β′ can be computed from the labels β and β′ in time, and is

of size, O(|β|+ |β′|), then ‖δ � δ′‖ is of magnitude O(|δ|‖δ′‖+ |δ′|‖δ‖) and
δ � δ′ can be computed within time of the same order of magnitude.

Theorem 4. If “� : B×B′ ⇒ C” is a polymorphic operation and ĝ, ĝ′ are type
B,B′, respectively, graphs then ĝ � ĝ′ is a type C graph such that

I(ĝ � ĝ′) = I(exp ĝ � exp ĝ′).

How to apply the above theorem. We can apply the theorem when we have
a known product construction � on labelled graphs û, û′ over monoids M,M ′

(see Ex. 11) and we wish to apply a ‘higher level’ version of �; that is, apply
� on labelled graphs ĝ, ĝ′ with behaviours in the monoids M,M ′. This would
avoid expanding ĝ and ĝ′. We apply the theorem in Lemma 13.2, in Theorem 5
and in Corollary 1.

8 Automata and Transducers with Set Specifications

Here we present some basic algorithms on automata and transducers with set
specs. These can be applied to answer the satisfaction question about indepen-
dent languages (see Sect. 11).

Lemma 13. Let b̂ = (Q,SSP[Γ], δ, I, F) and b̂′ = (Q′,SSP[Γ], δ′, I ′, F ′) be trim
automata with set specs and let w be a string.

1. There is a O(|b̂|) algorithm nonEmptyW(b̂) returning either a word in L(b̂), or

None if L(b̂) = ∅. The decision version of this algorithm, emptyP(b̂), simply

returns whether L(b̂) is empty.
2. There is a O(|Γ |+ |δ|‖δ′‖+ |δ′|‖δ‖) algorithm returning the automaton with

set specs b̂ ∩ b̂′ such that L(b̂ ∩ b̂′) = L(b̂) ∩ L(b̂′).

3. There is a O(|w||b̂|) algorithm returning whether w ∈ L(b̂).

Proof. (Partial) For the second statement, we compute the product b̂ ∩ b̂′. As
the value β ∩β′ of two labels can be computed in linear time, Lemma 12 implies
that b̂ ∩ b̂′ can be computed in time O(|Γ |+ |δ|‖δ′‖+ |δ′|‖δ‖). Now we have

L(b̂ ∩ b̂′) = L(exp b̂ ∩ exp b̂′) (4)

= L(exp b̂) ∩ L(exp b̂′) (5)

= L(b̂) ∩ L(b̂′) (6)

17

Equation (4) follows from the fact that “∩ : SSP[Γ] × SSP[Γ] ⇒ SSP[Γ]” is a
polymorphic operation—see Theorem 4 and Ex. 10. Equation (5) follows from

the fact that each exp b̂, exp b̂′ is an ε-NFA and the operation ∩ is well-defined
on these objects—see Lemma 4 and Ex. 11. For the third statement, one makes
an automaton with set specs b̂w accepting {w}, then computes â = b̂w ∩ b̂, and
then uses emptyP(â) to get the desired answer.

Lemma 14. Let, ŝ = (Q,PSP[Γ], δ, I, F) be a trim transducer with set specs
and let â = (Q′, Γe, δ

′, I ′, F ′) be a trim ε-NFA, and let (u, v) be a pair of words.

1. There is a O(|ŝ|) algorithm nonEmptyW(ŝ) returning either a word pair in
R(ŝ), or None if R(ŝ) = ∅. The decision version of this algorithm, emptyP(ŝ),
simply returns whether R(ŝ) is empty.

2. There is a O(|Γ |+ |δ|‖δ′‖+ |δ′|‖δ‖) algorithm returning the transducer with
set specs ŝ ↓ â such that R(ŝ ↓ â) = R(ŝ) ↓ L(â).

3. There is a O(|u||v||ŝ|) algorithm returning whether (u, v) ∈ R(ŝ).

9 Composition of Transducers with Set Specifications

Next we are interested in defining the composition p1 ◦p2 of two pairing specs in
a way that R(p1)◦R(p2) is equal to R(p1 ◦p2). It turns out that, for a particular
subcase about the structure of p1, p2, the operation p1 ◦ p2 can produce two or
three pairing specs. To account for this, we define a new label set:

PSP+[Γ] consists of strings p1 ⊕ · · ·⊕ p`,

where ` ∈ N and each pi ∈ PSP[Γ]. Moreover we have the (fixed) label behaviour
R : PSP+[Γ]→ 2Γ

∗×Γ∗ such that

R(p1 ⊕ · · ·⊕ p`) = R(p1) ∪ · · · ∪ R(p`).

Definition 11. Let Γ be an alphabet of reference. The partial operation

◦ : PSP[Γ]× PSP[Γ] 99K PSP+[Γ]

is defined between any two pairing specs p1, p2 respecting Γ as follows.

p1 ◦ p2 = ⊥, if L(rset p1) ∩ L(left p2) = ∅.

Now we assume that the above condition is not true and we consider the structure
of p1 and p2 according to Def. 3(1) using A,B, F,G,W,X, Y, Z as set specs,
where A,B, F,G 6= e—thus, we assume below that L(B)∩L(F) 6= ∅ and L(X)∩
L(Y) 6= ∅.

(W/X) ◦ (Y/Z) = W/Z (W/B) ◦ (F/=) = W/B ∩ F

(W/B) ◦
(
F/G 6=

)
=


W/G, if |L(B ∩ F)| ≥ 2

W/G ∩ /∃b, if L(B ∩ F) = {b} and L(G) \ {b} 6= ∅
⊥, otherwise.

(B/=) ◦ (F/Z) = B ∩ F/Z (B/=) ◦ (F/=) = B ∩ F/=

18

(B/=) ◦ (F/G 6=) =

{
⊥, if L(G) = L(B ∩ F) = {g}
B ∩ F/G 6=, otherwise.

(A/B 6=) ◦ (F/Z) =


A/Z, if |L(B ∩ F)| ≥ 2

A ∩ /∃b/Z, if L(B ∩ F) = {b} and L(A) \ {b} 6= ∅
⊥ otherwise.

(A/B 6=) ◦ (F/=) =

{
⊥, if L(A) = L(B ∩ F) = {a}
A/B ∩ F 6=, otherwise.

(A/B 6=) ◦ (F/G 6=) =



A/G, if |L(B ∩ F)| ≥ 3

A ∩ /∃b/G ∩ /∃b, if L(B ∩ F) = {b} and L(A) \ {b}
6= ∅ and L(G) \ {b} 6= ∅

D, if L(B ∩ F) = {b1, b2}
⊥, otherwise.

where D consists of up to three ⊕-terms as follows: D includes A∩ /∃b1b2/G, if
L(A) \ {b1, b2} 6= ∅; D includes ∃b1/G∩ /∃b2, if b1 ∈ L(A) and L(G) \ {b2} 6= ∅;
D includes ∃b2/G ∩ /∃b1, if b2 ∈ L(A) and L(G) \ {b1} 6= ∅; D = ⊥ if none of
the previous three conditions is true.

Remark 6. In the above definition, we have omitted cases where p1 ◦ p2 is ob-
viously undefined. For example, as F/= and F/G 6= are only defined when
F,G 6= e, we omit the case (W/e) ◦ (F/=).

Remark 7. If we allowed ⊥ to be a pairing spec, then the set PSP[Γ] with the
composition operation ‘◦’ would be ‘nearly’ a semigroup: the subcase “(A/B 6=)◦
(F/G 6=) with L(B∩F) = {b1, b2}” in the above definition is the only one where
the result of the composition is not necessarily a single pairing spec. For example,
let the alphabet Γ be {0, 1, 2} and A = ∃01, B = F = ∃12, and G = ∃012. Then,

R(A/B 6=) ◦ R(F/G 6=) = {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1)},

which is equal to R({∃0/∃012, ∃1/∃01}). This relation is not equal to R(p), for
any pairing spec p.

Lemma 15. The relation R(p1 ◦ p2) is equal to R(p1) ◦ R(p2), for any pairing
specs p1, p2 respecting Γ .

Remark 8. The polymorphic operation “◦ : PSP[Γ] × PSP[Γ] ⇒ PSP+[Γ]” is
well-defined by the partial operations ◦ in Def. 11 and in Ex. 8.

Definition 12. Let t̂ = (Q,PSP[Γ], δ, I, F) and ŝ = (Q′,PSP[Γ], δ′, I ′, F ′) be
transducers with set specs. The transducer t̂ } ŝ with set specs is defined as
follows. First compute the transducer t̂ ◦ ŝ with labels in PSP+[Γ]. Then, t̂ } ŝ
results when each transition (p, p1 ⊕ · · ·⊕ p`, q) of t̂ ◦ ŝ, with ` > 1, is replaced
with the ` transitions (p, pi, q).

Theorem 5. For any two trim transducers t̂ = (Q,PSP[Γ], δ, I, F) and ŝ =
(Q′,PSP[Γ], δ′, I ′, F ′) with set specs, t̂ } ŝ can be computed in time O(|Γ | +
|δ|‖δ′‖+ |δ′|‖δ‖). Moreover, R(t̂} ŝ) = R(t̂) ◦ R(ŝ).

19

10 Transducer Identity and Functionality

The question of whether a given transducer is functional is of central importance
in the theory of rational relations [19]. Also important is the question of whether
a given transducer t̂ realizes an identity , that is, whether t̂(w) = {w}, when
|t̂(w)| > 0. In [1], the authors present an algorithm identityP(t̂) that works in
time O(|δ|+ |Q||∆|) and tells whether t̂ = (Q,Σ,∆, δ, I, F) realizes an identity.
Here we have that

for trim t̂, identityP(t̂) works in time O(|δ||∆|). (7)

The algorithm functionalityP(ŝ) deciding functionality of a transducer t̂ =
(Q,Γ, δ, I, F) first constructs the square transducer û, [4], in which the set of
transitions δû consists of tuples ((p, p′), y/y′, (q, q′)) such that (p, x/y, q) and
(p′, x/y′, q′) are any transitions in t̂ε. Then, it follows that t̂ is functional if and
only if û realizes an identity. Note that û has O(|δ|2) transitions and its graph
size is O(|t̂|2). Thus, we have that

for trim t̂, functionalityP(t̂) works in time O(|δ|2|∆|). (8)

Theorem 6. The question of whether a trim transducer ŝ = (Q,PSP[Γ], δ, I, F)
with set specs realizes an identity can be answered in time O

(
|δ||Γ |

)
.

Remark 9. Consider the trim transducer ŝ with set specs in Theorem 6. Of course
one can test whether it realizes an identity by simply using identityP(exp ŝ),
which would work in time O(|δexp||Γ |) according to (7). This time complexity
is clearly higher than the time O(|δ||Γ |) in the above theorem when |δexp| is of
order |δ||Γ | or |δ||Γ |2 (for example if ŝ involves labels ∀/= or ∀/∀).

Theorem 7. The question of whether a trim transducer ŝ = (Q,PSP[Γ], δ, I, F)
with set specs is functional can be answered in time O(|δ|2|Γ |).

Remark 10. Consider the trim transducer ŝ with set specs in the above theorem.
Of course one can test whether ŝ is functional by simply using functionalityP(exp ŝ),
which would work in time O(|δexp|2|Γ |) according to (8). This time complexity
is clearly higher than the time O(|δ|2|Γ |) in the above theorem when |δexp| is of
order |δ||Γ | or |δ||Γ |2 (for example if ŝ involves labels ∀/= or ∀/∀).

11 Transducers and Independent Languages

Let t̂ be a transducer. A language L is called t̂-independent, [21], if

u, v ∈ L and v ∈ t̂(u) implies u = v. (9)

If t̂ is input-altering then, [15], the above condition is equivalent to

t̂(L) ∩ L = ∅. (10)

20

The property described by t̂ is the set of all t̂-independent languages. Main exam-
ples of such properties are code-related properties. For example, the transducer
t̂sub2 describes all the 1-substitution error-detecting languages and t̂px describes
all prefix codes. The property satisfaction question is whether, for given trans-
ducer t̂ and regular language L, the language L is t̂-independent. The witness
version of this question is to compute a pair (u, v) of different L-words (if exists)
violating condition (9).

Remark 11. The witness version of the property satisfaction question for input-
altering transducers ŝ (see Eq. (10)) can be answered in time O(|ŝ| · |â|2), where
â is the given ε-NFA accepting L (see [15]). This can be done using the function
call nonEmptyW(ŝ ↓ â ↑ â). Further below we show that the same question can
be answered even when ŝ has set specs, and this could lead to time savings.

Corollary 1. Let ŝ = (Q,PSP[Γ], δ, I, F) be a transducer with set specs and

let b̂ = (Q′, Γe, δ
′, I ′, F ′) be an ε-NFA. Each transducer ŝ ↓ b̂ and ŝ ↑ b̂ can be

computed in time O(|Γ |+ |δ|‖δ′‖+ |δ′|‖δ‖). Moreover, we have that

R(ŝ ↓ b̂) = R(ŝ) ↓ L(b̂) and R(ŝ ↑ b̂) = R(ŝ) ↑ L(b̂).

Corollary 2. Consider the witness version of the property satisfaction question
for input-altering transducers ŝ. The question can be answered in time O(|ŝ|·|â|2)
even when the transducer ŝ involved has set specs.

Example 12. We can apply the above corollary to the transducer t̂sub2[Γ] of

Example 5, where Γ is the alphabet of b̂, so that we can decide whether a
regular language is 1-substitution error-detecting in time O(|b̂|2). On the other
hand, if we used the ordinary transducer exp t̂sub2[Γ] to decide the question, the

required time would be O(|Γ |2 · |b̂|2).

12 Concluding Remarks

Regular expressions and transducers over pairing specs allow us to describe many
independence properties in a simple, alphabet invariant, way and such that these
alphabet invariant objects can be processed as efficiently as their ordinary (al-
phabet dependent) counterparts. This is possible due to the efficiency of basic
algorithms on these objects presented here. A direction for further research is to
investigate how algorithms not considered here can be extended to regular ex-
pressions and transducers over pairing specs; for example, algorithms involving
transducers that realize synchronous relations.

Algorithms on deterministic machines with set specs might not work as ef-
ficiently as their alphabet dependent counterparts. For example the question of
whether w ∈ L(b̂), for given word w and DFA b̂ with set specs, is probably not
decidable efficiently within time O(|w|). Despite this, it might be of interest to
investigate this question further.

Label sets can have any format as long as one provides their behaviour.
For example, a label can be a string representation of a FAdo automaton, [13],

21

whose behaviour of course is a regular language. At this broad level, we were
able to generalize a few results like the product construction and the partial
derivative automaton. A research direction is to investigate whether more results
can be obtained at this level, or even for label sets satisfying some constraint.
For example, whether membership, or other decision problems, can be decided
using partial derivatives for regular expressions involving labels other than set
and pairing specs4.

References

1. Cyril Allauzen and Mehryar Mohri. Efficient algorithms for testing the twins
property. Journal of Automata, Languages and Combinatorics, 8(2):117–144, 2003.

2. V. M. Antimirov. Partial derivatives of regular expressions and finite automaton
constructions. Theoret. Comput. Sci., 155(2):291–319, 1996.

3. Rafaela Bastos, Sabine Broda, António Machiavelo, Nelma Moreira, and Rogério
Reis. On the average complexity of partial derivative automata for semi-extended
expressions. Journal of Automata, Languages and Combinatorics, 22(1–3):5–28,
2017.

4. Marie-Pierre Béal, Olivier Carton, Christophe Prieur, and Jacques Sakarovitch.
Squaring transducers: An efficient procedure for deciding functionality and se-
quentiality. Theoretical Computer Science, 292(1):45–63, 2003.

5. Sabine Broda, António Machiavelo, Nelma Moreira, and Rogério Reis. On the
average state complexity of partial derivative automata: an analytic combinatorics
approach. International Journal of Foundations of Computer Science, 22(7):1593–
1606, 2011. MR2865339.

6. Janusz A. Brzozowski and Edward J. McCluskey. Signal flow graph techniques for
sequential circuit state diagrams. IEEE Trans. Electronic Computers, 12:67–76,
1963.

7. John Brzozowski. Derivatives of regular expressions. J. Association for Computer
Machinery, (11):481–494, 1964.

8. Pascal Caron, Jean-Marc Champarnaud, and Ludovic Mignot. Partial derivatives
of an extended regular expression. In Adrian Horia Dediu, Shunsuke Inenaga, and
Carlos Mart́ın-Vide, editors, Proc. 5th LATA 2011, volume 6638, pages 179–191.
Springer, 2011.

9. J. M. Champarnaud and D. Ziadi. From Mirkin’s prebases to Antimirov’s word
partial derivatives. Fundam. Inform., 45(3):195–205, 2001.

10. J. M. Champarnaud and D. Ziadi. Canonical derivatives, partial derivatives and
finite automaton constructions. Theoret. Comput. Sci., 289:137–163, 2002.

11. Akim Demaille. Derived-term automata of multitape rational expressions. In Yo-
Sub Han and Kai Salomaa, editors, Proc. 21st CIAA 2016, volume 9705, pages
51–63. Springer, 2016.

12. Akim Demaille, Alexandre Duret-Lutz, Sylvain Lombardy, Luca Saiu, and Jacques
Sakarovitch. A type system for weighted automata and rational expressions. In
Markus Holzer and Martin Kutrib, editors, Proceedings of CIAA 2014, volume
8587 of Lecture Notes in Computer Science, pages 162–175, 2014.

4 While we have not obtained in this work the partial derivatives corresponding to a
regular expression involving pairing specs, it is our immediate plan to do so—see
[16].

22

13. FAdo. Tools for formal languages manipulation. URL address:
http://fado.dcc.fc.up.pt/ Accessed in April, 2018.

14. Stavros Konstantinidis. Transducers and the properties of error-detection, error-
correction and finite-delay decodability. Journal Of Universal Computer Science,
8:278–291, 2002.

15. Stavros Konstantinidis. Applications of transducers in independent languages,
word distances, codes. In Giovanni Pighizzini and Cezar Câmpeanu, editors, Pro-
ceedings of DCFS 2017, number 10316 in Lecture Notes in Computer Science, pages
45–62, 2017.

16. Stavros Konstantinidis, Nelma Moreira, Rogério Reis, and Joshua Young. Reg-
ular expressions and transducers over alphabet-invariant and user-defined labels.
arXiv.org, arXiv:1805.01829, 2018.

17. Sylvain Lombardy and Jacques Sakarovitch. Derivatives of rational expressions
with multiplicity. Theor. Comput. Sci., 332(1-3):141–177, 2005.

18. B. G. Mirkin. An algorithm for constructing a base in a language of regular
expressions. Engineering Cybernetics, 5:51—57, 1966.

19. Jacques Sakarovitch. Elements of Automata Theory. Cambridge University Press,
Berlin, 2009.

20. Jacques Sakarovitch. Automata and rational expressions. arXiv.org,
arXiv:1502.03573, 2015.

21. H. J. Shyr and Gabriel Thierrin. Codes and binary relations. In Marie Paule Malli-
avin, editor, Séminaire d’Algèbre Paul Dubreil, Paris 1975–1976 (29ème Année),
volume 586 of Lecture Notes in Mathematics, pages 180–188, 1977.

22. Ken Thompson. Regular expression search algorithm. Communications of the
ACM (CACM), 11:419–422, 1968.

23. Margus Veanes. Applications of symbolic finite automata. In S. Konstantinidis,
editor, Proceedings of CIAA 2013, volume 7982 of Lecture Notes in Computer
Science, pages 16–23, 2013.

24. Margus Veanes, Pieter Hooimeijer, Benjamin Livshits, David Molnar, and Nikolaj
Bjorner. Symbolic finite state transducers: Algorithms and applications. In John
Field and Michael Hicks, editors, Proceedings of the 39th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2012, pages 137–150,
2012.

25. Sheng Yu. Regular languages. In Grzegorz Rozenberg and Arto Salomaa, editors,
Handbook of Formal Languages, Vol. I, pages 41–110.

23

	Regular Expressions and Transducers over Alphabet-invariant and User-defined Labels

