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Abstract. We contribute new relations to the taxonomy of different
conversions from regular expressions to equivalent finite automata. In
particular, we are interested in ordinary transformations that construct
automata such as, the follow automaton, the partial derivative automa-
ton, the prefix automaton, the automata based on pointed expressions
recently introduced and studied, and last but not least the position,
or Glushkov automaton (APOS), and their double reversed construction
counterparts. We deepen the understanding of these constructions and
show that with the artefacts used to construct the Glushkov automa-
ton one is able to capture most of them. As a byproduct we define a
dual version A←−−

POS
of the position automaton which plays a similar role

as APOS but now for the reverse expression. It turns out that although
the conversion of regular expressions and reversal of regular expressions
to finite automata seems quite similar, there are significant differences.

1 Introduction

It is well known that regular expressions define exactly the same languages as
deterministic or nondeterministic finite automata. The conversion between these
representations has been intensively studied for more than half a century—see,
e.g., Gruber and Holzer [11] for a recent survey on this subject w.r.t. descrip-
tional complexity. There are a few classical algorithms and variants thereof for
converting finite automata into equivalent regular expressions and as shown
in [17] all these approaches are more or less reformulations of the same un-
derlying algorithmic idea, and they yield (almost) the same regular expressions.
For the converse transformation, that is, the conversion of regular expressions
into equivalent finite automata, the situation is much more diverse, since the
algorithmic underlying ideas already are different. Nevertheless, for some of the
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algorithms the constructed automata can still be related to each other by de-
terminisation and/or quotients w.r.t. equivalence relations. For instance, by Ilie
and Yu [12] it was shown that for a regular expression α the follow automa-
ton AF(α) is isomorphic (') to the quotient of the position or Glushkov [10]
automaton APOS(α) w.r.t. the relation ≡F, that is, AF(α) ' APOS(α)/≡F. An-
other relation is that the determinisation of the position automaton APOS(α)
is the McNaughton and Yamada [14] automaton AMY(α), or in mathematical
notation D(APOS(α)) = AMY(α). From the variety of contructions from regular
expressions to equivalent finite automata these are only two examples where the
position automaton plays a central role.

We contribute further relations to the taxonomy of conversions from regu-
lar expressions to finite automata—see Figure 1 on page 11. Arrows, that are
displayed in bold in that figure correspond to new contributions in this pa-
per. Provenance of results that are not original is well indicated. Besides the
above mentioned follow automaton AF we also consider the partial derivative
automaton APD of Mirkin [15] and Antimirov [2], the prefix automaton APre

of Yamamoto [19], and contructions based on a recent approach of Asperti et
al. [3] and by Nipkow and Traytel [16] by pointed expressions that lead to the
mark after and mark before automata AMA and AMB, respectively. Pointed ex-
pressions are an alternative representation of sets of positions. For the follow
automaton AF we show that it can be directly computed from the expression by
labelling states not with positions but with their Follow sets and their finality, and
that the quotient of the determinised follow automaton w.r.t. a right-invariant
relation ≡s, which is a generalization of the ≡F-relation, leads to the mark
before automaton AMB. It is known that AMA is isomorphic to the Yamada-
McNaughton automaton AMY, which is proven to be the determinisation of the
prefix automaton APre. From AMA to AMB we present a homomorphism, show-
ing that AMA cannot be smaller than AMB—compare with [16].

When considering pointed expressions with only one point marking we ob-
tain the position automaton in case of the mark after interpretation, while the
other interpretation leads us to a dual version A←−−

POS
of the position automa-

ton. We show that the double reverse construction APOS(αR)R is isomorphic to
A←−−

POS
(α) and that the determinisation of A←−−

POS
(α) yields AMB(α). Our study

provides evidence that A←−−
POS

plays a similar role as APOS, but for the reverse

expression αR instead of the expression α. This is supported by the fact that
D(APOS(αR)R) is isomorphic to D(AF(αR)R) and D(APD(αR)R). It is worth
mentioning that the double reverse automata APre(α

R)R and its determinisa-
tion D(APre(α

R)R) get out of the line since the latter automaton turns out to
be not isomorphic to D(APOS(αR)R). This shows, that although the taxonomy
of “ordinary” conversions and double reversal conversions is quite similar, there
are subtle differences that break the symmetry. Most proofs of our results are
based on Glushkov’s position concept which turns out to be highly valuable and
can be used to describe automata constructions that look different at first sight,
not only for the implementation use but also from the theoretical perspective.
Due to space limitations, most proofs are omitted.
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2 Preliminaries

In this section we review some basic definitions about regular expressions and
finite automata and fix notation. Given an alphabet (finite set of letters or
alphabet symbols) Σ, the set RE of regular expressions, α, over Σ is defined
inductively by: ∅, ε and every letter σi is a regular expression, when α and α′

are regular expressions then (α+ α′), (α · α′), and (α?) are regular expressions.
The language associated to α is denoted by L(α) and defined as usual. The
alphabetic size |α|Σ is its number of letters. We denote the subset of Σ containing
the symbols that occur in α by Σα. We define ε(α) by ε(α) = ε if ε ∈ L(α),
and ε(α) = ∅ otherwise. By abuse of notation, we consider εS = S and ∅S = ∅,
for any set S. A nondeterministic finite automaton (NFA) is a five-tuple A =
〈Q,Σ, δ, I, F 〉 where Q is a finite set of states, Σ is a finite alphabet, I ⊆ Q is the
set of initial states, F ⊆ Q is the set of final states, and δ : Q× (Σ ∪ {ε})→ 2Q

is the transition function. We consider the size of an NFA as its number of
states. An NFA that has transitions labelled with ε is an ε-NFA. In this paper,
excepted when explicitly mentioned, we will consider NFAs without ε transitions.
The transition function can be extended to words and to sets of states in the
natural way. When I = {q0}, we use I = q0. We define the finality function ε
on Q by ε(q) = ε if q ∈ F and ε(q) = ∅, otherwise. For S ⊆ Q we have ε(S) = ε
iff there is some state q ∈ S with ε(q) = ε, and ε(S) = ∅ otherwise. An NFA
accepting a non-empty language is trim if every state is accessible from an initial
state and every state leads to a final state. The language accepted by A is L(A)
= {w ∈ Σ? | δ(I, w) ∩ F 6= ∅ }. Two automata are equivalent if they accept the
same language. If two automata A and B are isomorphic, we write A ' B.

An NFA is deterministic (DFA) if |δ(q, σ)| ≤ 1, for all (q, σ) ∈ Q × Σ, and
|I| = 1. In this case, we simply write δ(p, a) = q instead of δ(p, a) = {q}. We can
convert an NFA A into an equivalent DFA D(A) by the determinisation opera-
tion D, using the well-known subset construction, where only subsets reachable
from the initial subset of D(A) are used. Formally, D(A) = 〈QD, Σ, δD, ID, FD〉,
where QD ⊆ 2Q, ID = I, δD(S, σ) =

⋃
q∈S δ(q, σ) for S ⊆ Q, σ ∈ Σ, and

FD = {S ∈ QD | S ∩ F 6= ∅ }. Note that S ∈ FD if and only if ε(S) = ε.

An equivalence relation ≡ on Q is right invariant w.r.t. an NFA A if and only
if: ≡ ⊆ (Q − F )2 ∪ F 2; and ∀p, q ∈ Q, σ ∈ Σ, if p≡ q, then ∀p′ ∈ δ(p, σ) ∃q′ ∈
δ(q, σ) such that p′≡ q′. Given a set of states S ⊆ Q, we denote S/≡ = { [q] |
q ∈ S }. Note that p≡ q implies δ(p, σ)/≡ = δ(q, σ)/≡ , for p, q ∈ Q and
σ ∈ Σ. Furthermore, if A is deterministic, then p≡ q implies δ(p, σ)≡ δ(q, σ).
If ≡ is a right-invariant relation on Q, the quotient automaton A/≡ is given by
A/≡ = 〈Q/≡ , Σ, δ/≡ , [q0], F/≡〉, where δ/≡ ([p], σ) = { [q] | q ∈ δ(p, σ) } =
δ(p, σ)/≡ . It is easy to see that L (A/≡ ) = L(A). Given a right-invariant rela-
tion ≡ w.r.t. an NFA A, we can consider the natural extension of ≡ w.r.t. D(A),
where for X,Y ⊆ 2Q we have X ≡Y if and only if X/≡ = Y/≡ . The following
lemma relates determinisation with these right-invariant relations.

Lemma 1. D (A/≡ ) = D(A)/≡ , if ≡ is a right-invariant relation w.r.t. A.
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3 The Position Automaton and “the Rest”

In this section we recall the definition of the position automaton and several re-
lated automata constructions. In particular, the determinisation of the position
automaton, some ε-NFAs, derivative based constructions and the follow automa-
ton are considered. We show that the latter can be obtained directly from the
regular expression.

To decide if a word is represented by a regular expression, one can scan the
symbols of the regular expression in a specific way. For instance, given α =
a(bb+ aba)?b the word abbabab can be obtained by scanning the first a, the two
consecutive bs and then the second a, the third b, the third a, and the last b.
This illustrates that uniquely identifying each letter of a regular expression is
important for word recognition. Formally, given α ∈ RE, one can mark each
occurrence of a letter σ with its position in α, considering reading it from left
to right. The resulting regular expression is a marked regular expression α with
all symbols distinct and over the alphabet Σα. Then, a position i ∈ [1, |α|Σ ]
corresponds to the symbol σi in α, and consequently to exactly one occurrence
of σ in α. For instance, α = a1(b2b3 + a4b5a6)?b7. The same notation is used for
unmarking, α = α. Let Pos(α) = {1, 2, . . . , |α|Σ}, and Pos0(α) = Pos(α) ∪ {0}.

Positions were used by Glushkov [10] to define an NFA equivalent to α,
usually called the position automaton or Glushkov automaton (APOS(α)). Each
state of the automaton, except for the initial state, corresponds to a position and
there exists a transition from a position i to position j by a letter σ such that
σj = σ, if σi can be followed by σj in some word represented by α. More formally
this reads as follows: the sets characterising the positions that can begin, end
or be followed in words of L(α) are, First(α) = { i | σiw ∈ L(α) }, Last(α) =
{ i | wσi ∈ L(α) }, and Follow(α) = { (i, j) | u σiσjv ∈ L(α) } respectively. We
also define Last0(α) = Last(α) ∪ ε(α){0}. Furthermore, given i ∈ Pos(α) and
S ∈ 2Pos0(α), let Follow(α, i) = { j | (i, j) ∈ Follow(α) }, Follow(α, 0) = First(α)
and Follow(α, S) =

⋃
i∈S Follow(α, i). The position automaton for α is

APOS(α) = 〈Pos0(α), Σ, δPOS, 0, Last0(α)〉,

where δPOS(i, σ) = { j | j ∈ Follow(α, i) and σ = σj }.

Proposition 2 ([10]). L(APOS(α)) = L(α).

The following example gives some intuition on the construction of the position
automaton and its behaviour. Note that ε(0) = ε(α), and we will use either one
or the other as it will be more convenient.

Example 3. Consider α = (b + ab)? + b? with α = (b1 + a2b3)? + b?4. Then,
First(α) = {1, 2, 4}, Last0(α) = {0, 1, 3, 4} and Follow(α) = {(1, 1), (1, 2), (2, 3),
(3, 1), (3, 2), (4, 4)}. The position automaton APOS for α is depicted below.
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Note that each state, different from 0, in the position automaton corresponds
to a symbol σi in α, where σ is the symbol just read. Thus, one can define
a function Select that selects from a set of positions S ⊆ Pos(α), those that
correspond to a given letter, i.e., Select : 2Pos(α) ×Σ → 2Pos(α) defined is by

Select(S, σ) = { i | i ∈ S and σi = σ }.

Then, δPOS can be defined by composing Follow with Select, i.e.,

δPOS(i, σ) = Select(Follow(α, i), σ). (1)

The same notion3 was used by McNaughton and Yamada [14] to define an
automaton which corresponds to the determinisation of the position automaton.
With the definition of δPOS in (1) and considering the determinisation algorithm,
the McNaughton and Yamada DFA can be defined as

AMY(α) = D(APOS(α)) = 〈QMY, Σ, δMY, {0}, FMY〉,

where QMY ⊆ 2Pos0(α), FMY = {S ∈ QMY | ε(S) = ε } and for S ∈ 2Pos(α) and
σ ∈ Σ, δMY(S, σ) = Select(Follow(α, S), σ).

Proposition 4 ([14]). L(AMY(α)) = L(α).

Example 5. Applying the McNaughton-Yamada construction to α from Exam-
ple 3, we obtain the following DFA, AMY(α):

{0} {2}

{1, 4}

{3}

{1}

a

b

b

a

b

ba

a
b ut

In the forthcoming we review the Thompson like construction of the follow
automaton AF, which was introduced by Ilie and Yu in [12]. We show that
one can directly construct this automaton by an appropriate state labeling in-
spired by the position automaton APOS. Then we recall some constructions of
automata from regular expressions based on derivatives and variants, such as,
e.g., Brzozowski’s construction by derivatives and the construction of Mirkin [15]
and Antimirov [2] by partial derivatives. Here we focus on known results char-
acterizing these automata as quotients of the position automaton.

3 Some authors use slightly different notions of marking [8, 14], which have in common
that each symbol in the marked expression corresponds to exactly one occurrence of
a symbol in the original expression.
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3.1 The Follow Automaton AF

The most used conversion from regular expressions to equivalent ε-NFAs is the
Thompson conversion [18], Aε-T. An improved use of ε-transitions lead to the
definition of the ε-follow automaton [12]. From a Thompson automaton, if ε-
transitions are eliminated in an adequate manner, the position automaton is
obtained [1, 9]. Eliminating ε-transitions from the ε-follow automaton, the re-
sulting automaton is the follow automaton AF(α) which was introduced by Ilie
and Yu [12] in 2003.

Proposition 6 ([12]). L(AF(α)) = L(α).

They also showed that the follow automaton is a quotient of the position
automaton, obtained by identifying positions with the same Follow set. For in-
stance, in the position automaton of Example 3, one can see that Follow(α, 1) =
Follow(α, 3) = {1, 2}, and that 1 and 3 are both accepting states. Formally, Ilie
and Yu considered the right-invariant equivalence relation ≡F defined on the set
of states Pos0(α), w.r.t. APOS(α), by

i ≡F j ⇔ Follow(α, i) = Follow(α, j) and ε(i) = ε(j),

and showed that AF(α) ' APOS(α)�≡F
.

We show that AF(α) can be directly computed from α, by labelling states
not with positions i ∈ Pos0(α), but with their Follow sets and their finality. Let

AF(α) = 〈F(α), Σ, δF, (Follow(α, 0), ε(0)), FF〉,

where F(α) = { (Follow(α, i), ε(i)) | i ∈ Pos0(α) } ⊆ 2Pos(α) × {ε, ∅}, FF =
{ (S, c) ∈ F(α) | c = ε } and for (S, c) ∈ F(α) and σ ∈ Σ,

δF((S, c), σ) = { (Follow(α, j), ε(j)) | j ∈ Select(S, σ) }.

The transition function δF is defined as a composition of Select with Follow,
instead of Follow with Select as for δPOS (and δMY). It is necessary to include
the finality of a position in the label of the corresponding state, since there might
be positions with the same Follow, but different finalities. This can, for instance,
be observed in the automaton for α = a(b?c)?. With this definition of AF we
obtain an alternative proof of the result by Ilie and Yu.

Proposition 7. AF(α) ' APOS(α)/≡F.

Proof. Consider ϕF : Pos0(α)/≡F −→ F(α) defined by ϕF([i]) = (Follow(α, i), ε(i)).
By definition, ϕF is a bijection and preserves initial as well as final states. Fur-
thermore, for [i] ∈ Pos0(α)/≡F and σ ∈ Σ we have

ϕF(δPOS�≡F
([i], σ)) = ϕF({ [j] | j ∈ Select(Follow(α, i), σ) })

= { ϕF([j]) | j ∈ Select(Follow(α, i), σ) }
= δF((Follow(α, i), ε(i)), σ) = δF(ϕF([i]), σ).

This shows that ϕF is an isomorphism. ut
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3.2 Derivative Based Constructions

Brzozowski [5] defined a DFA equivalent to a regular expression using the no-
tion of derivative. The derivative of α ∈ RE w.r.t. σ ∈ Σ is σ−1α, such that
L(σ−1α) = {w | σw ∈ L(α)}. This notion can be extended to words: ε−1α = α
and (σw)−1α = w−1(σ−1α). The set of all derivatives of α, {w−1α | w ∈ Σ? }
may not be finite. For finiteness, Brzozowski considered the quotient of that set
modulo some regular expressions equivalences.

The partial derivative automaton APD(α) of a regular expression α was de-
fined independently by Mirkin [15] and Antimirov [2]. Champarnaud and Ziadi
stated the equivalence of the two formulations [6], and proved that APD is a
quotient of the APOS by a right-invariant relation (≡c) [7].

The prefix automaton APre was introduced by Yamamoto [19] as a quotient
of the Aε-T automaton. Maia et al. [13] characterised the APre automaton as a
solution of a system of left RE equations and express it as a quotient of APOS by
a left-invariant equivalence relation (≡`), i.e., a right-invariant relation w.r.t. the
reversal of APOS, cf. Section 5.

4 Automata Based on Pointed Expressions

Next we review two automata constructions, AMB and AMA, that are based on
recent approaches of Asperti et al. [3] and by Nipkow and Traytel [16] using
pointed expressions. In a pointed regular expression, several positions are se-
lected, and are graphically marked with a point corresponding to a letter. Those
automata correspond to two different interpretations of a pointed expression, i.e.,
of a given set of positions S: in the first case, given a letter σ one selects which
positions from S correspond to that letter and then determines which possible
positions can follow; in the second case the set of positions S corresponds to
where one can be after reading the letter σ. For instance, the pointed regular
expression a(•bb+•aba)?•b characterises the set of positions {2, 4, 7}. Intuitively,
these are the positions which have been reached after reading some prefix of an
input word. Asperti et al. thought that their algorithm “au point” computed
a DFA isomorphic to AMY(α), but Nipkow and Traytel [16] showed that their
construction led to a dual automaton and called it mark before, AMB, while AMY

was isomorphic to a mark after, AMA. Using the notation of the previous section,
a transition in AMA is a composition of Follow with Select similarly as described
in (1), while in AMB it will be a composition of Select with Follow. Because of
the behaviour of the transition function δMY of AMY(α), Nipkow and Traytel
called this construction mark after (AMA(α)).

In this section, we show that the AMB is isomorphic to a quotient of the
determinisation of AF, and as a corollary it follows that AMA (AMY) cannot be
smaller than AMB (as already stated by Nipkow and Traytel). Moreover, we also
consider the case, where one restricts pointed regular expressions with only one
point marking a position. Obviously, the mark after automaton of single pointed
expressions is related to the position automaton.
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4.1 The Automaton AMB Versus D(AF)

As mentioned above, Asperti et al. introduced the notion of pointed regular
expression in order to obtain a compact representation of a set of positions.
However, a point was used to mark a position to be visited when reading a letter
instead of a position reached after reading the letter, as is the case for APOS

and AMA. The resulting construction was called mark before, AMB, by Nipkow
and Traytel. In our framework, this means that δMB is a composition of Follow
with Select. Formally, given α ∈ RE, let

AMB(α) = 〈QMB, Σ, δMB, (Follow(α, 0), ε(0)), FMB〉,

where QMB ⊆ 2Pos(α) × {∅, ε}, and for (S, c) ∈ QMB and σ ∈ Σ,

δMB((S, c), σ) = (Follow(α,Select(S, σ)), ε(Select(S, σ))),

and FMB = { (S, c) | c = ε }. In QMB we consider only the states that are
accessible from the initial state by δMB.

Proposition 8 ([3, 16]). L(AMB(α)) = L(α).

Example 9. Consider again the regular expression α from Example 3. TheAMB(α)
DFA is depicted below.

{1, 2, 4} {3} {1, 2}

b

a b

a

b

Note that the first state label is the set First(α), and one can see that two states
are saved when comparing with AMA, in Example 5. ut

One could expect that the AMB construction was isomorphic to the determin-
isation of AF. But we will see that in general that is not the case. The determin-
isation of AF, D(AF(α)) = 〈QD(AF), Σ, {(Follow(α, 0), ε(0))}, δD(AF), FD(AF)〉,
can be obtained by the subset construction.

Example 10. Considering again the regular expression α from Example 3, the
AF(α) and D(AF(α)) are respectively:

{1, 2, 4}

{1, 2}

{3}

{4}

b

b

a

a

b

b

b

{{1, 2, 4}} {{3}}

{{1, 2}, {4}}

{{1, 2}}

a

b

b

a

b

b

a

It is clear that D(AF(α)) is not isomorphic to AMB(α) (see Example 9). How-
ever if one merges the states labeled by {({1, 2, 4}, ε)} and {({1, 2}, ε), ({4}, ε)}
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in D(AF(α)), the DFA AMB(α) is obtained. Next we prove that if certain sets
of sets in the determinisation of AF are flattened the resulting automaton is
isomorphic to AMB. ut

Let ≡s be the equivalence relation on 2F(α) defined by,

I ≡s J ⇔
⋃

(S, )∈I

S =
⋃

(S, )∈J

S and ε(I) = ε(J).

Proposition 11. L (D(AF(α))/≡s) = L(D(AF(α))).

Proposition 12. D(AF(α))/≡s ' AMB(α).

Nipkow and Traytel presented a homomorphism from AMA to AMB, showing
that AMA cannot be smaller than AMB. The same result is a direct corollary of
the above results.

Corollary 13. Let ϕF be defined as in the proof of Proposition 7. Then we have
ϕF (D (APOS(α)/≡F))/≡s = ϕF (D(APOS(α))/≡F)/≡s ' AMB(α).

Example 14. Considering AMY (AMA) from Example 5, we have {1} ≡F {3},
since [1]≡F

= [3]≡F
. Furthermore,

ϕF({[0]≡F}) = {({1, 2, 4}, ε)} ≡s {({1, 2}, ε), ({4}, ε)} = ϕF({[1]≡F , [4]≡F}). ut

4.2 The Dual Position Automaton

If one considers pointed regular expressions with only one point marking a posi-
tion to be visited when reading a letter, an NFA, dual of APOS (A←−−

POS
), can be

defined. We show that its determinisation yields AMB. Given a regular expres-
sion α, with n = |α|Σ = |Pos(α)|, the set of states of A←−−

POS
is Pos(α) plus an

unique final state n + 1. The set of initial states is Follow(α, 0) ∪ ε(α){n + 1}.
From a state i ∈ Pos(α) reading σ ∈ Σ one can move to Follow(α, i) if σi = σ.
That is, by first selecting Select({i}, σ) which is i if σi = σ, and empty otherwise,
and then applying Follow. Moreover, if ε(i) = ε there is a transition to n + 1.
Formally,

A←−−
POS

(α) = 〈Pos(α) ∪ {n+ 1}, Σ, δ←−−
POS

,Follow(α, 0) ∪ ε(α){n+ 1}, {n+ 1}〉,

with δ←−−
POS

(i, σ) = Follow(α,Select({i}, σ))∪ ε(Select({i}, σ)){n+ 1}. This means
that δ←−−

POS
(i, σ) = Follow(α, i)∪ ε(i){n+ 1}, only if i ∈ Pos(α) and σi = σ, being

the empty set otherwise.

Example 15. Considering again the regular expression α from Example 3, the
A←−−

POS
(α) is the following:

1

2 3 5

4

b

b

b

a

b

b

b
b

b
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Observe that for each state of A←−−
POS

all transitions leaving it have the same
label. This is exactly the opposite of the position automaton APOS, where for
each state all transitions into it have the same label.

Proposition 16. D(A←−−
POS

(α)) ' AMB(α).

5 Reversals and Automata Constructions

Given a language L the reversal of L, LR, is the language obtained by reversing
all the words in L. The reversal of a regular expression α is denoted by αR, and is
inductively defined by: αR = α for α ∈ Σ∪{ε, ∅}, (α+β)R = βR +αR, (αβ)R =
βRαR and (α?)R = (αR)?. The reversal αR describes L(α)R. In the same way,
given an automaton A = 〈Q,Σ, δ, I, F 〉 its reversal is AR = 〈Q,Σ, δR, F, I〉,
where δR(q, σ) = { p | q ∈ δ(p, σ) } and L(AR) = L(A)R.

Given α, any of the automata constructions in the previous sections can
be applied to αR. If one reverses the resulting automaton, an alternative au-
tomaton construction for L(α) is obtained. In this section we establish some
relations between the direct constructions and the double reversed ones. We
show that APOS(αR)R ' A←−−

POS
. We also show that determinising any quotient of

APOS(αR)R by a right-invariant relation is the same as determinisingAPOS(αR)R

and thus, by Proposition 16, the resulting automata are all isomorphic to AMB.
The same does not hold if one considers quotients by a left-invariant relation,
and we illustrate that with the APre construction.

Our first result on reversals of expressions and automata reads as follows:

Proposition 17. APOS(αR)R ' A←−−
POS

(α).

For the position automaton several quotients were presented in Section 3
for which different DFAs could be obtained by determinisation. For the dual
construction, A←−−

POS
, the determinisation of any quotient by a right-invariant

relation is isomorphic to AMB. The following simple lemma explains the reason.

Lemma 18. Let A be a trim NFA and consider ≡ a right-invariant relation
w.r.t. A. Then, D(AR/≡) = D(AR).

This result has direct consequences for all constructions, that can be obtained
as a quotient of the position automaton by some right-invariant relation. In
particular, we have

Proposition 19. D(APOS(αR)R) ' D(APD(αR)R) ' D(AF(αR)R) ' AMB(α).

Note that Lemma 18 does not hold for left-invariant relations. In particular,
one can consider the APre construction mentioned in Section 3.2.

Proposition 20. For α = a? + (a+ b)a?, D(APre(α
R)R) 6' D(APOS(αR)R).

However, Lemma 18 also implies that if a relation ≡ is a left-invariant equiv-
alence relation w.r.t an NFA A then D(A/≡) = D(A). In particular, the deter-
minisation of APre is isomorphic to the determinisation of APOS, i.e., AMY.

Proposition 21. D(APre(α)) ' AMY(α).
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Fig. 1. Taxonomy of conversions from regular expressions to finite automata. Bold
arrows correspond to relations studied in this work. Here X may be any construction
that yields a DFA.

6 Taxonomy

In Figure 1 the relations between the different automata are graphically repre-
sented. The two top nodes correspond to regular expressions. Each other node
corresponds to a particular automaton, up to isomorphism, and edges between
two nodes represent transformation algorithms, such as epsilon elimination (ε)
determinisation (D), reversal (R), quotient by some equivalence relation, or a
specific construction. Edges in bold correspond to contributions in this paper.
Different nodes represent objects for which there is some witness that distin-
guishes them. The relation between D(APD(α)) and AB(α) was obtained by
Nipkow and Traytel, and the ones between AB(α) and AMB(α) were obtained
by Asperti et al.. The resulting automaton (between AB(α) and AMB(α) in the
diagram) is the only one for which we do not have witnesses distinguishing it
from the others. Brzozowski [4] showed that for a trim NFA A, D(A) is min-
imal if AR is deterministic. Consequently, one obtains the nice property that,
whenever X(α) is a deterministic automaton, for instance AMB and AMA, then
D(X(αR)R) is the minimal DFA for L(α). Experimental results suggest that
AMB(α) is never larger than D(APD(α)), so that should be investigated in fu-
ture work.
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