
Partial Derivatives of Regular Expressions over
Alphabet-invariant and User-defined Labels

Stavros Konstantinidis1, Nelma Moreira2, João Pires2, and Rogério Reis2

1 Saint Mary’s University, Halifax, Nova Scotia, Canada,
s.konstantinidis@smu.ca

2 CMUP & DCC, Faculdade de Ciências da Universidade do Porto, Rua do Campo
Alegre, 4169-007 Porto Portugal {nam,rvr}@dcc.fc.up.pt

Abstract. We are interested in regular expressions that represent word
relations in an alphabet-invariant way—for example, the set of all word
pairs u,v where v is a prefix of u independently of what the alphabet
is. This is the second part of a recent paper on this topic which focused
on labelled graphs (transducers and automata) with alphabet-invariant
and user-defined labels. In this paper we study derivatives of regular
expressions over labels (atomic objects) in some set B. These labels can
be any strings as long as the strings represent subsets of a certain monoid.
We show that one can define partial derivative labelled graphs of type B
expressions, whose transition labels can be elements of another label set
X as long as X and B refer to the same monoid. We also show how to use
derivatives directly to decide whether a given word pair is in the relation
of a regular expression over pairing specs. Set specs and pairing specs
are useful label sets allowing one to express languages and relations over
large alphabets in a natural and compact way.

Keywords: Alphabet-invariant expressions, regular expressions, partial
derivatives, algorithms, monoids

1 Introduction

SEC:IntroductionWe are interested in regular expressions whose alphabet is not of fixed cardi-
nality, or whose alphabet is even unknown. Consider the alphabet Γ = {0, 1, . . . , n−
1}, where n is variable, and the 2D regular expressions3

EQ:rex

0/0 + · · ·+ (n− 1)/(n− 1)

∗
0/e+ · · ·+ (n− 1)/e

∗
, (1)


0/0 + · · ·+ (n− 1)/(n− 1)

∗ 
r0 + · · ·+ rn−1

 
0/0 + · · ·+ (n− 1)/(n− 1)

∗

(2)

where e represents the empty string, and each ri is the sum of all i/j with j ∕= i
and i, j ∈ Γ . The first expression has O(n) symbols and represents the prefix

 Research supported by NSERC (Canada) and by FCT project UID/-
MAT/00144/2013 (Portugal).

3 These are expressions for word relations.



relation, that is, all word pairs (u, v) such that v is a prefix of u. The second
regular expression has O(n2) symbols and represents all word pairs (u, v) such
that the Hamming distance of u, v is 1. We want to be able to use special labels
in expressions such as those in the expression below.

EQ:psrex (∀/=)∗

∀/∀∕=


(∀/=)∗ (3)

The label (∀/=) represents the set {(a, a) | a ∈ Γ} and the label (∀/∀∕=)
represents the set {(a, a′) | a, a′ ∈ Γ, a ∕= a′} (these labels are called pairing
specs). This expression has only a fixed number of symbols. Similarly, using
these special labels, the expression (1) can be written as

EQ:psrex2 (∀/=)∗(∀/e)∗. (4)

Note that the new regular expressions are alphabet invariant as they contain no
symbol of the intended alphabet Γ .

The present paper is the continuation of the recent paper [10] on the topic
of labelled graphs (e.g., automata, transducers) and regular expressions whose
labels are strings such that each string represents a subset of a specific monoid.
The intention is to define algorithms that work directly on regular expressions
and graphs with special labels, without of course having to expand these labels to
sets of monoid elements. Thus, for example, we would like to have an algorithm
that computes whether a pair (u, v) of words is in the relation represented by
either of the expressions (3) and (4). While the first paper [10] focused on labelled
graphs, the present paper focuses on derivatives of regular expressions over any
desirable set of labels B. An expression with special labels in this work can be
considered to be a syntactic version of a regular expression over some monoid
M in the sense of [16].

Paper Structure and Main results. The next section discusses alphabets Γ of
non-fixed size and provides a summary of concepts from [10]. In particular, a label
set B is a nonempty set such that each β ∈ B is simply a nonempty string that
represents a subset I(β) of a monoid denoted by monB. Section 3 defines the set
of partial derivatives PD(r) of any type B regular expression r, where monB is a
graded monoid. As in [1], partial derivatives are defined via the concept of linear
form n(r) of r. Here we define partial derivatives ∂x(r) of r with respect to x ∈
X, where X is a second label set (which could be B) such that monX = monB.
Theorem 1 says that the set PD(r) of partial derivatives of r is finite. Section 4
defines the type X graph âPD(r) corresponding to any given type B regular
expression r and shows (Theorem 2) that âPD(r) and r have the same behaviour.
We note that the states of âPD(r) are elements of PD(r) and the transitions of
âPD(r) are elements of X. Section 5 uses derivatives to decide whether a given
word pair is in the relation represented by a regular expression involving pairing
specs, without constructing the associated transducer (Theorem 3).

2 Terminology and Summary of Concepts from [10]

SEC:Terminology

2



The set of positive integers is denoted by N. Then, N0 = N∪{0}. An alphabet
space Ω is an infinite and totally ordered set whose elements are called symbols.
We shall assume that Ω is fixed and contains the digits 0, 1, . . . , 9 and the letters
a, b, . . . , z, which are ordered as usual, as well as the following special symbols:
∀, ∃, /∃, =, ∕=, /, e, ⊕, ⊘.

As usual we use the term string or word to refer to any finite sequence of
symbols. The empty string is denoted by ε. Let g ∈ Ω and w be a string. The
expression |w|g denotes the number of occurrences of g in w, and the expression
alphw denotes the set {g ∈ Ω : |w|g > 0}, that is, the set of symbols that occur
in w. For example, alph(1122010) = {0, 1, 2}.

An alphabet is any finite nonempty subset of Ω. In the following definitions
we shall consider alphabets Σ,∆ as well as an alphabet Γ , called the alphabet
of reference, and we assume that Γ contains at least two symbols and no special
symbols and that Γ is not of fixed size (it is unbounded). Let Σ,∆ be alphabets.
A (binary word) relation of type [Σ,∆] is a subset R of Σ∗ ×∆∗.

2.1 Set Specifications and Pairing Specifications

Set specs are intended to represent nonempty subsets of the alphabet Γ . These
can be used as labels in automata-type objects (labelled graphs) and regular
expressions defined in subsequent sections.

Definition 1. DEF:ssetsA set specification, or set spec for short, is any string of one
of the three forms ∀, ∃w, /∃w, where w is any sorted nonempty string
containing no repeated symbols and no special symbols. The set of set specs is
denoted by SSP.

Definition 2. DEF:sset:langLet Γ be an alphabet of reference and let F be a set spec. We
say that F respects Γ , if the following restrictions hold when F is of the form
∃w or /∃w: “w ∈ Γ ∗ and 0 < |w| < |Γ |.” In this case, the language L(F ) of F
(with respect to Γ ) is the subset of Γ defined as follows: L(∀) = Γ, L(∃w) =
alphw, L(/∃w) = Γ \ alphw. The set of set specs that respect Γ is denoted as
SSP[Γ ] = {α ∈ SSP | α respects Γ}.

Now we define expressions for describing certain finite relations that are
subsets of


(Γ ∪ {ε})× (Γ ∪ {ε})


\ {(ε, ε)}.

Definition 3. DEF:spairsA pairing specification, or pairing spec for short, is a string of
one the five forms e/G, F/e, F/G, F/=, F/G ∕=, where F,G are
set specs. The set of pairing specs is denoted by PSP. A pairing spec is called
alphabet invariant if it contains no set spec of the form ∃w, /∃w. The alphabet
invariant pairing specs are e/∀,∀/e,∀/∀,∀/=,∀/∀∕=.

Definition 4. DEF:spairs:relLet Γ be an alphabet of reference and let p be a pairing spec.
We say that p respects Γ , if any set spec occurring in p respects Γ . The set of
pairing specs that respect Γ is denoted as PSP[Γ ] = {p ∈ PSP : p respects Γ}.
The relation R(p) described by p (with respect to Γ ) is the subset of Γ ∗ × Γ ∗

defined as follows.

3



R(e/G) = {(ε, y) | y ∈ L(G)}; R(F/e) = {(x, ε) | x ∈ L(F )};
R(F/G) = {(x, y) | x ∈ L(F ), y ∈ L(G)}; R(F/=) = {(x, x) | x ∈ L(F )};
R(F/G ∕=) = {(x, y) | x ∈ L(F ), y ∈ L(G), x ∕= y}.

2.2 Label Sets and their Monoid Behaviours

SEC:labelsets We shall use the notation εM for the neutral element of the monoid M . If S, S′

are any two subsets of M then, as usual, we define SS′ = {mm′ | m ∈ S, m′ ∈
S′}, Si = Si−1S and S∗ = ∪∞

i=0S
i, where S0 = {εM} and the monoid operation

is denoted by simply concatenating elements. We shall only consider finitely
generated monoids M where each m ∈ M has a canonical (string) representation
m. Then, we write M = {m | m ∈ M}.
Example 1.EX:stand:monoids We shall consider two standard monoids. (i) The free monoid Γ ∗

whose neutral element is ε. The canonical representation of a nonempty word
w is w itself and that of ε is e, that is, ε = e. (ii) The monoid Σ∗ × ∆∗ (or
Γ ∗×Γ ∗) whose neutral element is (ε, ε). The canonical representation of a word
pair (u, v) is u/v. In particular, (ε, ε) = e/e.

A label set B is a nonempty set of nonempty strings (over Ω). A label be-
haviour is a mapping I : B → 2M , where M is a monoid. Thus, the behaviour
I(β) is a subset of M . We shall consider label sets B with fixed behaviours, so
we shall denote by monB the monoid of B via its fixed behaviour.

We shall make the convention that for any label sets B1, B2 with fixed be-
haviours I1, I2, if monB1 = monB2 then I1(β) = I2(β), for all β ∈ B1 ∩ B2.
With this convention we can simply use a single behaviour notation I for all la-
bel sets with the same behaviour monoid, that is, we shall use I for any B1, B2

with monB1 = monB2. This convention is applied in the example below: we use
L for the behaviour of both the label sets Σ and SSP[Γ ].

Example 2.EX:fixedbeh We shall use the following label sets and their fixed label behaviours.

1. Σ with behaviour L : Σ → 2Σ
∗
such that L(g) = {g}, for g ∈ Σ. Thus,

monΣ = Σ∗.
2. SSP[Γ ] with behaviour L : SSP[Γ ] → 2Γ

∗
, as specified in Def. 2. Thus,

mon SSP[Γ ] = Γ ∗.
3. [Σ,∆] = {x/y | x ∈ Σ ∪ {e}, y ∈ ∆ ∪ {e}} \ {e/e} with behaviour R()

such that R(x/e) = {(x, ε)}, R(e/y) = {(ε, y)}, R(x/y) = {(x, y)}, for any
x ∈ Σ and y ∈ ∆. Thus, mon[Σ,∆] = Σ∗ ×∆∗.

4. PSP[Γ ] with behaviour R : PSP[Γ ] → 2Γ
∗×Γ∗

as specified in Def. 4. Thus,
monPSP[Γ ] = Γ ∗ × Γ ∗.

5. If B1, B2 are label sets with behaviours I1, I2, respectively, then [B1, B2] is
the label set {β1/β2 | β1 ∈ B1,β2 ∈ B2} with behaviour and monoid such
that I(β1/β2) = I1(β1)× I2(β2) and mon[B1, B2] = monB1 ×monB2.

For any monoid of interest M and m ∈ M , M is a label set such that
monM = M and I(m) = {m}. Thus, I(εM ) = {εM}. Also, as monPSP[Γ ] =
monΓ ∗ × Γ ∗ = Γ ∗ × Γ ∗ and the behaviour of PSP is denoted by R, we have
R((0, 1)) = R(0/1) = {(0, 1)} = R(∃0/∃1).

4



2.3 Labelled Graphs, Automata, Transducers

SEC:graphsLet B be a label set with behaviour I. A type B graph is a quintuple ĝ =
Q,B, δ, I, F


such that Q is a nonempty set whose elements are called states;

I ⊆ Q is the nonempty set of initial, or start states; F ⊆ Q is the set of
final states; δ is a set, called the set of edges or transitions, consisting of triples
(p,β, q) such that p, q ∈ Q and β ∈ B ∪ {εmonB}. The set of labels of ĝ is the
set Labels(ĝ) = {β | (p,β, q) ∈ δ}. We shall use the term labelled graph to mean
a type B graph as defined above, for some label set B. The labelled graph is
called finite if Q and δ are both finite. In the sequel, a labelled graph will be
assumed to be finite. A path P of ĝ is a sequence of consecutive transitions, that
is, P = 〈qi−1,βi, qi〉ℓi=1 such that each (qi−1,βi, qi) is in δ. The path P is called
accepting , if q0 ∈ I and qℓ ∈ F . If ℓ = 0 then P is empty and it is an accepting
path if I ∩ F ∕= ∅.

Definition 5. DEF:graph:behaveLet ĝ =

Q,B, δ, I, F


be a labelled graph, for some label set B

with behaviour I. We define the behaviour I(ĝ) of ĝ as the set of all m ∈ monB
such that there is an accepting path 〈qi−1,βi, qi〉ℓi=1 of ĝ with m ∈ I(β1) · · · I(βℓ).
The expansion exp ĝ of ĝ is the labelled graph


Q,monB, δexp, I, F


such that

δexp = {(p,m, q) | ∃ (p,β, q) ∈ δ : m ∈ I(β)}.

Lemma 1. LEM:expandedFor each labelled graph ĝ, we have that I(ĝ) = I(exp ĝ).

Example 3. Let Σ,∆,Γ be alphabets. An automaton, or ε-NFA, is a labelled
graph â = (Q,Σ, δ, I, F ). If Labels(â) ⊆ Σ then â is called an NFA. The language
L(â) is the behaviour of â. An automaton with set specs is a labelled graph

b̂ = (Q, SSP[Γ ], δ, I, F ). The language L(b̂) is the behaviour of b̂. A transducer
(in standard form) is a labelled graph t̂ = (Q, [Σ,∆], δ, I, F ). The relation R(t̂)
realized by t̂ is the behaviour of t̂. A transducer with set specs is a labelled graph
ŝ = (Q,PSP[Γ ], δ, I, F ). The relation R(ŝ) realized by ŝ is the behaviour of ŝ.

2.4 Regular Expressions over Label Sets

SEC:sym:REWe extend the definition of regular expressions to include set specs and pair-
ing specs, respectively. We start off with a definition that would work with any
label set (called set of atomic formulas in [16]).

Definition 6. DEF:reg:genLet B be a label set with behaviour I such that no β ∈ B contains
the special symbol ⊘. The set REGB of type B regular expressions is the set of
strings consisting of the 1-symbol string ⊘ and the strings in the set Z that is
defined inductively as follows: (i) εmonB is in Z. (ii) Every β ∈ B is in Z. (iii)
If r, s ∈ Z then (r + s), (rs), (r∗) are in Z. The behaviour I(r) of a type B
regular expression r is defined inductively as follows.

– I(⊘) = ∅ and I(εmonB) = {εmonB};
– I(β) is the subset of monB already defined by the behaviour I on B;
– I(r + s) = I(r) ∪ I(s); I(rs) = I(r)I(s); I(r∗) = I(r)∗.

5



Example 4.EX:reg Using Σ as a label set, we have that REGΣ is the set of ordinary
regular expressions over Σ. For the label set [Σ,∆], we have that REG[Σ,∆]
is the set of rational expressions over Σ∗ ×∆∗ in the sense of [16]. The expres-
sions (3) and (4) are examples of type PSP[Γ ] regular expressions.

3 Partial Derivatives of type B Regular Expressions

SEC:derivatives Here we consider any label set B with some behaviour I such that no β ∈ B
contains the special symbol ⊘, and we define the partial derivatives of a type
B regular expression r w.r.t. an element x ∈ X, where X is also a label set
such that monB = monX. The intention is that further below (Section 4) one
can define the labelled graph corresponding to r such that the states are partial
derivatives of r (type B regular expressions) and the transition labels are in X.

Derivative based methods for the manipulation of regular expressions have
been widely studied [4,1,12,11,3,7,5]. In recent years, partial derivative automata
were defined and characterised for several kinds of expressions. Not only they
are in general more succinct than other equivalent constructions but also for
several operators they are easily defined (e.g. for intersection [2] or tuples [8]).
The partial derivative automaton of an ordinary (type Σ) regular expression
was introduced independently by Mirkin [12] and Antimirov [1]. Champarnaud
and Ziadi [6] proved that the two formulations are equivalent. Lombardy and
Sakarovitch [11] generalised these constructions to weighted regular expressions,
and recently Demaille [8] defined derivative automata for multitape weighted
regular expressions.

Without further mention, the operator I as well as the operators n, c, ↓2,πi,π
defined below are extended in a union-respecting way, i.e φ(S) = ∪s∈Sφ(s) for
any operator φ.

Our assumptions about the label set B and the monoid monB:

∀β ∈ B : I(β) ∕= ∅EQ:labelsetA (5)

∀β ∈ B : I(β) ∕= {εmonB}.EQ:labelsetB (6)

Moreover we shall assume that monB is a graded monoid , [15, p. 383]. For our
purposes, we only need the following implication of this assumption.

EQ:monoid ∀m1,m2 ∈ monB : m1m2 = εmonB −→ m1 = m2 = εmonB . (7)

The size of an expression r is inductively defined as follows:

⊘  = 0, εmonB = 0, β = 1

r + s = r+ s, rs = r+ s, r∗ = r.
We define the constant part c : REGB → {εmonB ,⊘} by c(r) = εmonB if εmonB ∈
I(r), and c(r) = ⊘ otherwise. For a set R of regular expressions, c(R) = εmonB

if and only if there exists r ∈ R such that c(r) = εmonB .

The second label set X. The linear form n(r) of a regular expression r,
defined below, is a set of pairs (x, r′), in which case r′ is a partial derivative of

6



r with respect to x ∈ X. The label set X is such that monX = monB. When
the following condition (8) is satisfied, the partial derivative graph of r can be
defined (Section 4) and will have as states the partial derivatives of r, including
r, and transitions (r1, x, r2) when (x, r2) ∈ n(r1).

EQ:graph∀β ∈ B : I(β) = I(c(β)) ∪ I(n(β)), (8)

Some Notation. Let β ∈ B and let r, r′, s, s′, z ∈ REGB \ {⊘} such that
I(s) ∕= {εmonB}, I(s′) ∕= {εmonB}, I(z) = {εmonB}. The binary operation ⋄
between any two expressions in REGB \ {⊘} is defined as follows: r⋄z =
z⋄r = r and s⋄s′ = ss′. For any S̃ ⊆ X × (REGB \ {⊘}), we define I(S̃) =

(x,s)∈S̃ I(x)I(s) and

⊘S̃ = ∅, S̃s′ = { (x, s⋄s′) | (x, s) ∈ S̃ }, s′S̃ = { (x, s′⋄s) | (x, s) ∈ S̃ }
For any R ⊆ REGB \ {⊘}, we also define ⊘R = ∅, Rs′ = { s⋄s′ | s ∈
R }, s′R = { s′⋄s | s ∈ R }.

Definition 7. DEF:lformA linear form (of type (X,B)) of a regular expression is defined
inductively as follows:

n(⊘) = ∅, n(εmonB) = ∅,
n(β) = a chosen finite nonempty subset of X × {εmonB},

n(r + r′) = n(r) ∪ n(r′), n(rr′) = n(r)r′ ∪ c(r) n(r′), n(r∗) = n(r)r∗.

Example 5. EX:lfThe default linear form: X = B and ∀β ∈ B : n(β) = {(β, εmonB)}.
Trivially, this n satisfies condition (8). The expanding linear form: when

I(β) ⊆ Φ, X = Φ, ∀β ∈ B : n(β) = {(m, εmonB) | m ∈ I(β)},

where Φ is a finite set of generators of monB. Again, the expanding linear form
satisfies condition (8). For example, if B = SSP[Γ ] then Φ = Γ and, for any set
spec F , n(F ) = {(f, e) | f ∈ L(F )}. ⊓⊔

For any x ∈ X and any r ∈ REGB, the set of partial derivatives of r w.r.t. x is
∂x(r) = {r′ | (x, r′) ∈ n(r)}. For all r, r′ ∈ REGB \ {⊘} and x ∈ X, one can
confirm that

∂x(⊘) = ∂x(εmonB) = ∅, ∂x(r + r′) = ∂x(r) ∪ ∂x(r
′),

∂x(rr
′) = ∂x(r)r

′ ∪ c(r)∂x(r
′), ∂x(r

∗) = ∂x(r)r
∗.

As in the case of ordinary derivatives, [1], the following result explains how
the behaviour of the linear form of r relates to the behaviour of r.

Lemma 2. lem:clfeqregLet the linear form n satisfy condition (8). For all r ∈ REGB, we
have I(r) = I(c(r)) ∪ I(n(r)).

Next we explain how to iterate n(r) to obtain the set of derivatives of the
regular expression r. We start with defining the operator

π0(r) = ↓2(n(r)),

7



where ↓2(s, t) = t is the standard second projection on pairs of objects.
We can iteratively apply the operator π0 on any expression x ∈ π0(r). The

set of all the resulting expressions is denoted by π(r), and iteratively defined by

πi(r) = π0(πi−1(r)) (i ∈ N), π(r) =


i∈N0

πi(r).

Let PD(r) = π(r) ∪ {r} be the set of partial derivatives of r.

Example 6.EX:lform Consider the case of the default linear form and the type PSP[Γ ]
regular expression r = (∀/=)∗(∀/e)∗. We have

n((∀/=)∗) = n(∀/=)(∀/=)∗ = {(∀/=, e/e)}(∀/=)∗ = {(∀/=, (∀/=)∗)}
n((∀/e)∗) = n(∀/e)(∀/e)∗ = {(∀/e, e/e)}(∀/e)∗ = {(∀/e, (∀/e)∗)}.

As (ε, ε) ∈ R((∀/=)∗), we have n(r) = n((∀/=)∗)(∀/e)∗ ∪ n((∀/e)∗) =
{(∀/=, r), (∀/e, (∀/e)∗)}. Then, π0(r) = {r, (∀/e)∗},π1(r) = π0(r)∪π0((∀/e)∗) =
π0(r), π(r) = {r, (∀/e)∗}.

Example 7.EX:lform2 Consider the type SSP[Γ ] regular expression r = (∀∗)(∃b) and the
case of the expanding linear form n such that n(F ) = {(f, e) | f ∈ L(F )}, for
any set spec F , and X = Γ = {a, b, . . . , z}. We have

n(∀∗) = n(∀)(∀∗) = (Γ ×{e})(∀∗) = Γ ×{∀∗} and n(∃b) = {(∃b, e)}.
Also, as ε ∈ L(∀∗), we have n(r) = n(∀∗)(∃b)∪n(∃b) = Γ×{r} ∪ {(b, e)}. Then,
π0(r) = {r, e}, π1(r) = π0(r), π(r) = π0(r), ∂a(r) = {r, e} and ∂b(r) = {r}.

Theorem 1.TH:finpds Suppose that partial derivatives are defined based on some type
(X,B) linear form. For all r ∈ REGB, |π(r)| ≤ r and |PD(r)| ≤ r+ 1.

4 The partial derivative graph of a regular expression

sec:PDgraph Here we consider a label set B to be used for type B regular expressions r
and a label set X that will be used to define the type X labelled graph âPD(r),
such that monB = monX and condition (8) is satisfied for all β ∈ B—recall
that n(β) ⊆ X×{εmonB}. The objective is to prove that the behaviour of âPD(r)
is exactly I(r)—see Theorem 2. This is analogous to the case of ordinary regular
expressions [12,1]. Thus, to decide whether a given m ∈ monB is in I(r), one
computes âPD(r) and then tests whether âPD(r) accepts m. This test depends
on the particular monoid monB [10].

Definition 8.DEF:pdgraph The type X partial derivative graph of a type B regular expression

r is the labelled graph âPD(r) =

PD(r), X, δPD, {r},λ(r)


, where λ(r) = { r1 ∈

PD(r) | c(r1) = εmonB } and δPD = { (r1, x, r2) | r1 ∈ PD(r) ∧ (x, r2) ∈ n(r1) }.

Theorem 2.TH:apdr Suppose that partial derivatives are defined based on some type
(X,B) linear form. For any r ∈ REGB, we have that I(âPD(r)) = I(r).

8



0t̂px : 1
∀/e

∀/= ∀/e

râPD(r) : e
b

a, . . . , z

sâPD(s) : s2

a/e, b/e

a/a, b/b a/e, b/e

Fig. 1: The transducer t̂px is alphabet invariant and realizes all (u, v)
such that v is a prefix of u. The automaton âPD(r) accepts all words
in {a, b, . . . , z}∗ ending with b. The transducer âPD(s) realizes all (u, v)
such that v is a prefix of u and Γ = {a, b}.

FIG:apd2

Example 8. EX:apd1Consider again the regular expression r = (∀/=)∗(∀/e)∗ over
PSP[Γ ] representing all word pairs (u, v) such that v is a prefix of u. We
compute the partial derivative graph âPD(r) using the default linear form for
X = B = PSP[Γ ]. In Ex. 6, we computed n(r) = {(∀/=, r), (∀/e, (∀/e)∗)} and
π(r) = {r, (∀/e)∗}. Using the linear forms n(r) and n((∀/e)∗), we see that the
partial derivative graph âPD(r) is exactly the transducer t̂px in Fig. 1.

Example 9. EX:apd2Consider again the type SSP[Γ ] regular expression r = (∀∗)(∃b) of
Ex. 7, representing all words ending with b. The partial derivative graph âPD(r)
is the automaton in Fig. 1.

Corollary 1. COR:2DConsider the default linear form for X = B = [Σ,∆]. For any
type [Σ,∆] regular expression r, the type [Σ,∆] partial derivative graph âPD(r)
is a transducer (in standard) form such that R(r) = R(âPD(r)).

m Let Σ = ∆ = {a, b} and let n be the default linear form for X = B =
[Σ,∆]. The type [Σ,∆] expression s = (a/a + b/b)∗(a/e + b/e)∗ represents all
(u, v) such that v is a prefix of u. Let s1 = (a/a+ b/b)∗ and s2 = (a/e+ b/e)∗.
Then, n(s1) = {(a/a, r1), (b/b, r1)}, n(s2) = {(a/e, s2), (b/e, s2)}, n(r) =
{(a/a, r), (b/b, r), (a/e, s2), (b/e, s2)}. The graph âPD(s) is shown in Fig. 1.

5 2D Regular Expressions

sec:pdpairspecBy 2D regular expressions we mean type B regular expressions with monB =
Σ∗ ×∆∗ (or monB = Γ ∗ × Γ ∗). We want a direct algorithm to decide if (u, v)
belongs to R(r), without constructing the transducer âPD(r) and then testing
whether âPD(r) accepts (u, v). To this end, we shall define partial derivatives
∂ψ(β), where ψ ∈ X, a little differently. Due to space limitation we shall deal
only with the case of X = {F/e, e/F | F ∈ SSP[Γ ]} and4 B = PSP ∕=∅[Γ ]. See
[14] for the case of X = {x/e, e/y | x ∈ Σ, y ∈ ∆} and B = [Σ,∆].

4 Because of condition (5), here we consider labels in PSP ∕=∅[Γ ], that is, only those
labels p ∈ PSP[Γ ] for which R(p) ∕= ∅.

9



Consider the monoid Σ∗ × ∆∗ with set of generators {(x, ε), (ε, y) | x ∈
Σ ∧ y ∈ ∆} and set of equations { (x, ε)(ε, y) .

= (x, y), (ε, y)(x, ε)
.
= (x, y) | x ∈

Σ ∧ y ∈ ∆ }. The partial derivatives of this section are related to the quotient
of relations R ⊆ Σ∗ ×∆∗, by word pairs. But now one needs to take in account
the above equations. For instance, for x ∈ Σ and y ∈ ∆, we have

(x, ε)
-1
R = { (ε, y)w | (x, y)w ∈ R}, (ε, y)

-1
R = { (x, ε)w | (x, y)w ∈ R}.

Quotients can be extended appropriately: For θ a pair as above and ω a
concatenation of such pairs, (ε, ε)

-1
R1 = R1, (ωθ)

-1
R1 = θ-1(ω-1R1). For R1 ⊆

(Σ∗ × {ε}) ∪ ({ε}×∆∗), we have R1
-1R2 =


θ∈R1

θ-1R2.
The partial derivatives of any p ∈ PSP ∕=∅[Γ ] are defined w.r.t. elements in

X = {F/e, e/F | F ∈ SSP[Γ ]} are as follows.

∂e/F (G/e) = ∂F/e(e/G) = ∅,
∂e/F (e/G) = ∂F/e(G/e) = {e/e} if L(F ) ∩ L(G) ∕= ∅,
∂e/F (G/C) = {G/e} if L(F ) ∩ L(C) ∕= ∅,
∂e/F (G/=) = {(F ∩G)/e} if L(F ) ∩ L(G) ∕= ∅,

∂e/F (G/C ∕=) =


{(G ∩ /∃b)/e} if L(F ∩ C) = {b} ∧ L(G) \ {b} ∕= ∅,
{G/e} if |L(F ∩ C)| ≥ 2,

∂F/e(G/=) = {e/(F ∩G)} if L(F ) ∩ L(G) ∕= ∅,

∂F/e(G/C ∕=) =


{e/(C ∩ /∃b)} if L(F ∩G) = {b} ∧ L(C) \ {b} ∕= ∅,
{e/C} if |L(F ∩G)| ≥ 2.

For each case above, if the conditions do not hold then the set of partial
derivatives is ∅. Above we have used the operation ∩ between any two set specs,
defined in [10] in a natural way, e.g., ∃035∩∃1358 = ∃35, /∃035∩∃1358 = ∃18.

Partial derivatives ∂F/e(r) and ∂e/F (r) of any r ∈ REGPSP ∕=∅[Γ ] are defined
as in Section 3, except for the concatenation rs. Let ϕ be either of F/e, e/F :

∂ϕ(⊘) = ∂ϕ(e/e) = ∅, ∂ϕ(r + s) = ∂ϕ(r) ∪ ∂ϕ(s), ∂ϕ(r
∗) = ∂ϕ(r)r

∗,

∂F/e(rs) = ∂F/e(r)s ∪ cin(r)∂F/e(s), ∂e/F (rs) = ∂e/F (r)s ∪ cout(r)∂e/F (s);

where cin is the constant-input part defined such that cin(e/e) = e/e, cin(e/F ) =
e/F , and cin(p) = ⊘ for all other pairing specs p. Moreover for F ∈ SSP[Γ ] and
r, s ∈ REGPSP ∕=∅[Γ ],

cin(rs) = cin(r) cin(s), cin(⊘s) = cin(r⊘) = cin(⊘) = ⊘,

cin(r + s) = cin(r) + cin(s), cin(⊘+ s) = cin(s), cin(r +⊘) = cin(r),

cin(r
∗) = (cin(r))

∗, cin(⊘∗) = e/e.

The constant-output part is analogous except that cout(F/e) = F/e.

Lemma 3.lem:semcico For all r ∈ REGPSP ∕=∅[Γ ], we have R(cin(r)) = R(r) ↓ {ε} and
R(cout(r)) = R(r) ↑ {ε}. Moreover R(cin(cout(r))) = R(c(r)) = R(cout(cin(r))).

10



Theorem 3. TH:wordpairspecFor all (u, v) with u = x1 · · ·xn and v = y1 · · · ym , we have that
(u, v) ∈ R(r) if and only if c(∂∃x1/e,...,∃xn/e, e/∃y1,...,e/∃ym

(r)) = e/e.

Remark 1. It can be shown that ∂∃x/e and ∂e/∃y commute on any r; thus, we Added this. Very
little space left
Added this. Very
little space lefthave that c(∂∃x1/e,...,∃xn/e, e/∃y1,...,e/∃ym

(r)) = c(∂∃x1/e, e/∃y1,∃x2/e,e/∃y2,...(r)).

Example 10. ex:psmenbershipConsider the word pair (aaba, aaaa) and the type PSP ∕=∅[Γ ] regu-
lar expression r = (∀/=)∗(∀/∀∕=)(∀/=)∗. We shall confirm that (aaba, aaaa) ∈
R(r) using Theorem 3, that is, by showing that

there is r1 ∈ ∂∃a/e,∃a/e,∃b/e,∃a/e,∃e/a,∃e/a,∃e/a,∃e/a(r) such that (ε, ε) ∈ R(r1).

Note that the only information about the alphabet is that it contains the letters
a and b. We shall compute only the necessary derivatives that lead to such an r1.

First we have: ∂∃a/e((∀/=)∗) = {(e/∃a)(∀/=)∗}, ∂∃a/e(∀/∀∕=) = {e//∃a},
cin((∀/=)∗) = e/e, cin(∀/∀∕=) = ⊘.

Let r1 = (∀/=)∗ and r2 = (∀/∀∕=). Then

∂∃a/e(r) = ∂∃a/e(r1)r2r1 ∪ cin(r1)∂∃a/e(r2r1)

= {(e/∃a)r} ∪ ∂∃a/e(r2)r1 ∪ cin(r2)∂∃a/e(r1)

= {(e/∃a)r, (e//∃a)r1}.
∂∃a/e((e/∃a)r) = (e/∃a)∂∃a/e(r) = {(e/∃a)(e/∃a)r} ∪ · · ·

∂∃b/e

(e/∃a)(e/∃a)r


= {(e/∃a)(e/∃a)(e//∃b)r1} ∪ · · ·

∂∃a/e

(e/∃a)(e//∃b)r1


= {(e/∃a)(e/∃a)(e//∃b)(e/∃a)r1} ∪ · · ·

∂e/∃a

(e/∃a)(e/∃a)(e//∃b)(e/∃a)r1


= {(e/∃a)(e//∃b)(e/∃a)r1} ∪ · · ·

∂e/∃a

(e/∃a)(e//∃b)(e/∃a)r1


= {(e//∃b)(e/∃a)r1} ∪ · · ·

∂e/∃a

(e//∃b)(e/∃a)r1


= {(e/∃a)r1} ∪ · · ·

∂e/∃a

(e/∃a)r1


= {r1} ∪ · · · Thus, (ε, ε) ∈ R(r1).

6 Concluding Remarks

SEC:concludeLabel sets can have any desired format as long as one provides their monoidal
behaviour. Using the elements of a label setB we can build typeB regular expres-
sions, which can have a significantly reduced size when the alphabet of reference
is large. At this broad level, we were able to obtain a few basic results on partial
derivatives of these expressions. Already FAdo [9] includes implementations of
partial derivative (PD) algorithms for ordinary (1D) regular expressions and of
type [Σ,∆] regular expressions. We are currently implementing PD algorithms
for type SSP[Γ ] and PSP[Γ ] expressions.

A research direction is to investigate the efficiency of the two approaches to Remove this sen-
tence? (see Rev.2)
Remove this sen-
tence? (see Rev.2)the regular expression r membership (word) problem: directly or via building

âPD(r). Solving the regular expression membership problem directly for 2D ex-
pressions required a modified definition of partial derivatives (PDs). So another If yes, fix here.If yes, fix here.
research direction is to find a good way to generalize the definition of linear form
n such that n(β) is a finite nonempty subset of X × B ∪ {εmonB} and n(rs) is
defined appropriately to include both the original and the modified PDs.

11



Acknowledgement

We are grateful to the reviewers of CIAA 2019 for their constructive suggestions
for improvement. We have applied most of these suggestions, and we plan toI added this be-

cause there is no
space to address
all Ref. comments.

I added this be-
cause there is no
space to address
all Ref. comments.

apply the remaining ones in the journal version where more pages are allowed.
The idea of using special labels on automata to denote sets is also explored in
[13] with different objectives.

Possibly add this
sentence (Rev 2)
Possibly add this
sentence (Rev 2) References

1. Antimirov, V.M.: Partial derivatives of regular expressions and finite automaton
constructions. Theoret. Comput. Sci. 155(2), 291–319 (1996)

2. Bastos, R., Broda, S., Machiavelo, A., Moreira, N., Reis, R.: On the average com-
plexity of partial derivative automata for semi-extended expressions. J. Automata,
Languages and Combinatorics 22(1–3), 5–28 (2017)

3. Broda, S., Machiavelo, A., Moreira, N., Reis, R.: On the average state complexity
of partial derivative automata: an analytic combinatorics approach. International
Journal of Foundations of Computer Science 22(7), 1593–1606 (2011), mR2865339

4. Brzozowski, J.: Derivatives of regular expressions. J. Association for Computer
Machinery (11), 481–494 (1964)

5. Caron, P., Champarnaud, J.M., Mignot, L.: Partial derivatives of an extended
regular expression. In: Dediu, A.H., Inenaga, S., Mart́ın-Vide, C. (eds.) Proc. 5th
LATA 2011. vol. 6638, pp. 179–191. Springer (2011)

6. Champarnaud, J.M., Ziadi, D.: From Mirkin’s prebases to Antimirov’s word partial
derivatives. Fundam. Inform. 45(3), 195–205 (2001)

7. Champarnaud, J.M., Ziadi, D.: Canonical derivatives, partial derivatives and finite
automaton constructions. Theoret. Comput. Sci. 289, 137–163 (2002)

8. Demaille, A.: Derived-term automata of multitape expressions with composition.
Scientific Annals of Computer Science 27(2), 137–176 (2017)

9. FAdo: Tools for formal languages manipulation, uRL address:
http://fado.dcc.fc.up.pt/ Accessed in March, 2019

10. Konstantinidis, S., Moreira, N., Reis, R., Young, J.: Regular expressions and trans-
ducers over alphabet-invariant and user-defined labels Submitted for publication.
See also arXiv:1805.01829

11. Lombardy, S., Sakarovitch, J.: Derivatives of rational expressions with multiplicity.
Theor. Comput. Sci. 332(1-3), 141–177 (2005), https://doi.org/10.1016/j.tcs.
2004.10.016

12. Mirkin, B.G.: An algorithm for constructing a base in a language of regular ex-
pressions. Engineering Cybernetics 5, 51—57 (1966)

13. Newton, J.: Representing and Computing with Types in Dynamically Typed Lan-
guages. Ph.D. thesis, Sorbonne Université, Paris, France (Nov 2018)

14. Pires, J.: Transducers and 2D Regular Expressions. Master’s thesis, Departamento
de Ciência de Computadores, Faculdade de Ciências da Universidade do Porto,
Porto, Portugal (2018)

15. Sakarovitch, J.: Elements of Automata Theory. Cambridge University Press, Berlin
(2009)

16. Sakarovitch, J.: Automata and rational expressions. arXiv.org arXiv:1502.03573
(2015)

12

https://doi.org/10.1016/j.tcs.2004.10.016

