
Deciding Regular Expressions (In-)Equivalence in
Coq!

Nelma Moreira1, David Pereira1!! and Simão Melo de Sousa1

1 DCC-FC – University of Porto
Rua do Campo Alegre 1021, 4169-007, Porto, Portugal

nam@dcc.fc.up.pt,dpereira@ncc.up.pt
2 LIACC & DI – University of Beira Interior

Rua Marquês d’Ávila e Bolama, 6201-001, Covilhã, Portugal
desousa@di.ubi.pt

Abstract. This work presents a mechanically verified implementation
of an algorithm for deciding regular expression (in-)equivalence within
the Coq proof assistant. This algorithm decides regular expression equiv-
alence through an iterated process of testing the equivalence of their
partial derivatives and also does not construct the underlying automata.
Our implementation has a refutation step that improves the general effi-
ciency of the decision procedure by enforcing the in-equivalence of regular
expressions at early stages of computation. Recent theoretical and exper-
imental research provide evidence that this method is, on average, more
efficient than the classical methods based in automata. We present some
performance tests and comparisons with similar approaches.

1 Introduction

Recently, much attention has been given to the mechanization of Kleene algebra
(KA) within proof assistants. J.-C. Filliâtre [1] provided a first formalisation of
the Kleene theorem for regular languages [2] within the Coq proof assistant [3].
Höfner and Struth [4] investigated the automated reasoning in variants of Kleene
algebras with Prover9 and Mace4 [5]. Pereira and Moreira [6] implemented in
Coq an abstract specification of Kleene algebra with tests (KAT) [7] and the
proofs that propositional Hoare logic deduction rules are theorems of KAT. An
obvious follow up of that work was to implement a certified procedure for de-
ciding equivalence of KA terms, i.e., regular expressions. A first step was the
proof of the correctness of the partial derivative automaton construction from
a regular expression presented in [8]. In this paper, our goal is to mechanically
verify a decision procedure based on partial derivatives proposed by Almeida et

! This work was partially funded by the European Regional Development Fund
through the programme COMPETE and by the Portuguese Government through the
FCT under the projects PEst-OE/EEI/UI0027/2011, PEst-C/MAT/UI0144/2011,
and CANTE-PTDC/EIA-CCO/101904/2008.

!! David Pereira is funded by FCT grant SFRH/BD/33233/2007

al. [9] that is a functional variant of the rewrite system proposed by Antimirov
and Mosses [10]. This procedure decides regular expression equivalence through
an iterated process of testing the equivalence of their partial derivatives.

Similar approaches based on the computation of a bisimulation between the
two regular expressions were used recently. In 1971, Hopcroft and Karp [11]
presented an almost linear algorithm for equivalence of two deterministic finite
automata (DFA). By transforming regular expressions into equivalent DFAs,
Hopcroft and Karp method can be used for regular expressions equivalence.
A comparison of that method with the method here proposed is discussed by
Almeida et. al [12, 13]. There it is conjectured that a direct method should per-
form better on average, and that is corroborated by theoretical studies based on
analytic combinatorics [14]. Hopcroft and Karp method was used by Braibant
and Pous [15] to formally verify Kozen’s proof of the completeness of Kleene
algebra [16] in Coq. Although the relative inefficiency of the method chosen, and
as we will note in Section 4, it seems the more competitive (and most general)
implementation available currently in Coq.

Independently of the work here presented, Coquand and Siles [17] mechan-
ically verified an algorithm for deciding regular expression equivalence based
on Brzozowski’s derivatives [18] and an inductive definition of finite sets called
Kuratowski-finite sets. Also based on Brzozowski’s derivatives, Krauss and Nip-
kow [19] provide an elegant and concise formalisation of Rutten’s co-algebraic
approach of regular expression equivalence [20] in the Isabelle proof assistant [21],
but they do not address the termination of the formalized decision procedure.
Vladimir Komendantsky provides a novel functional construction of the partial
derivative automaton [22], and also made contributions [23] to the mechaniza-
tion of concepts related to the Mirkin’s construction [24] of that automata. More
recently, Andrea Asperti formalized a decision procedure for the equivalence of
pointed regular expressions [25], that is both compact and efficient.

Besides avoiding the need of building DFAs, our use of partial derivatives
avoids also the necessary normalisation of regular expressions modulo ACI (i.e
associativity, idempotence and commutativity of union) in order to ensure the
finiteness of Brzozowski’s derivatives. Like in other approaches [15], our method
also includes a refutation step that improves the detection of inequivalent regular
expressions. One of our goals is to use the procedure as a way to automate
the process of reasoning about programs encoded as KAT terms in a certified
framework. A first step towards this goal is reported in [26].

Although the algorithm we have chosen to verify seems straightforward, the
process of its mechanical verification in a theorem prover based on a type the-
ory such as the one behind the Coq proof assistant raises several issues which
are quite different from an usual implementation in standard programming lan-
guages. The Coq proof assistant allows users to specify and implement programs,
and also to prove that the implemented programs are compliant with their spec-
ification. In this sense, the first task is the effort of formalizing the underlying
algebraic theory. Afterwards, and in order to encode the decision procedure, we
have to provide a formal proof of its termination since our procedure is a gen-

eral recursive one, whereas Coq’s type system accepts only provable terminating
functions. Finally, a formal proof must be provided in order to ensure that the
functional behavior of the implemented procedure is correct wrt. regular expres-
sion (in-)equivalence. Moreover, the encoding effort must be conducted with care
in order to obtain a solution that is able to compute inside Coq with a reasonable
performance.

2 Some Basic Notions of Regular Languages

This section presents some basic notions of regular languages. These definitions
can be found on standard books such as Hopcroft et al. [27], and their formali-
sation in the Coq proof assistant are presented by Almeida et al. [8].

2.1 Alphabets, Words, Languages and Regular Expressions

Let Σ = {a1, a2, . . . , an} be an alphabet (non-empty set of symbols). A word w
over Σ is any finite sequence of symbols. The empty word is denoted by ε and
the concatenation of two words w1 and w2 is the word w = w1w2. Let Σ! be the
set of all words over Σ. A language over Σ is a subset of Σ!. If L1 and L2 are two
languages, then L1L2 = {w1w2 |w1 ∈ L1, w2 ∈ L2}. The power of a language is
inductively defined by L0 = {ε} and Ln = LLn−1, with n ≥ 1. The Kleene star
L! of a language L is ∪n≥0L

n. Given a word w ∈ Σ!, the (left-)quotient of L by
the word w is the language w−1(L) = {v |wv ∈ L}.

A regular expression (re) α over Σ represents a regular language L(α) ⊆ Σ∗

and is inductively defined by: ∅ is a re and L(∅) = ∅; ε is a re and L(ε) = {ε};
∀ a ∈ Σ, a is a re and L(a) = {a}; if α and β are re’s, (α + β), (αβ) and (α)∗

are re’s, respectively with L(α + β) = L(α) ∪ L(β), L(αβ) = L(α)L(β) and
L(α!) = L(α)!. If Γ is a set of re’s, then L(Γ) = ∪α∈ΓL(α). The alphabetic size
of a re α is the number of symbols of the alphabet in α and is denoted by |α|Σ .
The empty word property (ewp for short) of a re α is denoted by ε(α) and is
defined by ε(α) = ε if ε ∈ L(α) and by ε(α) = ∅, otherwise. If ε(α) = ε(β) we
say that α and β have the same ewp. Given a set of re’s Γ we define ε(Γ) = ε if
there exists a re α ∈ Γ such that ε(α) = ε and ε(Γ) = ∅, otherwise. Two re’s α
and β are equivalent if they represent the same language, that is, if L(α) = L(β),
and we write α ∼ β.

2.2 Partial Derivatives

The notion of derivative of a re was introduced by Brzozowski [18]. Antimirov
[10] extended this notion to the one of set of partial derivatives, which correspond
to a finite set representation of Brzozowski’s derivatives.

Nelma Moreira

Nelma Moreira

Nelma Moreira
s

Let α be a re and let a ∈ Σ. The set ∂a(α) of partial derivatives of the re
w.r.t. the symbol a is inductively defined as follows:

∂a(∅) = ∅ ∂a(α + β) = ∂a(α) ∪ ∂a(β)

∂a(ε) = ∅ ∂a(αβ) =

{

∂a(α)β ∪ ∂a(β) if ε(α) = ε
∂a(α)β otherwise

∂a(b) =

{

{ε} if a ≡ b
∅ otherwise

∂a(α!) = ∂a(α)α!,

where Γβ = {αβ |α ∈ Γ} if β)= ∅ and β)= ε, and Γ∅ = ∅ and Γε = Γ otherwise
(in the same way we define βΓ). Moreover one has

L(∂a(α)) = a−1(L(α)). (1)

The definition of set of partial derivatives is extended to sets of re’s and to words.
Given a re α, a symbol a ∈ Σ, a word w ∈ Σ!, and a set of re’s Γ , we define
∂a(Γ) = ∪α∈Γ∂a(α), ∂ε(α) = {α}, and ∂wa = ∂a(∂w(α)). Equation (1) can be
extended to words w ∈ Σ!. The set of partial derivatives of a re α is defined by
PD(α) = ∪w∈Σ!(∂w(α)). This set is always finite and its cardinality is bounded
by |α|Σ + 1.

Champarnaud and Ziadi show in [28] that partial derivatives and Mirkin’s
prebases [24] lead to identical constructions. Let π(α) be a function inductively
defined as follows:

π(∅) = ∅ π(α+ β) = π(α) ∪ π(β)
π(ε) = ∅ π(αβ) = π(α)β ∪ π(β)
π(a) = {ε} π(α!) = π(α)α!.

(2)

In his original paper, Mirkin proved that |π(α)| ≤ |α|Σ , while Champarnaud
and Ziadi established that PD(α) = {α} ∪ π(α). These properties were proven
correct in Coq by Almeida et al. [8] and will be used to prove the termination of
the decision procedure described in this paper.

An important property of partial derivatives is that given a re α we have

α ∼ ε(α) +
∑

a∈Σ

a∂a(α) (3)

and so, checking if α ∼ β can be reformulated as

ε(α) +
∑

a∈Σ

a∂a(α) ∼ ε(β) +
∑

a∈Σ

a∂a(β). (4)

This will be an essential ingredient to our decision method because deciding if
α ∼ β is tantamount to check if ε(α) = ε(β) and if ∂a(α) ∼ ∂a(β), for each
a ∈ Σ. We also note that testing if a word w ∈ Σ! belongs to L(α) can be
reduced to the purely syntactical operation of checking if

ε(∂w(α)) = ε. (5)

By (4) and (5) we have that

(∀w ∈ Σ!, ε(∂w(α)) = ε(∂w(β))) ↔ α ∼ β. (6)

3 The Decision Procedure

In this section we describe the implementation in Coq of a procedure for deciding
the equivalence of re’s based on partial derivatives. First we give the informal
description of the procedure and afterwards we present the technical details of
its implementation in Coq’s type theory. The Coq development presented in this
paper is available online in [29].

3.1 Informal Description

The procedure for deciding the equivalence of re’s, which we call equivP, is
presented in Fig.1. Given two re’s α and β this procedure corresponds to the
iterated process of deciding the equivalence of their derivatives, in the way noted
in equation (4). The procedure equivP works over pairs of re’s (Γ,∆) such that
Γ = ∂w(α) and ∆ = ∂w(β), for some word w ∈ Σ!. The notion of set of partial
derivatives can also be extended to these pairs that we refer from now on by
derivatives. To check if α ∼ β it is enough to test the ewp ’s of the derivatives,
i.e., if (Γ,∆) verify the condition ε(Γ) = ε(∆).

Algorithm 1 The procedure equivP.

Require: S = {({α}, {β})}, H = ∅
Ensure: true or false

1: procedure EquivP(S, H)
2: while S "= ∅ do

3: (Γ,∆)← POP (S)
4: if ε(Γ) "= ε(∆) then

5: return false

6: end if

7: H ← H ∪ {(Γ,∆)}
8: for a ∈ Σ do

9: (Λ,Θ)← ∂a(Γ,∆)
10: if (Λ,Θ) "∈ H then

11: S ← S ∪ {(Λ,Θ)}
12: end if

13: end for

14: end while

15: return true

16: end procedure

Two finite sets of derivatives are required for implementing equivP: a set
H that serves as an accumulator for the derivatives already processed by the
procedure, and a set S which serves as a working set that gathers new derivatives
yet to be processed. The set H ensures the termination of equivP due to the
finiteness of the number of derivatives.

When equivP terminates, either the set H of all the derivatives of α and β
has been computed, or a counter-example (Γ,∆) has been found, i.e., ε(Γ))=
ε(∆). By equation (6), in the first case we conclude that α ∼ β and, in the second
case we conclude that α)∼ β. The correctness of this method can be found in
Almeida et al. [9, 12]. As an illustration of how equivP computes, we present
below two small examples of its execution, the first considering the equivalence
of two re’s, and the second considering the in-equivalence of two re’s.

Example 1. Suppose that we want to prove that the re’s α = (ab)!a and β = a(ba)!

are equivalent. Considering s0 = ({a(ab)!}, {a(ba)!}), it is enough to show that

equivP({s0}, ∅) = true.

The computation of equivP is for these particular α and β involves the con-
struction of the new derivatives s1 = ({1, b(ab)!a}, {(ba)!}) and s2 = (∅, ∅). We
can trace the computation by the following table

i Si Hi drvs.
0 {s0} ∅ ∂a(s0) = s1, ∂b(s0) = s2
1 {s1, s2} {s0} ∂a(s1) = s2, ∂b(s1) = s0
2 {s2} {s0, s1} ∂a(s2) = s2, ∂b(s2) = s2
3 ∅ {s0, s1, s2} true

where i is the iteration number, and Si and Hi are the arguments of equivP in
that same iteration. The trace terminates with S2 = ∅ and thus we can conclude
that α ∼ β.

Example 2. Suppose that now we want to check if the re’s α = b!a and β = b!ba
are not equivalent. Considering s0 = ({b!a}, {b!ba}) , to prove so it is enough to
check if

equivP({s0}, ∅) = false.

In this case, the computation of equivP creates the new derivatives , s1 =
({1}, ∅) and s2 = ({b!a}, {a, b!ba}), and takes two iterations to halt and return
false. The counter example found is the pair s1, as it is easy to see in the trace
of computation presented in the table below.

i Si Hi drvs.
0 {s0} ∅ ∂a(s0) = s1, ∂b(s2) = s2
1 {s1, s2} {s0} ε(s1) = false

3.2 Implementation in Coq

In this section we describe the mechanically verified formalisation of equivP in
the Coq proof assistant and show its termination and correctness.

Nelma Moreira

The Coq Proof Assistant

The Coq proof assistant is an implementation of the Calculus of Inductive
Constructions (CIC) [30], a typed λ-calculus that features polymorphism, de-
pendent types and very expressive (co-)inductive types. Coq provides users with
the means to define data-structures and functions, as in standard functional lan-
guages, and also allows to define specifications and to build proofs in the same
language, if we consider the underlying λ-calculus as an higher-order logic. In
CIC, every term has a type and also every type has its own type, called sort. The
universe of sorts in Coq is defined as the set {Prop, Set,Type(i) | i ∈ N}, where
Prop is the type of propositions and Set is the type of program specifications.
Both Prop and Set are of type Type(0). This distinction between the type of
propositions and the type of program specifications permits Coq to provide a
mechanism that extracts functional programs directly from Coq scripts, by ig-
noring all the propositions and extracting only the computationally meaningful
definitions. More details on the way certified program development and proof
construction are carried out can be found in [3].

In the formalisation below we use only the libraries and certified program-
ming and proving mechanisms provided by the Coq official distribution [31]. In
particular, our implementation is not axiom-free, as it depends on set extension-
ally, but which does not interfere with the consistency of the development. We
also use a specific library (which is not in Coq’s standard library) to deal with
finite sets: in this case we use Stephane Lescuyer’s Containers library [32], which
is a re-implementation of Coq’s finite sets library using typeclasses. This library
eases the implementation of functions that deal with finite sets and also provides
facilities to handle ordered types. In particular, using this library we obtain the
type of finite sets of a finite set for free. These properties revealed themselves
quite handy for our development which is based mostly on sets, and sets of sets
of re’s (and extensions).

Certified Pairs of Derivatives

The main data structures underlying the implementation of equivP are pairs
of sets of re’s and sets of these pairs. Each pair (Γ,∆) corresponds to a word
derivative (∂w(α), ∂w(β)), where w ∈ Σ! and α and β are the re’s being tested
by equivP. The pairs (Γ,∆) are encoded by the type Drv α β, presented in
Fig.1. This is a dependent record built from three parameters: a pair of sets of
re’s dp that corresponds to the actual pair (Γ,∆), a word w, and a proof term cw
that certifies that (Γ,∆) = (∂w(α), ∂w(β)). The dependency of Drv α β comes
from cw, which is a proof depending on the values of the re’s α and β, and on the
word parameter w. This dependency ensures, at compilation time, that equivP

will only accept as input pairs of re’s that correspond to derivatives of α and β.
The type Drv α β provides also an easy way to relate the computation of

equivP and the equivalence of α and β: if H is the set returned by equivP,
then the equation (6) is tantamount to check the ewp of the elements of H .

Record Drv (α β: r e) := mkDrv {
dp :> s e t r e * s e t r e ;
w : word ;
cw : dp === (∂w(α),∂w(β)) (* "===" refers to finite set equivalence *)

}.

Program Definition Drv_1st (α β: r e) : Drv α β.
refine(Build_Drv ({r1},{r2}) nil _).
(* Now comes the proof that ({α}, {β}) = (∂ε(α), ∂ε(β)) *)
abstract (unfold wpdrvp;simpl;constructor;

unfold wpdrv_set;simpl;normalize_notations;auto).
Defined.

Definition Drv_pdrv (α β: r e)(x:Drv α β)(a:A) : Drv α β.
refine(match x with

| mkDrv α β K w P => mkDrv α β (pdrvp K a) (w++[a]) _
end).

(* Now comes the proof that ∂a(∂w(α), ∂w(β)) = (∂wa(α), ∂wa(β)) *)
abstract (unfold pdrvp;inversion_clear P;simpl in *;

constructor;normalize_notations;simpl;
[rewrite H|rewrite H0]; rewrite wpdrv_set_app;
unfold wpdrv_set;simpl;reflexivity).

Defined.

Definition Drv_pdrv_set(s:Drv α β)(sig: s e t A) : s e t (Drv α β) :=
fold (fun x:A => add (Drv_pdrv s x)) sig ∅.

Definition Drv_wpdrv (α β: r e)(w:word) : Drv α β.
refine(mkDrv α β (∂w(α), ∂w(β)) w _).
(* Now comes the proof that (∂w(α), ∂w(β)) = (∂w(α), ∂w(β)) *)
abstract (reflexivity).
Defined.

Definition c_of_rep (x: s e t r e * s e t r e) :=
Bool.eqb (c_of_re_set (fst x)) (c_of_re_set (snd x)).

Definition c_of_Drv (x:Drv α β) := c_of_rep (dp x).

Definition c_of_Drv_set (s: s e t (Drv α β)) : bool :=
fold (fun x => andb (c_of_Drv x)) s t rue .

Fig. 1: Definition of the type Drv and the extension of derivatives and ewp func-
tions.

Furthermore, this type allows to keep the set of words from which the set of
derivatives of α and β has been obtained. For that it is enough to apply the
projection w to each pair (Γ,∆) ∈ H .

The notions of derivative and of ewp are extended to the type Drv α β as
implemented by the functions Drv_pdrv and c_of_Drv, and to sets of terms Drv
α β by the functions Drv_pdrv_set and c_of_Drv_set, respectively. Note that
part of the implementation of these functions is done by explicitly building proof
terms using Coq’s tactical language. In order to improve the performance of the
computation of these functions we have wrapped the corresponding proofs in
the abstract tactic, which defines these proofs as external lemmas and, as a
consequence, replaces the explicit computation of the proof terms by a function
call to the corresponding external lemma.

Computation of New Derivatives

The while-loop of equivP describes the process of testing the equivalence of the
derivatives of α and β. In each iteration, new derivatives (Γ,∆) are computed
until either the set S becomes empty, or a pair (Γ,∆) such that ε(Γ))= ε(∆) is
found. This is precisely what the function step presented in Fig.2 does (which
corresponds to the for-loop from line 8 to line 12 of equivP’s pseudocode).

Definition Drv_pdrv_set_filtered(x:Drv α β)(H: s e t (Drv α β))
(sig: s e t A) : s e t (Drv α β) :=
filter (fun y => negb (y ∈ H)) (Drv_pdrv_set x sig).

Inductive step_case (α β: r e) : Type :=
|proceed : step_case α β
|termtrue : s e t (Drv α β) → step_case α β
|termfalse : Drv α β → step_case α β.

Definition step (H S: s e t (Drv α β))(sig: s e t A) :
((s e t (Drv αβ) * s e t (Drv α β)) * step_case α β) :=
match choose s with
|None => ((H,S),termtrue α β H)
|Some (Γ,∆) =>

if c_of_Drv _ _ (Γ,∆) then
let H′ := add (Γ,∆) H in
let S′ := remove (Γ,∆) S in
let ns := Drv_pdrv_set_filtered α β (Γ,∆) H′ sig in
((H′ ,ns ∪ S′),proceed α β)

else
((H,S),termfalse α β (Γ,∆))

end.

Fig. 2: The function step.

The step function proceeds as follows: it obtains a pair (Γ,∆) from the set
S, generates new derivatives by a symbol a ∈ Σ

(Λ,Θ) = (∂a(Γ), ∂a(∆))

and adds to S all the (Λ,Θ) that are not elements of {(Γ,∆)} ∪ H . This is
implemented by Drv_pdrv_set_filteredwhich prevents the whole process from
entering potential infinite loops since each derivative is considered only once
during the execution of equivP and the overall number of derivatives is finite.
The return type of step is

((set (Drv α β) * set (Drv α β)) * step_case).

The first component corresponds to the pair (H ,S), constructed as described
above. The second component is a term of type step_case which guides the
iterative process of computing the equivalence of the derivatives of α and β: if
it is the term proceed, then the iterative process should continue; if it is a term
termtrue H then the process should terminate and H contains the set of all the

derivatives of α and β. Finally, if it is a term termfalse (Γ,∆), then the process
should terminate. The pair (Γ,∆) is a witness that α)∼ β, since ε(Γ))= ε(∆).

Implementation and Termination of equivP

The formalisation of equivP in the Coq proof assistant is presented in Fig.4,
and corresponds to the function equivP. Its main component is the function
iterate which is responsible for the iterative process of calculating the deriva-
tives of α and β, or to find a witness that α)∼ β if that is the case. The function
iterate executes recursively until step returns either a term termtrue H , or
returns a term termfalse (Γ,∆). Depending on the result of step, the func-
tion iterate returns a term of type term_cases, which can be the term Ok
H indicating that α ∼ β, or the term NotOk (Γ,∆) indicating that α)∼ β,
respectively.

A peculiarity of the Coq proof assistant is that it only accepts terminating
functions, and more precisely, it only accepts structurally decreasing functions.
Nevertheless, provably terminating functions can be expressed via encoding into
structural recusive functions. The Function [33] command helps users to define
such functions which are not structurally decreasing along with an evidence of
its termination, as an illustration of the certified programming paradigm that
Coq promotes. In the case of iterate such evidence is given by the proof that
its recursive calls follow a well-founded relation.

The decreasing measure (of the recursive calls) for iterate is defined as fol-
lows: in each recursive call the cardinal of the accumulator set H increases by
one element due to the computation of step. This increase of H can occur only
less than 2(|α|Σ+1) × 2(|β|Σ+1) + 1 times, due to the upper bounds of the cardi-
nalities of PD(α) and of PD(β). Therefore, in each recursive call of iterate, if
stepH S _ = (H ′,_,_) then the following condition holds:

(2(|α|Σ+1) × 2(|β|Σ+1) + 1)− |H ′| < (2(|α|Σ+1) × 2(|β|Σ+1) + 1)− |H | (7)

The relation LLim presented in Fig.3 defines the decreasing measure imposed
by equation (7). Furthermore, the definition of iterate requires an argument
of type DP α β which determines that the sets H and S are invariably disjoint
along the computation of iterate which is required to ensure that the set H is
always increased by one element at each recursive call.

Besides the requirement of defining LLim to formalise iterate, we had to deal
with two implementation details: first, we have used the type N which is a binary
representation of natural numbers provided by Coq’s standard library, instead of
the type nat so that the computation of MAX becomes feasible for large natural
numbers. The second detail is related to the computation over terms representing
well founded relations: instead of using the proof LLim_wf directly in iterate,
we follow a technique proposed by Bruno Barras that uses the proof returned
by the call to the function guard, that lazily adds 2n constructors Acc_intro
in front of LLim_wf so, that the actual proof is never reached in practice, while

Definition lim_cardN (z:N) : relation (s e t A) :=
fun x y: s e t A => nat_of_N z - (cardinal x) < nat_of_N z - (cardinal y).

Lemma lim_cardN_wf : ∀ z, well_founded (lim_cardN z).

Section WfIterate.
Variables α β : r e .

Definition MAX_fst := |α|Σ + 1.
Definition MAX_snd := |β|Σ + 1.

Definition MAX := (2MAX_fst × 2MAX_snd) + 1.
Definition LLim := lim_cardN (Drv α β) MAX.

Theorem LLim_wf : well_founded LLim.

Fixpoint guard (n : nat)(wfp : well_founded (LLim)) : well_founded (LLim):=
match n with
|O => wfp
|S m => fun x => Acc_intro x (fun y _ => guard m (guard m wfp) y)
end.

End WfIterate.

Fig. 3: The decreasing measure of iterate.

maintaining the same logical meaning. This technique avoids normalisation of
well founded relation proofs which is usually highly complex and may take too
much time to compute.

Finally, the function equivP is defined as a call to equivP_aux with the
correct input, i.e., with the accumulator set H = ∅ and with the working set
S = {({α}, {β})}. The function equivP_aux is a wrapper that pattern matches
over the term of type term_cases returned by iterate and returns the corre-
sponding Boolean value.

Correctness and Completeness

To prove the correctness of equivP we must prove that, if equivP returns true,
then iterate generates all the derivatives and prove that all these derivatives
agree on the ewp of its components. To prove that all derivatives are computed,
it is enough to ensure that the step function returns a new accumulator set H ′

such that:

step H S sig = (H ′, S′,_) → ∀(Γ,∆) ∈ H ′, ∀a ∈ Σ, ∂a(Γ,∆) ∈ (H ′∪S′) (8)

The predicate invP and the lemma invP_step presented in Fig.5 prove this
property. This means that, in each recursive call to iterate, the sets H and S
hold all the derivatives of the elements in H . At some point of the execution, by
the finiteness of the number of derivatives, H will contain all such derivatives
and S will eventually become empty. Lemma invP_iterate proves this fact
by a proof by functional induction over the structure of iterate. From lemma

Inductive term_cases α β : Type :=
|OK : s e t (Drv α β) → term_cases α β
|NotOk : Drv α β → term_cases α β.

Inductive DP (α β: r e)(H S: s e t (Drv α β)) : Prop :=
| is_dp : H ∩ S = ∅ → c_of_Drv_set α β H = t rue → DP α β H S.

Lemma DP_upd : ∀ (h s : s e t (Drv α β)) (sig : s e t A), DP α β h s →
DP α β (fst (fst (step α β h s sig))) (snd (fst (step α β h s sig))).

Lemma DP_wf : ∀ (h s : s e t (Drv r1 r2)) (sig : s e t A),
DP _ _ h s → snd (StepFast ’ _ _ h s sig) = Process ’ _ _ →
LLim _ _ (fst (fst (StepFast ’ _ _ h s sig))) h.

Function iterate (α β: r e)(H S: s e t (Drv α β))(sig: s e t A)(D:DP α β h s)
{wf (LLim α β) H}: term_cases α β :=
let ((H′ ,S′,next) := step H S in
match next with
|termfalse x => NotOk α β x
|termtrue h => Ok α β h
|progress => iterate α β H′ S′ sig (DP_upd α β H S sig D)

end.
Proof.
(* Now comes the proof that LLim is a decreasing measure for iterate *)
abstract (apply DP_wf).
(* Now comes the proof that LLim is a well founded relation . *)
exact(guard r1 r2 100 (LLim_wf r1 r2)).

Defined.

Definition equivP_aux(α β: r e)(H S: s e t (Drv α β))(sig: s e t A)(D:DP α β H S):=
let H′ := iterate α β H S sig D in
match H′ with
| Ok _ => t rue
| NotOk _ => f a l s e

end.

Definition mkDP_ini : DP α β ∅ {Drv_1st α β}.
(* Now comes the proof that {({α}, {β})} ∩ ∅ = ∅ and that ε(∅) = true *)
abstract (constructor;[split;intros;try (inversion H)| vm_compute];reflexivity).
Defined.

Definition equivP (α β: r e)(sig: s e t A) :=
equivP_aux α β ∅ {Drv_1st α β} sig (mkDP_ini α β).

Fig. 4: Implementation of equivP.

invP_equivP we can prove that

∀w ∈ Σ!, (∂w(α), ∂w(β)) ∈ equivP {({α}, {β})} ∅ Σ (9)

by induction on the length of the word w and using the invariants presented
above.

To finish the correctness proof of equivP one needs to make sure that all the
derivatives (Γ,∆) verify the condition ε(Γ) = ε(∆). For that, we have defined
the predicate invP_final which strengthens the predicate invP by imposing
that the previous property is verified. The predicate invP_final is proved to be
an invariant of equivP and this implies re equivalence by equation (6), as stated
by theorem invP_final_eq_lang.

Definition invP (α β: r e)(H S: s e t (Drv α β))(sig: s e t A) :=
∀ x, x ∈ H → ∀a, a ∈ sig → (Drv_pdrv α β x a) ∈ (H ∪ S).

Lemma invP_step : ∀ H S sig,
invP H S sig → invP (fst (fst (step α β H S sig)))

(snd (fst (step α β H S sig))) sig.

Lemma invP_iterate : ∀ H S sig D,
invP H S sig → invP (iterate α β H S sig D) ∅ sig.

Lemma invP_equivP :
invP (equivP α β Σ) ∅ Σ.

Definition invP_final (α β: r e)(H S: s e t (Drv α β))(sig: s e t A) :=
(Drv_1st α β) ∈ (H ∪ S) /\
(∀ x, x ∈ (H ∪ S) → c_of_Drv α β x = t rue) /\ invP α β H S sig.

Lemma invP_final_eq_lang :
invP_final α β (equivP α β Σ) ∅ Σ → α ∼ β.

Theorem equivP_correct : ∀ α β, equivP α β sigma = t rue → α ∼ β.
Theorem equivP_complete : ∀ α β, α ∼ β → equivP α β sigma = t rue .
Theorem equivP_correct_dual : ∀ α β, equivP α β sigma = f a l s e → α -∼ β.
Theorem equivP_complete_dual : ∀ α β, α -∼ β → equivP α β sigma = f a l s e .

Fig. 5: Invariants of step and iterate.

For the completeness, it is enough to reason by contradiction: assuming that
α ∼ β then it must be true that ∀w ∈ Σ!, ε(∂w(α)) = ε(∂w(β)) which implies
that iterate may not return a set of pairs that contain a pair (Γ,∆) such that
ε(Γ))= ε(∆) and so, equivP must always answer true.

Using the lemmas equivP_correct and equivP_correct_dual of Fig.5 a
tactic was developed to prove automatically the (in)equivalence of any two re’s
α and β. This tactic works by reducing the logical proof of the (in)equivalence
of re’s into a Boolean equality involving the computation of equivP. After effec-
tively computing equivP into a Boolean constant, the rest of the proof amounts
at applying the reflexivity of Coq’s primitive equality. Note that this tactic is
also able to solve re containment due to the equivalence α ≤ β ↔ α+ β ∼ β.

4 Performance

Although the main goal of our development was to provide a certified evidence
that the decision algorithm suggested by Almeida et. al. is correct, it is of obvi-
ous interest to infer the level of usability of equivP (and corresponding tactic)
for conducting proofs involving re’s (in-)equivalence within the Coq proof assis-
tant. We have cerried out two types of performance evaluation of the decision
procedure. The first evaluation consisted in experimenting3 the tactic developed

3 The experiments were conducted on a Virtual Box environment with six cores and
8 Gb of RAM, using coq-8.3pl4. The virtual environment executes on a dual six-
core processor AMD Opetron(tm) 2435 processor with 2.60 GHz, and with 16 Gb
of RAM.

over data sets of 10000 pairs of uniform-randomly generated re’s using the FAdo
tool [34] so that the results are statistically relevant. Some results are presented
in the table below. The value n is the size of the syntactic tree4 of each re’s gen-
erated. The value of k is the number of symbols of the alphabet. The columns
eq and ineq are the average time (in seconds) spent to decide equivalence and
inequivalence of two re’s, respectively. The column iter is the average number
of recursive calls needed for equivP to terminate. The equivalence tests were
performed by comparing a re with itself, whereas the inequivalence tests were
performed by comparing two consecutive re’s randomly generated, with the same
value of n.

k n = 25 n = 50 n = 100
eq iter ineq iter eq iter ineq iter eq iter ineq iter

10 0.142 9.137 0.025 1.452 0.406 16.746 0.033 1.465 1.568 34.834 0.047 1.510
20 0.152 9.136 0.041 1.860 0.446 16.124 0.060 1.795 1.028 30.733 0.081 1.919
30 0.163 9.104 0.052 2.060 0.499 15.857 0.080 2.074 1.142 29.713 0.112 2.107
40 0.162 9.102 0.056 2.200 0.456 15.717 0.105 2.178 0.972 29.152 0.148 2.266
50 0.158 9.508 0.065 2.392 0.568 15.693 0.125 2.272 1.182 28.879 0.170 2.374

In the second evaluation5 have compared the performance of our development
with the developments [15, 19, 17, 25]. The results are presented below. The
equivalence tests A(n,m, o) ≡ (ao)a!+(an+am)! ∼ (an+am)! and the equiva-
lence tests B(n) ≡ (ε+ a+ aa+ . . .+ an−1)(an)! ∼ a! were borrowed from [25].
The test C(n) is the equivalence αn ∼ αn, for αn = (a + b)!(a(a + b)n). The
entries “–“ and “≥ 600s“ refer, respectively, to tests that were not performed and
tests which took more than 10 minutes to finish6.

A(n,m, o) B(n) C(n)
(4, 5, 12) (5, 6, 20) (5, 7, 24) 18 100 500 5 10 15

equivP 0.15 0.20 0.29 0.05 1.30 37.06 1.31 77.61 ≥ 600s
[15] 0.01 0.01 0.02 0.03 1.33 50.53 0.04 3.06 15.26
[19] 2.78 2.94 2.88 2.94 3.37 158.94 2.87 ≥ 600s ≥ 600s
[17] 8.73 46.70 102.69 98.84 ≥ 600s ≥ 600s 28.97 ≥ 600s ≥ 600s
[25] 0.24 0.43 0.57 0.80 – – – – –

The development of Braibant and Pous is globally the more efficient in the
tests we have selected, thanks to their reification mechanism and efficient rep-
resentation of automata. equivP is able to outperform it only for the family of
equivalences B(n). When compared to the other formalizations, equivP exhibits
better performances, which suggests that algorithms based on partial derivatives
should be considered wrt. to other approaches.

4 This corresponds to the sum of the number of constants, symbols and regular oper-
ators of the re.

5 These tests were performed in a Macbook Pro 13”, with a 2.53 GHz Inter Core 2
Duo, with 4 GB 1067 MHz DD3 of RAM memory, using coq-8.3pl4.

6 The times for [25] are the ones given in the refered article.

5 Concluding Remarks and Applications

In this paper we have described the formalisation, within the Coq proof assistant,
of the procedure equivP for deciding re equivalence based in partial derivatives.
This procedure has the advantage of not requiring the normalisation modulo
ACI of re’s in order to prove its termination. We presented some performance
tests and comparisons with similar approaches that suggest the acceptable be-
havior of our decision procedure. However, there is space for improvement of
its performance and more throughout comparisons with the other developments
should take place.The purpose of this research is part of a broader project where
the equivalence of Kleene algebra with tests (KAT) terms is used to reason about
the partial correctness of programs [35]. The development in [26] is a mechaniza-
tion of KAT in the Coq proof assistant containing the extention of the decision
procedure here presented for KAT terms (in-)equivalence.
Acknowledgments: We thank the anonymous referees for their constructive
comments and criticisms, from which this paper has clearly benefited.

References

1. Filliâtre, J.C.: Finite Automata Theory in Coq: A constructive proof of Kleene’s
theorem. Research Report 97–04, LIP - ENS Lyon (February 1997)

2. Kleene, S. In: Representation of Events in Nerve Nets and Finite Automata.
Shannon, C. and McCarthy, J. edn. Princeton University Press 3–42

3. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development.
Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical Computer
Science. Springer Verlag (2004)

4. Höfner, P., Struth, G.: Automated reasoning in Kleene algebra. In Pfenning, F.,
ed.: CADE 2007. Number 4603 in LNAI, Springer-Verlag (2007) 279–294

5. McCune, W.: Prover9 and Mace4. http://www.cs.unm.edu/smccune/mace4. Ac-
cess date: 1.10.2011.

6. Moreira, N., Pereira, D.: KAT and PHL in Coq. CSIS 05(02) (December 2008)
ISSN: 1820-0214.

7. Kozen, D.: Kleene algebra with tests. Transactions on Programming Languages
and Systems 19(3) (May 1997) 427–443

8. Almeida, J.B., Moreira, N., Pereira, D., Melo de Sousa, S.: Partial derivative
automata formalized in Coq. In Domaratzki, M., Salomaa, K., eds.: CIAA 2010.
Number 6482 in LNCS, Springer-Verlag (2011) 59–68

9. Almeida, M., Moreira, N., Reis, R.: Antimirov and Mosses’s rewrite system revis-
ited. Int. J. Found. Comput. Sci. 20(4) (2009) 669–684

10. Antimirov, V.M., Mosses, P.D.: Rewriting extended regular expressions. In Rozen-
berg, G., Salomaa, A., eds.: DLT, World Scientific (1994) 195 – 209

11. Hopcroft, J., Karp, R.M.: A linear algorithm for testing equivalence of finite au-
tomata. Technical Report TR 71 -114, University of California, Berkeley, California
(1971)

12. Almeida, M., Moreira, N., Reis, R.: Testing regular languages equivalence. JALC
15(1/2) (2010) 7–25

13. Almeida, M.: Equivalence of regular languages: an algorithmic approach and
complexity analysis. PhD thesis, FCUP (2011) http://www.dcc.fc.up.pt/~mfa/
thesis.pdf.

14. Broda, S., Machiavelo, A., Moreira, N., Reis, R.: The average transition complexity
of Glushkov and partial derivative automata. In Mauri, G., Leporati, A., eds.: 15th
DLT 2011 Proc. Volume 6795 of LNCS., Springer (2011) 93–104

15. Braibant, T., Pous, D.: An efficient Coq tactic for deciding Kleene algebras. In:
Proc. 1st ITP. Volume 6172 of LNCS., Springer (2010) 163–178

16. Kozen, D.: A completeness theorem for Kleene algebras and the algebra of regular
events. Infor. and Comput. 110(2) (May 1994) 366–390

17. Coquand, T., Siles, V.: A decision procedure for regular expression equivalence
in type theory. In Jouannaud, J.P., Shao, Z., eds.: CPP 2011, Kenting, Taiwan,
December 7-9, 2011. Number 7086 in LNCS, Springer-Verlag 119–134

18. Brzozowski, J.A.: Derivatives of regular expressions. JACM 11(4) (1964) 481–494
19. Krauss, A., Nipkow, T.: Proof pearl: Regular expression equivalence and relation

algebra. Journal of Automated Reasoning (2011) Published online.
20. Rutten, J.J.M.M.: Automata and coinduction (an exercise in coalgebra). In San-

giorgi, D., de Simone, R., eds.: CONCUR. Volume 1466 of LNCS., Springer (1998)
194–218

21. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL — A Proof Assistant for
Higher-Order Logic. Volume 2283 of LNCS. Springer (2002)

22. Komendantsky, V.: Reflexive toolbox for regular expression matching: verification
of functional programs in Coq+Ssreflect. In Claessen, K., Swamy, N., eds.: PLPV,
ACM (2012) 61–70

23. Komendantsky, V.: Computable partial derivatives of regular expressions. http:
//www.cs.st-andrews.ac.uk/~vk/papers.html

24. Mirkin, B.: An algorithm for constructing a base in a language of regular expres-
sions. Engineering Cybernetics 5 (1966) 110–116

25. Asperti, A.: A compact proof of decidability for regular expression equivalence. In
Beringer, L., Felty, A., eds.: Third International Conference, ITP 2012, Princeton,
NJ, USA, August 13-15, 2012. Number 7406 in LNCS, Springer-Verlag

26. Moreira, N., Pereira, D., Melo de Sousa, S.: Deciding KAT terms equivalence in
Coq. Technical Report DCC-2012-04, DCC-FC & LIACC, Universidade do Porto
(2012)

27. Hopcroft, J., Motwani, R., Ullman, J.D.: Introduction to Automata Theory, Lan-
guages and Computation. Addison Wesley (2000)

28. Champarnaud, J.M., Ziadi, D.: From Mirkin’s prebases to Antimirov’s word partial
derivatives. Fundam. Inform. 45(3) (2001) 195–205

29. Moreira, N., Pereira, D., Melo de Sousa, S.: Source code of the formalization.
http://www.liacc.up.pt/~kat/equivP.tgz

30. Paulin-Mohring, C.: Inductive definitions in the system Coq: Rules and proper-
ties. Proceedings of the International Conference on Typed Lambda Calculi and
Applications 664 (1993) 328–345

31. The Coq Development Team. http://coq.inria.fr
32. Lescuyer, S.: First-class containers in coq. Studia Informatica Universalis 9(1)

(2011) 87–127
33. Barthe, G., Courtieu, P.: Efficient reasoning about executable specifications in

Coq. In Carreño, V., Muñoz, C., Tahar, S., eds.: TPHOLs. Volume 2410 of LNCS.,
Springer (2002) 31–46

34. Almeida, A., Almeida, M., Alves, J., Moreira, N., Reis, R.: FAdo and GUItar:
tools for automata manipulation and visualization. In Maneth, S., ed.: Proc. 14th
CIAA’09. Volume 5642. (2009) 65–74

35. Kozen, D.: On Hoare logic and Kleene algebra with tests. ACM Transactions on
Computational Logic (TOCL) 1(1) (2000) 60–76

