
1

Location Automata for Regular Expressions with
Shuffle and Intersection

Sabine Broda a, António Machiavelo a, Nelma Moreira a,∗, Rogério
Reis a

aCMUP & DM-DCC, Faculdade de Ciências da Universidade do Porto, Rua do Campo
Alegre, 4169-007, Porto, Portugal

Abstract

We define the notion of location for regular expressions with shuffle by extending
the notion of position in standard regular expressions. Locations allow for the
definition of the sets Follow, First, and Last with their usual semantics. From
these, we construct an automaton for regular expressions with shuffle (APOS),
which generalises the standard position/Glushkov automaton. The sets men-
tioned above are also the foundation for other constructions, such as the Follow
automaton, and automata based on pointed expressions. As a consequence,
all these constructions can now be directly generalised to regular expressions
with shuffle, as well as their known relationships. Furthermore, we show that
the partial derivative automaton (APD) is a right-quotient of the new position
automaton, APOS. In a previous work, an automaton construction based on po-
sitions was studied (A∂pos), and here we relate APOS and A∂pos. We extend the
construction of the prefix automaton APre to the shuffle operator and show that
it is not a quotient of APOS. The position automaton has been generalised for
regular expressions with the intersection operator. Here we show that locations
can be used to define the same automaton. Shuffle and intersection can be seen
as two extreme cases of concurrency, namely pure interleaving and strict syn-
chronisation. Locations provide a unified framework that will allow, not only to
define position based automata constructions for these two operators, but also
for other operators expressing intermediate kinds of concurrency.

Keywords: Regular Expressions, Position Automaton, Locations, Shuffle,
Intersection

!This is a completely revised and expanded version of a paper presented 15th International
Conference, LATA 2021, Milan, Italy, March 1–5, 2021 [1]

!!This work was partially supported by CMUP, which is financed by national funds through
FCT – Fundação para a Ciência e a Tecnologia, I.P., under the project with reference
UIDB/00144/2021.

∗Corresponding author

Email addresses: sabine.broda@fc.up.pt (Sabine Broda),

antonio.machiavelo@fc.up.pt (António Machiavelo), nelma.moreira@fc.up.pt (Nelma

Moreira), rogerio.reis@fc.up.pt (Rogério Reis)

Preprint submitted to Elsevier December 14, 2022

https://orcid.org/0000-0002-3798-9348
https://orcid.org/0000-0002-7595-7275
https://orcid.org/0000-0003-0861-0105
https://orcid.org/0000-0001-9668-0917
https://orcid.org/0000-0002-3798-9348
https://orcid.org/0000-0002-7595-7275
https://orcid.org/0000-0003-0861-0105
https://orcid.org/0000-0001-9668-0917

1. Introduction

Regular expressions with shuffle provide succinct representations for mod-
elling concurrent systems [2, 3] or schema languages [4, 5]. Recently, sev-
eral automata constructions for expressions with shuffle operators were con-
sidered [6, 7, 8]. For the standard interleaving shuffle operator (), Broda et
al. [6] defined the partial derivative automaton (APD) and a position automaton
(A∂pos), showing that APD is a right-quotient of A∂pos. For standard regular
expressions there is a one-to-one correspondence between non initial states in
the position/Glushkov automaton [9] and occurrences of letters (positions) in
the expression. This is no longer true for A∂pos. Moreover, unlike most con-
structions of position automata, the definition of A∂pos did not rely on the sets
First, Last, and Follow [6]. The former two sets characterise the positions of let-
ters that can, respectively, begin or end words of the language; while the latter
contains, for each position of a letter, the positions of letters that can follow
that position in words of the language. In order to define these sets for ex-
pressions containing the shuffle operator, we introduce novel and more complex
structures of positions, which we call locations. Locations are defined in such
a way that, given an expression with nested shuffles, it allows to specify how
far a word has advanced in each of the components (shuffles) of the expression.
Each location in First corresponds to a position of a letter that can begin a word
in the language. The positions that appear in a location in Last are the ones
that can end a word. In the same way, the members of Follow represent pairs of
positions of letters in which the second letter follows the first one in some word
of the language. From these sets, using locations, the definition of this position
automaton APOS is similar to the usual one: each location is the label of a state,
and the incoming transitions of a state are labelled with letters corresponding
to positions in that location.

This new construction is presented in Section 3, where an upper bound for
the number of states of APOS in the worst case is given. In Section 4 it is
shown that the partial derivative automaton APD is a right-quotient of APOS.
A comparison of APOS and A∂pos is considered in Section 5, where their average
number of states is discussed. Restricted to expressions without shuffle, both
constructions coincide with the standard position automaton. The same holds
for APD [10]. Thus, the proofs in Section 4 are alternatives to show that,
for standard regular expressions, APD is a quotient of APOS. In Section 6 a
generalization for the construction of the prefix automaton APre [11, 12] to the
shuffle operator is presented, and it is shown that APre is not a quotient of
APOS. Some experimental results comparing the sizes of these constructions
are also reported.

The sets First, Last, and Follow are also the base for other constructions,
such as the Follow automaton [13], as well as (deterministic) automata based
on pointed expressions [14, 15, 16]. As a consequence, it is now straightforward
to extend those constructions to expressions with shuffle, solving a problem

3

stated by Asperti et al. [14]. Moreover, the known relationships between those
constructions [16] extend to expressions with shuffle. The resulting taxonomy
is presented in Section 7.

Language intersection can model strict synchronisation of concurrent sys-
tems. In Section 8 it is shown that locations can be used to define the position
automaton for regular expressions with intersection introduced by Broda et
al. [17, 1]. In this way, locations allow to obtain a uniform position based au-
tomaton construction for regular expressions with both shuffle and intersection
operators, and which can be extended to other concurrency operators.

In this paper we revise and present the full proofs of many results that
appeared in [1]. Subsection 5.1, Subsection 6.1, and Section 8 are new. Section 7
is substantially expanded and now includes more examples.

2. Preliminaries

The set of standard regular expressions over an alphabet Σ, denoted by RE,
contains ∅ plus all terms generated by the grammar

α → ε | σ | (α+ α) | (α · α) | α" (σ ∈ Σ). (1)

Note that most of the time the concatenation operator · is omitted. The language
associated with an expression α ∈ RE is denoted by L(α) and is inductively
defined as follows for α,β ∈ RE: L(∅) = ∅, L(ε) = {ε}, L(σ) = {σ}, L(α+β) =
L(α)∪L(β), L(α · β) = L(α)L(β) = {wv | w ∈ L(α)∧ v ∈ L(β) }, and L(α") =
L(α)" =

!
n∈N(L(α)n). The empty word is denoted by ε. We define ε(α) by

ε(α) = ε if ε ∈ L(α), and ε(α) = ∅ otherwise. Given a set of expressions S, the
language associated with S is L(S) =

!
α∈S L(α). Moreover, we consider εS =

Sε = S and ∅S = S∅ = ∅, for any set S of expressions (or other objects). The
alphabetic size |α|Σ is its number of letters. We denote the subset of Σ containing
the symbols that occur in α by Σα. A nondeterministic finite automaton (NFA)
is a quintuple A = 〈Q,Σ, δ, I, F 〉 where Q is a finite set of states, Σ is a finite
alphabet, I ⊆ Q is the set of initial states, F ⊆ Q is the set of final states,
and δ : Q × Σ → 2Q is the transition function. If |I| = 1 and |δ(q,σ)| ≤ 1, for
all q ∈ Q,σ ∈ Σ, A is deterministic (DFA). The language of A is denoted by
L(A) and two automata are equivalent if they have the same language. Given
an automaton A = 〈Q,Σ, δ, I, F 〉 its reversal is AR = 〈Q,Σ, δR, F, I〉, where
δR(q,σ) = { p | q ∈ δ(p,σ) }, and L(AR) = L(A)R, which is the language
obtained by reversing the words in L(A). Two automata A1 = 〈Q1,Σ, δ1, I1, F1〉
and A2 = 〈Q2,Σ, δ2, I2, F2〉 are isomorphic, A1 ≃ A2, if there is a bijection ϕ :
Q1 −→ Q2 such that ϕ(I1) = I2, ϕ(F1) = F2, and ϕ(δ1(q1,σ)) = δ2(ϕ(q1),σ),
for all q1 ∈ Q1, σ ∈ Σ. An equivalence relation ≡ defined on the set of states
Q is right-invariant w.r.t. A if and only if ≡ ⊆ (Q \F)2 ∪F 2 and if p≡ q, then
∀σ ∈ Σ, p′ ∈ δ(p,σ), ∃q′ ∈ δ(q,σ) such that p′ ≡ q′, for all p, q ∈ Q. If ≡ is
a right-invariant relation on Q, the right-quotient automaton A/≡ is given by
A/≡ = 〈Q/≡ ,Σ, δ/≡ , I/≡ , F/≡〉, where δ/≡ ([p],σ) = { [q] | q ∈ δ(p,σ) }.
Then, L (A/≡) = L(A). An equivalence relation on Q is left-invariant w.r.t. A
if it is right-invariant w.r.t. AR.

4

The Position Automaton. Given α ∈ RE, one can mark each occurrence of
a letter σ with its position in α, reading it from left to right. The resulting
regular expression is a marked regular expression α with all letters occurring
only once (linear) and belonging to Σα. Each position i ∈ [1, |α|Σ] corresponds
to the symbol σi in α, and thus to exactly one occurrence of σ in α. For
instance, if α = a(bb + aba)"b, then α = a1(b2b3 + a4b5a6)

"b7. The same
notation is used for unmarking, α = α. Let Pos(α) = {1, 2, . . . , |α|Σ}, and
Pos0(α) = Pos(α) ∪ {0}. Positions were used by Glushkov [9] to define an NFA
equivalent to α, usually called the position or Glushkov automaton, APOS(α).
Each state of the automaton, except for the initial one, corresponds to a position,
and there exists a transition from i to j by σ such that σj = σ, if σi can be
followed by σj in some word represented by α. The sets of positions that are
used to define the position automaton for a given α and i ∈ Pos(α), are

First(α) = { i | (∃w ∈ Σ"
α) (σiw ∈ L(α)) },

Last(α) = { i | (∃w ∈ Σ"
α) (wσi ∈ L(α)) },

Follow(α, i) = { j | (∃u, v ∈ Σ"
α) (uσiσjv ∈ L(α)) }.

For the sake of readability, whenever an expression α is not marked, we take
f(α) = f(α), for any function f ∈ {First,Follow, Last,Pos}, as well as for other
functions which we will define later (e.g. Loc, p2loc), that have marked expres-
sions as arguments. We define the position automaton using the approach in
Broda et. al [16], where the transition function is expressed as the composition
of functions Select and Follow. Given a letter σ and a set of positions S, the
function Select selects the subset of positions in S that correspond to letter σ.
Formally, given S ⊆ Pos(α) and σ ∈ Σ, let

Select(S,σ) = { i | i ∈ S ∧ σi = σ }.

Then, the position automaton for α is

APOS(α) = 〈Pos0(α),Σ, δPOS, 0, Last0(α)〉,

where Last0(α) = Last(α) ∪ ε(α){0} and δPOS(i,σ) = Select(Follow(α, i),σ), for
i ∈ Pos0(α) and σ ∈ Σ.

Regular Expressions with Shuffle. Given an alphabet Σ, the shuffle of two words
in Σ" is the finite set of words defined inductively as follows: x ε = ε x = {x}
and σx τy = {σz | z ∈ x τy } ∪ { τz | z ∈ σx y }, for x, y ∈ Σ",
and σ, τ ∈ Σ. This definition is extended to languages in the natural way by
L1 L2 =

!
x∈L1,y∈L2

x y. It is well known that is a regular operator.
One can, hence, extend regular expressions to include the operator. The set
of regular expressions with shuffle over Σ, R(), contains all the expressions of
RE generated by the grammar rules in (1) plus rule α → (α α). The language
represented by an expression α β is L(α β) = L(α) L(β).

5

3. A Location Based Position Automaton

In this section we define a new construction for a position automaton for
expressions with shuffle, which is based on the sets First, Last, and Follow. In
order to define those sets for expressions containing the shuffle operator, we
need to consider more complex structures, which we call locations. Locations
are defined in such a way that, given an expression with nested shuffles, it allows
to specify how far a word has advanced in each of the components (shuffles) of
this expression. More precisely, when we enter a shuffle, we need to know not
only one position, but two, since we need to know where we are in the two
subwords that are are actually shuffled right now. Due to nesting of shuffles,
this means that we have to store a tree of positions, which is illustrated in the
following example.

Example 1. Consider α = (a"b cd)" (ac)" and α = (a"1b2 c3d4)
" (a5c6)

".
We have a1a1b2 ∈ L(a"1b2), c3d4 ∈ L(c3d4) and consequently a1a1c3d4b2 ∈
L((a"1b2 c3d4)

"). Since a5c6 ∈ L((a5c6)"), we conclude that w = a1a5a1c3d4c6b2
∈ (a1a1c3d4b2 a5c6) ⊆ L(α). When processing w in an automaton, and after
reading the prefix a1a5a1c3d4, one has to know that in the different shuffle com-
ponents the last letters read are respectively a1, d4, and a5. This information
will be stored in the location ((1, 4), 5). On the other hand, reading the prefix
a1a5 should lead to the location ((1, 0), 5), where 0 indicates that the right side
of the first shuffle has not been entered yet.

Formally, given α ∈ R(), the set of locations Loc(α) = Loc(α), is induc-
tively defined on the structure of the expression α as follows.

Loc(ε) = ∅, Loc(σi) = {i}, Loc(α") = Loc(α),

Loc(α1 + α2) = Loc(α1α2) = Loc(α1) ∪ Loc(α2),

Loc(α1 α2) = Loc(α1)× Loc(α2) ∪ Loc(α1)× {0} ∪ {0}× Loc(α2).

(2)

Note that each location p in α is either a position i ∈ Pos(α), or of the form
(0, p2), (p1, 0), or (p1, p2), where p1, p2 are also locations in α. As such, each
location corresponds to a complete binary tree.

The set of positions in a location p, l2pos(p), is defined inductively by

l2pos(i) = {i},
l2pos((0, p)) = l2pos((p, 0)) = l2pos(p),

l2pos((p1, p2)) = l2pos(p1) ∪ l2pos(p2).

Note that for p ∈ Loc(α1 ◦ α2), where ◦ ∈ {+, ·}, one has either l2pos(p) ⊆
Pos(α1) or l2pos(p) ⊆ Pos(α2).

Example 2. For α = (a"b cd)" (ac)" and α = (a"1b2 c3d4)
" (a5c6)

",

Loc((a"b cd)") ={(1, 0), (2, 0), (0, 3), (0, 4), (1, 3), (1, 4), (2, 3), (2, 4)}
Loc((ac)") ={5, 6}

Loc(α) = { ((0, 3), n), ((0, 4), n), ((1, 0), n), ((2, 0), n), (0, 5), (0, 6),
((1, 3), n), ((2, 3), n), ((1, 4), n), ((2, 4), n) | n = 0, 5, 6 },

6

with l2pos(((2, 3), 0)) = {2, 3}, and l2pos(((2, 3), 5)) = {2, 3, 5}. For instance,
the location ((2, 3), 5) corresponds to words for which the last letters read in the
subexpressions a"b, cd, and (ac)", are respectively b, c, and a. This example
also illustrates that the locations of an expression often contain elements of
different signature. In this case we have for instance (0, 5), ((2, 3), 6) ∈ Loc(α).
Furthermore, considering the expression αa we have Loc(αa) = Loc(α) ∪ {7},
which contains the locations 7, (0, 5) and ((2, 3), 6).

In the following, we show that the function l2pos : Loc(α) −→ 2Pos(α) is
injective. First note that, for I ∈ l2pos(Loc(α)) = { l2pos(p) | p ∈ Loc(α) }
there exists a unique location p such that I = l2pos(p). Furthermore, consider
p2loc(α, I) = p2loc(α, I) defined by the rules below, where ◦ ∈ {+, ·}.

p2loc(σi, {i}) = i,

p2loc(α1 ◦ α2, I) =

"
p2loc(α1, I), if I ⊆ Pos(α1),

p2loc(α2, I), if I ⊆ Pos(α2),

p2loc(α", I) = p2loc(α, I),

p2loc(α1 α2, I) =

#
$$$%

$$$&

(p2loc(α1, I), 0), if I ⊆ Pos(α1),

(0, p2loc(α2, I)), if I ⊆ Pos(α2),

(p2loc(α1, I1), p2loc(α2, I2)), if I = I1 ∪ I2,

∅ ∕= Ij ⊆ Pos(αj), j = 1, 2.

Then, we have the following result.

Lemma 1. Given p ∈ Loc(α), one has p2loc(α, l2pos(p)) = p.

Proof. By induction on the structure of α.

As a consequence of the previous lemma it follows that the function l2pos is
injective. The following proposition gives an upper bound on the size of Loc(α),
and the next example exhibits an expression for which this upper bound is
reached.

Proposition 2. Given α ∈ R(), one has | Loc(α)| ≤ 2|α|Σ − 1.

Proof. It follows from Lemma 1, and in particular from the injectivity of l2pos,
that the number of locations is less or equal to the number of non-empty subsets
of Pos(α), which is precisely 2|α|Σ − 1.

Example 3. Consider αn = a1 · · · an, where n ≥ 1, ai ∕= aj for 1 ≤ i ∕=
j ≤ n. Then, l2pos(Loc(αn)) = 2Pos(αn) \ {∅}, which is of size 2n − 1.

Lemma 3. Given α ∈ R() and i ∈ Pos(α), the following hold:

1. there is p ∈ Loc(α) with i ∈ l2pos(p);

2. there are words w,w′ ∈ Σ"
α, such that wσiw

′ ∈ L(α).

7

Proof. Straightforward by structural induction on α.

Given α ∈ R(), the states in the position automaton will be labelled by
the elements in Loc(α), except for the initial state labelled by 0.

The sets First, Last and Follow are defined extending the usual definitions, [18,
13], to the shuffle operator. For expressions without shuffle, each position i
corresponds exactly to one marked letter σi and, consequently, in the Glushkov
automaton all incoming transitions of state i are labelled by σ = σi. This is
no longer true for expressions with shuffle. In this case a location p labelling a
state can have incoming transitions labelled by different letters, corresponding
to the positions in l2pos(p) and depending on the source state. For this reason
we will include letters in the definition of First and Follow. Recall that given a
set S and an expression α, ε(α)S = S if ε(α) = ε, and ε(α)S = ∅ otherwise.

Given α ∈ R() the set First(α) ⊆ Σα × Loc(α) is defined as follows.

First(ε) = ∅,
First(σi) = {(σi, i)},

First(α1 + α2) = First(α1) ∪ First(α2),

First(α1α2) = First(α1) ∪ ε(α1)First(α2),

First(α") = First(α),

First(α1 α2) = { (σ, (p, 0)) | (σ, p) ∈ First(α1) } ∪ { (σ, (0, p)) | (σ, p) ∈ First(α2) }.
(3)

Fact 1. For every (σ, p) ∈ First(α) the location p contains exactly one non-null
component i ∈ Pos(α), i.e., l2pos(p) = {i}. Furthermore, σi = σ.

Lemma 4. Given α ∈ R(), one has (σ, p) ∈ First(α) with l2pos(p) = {i}, if
and only if there is some w ∈ Σ"

α, such that σiw ∈ L(α) and σi = σ.

Proof. The proof is by structural induction on the marked expression α. For
ε and marked singletons the result is obvious. For union, concatenation and
Kleene star, the proof is similar to the one for standard expressions. Consider
the case of an expression α1 α2.

Let (σ, (p, 0)), with (σ, p) ∈ First(α1), l2pos((p, 0)) = l2pos(p) = {i}, and
σi = σ. By the induction hypothesis, there is some w ∈ Σ"

α, such that σiw ∈
L(α1). Consider any word w′ ∈ L(α2) ∕= ∅. Then, σiww

′ ∈ L(α1) L(α2) =
L(α1 α2). The case of (σ, (0, p)), with (σ, p) ∈ First(α2), is analogous. For the
other direction, consider a word σiw ∈ L(α1 α2). By definition, either there
is some σiw1 ∈ L(α1) and some w2 ∈ L(α2) such that w ∈ w1 w2, or there
is some w1 ∈ L(α1) and some σiw2 ∈ L(α2) such that w ∈ w1 w2. In the
first case, by induction, there exists (σ, p) ∈ First(α1) with l2pos(p) = {i} and
σi = σ. Consequently, (σ, (p, 0)) ∈ First(α1 α2). The other case is similar.

As usual, the equations for Last are the same as for First, except for con-
catenation and shuffle. Note that for Last we do not need the letter, which is
therefore omitted in the definition.

8

Last(σi) = {i},
Last(α1α2) = Last(α2) ∪ ε(α2) Last(α1),

Last(α1 α2) = Last(α1)× Last(α2)

∪ ε(α1)({0}× Last(α2)) ∪ ε(α2)(Last(α1)× {0}).

(4)

Lemma 5. Given α ∈ R() and i ∈ Pos(α), there is a location p ∈ Last(α)
with i ∈ l2pos(p) if and only if there is some w ∈ Σ"

α, such that wσi ∈ L(α).

Proof. The proof is by structural induction on α. We need only to consider
the case of an expression α1 α2. Let (p1, p2) ∈ Last(α1) × Last(α2) and
i ∈ l2pos(p1). By the induction hypothesis, there is some w1 ∈ Σ"

α1
, such that

w1σi ∈ L(α1). For any w2 ∈ L(α2) ∕= ∅, w2w1σi ∈ L(α1 α2). Next, consider
a location (0, p) ∈ ε(α1)({0} × Last(α2)) and i ∈ l2pos((0, p)) = l2pos(p). By
induction, there is some w2 ∈ Σ"

α2
, such that w2σi ∈ L(α2). On the other hand

ε ∈ L(α1). Thus, w2σi ∈ L(α1 α2). The remaining cases are analogous.
For the other direction, consider wσi ∈ L(α1 α2). By definition, there

is some w1σi ∈ L(α1) and some w2 ∈ L(α2) such that w ∈ w1 w2 (or vice-
versa). By induction, there exists a location p1 ∈ Last(α1) with i ∈ l2pos(p1). If
w2 = w′

2σj , by induction there is some p2 ∈ Last(α2) with j ∈ l2pos(p2). Thus,
(p1, p2) ∈ Last(α1) × Last(α2) and i ∈ l2pos(p1) ⊆ l2pos((p1, p2)). If w2 = ε,
then (p1, 0) ∈ ε(α2)(Last(α1)× {0}) and i ∈ l2pos(p1) = l2pos((p1, 0)).

Given α ∈ R(), we define Loc0(α) = Loc(α)∪{0} and Last0(α) = Last(α)∪
ε(α){0}. Finally, we define Follow(α, p) ⊆ Σα×Loc(α) by setting Follow(α, 0) =
First(α), and for p ∈ Loc(α),

Follow(ε, p) = Follow(σi, p) = ∅,

Follow(α1 + α2, p) =

"
Follow(α1, p), if p ∈ Loc(α1),

Follow(α2, p), if p ∈ Loc(α2),

Follow(α1α2, p) =

#
$%

$&

Follow(α1, p), if p /∈ Last(α1),

Follow(α1, p) ∪ First(α2), if p ∈ Last(α1),

Follow(α2, p), if p ∈ Loc(α2),

Follow(α"
1, p) =

"
Follow(α1, p), if p /∈ Last(α1),

Follow(α1, p) ∪ First(α1), otherwise,

Follow(α1 α2, p) = { (σ, (p′1, p2)) | (σ, p′1) ∈ Follow(α1, p1) }
∪ { (σ, (p1, p′2)) | (σ, p′2) ∈ Follow(α2, p2) }

if p = (p1, p2).

(5)

Furthermore, given S ∈ 2Loc0(α) set Follow(α, S) =
!

p∈S Follow(α, p). The
following example shows why letters are necessary in the definition of Follow.

9

Example 4. For α = a" b" and α = a"1 b"2, Last(α) = {(1, 0), (0, 2), (1, 2)},
and

Follow(α, 0) = First(α) ={(a, (1, 0)), (b, (0, 2))},
Follow(α, (1, 0)) ={(a, (1, 0)), (b, (1, 2))},
Follow(α, (0, 2)) ={(a, (1, 2)), (b, (0, 2))},
Follow(α, (1, 2)) ={(a, (1, 2)), (b, (1, 2))}.

Lemma 6. Given α ∈ R() the following hold.

1. If there are locations p, q ∈ Loc(α) with (σ, q) ∈ Follow(α, p), then there are
w,w′ ∈ Σ"

α and i, j ∈ Pos(α), such that wσiσjw
′ ∈ L(α) with i ∈ l2pos(p),

j ∈ l2pos(q), and σ = σj.

2. If there are w,w′ ∈ Σ"
α and i, j ∈ Pos(α) such that wσiσjw

′ ∈ L(α),
then there are p, q ∈ Loc(α) with i ∈ l2pos(p) and j ∈ l2pos(q), such that
(σj , q) ∈ Follow(α, p).

Proof. The proof is by structural induction on the marked expression α. We con-
sider the cases of concatenation and shuffle. For 1. consider (σ, q) ∈ Follow(α1α2, p).
Then (σ, q) ∈ Follow(α1, p), (σ, q) ∈ Follow(α2, p), or (σ, q) ∈ First(α2) and
p ∈ Last(α1). The first two cases follow from the induction hypothesis. For the
last case, we have by Lemmas 4 and 5, that there are w,w′ ∈ Σ"

α , i ∈ l2pos(p),
j ∈ l2pos(q) with σ = σj , such that wσi ∈ L(α1) and σjw

′ ∈ L(α2). We con-
clude that wσiσjw

′ ∈ L(α1α2). For 2. we write wσiσjw
′ = w1w2σiσjw

′
1w

′
2 and

distinguish between three cases, where respectively,

• w1w2σiσjw
′
1 ∈ L(α1) and w′

2 ∈ L(α2),

• w1w2σi ∈ L(α1) and σjw
′
1w

′
2 ∈ L(α2), or

• w1 ∈ L(α1) and w2σiσjw
′
1w

′
2 ∈ L(α2).

In the first and the last case the result follows from the induction hypothesis.
For the remaining case, we know by Lemma 5, that there is p ∈ Last(α1) and
i ∈ l2pos(p). On the other hand it follows from Lemma 4 and Fact 1 that there
is (σ, q) ∈ First(α2) with l2pos(q) = {j} and σj = σ. Now, it is sufficient to
apply the definition of Follow.

Now, for 1. let (σ, q) ∈ Follow(α1 α2, (p1, p2)), where q = (p′1, p2) with
(σ, p′1) ∈ Follow(α1, p1) (or q = (p1, p

′
2) with (σ, p′2) ∈ Follow(α2, p2)).

From (σ, p′1) ∈ Follow(α1, p1) we consider two cases. If p1 ∕= 0, then by
induction there exists i ∈ l2pos(p1) and j ∈ l2pos(p′1) with σ = σj such that
wσiσjw

′ ∈ L(α1). Now, consider any word w2 ∈ L(α2). Then, wσiσjw
′w2 ∈

L(α1 α2). If p1 = 0, then (σ, p′1) ∈ First(α1) and l2pos(p′1) = {j} for some j ∈
Pos(α1). Furthermore, there is a word w1 such that σjw1 ∈ L(α1), by Lemma 4.
Moreover, 0 ∕= p2 ∈ Loc(α2). Now, consider any i ∈ l2pos(p2) = l2pos((0, p2)).
It follows from Lemma 3, that there are words w2 and w′

2 such that w2σiw
′
2 ∈

L(α2). Consequently, w2σiσjw1w
′
2 ∈ σjw1 w2σiw

′
2 ⊆ L(α1 α2). If q =

10

(p1, p
′
2) the proof is analogous. For 2. we consider two cases (the remaining

cases are variants of these two).
First, let xσiσjy ∈ L(α1 α2), for some w1σiw

′
1 ∈ L(α1) and w2σjw

′
2 ∈

L(α2), where x ∈ w1 w2 and y ∈ w′
1 w′

2. By Lemma 3 there is p1 ∈ Loc(α1)
with i ∈ l2pos(p1). We consider two cases for w2.

If w2 = w′′
2σk, i.e., w

′′
2σkσjw

′
2 ∈ L(α2), then it follows by induction that

there are locations p2, p
′
2 ∈ Loc(α2), such that k ∈ l2pos(p2), j ∈ l2pos(p′2),

σ = σj , and (σ, p′2) ∈ Follow(α2, p2). Moreover, i ∈ l2pos(p1) ⊆ l2pos((p1, p2)),
and by the definition of the Follow set, (σ, (p1, p

′
2)) ∈ Follow(α1 α2, (p1, p2)).

If w2 = ε, then there exists a location p2 ∈ Loc(α2) such that l2pos(p2) =
{j}, (σ, p2) ∈ First(α2) = Follow(α2, 0), and σ = σj . We conclude that (σ, (p1, p2)) ∈
Follow(α1 α2, (p1, 0)), while i ∈ l2pos(p1) ⊆ l2pos((p1, 0)).

Second, let xσiσjy ∈ L(α1 α2), for some w1σiσjw
′
1 ∈ L(α1) and w2w

′
2 ∈

L(α2), where x ∈ w1 w2 and y ∈ w′
1 w′

2. It follows by induction that
there are locations p1, p

′
1 ∈ Loc(α1), such that i ∈ l2pos(p1), j ∈ l2pos(p′1),

σ = σj , and (σ, p′1) ∈ Follow(α1, p1). Consider any location p2 ∈ Loc0(α2).
Then, (p1, p2), (p

′
1, p2) ∈ Loc(α1 α2). Furthermore, i ∈ l2pos((p1, p2)) and

(σ, (p′1, p2)) ∈ Follow(α1 α2, (p1, p2)).

For a set S ⊆ Σα × Loc(α) and σ ∈ Σ, let Select(S,σ) = { p | (σ, p) ∈ S }.
The position automaton for α ∈ R() is

APOS(α) = 〈Loc0(α),Σ, δPOS, 0, Last0(α)〉,

where δPOS(p,σ) = Select(Follow(α, p),σ), for p ∈ Loc0(α),σ ∈ Σ.
The correctness of this construction follows from the previous four lemmas.

Proposition 7. L(APOS(α)) = L(α).
Example 5. For α = (ab)" (bc)" with α = (a1b2)

" (b3c4)
",

Loc0(α) = {0, (0, 3), (0, 4), (1, 0), (2, 0), (1, 3), (1, 4), (2, 3), (2, 4)},
First(α) = {(a, (1, 0)), (b, (0, 3))},
Last0(α) = {0, (0, 4), (2, 0), (2, 4)}.

The position automaton APOS(α) is depicted below.

0

(1, 0)

(0, 3)

(2, 0)

(1, 3)

(0, 4)

(2, 3)

(1, 4)

(2, 4)

a

b

b

b

a

c

a

b

b

c

b

a

c

a

b

b

b

a

Note that, for an expression α without shuffle we have Loc(α) = Pos(α) and
APOS(α) is exactly the standard position automaton. In fact, the usual Follow
set for a position j is equal to { i | (σi, i) ∈ Follow(α, j) }.

11

4. APD(α) as a Quotient of APOS(α)

In this section we show that the partial derivative automaton APD(α) for
expressions α ∈ R() [6] is a quotient of the position automaton as defined in
the previous section. This generalises a well known result for regular expressions
to expressions in R(). We give some intuition on this, considering as an
example the regular expression α = (a+b)c with α = (a1+b2)c3. Besides of the
initial state 0, the position automaton APOS(α) will have three further states,
labelled respectively with 1, 2, and 3. These contain essentially the information
that the last letter in an prefix leading to them are: a in the case of 1, b in
the case of 2, and c in the case of 3. The information contained in a state of
the partial derivative automaton APD(α) is of different nature. In fact, each
state is labelled by a regular expression (a partial derivative). This expression
defines the set of words that complement (as a suffix) any prefix, that leads to
this state, to a word of L(α). In our example prefixes a and b have the same set
of possible complements, namely {c}. Hence, in this particular case, APD(α)
can be obtained from APOS(α) by merging the two states labelled with 1 and
with 2 into a state labelled with c.

We recall that the definition of the set of partial derivatives of α ∈ R()
w.r.t. a letter σ ∈ Σ, denoted by ∂σ(α), is a set of expressions inductively defined
by

∂σ(∅) =∂σ(ε) = ∅, ∂σ(α+ β) = ∂σ(α) ∪ ∂σ(β),

∂σ(σ
′) =

"
{ε} if σ = σ′,

∅ otherwise,
∂σ(αβ) = ∂σ(α)β ∪ ε(α)∂σ(β),

∂σ(α
∗) =∂σ(α)α

∗, ∂σ(α β) = ∂σ(α) {β} ∪ {α} ∂σ(β).

where, for any S, T ⊆ R() \ {∅}, we define S T = {α β | α ∈ S ∧ β ∈ T },
S∅ = ∅S = ∅, Sε = {ε}S = S, and, if α′ ∕= ∅, ε,

Sα′ = {αα′ | α ∈ S ∧ α ∕= ε } ∪ {α′ | ∃ε ∈ S }.

As usual, the set of partial derivatives of α ∈ R() w.r.t. a word w ∈ Σ" is
inductively defined by ∂ε(α) = {α} and ∂wσ(α) = ∂σ(∂w(α)), where, given a set
S ⊆ R(), ∂σ(S) =

!
α∈S ∂σ(α). Moreover, L(∂w(α)) = {w1 | ww1 ∈ L(α) }.

Let ∂(α) =
!

w∈Σ! ∂w(α), and ∂+(α) =
!

w∈Σ+ ∂w(α). The partial deriva-
tive automaton of α ∈ R() is

APD(α) = 〈∂(α),Σ, {α}, δPD, FPD〉,

with FPD = {β ∈ ∂(α) | ε(β) = ε } and δPD(β,σ) = ∂σ(β), for β ∈ ∂(α), σ ∈ Σ.

Example 6. The partial derivative automaton for α1 α2, where α1 = (ab)"

and α2 = (bc)", from Example 5, is depicted below.

12

α1 α2

bα1 α2

α1 cα2

bα1 cα2

a

b

b

b

a

c

c

b

We note that both ∂+(α) and Loc0(α) are at most of size 2|α|Σ , cf. [6]. Given
an expression α, one can naturally apply any automaton construction A to the
marked expression α, where transitions are labelled with marked letters. We
denote by A(α) the automaton obtained from A(α) by unmarking the labels of
transitions, but without changing the labels of the states. Champarnaud and
Ziadi [19] proved that, for standard regular expressions, APD is a quotient of the
position automaton APOS. It was shown that, given a position i, there exists
some expression, denoted by c(α, i) and called c-continuation, such that for all
w ∈ Σ"

α, either ∂wσi(α) = ∅ or ∂wσi(α) = {c(α, i)}. This naturally induces a
right-invariant relation on the set of positions, where i ≡o j if c(α, i) = c(α, j),
and such that APOS(α)/≡o ≃ APD(α). For expressions in R() it is no longer
true that given a position i there exists a unique expression c(α, i) satisfying
the conditions described above. The following is an example of this.

Example 7. Consider α = (a" + b)" (c" + d)" and α = α1 α2, where α1 =
(a"1+ b2)

" and α2 = (c"3+d4)
". For the letter a1 we have ∂a1(α) = {a"1α1 α2},

while ∂c3a1
(α) = {a"1α1 c"3α2}.

However, for expressions with shuffle we can associate a unique expression
c(α, p) to each location p, which will be used to show that, also in this case,
APD is a quotient of APOS. Let c(α, 0) = α. The c-continuation c(α, p) of α
w.r.t. a location p is defined as:

c(σi, i) = ε, c(α", p) = c(α, p)α",

c(α1 + α2, p) =

"
c(α1, p), if p ∈ Loc(α1),

c(α2, p), if p ∈ Loc(α2),

c(α1α2, p) =

"
c(α1, p)α2, if p ∈ Loc(α1),

c(α2, p), if p ∈ Loc(α2),

c(α1 α2, (p1, p2)) = c(α1, p1) c(α2, p2).

Example 8. Consider again α = (ab)" (bc)" from Example 5. For the ele-
ments in Loc0(α) we have c(α, 0) = c(α, (2, 0)) = c(α, (2, 4)) = c(α, (0, 4)) = α,
c(α, (0, 3)) = c(α, (2, 3)) = (a1b2)

" c4(b3c4)
", c(α, (1, 0)) = c(α, (1, 4)) =

b2(a1b2)
" (b3c4)

", and c(α, (1, 3)) = b2(a1b2)
" c4(b3c4)

". The partial deriva-
tive automaton of the expression given above is obtained by merging the states
in the APOS(α) labelled with locations that have the same c-continuation.

To show that APD(α) is a quotient of APOS(α), we first prove that the set
of all c-continuations is precisely ∂+(α) (Lemma 8). Furthermore, p is a final

13

state in APOS(α) if and only if c(α, p) is a final state in APD(α) (Lemma 9).
Finally, in Proposition 10 we relate ∂σi

(c(α, p)) with Follow(α, p). Due to their
length, the proofs can be found in the appendix.

Lemma 8. Let α ∈ R(). Then, ∂+(α) = { c(α, p) | p ∈ Loc(α) }.

Lemma 9. For α ∈ R() and p ∈ Loc(α), ε(c(α, p)) = ε ⇐⇒ p ∈ Last(α).

Proof. By structural induction on α.

The next proposition relates derivatives of c(α, p) with Follow(α, p).

Proposition 10. For α ∈ R(), p ∈ Loc0(α), and σi ∈ Σα, one has

β ∈ ∂σi(c(α, p)) ⇐⇒ ∃q ∈ Loc(α) : β = c(α, q) ∧ i ∈ l2pos(q) ∧ (σi, q) ∈ Follow(α, p).

Now, the equivalence relation ≡o on Loc0(α), that defines APD(α) as a
quotient of APOS(α), is defined by p ≡o q if c(α, p) = c(α, q).

Lemma 11. The relation ≡o is right-invariant w.r.t. APOS(α).

Proof. Consider p, q ∈ Loc0(α) such that p ≡o q, i.e., c(α, p) = c(α, q). By
Lemma 9 we have p ∈ Last(α) if and only if q ∈ Last(α). Let (σi, p

′) ∈
Follow(α, p) with i ∈ l2pos(p′). By Proposition 10, one gets

c(α, p′) ∈ ∂σi
(c(α, p)) = ∂σi

(c(α, q)),

and also that there is q′ ∈ Loc(α) such that (σi, q
′) ∈ Follow(α, q) and c(α, q′) =

c(α, p′), i.e., p′ ≡o q′.

Example 9. Consider again α = (ab)" (bc)" from Example 5. Recall that
c(α, (2, 0)) = c(α, (0, 4)) = α, i.e., (2, 0) ≡o (0, 4). Furthermore,

(a1b2)
" c4(b3c4)

" ∈ ∂b3(α),

(b, (2, 3)) ∈ Follow(α, (2, 0)),

(b, (0, 3)) ∈ Follow(α, (0, 4)), and (2, 3) ≡o (0, 3).

Proposition 12. APOS(α)/≡o ≃ APD(α).

Proof. We show that the function ϕc : Loc0(α)/≡o −→ ∂+(α), defined by
ϕc([p]) = c(α, p), is an isomorphism. Injectivity follows from Lemma 11 and
surjectivity from Lemma 8. For the initial state we have ϕc([0]) = c(α, 0) = α.
Furthermore, by Lemma 9, [p] is a final state in APOS(α)/≡o if and only if
ϕc([p]) is a final state in ∂+(α). Finally,

ϕc(δPOS!≡o
([p],σ)) = ϕc({ [q] | (σ, q) ∈ Follow(α, p) })

= { c(α, q) | (σ, q) ∈ Follow(α, p) }

=
'

σi=σ

∂σi
(c(α, p)) = δPD(ϕc([p]),σ).

14

Broda et al. [6] showed that APD(α) is a quotient of APD(α) by the right-
invariant equivalence relation ≡2 defined on the states of APD(α) by β1 ≡2 β2

if β1 = β2. Let ≡c be the relation ≡2 ◦ ≡o. Thus, we have the following result.

Proposition 13. APOS(α)/≡c ≃ (APD(α))/≡2 ≃ APD(α).

Example 10. It follows from the c-continuations computed in Example 8 for
α = (ab)" (bc)", that there are no β1 ∕= β2 ∈ ∂+(α) such that β1 ≡2 β2.
Consequently, in this particular case, APD(α) ≃ APD(α).

5. APOS(α) vs. A∂pos(α)

In this section, we relate the position automaton defined in this paper with
the one presented by Broda et al. [6]. The states of A∂pos are labelled by pairs
(γ, i), where i is a position of a letter in the original expression, and γ ∈ R()
describes the right-language of the state. Given α ∈ R(), the automaton
obtained by that construction will be denoted by A∂pos(α), and is defined by

A∂pos(α) = 〈S0
∂pos(α),Σ, {(α, 0)}, δ∂pos, F∂pos〉,

where S0
∂pos(α) = { (α, 0) }∪{ (γ, i) | γ ∈ ∂σi(∂(α)), σi ∈ Σα }, F∂pos = { (γ, i) ∈

S0
∂pos(α) | ε(γ) = ε } and δ∂pos((γ, i),σ) = { (β, j) | β ∈ ∂σj

(γ),σ = σj }.

Example 11. Consider the expression α = (ab)" (bc)" from Example 5, with
α = α1 α2, where α1 = (a1b2)

" and α2 = (b3c4)
". The A∂pos(α) is depicted

below.

α
0

b2α1 α2
1

α1 c4α2
3

α
2

b2α1 c4α2
3

α
4

b2α1 c4α2
1

α1 c4α2
2

b2α1 α2
4

a

b

b

b

a
c

a

b

c

b

b

a

c

b

a

c

b
b

Merging the states whose labels contain the same expression, we obtain APD(α),
which in this case coincides with APD(α), displayed in Example 6.

For α in the previous example neitherAPOS(α) is a right-quotient ofA∂pos(α),
nor vice-versa. This can also be seen in the following example.

Example 12. Consider α = (a + b) (c + d) with α = (a1 + b2) (c3 + d4).
Both, A∂pos(α) and APOS(α), depicted below, have nine states. However, words
ac and bc lead in A∂pos(α) to the same final state, and in APOS(α) to different
final states. This shows that the automata are not isomorphic, hence neither of
them is a quotient of the other.

15

α
0

c3+d4
2

c3+d4
1

a1+b2
3

a1+b2
4

ε
4

ε
3

ε
2

ε
1

a

b

c

d

d

c

d

c

b

a

b

a

0

(2, 0)

(1, 0)

(0, 3)

(0, 4)

(1, 3)

(1, 4)

(2, 4)

(2, 3)

a

b

c

d

c

d

c

d

a

b

a

b

It was shown [6] that APD(α) is a quotient of A∂pos(α) by the right-invariant
equivalence relation ≡1 defined on the set of states in A∂pos(α) by (β1, i) ≡1

(β2, j) if β1 = β2. Thus, we obtain the following relation between APOS(α) and
A∂pos(α).

Corollary 1. A∂pos(α)/≡1 ≃ APOS(α)/≡o ≃ APD(α).

The average number of states of APD, which is (43 +o (1))|α|Σ , was estimated
using an upper bound p(α) for the number of elements in ∂(α) (see [6]). The
value of p(α) is precisely | Loc(α)|, obtained by the definition 2. Thus, we
conclude that the average number of states of APOS is the same. However, an
analogous analysis gives an upper bound for the average number of states for
A∂pos of (53 + o (1))|α|Σ (see [6]).

5.1. APOS, A∂pos, and Standard Regular Expressions

Clearly, all results established in Section 4 and 5 hold when considering stan-
dard regular expressions, i.e., expressions without the shuffle operator. In this
section we derive known results [19, 13] using our approach for this particular
subcase.

Let τ denote a standard regular expression. Then, it is easy to see that
Loc(τ) = Pos(τ). Lemmas 4, 5, and 6 ensure that the inductive definitions
of the sets First, Last, and Follow correspond precisely to the usual semantic
interpretation of these sets, as defined in Section 2. In particular, this implies
that the definition of APOS corresponds to the standard one. The same is true
for the notion of c-continuation c(α, i) of a position i. The fact that APD is a
quotient of APOS follows from Lemmas 8, 9, and Proposition 10, which in the
present case read as follows, respectively.

• ∂+(τ) = { c(τ , i) | i ∈ Pos(τ) };

• ε(c(τ , i)) = ε ⇐⇒ i ∈ Last(τ);

• c(τ , i) ∈ ∂σi(c(τ , j)) ⇐⇒ (σi, i) ∈ Follow(τ, j).

Finally, note that, for standard regular expressions, A∂pos also coincides (up to
isomorphism) with the standard position automaton. This is due to the fact
that, whenever γ, γ′ ∈ ∂σi

(∂(τ)) then γ = γ′ = c(τ , i).

16

6. APre(α) and APOS(α)

A conversion from regular expressions to automata, which has been recently
studied, is the prefix-automaton APre [11, 12, 16]. For standard regular expres-
sions APre is a left-quotient of the APOS, and for linear expressions α one has
APOS(α) ≃ APre(α). Being a left-quotient also implies that the determinisa-
tion of APre coincides with the determinisation of APOS [16]. Below we define
an extension of the APre construction for expressions in R(). However, the
relationship with the position automaton doesn’t hold any more, neither for
APOS, nor for A∂pos. Every state in APre is labelled either with ε or with an
expression of the form ασ, describing the left-language of that state. To obtain
those expressions, one uses a function R that, given an expression α, computes
a set of normalised expressions of the form α′σ. For α ∈ R(), the set R(α) is
given by

R(∅) = R(ε) = ∅,
R(σ) = {σ}, R(α") = α" R(α),

R(α1 + α2) = R(α1) ∪ R(α2), R(α1α2) = αR(α2) ∪ ε(α2)R(α1),

R(α1 α2) = { (α′
1 α2)σ | α′

1σ ∈ R(α1) } ∪ { (α1 α′
2)σ | α′

2σ ∈ R(α2) }.
(6)

One can see that Rε(α) = R(α) ∪ ε(α) is such that L(Rε(α)) = L(α). Thus, it
is the set of final states of APre(α). Then, the remaining construction of the
automaton is done backwards. For each state of the form α′σ the set Rε(α

′) is
computed and a transition by σ is added from each element α′′ ∈ Rε(α

′) to α′σ.
The state labelled by ε is the initial state of APre(α). Formally, consider the
function pw(α) for words w ∈ Σ" defined as follows: pε(α) = Rε(α), and

pσw(α) =
'

α′σ ∈ pw(α)

Rε(α
′).

We have that L(pw(α)) = {x | xw ∈ L(α) }. The prefix automaton of α is

APre(α) = 〈Pre(α),Σ, δPre, ε,Rε(α)〉,

where Pre(α) =
!

w∈Σ! pw(α), and

δPre = { (α′′,σ,α′σ) | α′σ ∈ Pre(α), α′′ ∈ Rε(α
′), σ ∈ Σ },

that is, for all α′σ ∈ Pre(α), δRPre(α
′σ,σ) = Rε(α

′).

Proposition 14. L(APre(α)) = L(α).

Proof. Based on the construction of APre for standard regular expressions one
only needs to prove that L(Rε(α1 α2)) = L(α1 α2). First ε ∈ L(Rε(α1 α2))
if and only if ε ∈ L(α1 α2). Let x ∈ L(Rε(α1 α2)) and suppose that
x ∈ L((α′

1 α2)σ) with α′
1σ ∈ R(α1) (the other case is analogous). Then

x = x′σ and x′ ∈ w1 w2, where w1 ∈ L(α′
1) and w2 ∈ L(α2). But then

17

we have w1σ ∈ L(R(α1)) ⊆ L(α1) and x ∈ L(α1) L(α2) = L(α1 α2). If
x ∈ L(α1 α2) \ {ε} then x ∈ w1 w2, with w1 ∈ L(α1) and w2 ∈ L(α2).
Let x = x′σ, w2 = w′

2σ and w2 ∈ L(α′
2σ), for some α′

2σ ∈ R(α2). Then
x ∈ L((α1 α′

2)σ) ⊆ L(Rε(α1 α2)). For w1 = w′
1σ the proof is similar.

For expressions with shuffle, APre is neither a quotient of APOS, nor of
A∂pos. The following example shows, that for expressions with shuffle APre is
not a quotient of APOS.

Example 13. Consider the expression α = (ab)" (bc)" with α = α1 α2,
where α1 = (a1b2)

" and α2 = (b3c4)
" (of Example 5). The automaton APre(α),

displayed below, does not coincide with APOS(α), contrary to the case for regular
expressions without shuffle [16].

ε

(α1 α2)a1

(α1 α2)b3

(α1a1 α2)b2

(α1 α2b3)c4

(α1a1 α2b3)c4

(α1 α2b3)a1

(α1a1 α2)b3

(α1a1 α2b3)b2

a

b

b

b

a

c

a

b

a

b

b
b

c
b

c

b

a

c

The automaton APre(α) is obtained from APre(α) by merging states that af-
ter unmarking are labelled with identical expressions. One can verify that in this
case APre(α) is not a quotient of APOS(α). Moreover, the determinisation of
APre does not coincide with the determinisation of APOS. Also, the determini-
sation of APre(α) does not coincide with the determinisation of APOS(α).

The following example shows that, in general, APre(α) is neither a quotient
of A∂pos(α).

Example 14. For α = (a∗ + b∗) c the automata A∂pos(α) and APre(α) are
depicted below.

18

α
0

a!
1 c3
1

b!2 c3
2

a!
1
3

a!
1
1

a!
1+b!2
3

b!2
3

b!2
2

a

b

c

c

a

c

b

a

a

b

a

b

a

ε

b!b

a!c

(a! + b!)c

b!c

(a! c)a

(b! c)e

a!a
a

b

c

c

c
c

c

a

a

b

a

b

c

c

b

A∂pos(α) APre(α)

6.1. Experimental Results

Table 1: Experimental results.

k n |α|Σ |QPOS| |QPD| |QPre| |δPOS| |δPD| |δPre|
|QPD|
|QPOS|

|δPD|
|δPOS|

2

10 3.13 5.71 4.02 5.33 6.28 10.18 8.51 0.70 0.62
20 6.01 16.73 9.89 15.11 25.84 50.39 40.68 0.59 0.51
30 8.85 43.15 21.07 36.69 75.11 180.96 136.83 0.49 0.42
40 11.72 101.65 42.13 80.46 188.73 532.59 374.72 0.41 0.35
50 14.59 250.87 85.20 177.69 455.14 1606.65 988.14 0.34 0.28

5

10 4.02 7.82 5.41 8.57 15.08 9.61 15.51 0.69 0.64
20 7.84 28.38 16.42 34.79 88.81 47.33 101.45 0.58 0.53
30 11.58 91.74 47.06 118.45 393.64 188.81 477.92 0.51 0.48
40 15.27 281.40 109.41 352.17 1595.98 559.48 1861.45 0.39 0.35
50 19.04 790.81 252.47 5345.74 1537.58 0.32 0.29

10

10 4.47 9.03 6.24 10.77 17.86 11.66 20.25 0.69 0.65
20 8.76 37.75 22.09 55.32 119.51 66.81 166.57 0.59 0.56
30 12.97 130.96 63.03 204.80 566.82 259.10 843.73 0.48 0.46
40 7.14 463.53 181.01 2636.58 961.48 0.39 0.36
50 21.34 1491.69 493.65 10273.77 3197.12 0.33 0.31

For standard regular expressions the average sizes of APOS, APD, and APre

have been studied both experimentally using uniform random generated expres-
sions, and asymptotically using the framework of analytic combinatorics [20].
It was shown that, asymptotically, the size of the APD is half the size of APOS,
and APre is almost the same size of APOS. Both APOS and APD can be com-
puted in time O(n2), but to compute APD, in general, the APOS must be first
computed [21].

In order to compare, on average, the sizes of APOS, APD, and APre for
expressions with shuffle we performed some experiments, using the FAdo pack-
age [22]. Regular expressions α ∈ R() were uniformly random generated using
a version of the grammar (1) (with the shuffle operator) in prefix notation [23].
For each expression size, n, and alphabet size, k, samples of 10000 expressions
were generated. This is sufficient to ensure a 95% confidence level within a 1%
error margin [24]. Due to the exponential blow-up of the size of the automata,
only small values of n and k were used. Table 1 presents some average results
for n ∈ {10, 20, 30, 40, 50} and k ∈ {2, 5, 10}.

Column three represents the average alphabetic size of the expressions.
Columns four up to nine give the average number of states and the average

19

number of transitions for each construction. The last two columns present the
ratios of the size of states and of the size of transitions, respectively, between
APD and APOS. As expected, the size of the APD is never larger than the size
of APOS, but it is not clear if those rations tend to 1

2 . Runtime of each con-
struction is exponential in the size of the expression. However, in the current
implementation, APD construction [?] seems the faster. For instance for
k = 5 and n = 30 the runtime per expression for APOS, APD, and APre were,
respectively, 0.0022, 0.0019 and 1.117 seconds in a 2.7 GHz Intel Core I7. Some
values are missing for APre as their computation would take too much time.

7. Relation with other Constructions

Although APOS and APre are incomparable, the relationship between APre

and APD established in Broda et al. [16] still holds for the set R(). To
show that, it is enough to consider the dual reversal of APre, i.e., A←−

Pre
(α) ≃

APre(α
R)R. Defining L(α) = R(αR)R and ←−p w(α) as pw(α), but using L instead

of R, we have

A←−
Pre

(α) = 〈←−Pre(α),Σ, δ←−
Pre

, Lε(α), ε〉,

where
←−
Pre(α) =

!
w∈Σ!

←−p w(α) and δ←−
Pre

(α′,σ) = Lε(α
′′) if α′ = σα′′, and

δ←−
Pre

(α′,σ) = ∅ otherwise, for σ ∈ Σ. The following lemma establishes the
relationship between L and partial derivatives for α ∈ R().

Lemma 15. Lε(α) =
!

σ∈Σ σ∂σ(α) ∪ ε(α).

Proof. We only need to prove the case α = α1 α2, which is obvious considering
the definition of ∂σ(α) and the fact that

L(α1 α2) = {σ(α′
1 α2) | σα′

1 ∈ L(α1) }∪{σ(α1 α′
2) | σα′

2 ∈ L(α2) }.

With Lemma 15 one can prove that the determinisation of A←−
Pre

is isomorphic
to a quotient of the determinisation of APD by the right-invariant relation (≡Lε

),
defined as follows

X ≡Lε X ′ ⇔ Lε(X) = Lε(X
′),

where X,X ′ ⊆ PD(α), and Lε(X) denotes
!

α′∈X Lε(α
′) [16, Prop. 19]. The

same holds if one considers Brzozowski derivatives [25] extended with shuffle
and the correspondent deterministic automaton (B in Figure 1).

Broda et al. [16] established relations between different conversions from
regular expressions to equivalent finite automata, using the notion of position,
the sets Follow and Select, and operations such as quotients, determinisation
and reversal. These constructions are the Follow automaton (AF) [13], the Au
Point automaton (AMB) [14, 15], the McNaughton-Yamada automaton (AMY,
AMA) [26, 15], as well as some dual constructions using a double reversal. Con-
sidering locations instead of positions and the definitions of Follow and Select
given in this paper, these constructions are now automatically defined for ex-
pressions in R(). Moreover, all the relationships established between them
extend to expressions with shuffle. Those relationships are depicted in Figure 1.

20

R()

POSPD∂Pos FPre

◦ MY◦◦B ◦ MB

R()R

POS

←−−
POS

←−
F

F PD

←−
PD

Pre

←−
Pre

◦
MA

R

≡F

≡c
D

≡2 · ≡1

D
D

≡s

DD

≡F ·ϕF · ≡s≡F

≡c
≡Lε

≡Lε

≡2 · ≡1

R

D
D

≡F

≡c

R R

D

R

D

Figure 1: Taxonomy of conversions for regular expressions with shuffle to finite automata.

Nodes correspond to models and nodes labeled by
←
A denote a double reverse construction

A(αR)R. Edges correspond to operations or conversions between models. The edges labelled
by R correspond to the reversal operation, and the ones labelled by D to determinisation.
The remaining labelled edges correspond to quotients where the labels identify the defining
relation (see [16] for details).

In contrast to the situation for RE, for R() we cannot ensure that D(A←−
Pre

)
is always the smallest DFA among the ones present in that figure, as it is in-
comparable (for instance) with AMB. For convenience, in the next paragraph
we recall the definitions of AMB and AMA.

Asperti et al. [14] introduced the notion of pointed regular expression in order
to obtain a compact representation of a set of positions. A point is used to mark
a position to be visited when reading a letter instead of a position reached after
reading the letter, as is the case for APOS. The resulting construction was called
mark before, AMB, by Nipkow and Traytel. In the framework developed in [16],
this means that δMB is a composition of Follow with Select. Formally, given
α ∈ R(), let

AMB(α) = 〈QMB,Σ, δMB, (Follow(α, 0), ε(0)), FMB〉,

where QMB ⊆ 2Pos(α) × {∅, ε}, and for (S, c) ∈ QMB and σ ∈ Σ,

δMB((S, c),σ) = (Follow(α, Select(S,σ)), ε(Select(S,σ))),

and FMB = { (S, c) | c = ε }. In QMB we consider only the states that are
accessible from the initial state by δMB. As mentioned before, this construction
contrasts with the one of APOS and of its determinisation, the McNaughton-
Yamada DFA, that can be defined as

AMY(α) = D(APOS(α)) = 〈QMY,Σ, δMY, {0}, FMY〉,

21

where QMY ⊆ 2Pos0(α), FMY = {S ∈ QMY | ε(S) = ε } and for S ∈ 2Pos0(α),
σ ∈ Σ,

δMY(S,σ) = Select(Follow(α, S),σ).

Because of the behaviour of the transition function δMY of AMY(α), Nipkow
and Traytel called this construction mark after (AMA(α)).

Example 15. The following examples show that D(A←−
Pre

(α1)) and AMB are
incomparable. Considering α1 = (a + b")" (bc))", AMB(α1) has three states
(and it is minimal) and D(A←−

Pre
(α1)) has eight states. While for α2 = b ab, the

AMB(α2) has seven states and D(A←−
Pre

(α2)) has six states (and it is minimal).
All four automata are represented below, where the dead states have been omitted.

0 1 2

a

b c

a, b a, b

0 1 2 3 4

5

a

b a

b

c

a

b

c

a b

c
c

b

a

a, b

AMB(α1) D(A←−
Pre

(α1))

0

1

2

3

4

5

a

b

b

a

b

b

0

1

2

3 4

a

b

b

a

b

AMB(α2) D(A←−
Pre

(α2))

8. Location Automaton for Regular Expressions with Intersection

In this section we consider regular expressions with the intersection op-
erator. The set R(∩) of regular expressions with intersection over Σ is ob-
tained by extending grammar (1) with the ∩ operator (instead of), where
L(α∩β) = L(α)∩L(β). Note that intersection corresponds to strict synchroni-
sation of concurrent events. As such, among the different kinds of concurrency
operators, it is the opposite extreme of the shuffle operator, which corresponds
to pure interleaving. For expressions with intersection, a position automaton
was defined by Broda et al. [17, 27]. In this section, we show that using locations
one can construct an automaton for regular expressions with intersection, that
is isomorphic to the position automaton in [17, 27]. For i ∈ Pos(α), let ℓ(i) = σ
for σi = σ and let ℓ(I) = σ if for all i ∈ I ⊆ Pos(α) one has ℓ(i) = σ.

To gain some intuition on the (new) definitions of sets First, Follow and Last
we consider the following example from [17].

22

Example 16. Let α = (ba"b+a)∩(aa+b)" with α = (b1a
"
2b3+a4)∩(a5a6+b7)

" =
α1 ∩ α2. We have First(α1) = {1, 4} and First(α2) = {5, 7}. The intersection
operator requires that one proceeds with the same letter simultaneously in both
expressions. As such, the set of locations reachable from the initial state 0 is
{(4, 5), (1, 7)}. The location (4, 5) is reached with an a, which is the letter cor-
responding to both positions 4 and 5, i.e. ℓ(4) = ℓ(5) = a. Moreover, location
(5, 7) can be reached by b = ℓ(5) = ℓ(7). In fact, for any location p all the posi-
tions in l2pos(p) correspond to the same letter, i.e. ℓ(l2pos(p)) = {σ}. Therefore
the letter σ can be omitted in the definitions of the sets First and Follow.

For α ∈ R(∩) the positions that appear in a location correspond all to the
same letter. Thus, we extend the function ℓ to locations p, that satisfy the
condition ℓ(l2pos(p)) = {σ}, by ℓ(p) = σ. Let X and Y be two sets of locations
satisfying that condition. We define

X ⊗ Y = { (p1, p2) | ℓ(p1) = ℓ(p2) ∧ p1 ∈ X ∧ p2 ∈ Y }.

Then, the set of locations for the intersection of two expressions is

Loc(α1 ∩ α2) = Loc(α1)⊗ Loc(α2).

Furthermore, for α ∈ R(∩) let First(α), Last(α), and Follow(α, p) ⊆ Loc(α), for
p ∈ Loc(α), be

First(σi) = {i},
First(α1 ∩ α2) = First(α1)⊗ First(α2),

Last(α1 ∩ α2) = Last(α1)⊗ Last(α2),

Follow(α1 ∩ α2, (p1, p2)) = Follow(α1, p1)⊗ Follow(α2, p2),

(7)

where for ◦ ∈ {+, ·, "}, each f ∈ {First, Last,Follow} is defined as in Section 3.

Example 17. Consider α = (ba"b + a) ∩ (aa + b)" from the previous example
with α = (b1a

"
2b3+a4)∩(a5a6+b7)

". Then, First(α) = {(1, 7), (4, 5)}, Last(α) =
{(3, 7), (4, 6)}, and Follow(α, (1, 7)) = {(2, 5), (3, 7)}, Follow(α, (2, 5)) = {(2, 6)},
Follow(α, (2, 6)) = {(2, 5), (3, 7)}. The automaton APOS(α) is represented below.

0 (1, 7)

(4, 5)

(2, 5) (2, 6)

(3, 7)(4, 6)

b

a

a

b

a

a b

In [17, 27] the states of the position automaton for α ∈ R(∩) are labelled by
subsets I ⊆ Pos(α), where all positions correspond to the same letter. We recall
that construction and show that the definitions above lead to an isomorphic
automaton. The correctness of the location based construction follows as a
consequence.

23

Let Ind(α) be the set of all non-empty subsets I ⊆ Pos(α), such that ℓ(I) = σ
for some σ ∈ Σ. For S1, S2 ⊆ Ind(α), we consider

S1 ⊗ S2 = { I1 ∪ I2 | ℓ(I1) = ℓ(I2) ∧ I1 ∈ S1, I2 ∈ S2 }.

The sets First′(α), Last′(α), and Follow′(α, I) ⊆ Ind(α), for I ∈ Ind(α), are
defined as in (3)-(5) for ◦ ∈ {+, ·, "} and for the base case and intersection, as
follows

First′(σi) = Last′(σi) = {{i}},
First′(α1 ∩ α2) = First′(α1)⊗ First′(α2),

Last′(α1 ∩ α2) = Last′(α1)⊗ Last′(α2),

and
Follow′(α1 ∩ α2, I) = Follow′(α1, I1)⊗ Follow′(α2, I2),

if I = I1 ∪ I2, I1 ∈ Ind(α1) and I2 ∈ Ind(α2); and Follow′(α1 ∩ α2, I) = ∅,
otherwise.

Finally, for S ⊆ Ind(α) and σ ∈ Σ one has Select(S,σ) = { I ∈ S | ℓ(I) = σ }.
With these definitions, the position automaton from [17, 27] is defined by

A∩
POS(α) = 〈Ind(α) ∪ {{0}},Σ, δPos, 0, Last′0(α)〉, (8)

where Last′0(α) is defined as before, δPos(I,σ) = Select(Follow′(α, I),σ) and
Follow′(α, {0}) = First′(α) [27]. In the case of expressions containing intersec-
tion, and due to the fact that some subexpressions may describe the empty lan-
guage, the construction of this automaton may include useless states, i.e., states
with an empty right language.

Now, we establish the relation between locations and elements of Ind(α). It
is easy to see that for every p ∈ First(α) (resp. p ∈ Last(α) or p ∈ Follow(α, p′))
one has l2pos(p) ∈ Ind(α). Consequently, l2pos(First(α)) ⊆ Ind(α), and the
same holds for Last and Follow. We extend the definition of the function p2loc
to intersections by

p2loc(α1 ∩ α2, I) = (p2loc(α1, I1), p2loc(α2, I2)),

if I = I1 ∪ I2 ∈ Ind(α1 ∩ α2), ∅ ∕= Ij ⊆ Pos(αj), for j = 1, 2.
The following lemma establishes a one-to-one correspondence between f(α)

and f ′(α), for f ∈ {First, Last,Follow}.

Lemma 16. For all α ∈ R(∩) we have

1. First′(α) = l2pos(First(α));

2. Last′(α) = l2pos(Last(α));

3. For I, I ′ ∈ Ind(α) such that I ′ ∈ Follow′(α, I), p2loc(α, I ′) ∈ Follow(p2loc(α, I));

4. For p, p′ ∈ Loc(α) such that p′ ∈ Follow(α, p), l2pos(p′) ∈ Follow′(α, l2pos(p)).

24

Proof. For 1. and 2. we need to prove that for f ∈ {First, Last} we have

∀p ∈ f(α) ∃I ∈ f ′(α) such that I = l2pos(p),

∀I ∈ f ′(α) ∃p ∈ f(α) such that I = l2pos(p).

For σi ∈ Σα, i ∈ First(σi) if and only if l2pos(i) = {i} ∈ First′(σi). The same
holds for Last. Suppose that the result is valid for α1,α2 ∈ R(∩). Then it is also
valid for α1◦α2 for ◦ ∈ {+, ·} and for α"

1. Let p ∈ First(α1∩α2) with p = (p1, p2),
pj ∈ First(αj), ℓ(p1) = ℓ(p2), and l2pos(pj) ∈ First′(αj), for j ∈ {1, 2}. Then,
l2pos(p1) ∪ l2pos(p2) = l2pos((p1, p2)) = l2pos(p) ∈ First′(α1 ∩ α2). On the
other hand, let I ∈ First′(α1 ∩ α2) such that I = I1 ∪ I2, ℓ(I) = ℓ(I1) = ℓ(I2),
and Ij ∈ First′(αj) for j ∈ {1, 2}. Then there exists pj ∈ Loc(αj) such that
Ij = l2pos(pj) ∈ First′(αj) and pj ∈ First(αj), for j ∈ {1, 2}. We conclude that
I = l2pos(p1) ∪ l2pos(p2) = l2pos((p1, p2)), and (p1, p2) ∈ First(α1 ∩ α2). A
similar proof holds for Last.

Next we consider the Follow function. We have Follow′(σi) = Follow(σi) = ∅,
for σi ∈ Σα. Suppose that 3. and 4. hold for α1,α2 ∈ R(∩). Then, the
results are also true for α1 ◦ α2 for ◦ ∈ {+, ·} and for α"

1. We illustrate
this fact considering 3. in the case where ◦ is the concatenation operator and
Follow′(α1α2, I) = Follow′(α1, I) ∪ First′(α2), because I ∈ Last′(α1). Let I ′ ∈
Follow′(α1α2, I), and ℓ(I ′) = σ. Then, by 2. we have p2loc(α1, I) ∈ Last(α1),
and by the definition of p2loc it follows that p2loc(I,α1) = p2loc(α1α2, I). If
I ′ ∈ First′(α2) then p2loc(α2, I

′) ∈ First(α2). Thus, we have p2loc(α2, I
′) =

p2loc(α1α2, I
′) and p2loc(α1α2, I

′) ∈ First(α2) ⊆ Follow(α1α2, p2loc(α1, I)) =
Follow(α1α2, p2loc(α1α2, I)). Finally, if I ′ ∈ Follow′(α1, I) it follows from the
induction hypothesis that

p2loc(α1, I
′) = p2loc(α1α2, I

′) ∈ Follow(α1, p2loc(α1α2, I))

⊆ Follow(α1α2, p2loc(α1α2, I)).

If I ′ ∈ Follow′(α1, I), we have p2loc(α1, I
′) ∈ Follow(α1, p2loc(α1, I)), by the

induction. But p2loc(α1, I) = p2loc(α1α2, I) and p2loc(α1, I
′) = p2loc(α1α2, I

′),
thus p2loc(α1, I

′) ∈ Follow(α1α2, p2loc(α1α2, I)).
Now, we consider the operator ∩ and the case 3.. Let I ′ ∈ Follow′(α1∩α2, I).

Then I = I1 ∪ I2, I
′ = I ′1 ∪ I ′2, where Ij , I

′
j ∈ Ind(αj) and I ′j ∈ Follow′(αj , Ij),

for j = 1, 2. By the induction, we have p2loc(αj , I
′
j) ∈ Follow(αj , p2loc(αj , Ij)),

for j = 1, 2. Then

(p2loc(α1, I
′
1), p2loc(α2, I

′
2)) ∈ Follow(α1 ∩ α2, (p2loc(α1, I1), p2loc(α2, I2))) ⇐⇒

p2loc(α1 ∩ α2, I
′) ∈ Follow(α1 ∩ α2, p2loc(α1 ∩ α2, I)).

The case 4. is proved in a similar manner.

From this lemma it is clear that the automaton defined in Equation (8) can
be constructed using locations and the sets defined in Equation (7).

Corollary 2. For α ∈ R(∩), one has APOS(α) ≃ A∩
POS(α).

25

9. Conclusion

In this paper, locations were used to extend the position automaton con-
struction to regular expressions with operations such as shuffle or intersection.
Although we have presented the position automaton for R() and R(∩) sep-
arately, one can easily consider a uniform construction for regular expressions
extended with both and ∩, i.e., R(,∩). For that, it is sufficient to consider
the pair (ℓ(p), p), instead of only a location p, in the definition of the sets First
and Follow, for expressions with intersection. The resulting construction al-
lows to define automata for R(,∩), which is already implemented in the FAdo
system. The extension of location based automata to other concurrency oper-
ators [7] is currently under research. In practical applications, certain classes
of regular expressions with shuffle are used, such as deterministic and chain
(e.g. [28]). It would be interesting to study the descriptional complexity of the
automata here studied for those classes.

Acknowlegdments

We thank the anonymous reviewers for their comments that helped to im-
prove previous versions of this paper.

References

[1] S. Broda, A. Machiavelo, N. Moreira, R. Reis, Location based automata
for expressions with shuffle, in: A. Leporati, C. Mart́ın-Vide, D. Shapira,
C. Zandron (Eds.), Proc. 15th LATA 2021, Vol. 12638 of LNCS, Springer,
2021, pp. 43–54. doi:10.1007/978-3-030-68195-1_4.

[2] V. Garg, M. Ragunath, Concurrent regular expressions and their relation-
ship to Petri nets, Theoret. Comput. Sci. 96 (2) (1992) 285–304.

[3] A. J. Mayer, L. J. Stockmeyer, Word problems-this time with interleaving,
Inf. Comput. 115 (2) (1994) 293–311. doi:10.1006/inco.1994.1098.

[4] E. Bárcenas, P. Genevès, N. Layäıda, A. Schmitt, Query reasoning on
trees with types, interleaving, and counting, in: T. Walsh (Ed.), Proc.
of the 22nd IJCAI, IJCAI/AAAI, 2011, pp. 718–723. doi:10.5591/

978-1-57735-516-8/IJCAI11-127.

[5] W. Gelade, W. Martens, F. Neven, Optimizing schema languages for XML:
numerical constraints and interleaving, in: T. Schwentick, D. Suciu (Eds.),
Proc. 11th ICDT, Vol. 4353 of LNCS, Springer, 2007, pp. 269–283. doi:

10.1007/11965893_19.

[6] S. Broda, A. Machiavelo, N. Moreira, R. Reis, Automata for regular
expressions with shuffle, Inf. Comput. 259 (2) (2018) 162–173. doi:

10.1016/j.ic.2017.08.013.

26

https://doi.org/10.1007/978-3-030-68195-1_4
https://doi.org/10.1006/inco.1994.1098
https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-127
https://doi.org/10.1007/11965893_19
https://doi.org/10.1016/j.ic.2017.08.013

[7] M. Sulzmann, P. Thiemann, Derivatives for regular shuffle expressions,
in: A. Dediu, E. Formenti, C. Mart́ın-Vide, B. Truthe (Eds.), 9th
LATA, Vol. 8977 of LNCS, Springer, 2015, pp. 275–286. doi:10.1007/

978-3-319-15579-1.

[8] B. D. Estrade, A. L. Perkins, J. M. Harris, Explicitly parallel regular ex-
pressions, in: J. Ni, J. Dongarra (Eds.), 1st IMSCCS, IEEE, 2006, pp.
402–409. doi:10.1109/IMSCCS.2006.60.

[9] V. M. Glushkov, The abstract theory of automata, Russ. Math. Surv. 16
(1961) 1–53.

[10] V. M. Antimirov, Partial derivatives of regular expressions and finite au-
tomaton constructions., Theoret. Comput. Sci. 155 (2) (1996) 291–319.
doi:10.1016/0304-3975(95)00182-4.

[11] H. Yamamoto, A new finite automaton construction for regular expres-
sions, in: S. Bensch, R. Freund, F. Otto (Eds.), 6th NCMA, Vol. 304 of
books@ocg.at, Österreichische Computer Gesellschaft, 2014, pp. 249–264.

[12] E. Maia, N. Moreira, R. Reis, Prefix and right-partial derivative automata,
in: M. Soskova, V. Mitrana (Eds.), 11th CiE, Vol. 9136 of LNCS, Springer,
2015, pp. 258–267. doi:10.1007/978-3-319-20028-6.

[13] L. Ilie, S. Yu, Follow automata, Inf. Comput. 186 (1) (2003) 140–162. doi:
10.1016/S0890-5401(03)00090-7.

[14] A. Asperti, C. S. Coen, E. Tassi, Regular expressions, au point, CoRR
abs/1010.2604 (2010).

[15] T. Nipkow, D. Traytel, Unified decision procedures for regular expression
equivalence, in: G. Klein, R. Gamboa (Eds.), 5th ITP, Vol. 8558 of LNCS,
Springer, 2014, pp. 450–466. doi:10.1007/978-3-319-08970-6-29.

[16] S. Broda, M. Holzer, E. Maia, N. Moreira, R. Reis, A mesh of automata,
Inf. Comput. 265 (2019) 94–111. doi:10.1016/j.ic.2019.01.003.

[17] S. Broda, A. Machiavelo, N. Moreira, R. Reis, Position automata for semi-
extended expressions, J. Autom. Lang. Comb. 23 (1–3) (2018) 39–65. doi:
10.25596/jalc-2018-039.

[18] A. Brüggemann-Klein, Regular expressions into finite automata, Theoret.
Comput. Sci. 48 (1993) 197–213.

[19] J. M. Champarnaud, D. Ziadi, Canonical derivatives, partial derivatives
and finite automaton constructions, Theoret. Comput. Sci. 289 (2002) 137–
163. doi:10.1016/S0304-3975(01)00267-5.

27

https://doi.org/10.1007/978-3-319-15579-1
https://doi.org/10.1109/IMSCCS.2006.60
https://doi.org/10.1016/0304-3975(95)00182-4
https://doi.org/10.1007/978-3-319-20028-6
https://doi.org/10.1016/S0890-5401(03)00090-7
https://doi.org/10.1007/978-3-319-08970-6-29
https://doi.org/10.1016/j.ic.2019.01.003
https://doi.org/10.25596/jalc-2018-039
https://doi.org/10.1016/S0304-3975(01)00267-5

[20] S. Broda, A. Machiavelo, N. Moreira, R. Reis, Analytic combinatorics and
descriptional complexity of regular languages on average, ACM SIGACT
News 51 (1) (2020) 38–56, sIGACT News Complexity Theory Column 104,
Editor, Hemaspaandra, Lane A. doi:10.1145/3388392.3388400.

[21] A. Khorsi, F. Ouardi, D. Ziadi, Fast equation automaton computation, J.
Discrete Algorithms 6 (3) (2008) 433–448. doi:10.1016/j.jda.2007.10.
003.

[22] Project FAdo, tools for formal languages manipulation, https://pypi.

org/project/FAdo/ (Access date:1/1/2022).

[23] H. G. Mairson, Generating words in a context-free language uniformly at
random, Inf. Process. Lett. 49 (1994) 95–99.

[24] W. G. Cochran, Sampling Techniques, 3rd Edition, John Wiley and Sons,
1977.

[25] J. Brzozowski, Derivatives of regular expressions, J. ACM 11 (4) (1964)
481–494.

[26] R. McNaughton, H. Yamada, Regular expressions and state graphs for
automata, IEEE Trans. Comput. 9 (1960) 39–47.

[27] S. Broda, E. Maia, N. Moreira, R. Reis, The prefix automaton, J. Autom.
Lang. Comb. 26 (1-2) (2021) 17–53. doi:10.25596/jalc-2021-017.

[28] F. Peng, H. Chen, X. Mou, Deterministic regular expressions with inter-
leaving, in: M. Leucker, C. Rueda, F. D. Valencia (Eds.), Proc. 12th IC-
TAC, Vol. 9399 of LNCS, Springer, 2015, pp. 203–220. doi:10.1007/

978-3-319-25150-9_13.

Appendix A. Some Proofs Omitted in the Main Text

The following lemma is used in the proof of Lemma 8, which states that the
set of partial derivatives coincides with c-continuations for marked expressions.

Lemma 17. For α1,α2 ∈ R() and w ∕= ε the following hold.

1. ∂w(α1)α2 ⊆ ∂w(α1α2);

2. ∂w(α1α2) ⊆ ∂w(α1)α2 ∪
!

w=w1w2
w2 ∕=ε

∂w2(α2);

3. ∂w(α2) ⊆ ∂+(α1α2);

4. ∂w(α1)α
"
1 ⊆ ∂w(α

"
1);

5. ∂w(α
"
1) ⊆

!
w=w1w2
w2 ∕=ε

∂w2(α1)α
"
1;

6. ∂w(α1 α2) =
!

w∈w1 w2
∂w1

(α1) ∂w2
(α2).

28

https://doi.org/10.1145/3388392.3388400
https://doi.org/10.1016/j.jda.2007.10.003
https://pypi.org/project/FAdo/
https://doi.org/10.25596/jalc-2021-017
https://doi.org/10.1007/978-3-319-25150-9_13

Proof. 1. By induction on the length of w. For σ we have ∂σ(α1)α2 ⊆
∂σ(α1)α2 ∪ ε(α1)∂σ(α2) = ∂σ(α1α2). For w = w′σ we have ∂w′σ(α1)α2 =
∂σ(∂w′(α1))α2 ⊆ ∂σ(∂w′(α1)α2) ⊆ ∂σ(∂w′(α1α2)) = ∂w′σ(α1α2).

2. By induction on the length of w. For σ we have ∂σ(α1α2) = ∂σ(α1)α2 ∪
ε(α1)∂σ(α2) ⊆ ∂σ(α1)α2 ∪ ∂σ(α2). For w = w′σ we have ∂w′σ(α1α2) =
∂σ(∂w′(α1α2)) ⊆ ∂σ(∂w′(α1)α2 ∪

!
w′=w1w2
w2 ∕=ε

∂w2(α2)) = ∂σ(∂w′(α1)α2) ∪
!

w′=w1w2
w2 ∕=ε

∂w2σ(α2)) ⊆ ∂w(α1)α2 ∪
!

w=w1w2
w2 ∕=ε

∂w2(α2)).

3. First note that for every α ∈ R() (α ∕= ∅) we have L(α) ∕= ∅. For α1 this
implies that there is a word w′ ∈ L(α1) and an expression α′ ∈ ∂w′(α1)
such that ε(α′) = ε. Thus, ∂w(α2) ⊆ ∂w(α

′α2) ⊆ ∂w(∂w′(α1)α2) ⊆
∂w(∂w′(α1α2)) = ∂w′w(α1α2) ⊆ ∂+(α1α2).

4. By induction on the length of w. For σ we have ∂σ(α1)α
"
1 = ∂σ(α

"
1).

For w = w′σ we have ∂w′σ(α1)α
"
1 = ∂σ(∂w′(α1))α

"
1 ⊆ ∂σ(∂w′(α1)α

"
1) ⊆

∂σ(∂w′(α"
1)) = ∂w′σ(α

"
1).

5. By induction on the length of w. For σ we have ∂σ(α
"
1) = ∂σ(α1)α

"
1. For

w = w′σ we have ∂w′σ(α
"
1) = ∂σ(∂w′(α"

1)) ⊆ ∂σ(
!

w′=w1w2
w2 ∕=ε

∂w2
(α1)α

"
1) =

!
w′=w1w2
w2 ∕=ε

∂σ(∂w2(α1)α
"
1) ⊆

!
w′=w1w2
w2 ∕=ε

∂w2σ(α1)α
"
1 ∪ ∂σ(α1)α

"
1 =

!
w=w1w2
w2 ∕=ε

∂w2(α1)α
"
1.

6. By induction on the length of w. If w = σ possible values for w1 and w2

are w1 = σ and w2 = ε, or vice-versa. But ∂σ(α1 α2) = ∂σ(α1) ∂ε(α2)∪
∂ε(α1) ∂σ(α2). If w = w′σ, then ∂w′σ(α1 α2) = ∂σ(∂w′(α1 α2)) =
∂σ(

!
w′∈w′

1 w′
2
(∂w′

1
(α1) ∂w′

2
(α2)) =

!
w′∈w′

1 w′
2
(∂w′

1σ
(α1) ∂w′

2
(α2)∪

∂w′
1
(α1) ∂w′

2σ
(α2)) =

!
w′σ∈w1 w2

(∂w1(α1) ∂w2(α2)).

Lemma 8. Let α ∈ R(). Then, ∂+(α) = { c(α, p) | p ∈ Loc(α) }.

Proof. First, we prove by structural induction on α that p ∈ Loc(α) = Loc(α)
implies that c(α, p) ∈ ∂+(α). During the proof we just write α and suppose that
α is already marked. The result is trivially true for α = ∅. For p = i ∈ Loc(σi)
we have

c(σi, i) = ε ∈ ∂σi(σi).

Next consider an expression α1 + α2 and p ∈ Loc(α1) (the case of p ∈ Loc(α2)
is analogous). We have

c(α1 + α2, p) = c(α1, p) ∈ ∂+(α1).

Thus, there is a word w ∕= ε such that

c(α1, p) ∈ ∂w(α1) ⊆ ∂w(α1 + α2) ⊆ ∂+(α1 + α2).

29

Next we consider an expression α1α2 and p ∈ Loc(α1). Then, c(α1α2, p) =
c(α1, p)α2, where by induction c(α1, p) ∈ ∂+(α1). Thus, there is a word w ∕= ε
such that c(α1, p) ∈ ∂w(α1). By Lemma 17,

c(α1, p)α2 ∈ ∂w(α1)α2 ⊆ ∂w(α1α2) ⊆ ∂+(α1α2).

Next, consider α1α2 and p ∈ Loc(α2). Then, c(α1α2, p) = c(α2, p) ∈ ∂+(α2).
There is a word w ∕= ε such that c(α2, p) ∈ ∂w(α2). But, by Lemma 17,
∂w(α2) ⊆ ∂+(α1α2).
Now, consider an expression of the form α"

1 and p ∈ Loc(α1). We have c(α"
1, p) =

c(α1, p)α
"
1. By the induction hypothesis c(α1, p) ∈ ∂+(α1). Thus, there is some

word w ∕= ε such that c(α1, p) ∈ ∂w(α1). It follows from Lemma 17 that

c(α1, p)α
"
1 ∈ ∂w(α1)α

"
1 ⊆ ∂w(α

"
1) ⊆ ∂+(α"

1).

Finally, consider an expression of the form α1 α2. If p = (p1, 0) with p1 ∈
Loc(α1), then by induction c(α1, p1) ∈ ∂+(α1), i.e., there is a word w ∕= ε such
that c(α1, p1) ∈ ∂w(α1). Thus, by Lemma 17,

c(α1 α2, (p1, 0)) = c(α1, p1) α2 ∈ ∂w(α1) α2 = ∂w(α1) ∂ε(α2)

⊆ ∂w(α1 α2) ⊆ ∂+(α1 α2).

The case of p = (0, p2) with p2 ∈ Loc(α2) is analogous. If p = (p1, p2) with
p1 ∈ Loc(α1) and p2 ∈ Loc(α2), then by induction c(α1, p1) ∈ ∂+(α1) and
c(α2, p2) ∈ ∂+(α2), i.e., there are words w1, w2 ∕= ε such that c(α1, p1) ∈ ∂w1

(α1)
and c(α2, p2) ∈ ∂w2

(α2). Thus, by Lemma 17,

c(α1 α2, (p1, p2)) = c(α1, p1) c(α2, p2) ∈ ∂w1
(α1) ∂w2

(α2)

⊆ ∂w1w2
(α1 α2) ⊆ ∂+(α1 α2).

In the second part of the proof we show by structural induction on α that
β ∈ ∂+(α) implies that there is p ∈ Loc(α) such that β = c(α, p).
The result is trivially true for α = ∅. For α = σi, we have ∂+(σi) = {ε},
Loc(σi) = {i} and c(σi, i) = ε.
Next, consider an expression α1+α2 and β ∈ ∂+(α1+α2) = ∂+(α1)∪∂+(α2). If
β ∈ ∂+(α1), then there is p ∈ Loc(α1) ⊆ Loc(α1 + α2) such that β = c(α1, p) =
c(α1 + α2, p).
Next we consider an expression α1α2 and β ∈ ∂+(α1α2). There is a word w ∕= ε
such that

β ∈ ∂w(α1α2) ⊆ ∂w(α1)α2 ∪
'

w=w1w2
w2 ∕=ε

∂w2
(α2).

If β ∈ ∂w(α1)α2, then β = β1α2 with β1 ∈ ∂w(α1). By induction, there is
p ∈ Loc(α1) ⊆ Loc(α1α2) such that β1 = c(α1, p). Thus,

β = β1α2 = c(α1, p)α2 = c(α1α2, p).

30

If β ∈ ∂w2
(α2) for some suffix w2 ∕= ε of w, then there is some p ∈ Loc(α2) ⊆

Loc(α1α2) such that β = c(α2, p) = c(α1α2, p).
Now, consider an expression of the form α"

1 and β ∈ ∂w(α
"
1) ⊆ ∂+(α"

1). By
Lemma 17 there is some suffix w2 ∕= ε of w such that β ∈ ∂w2(α1)α

"
1. Thus,

β = β1α
"
1 with β1 ∈ ∂w2(α1). By induction, there is p ∈ Loc(α1) = Loc(α"

1)
such that β = c(α1, p)α

"
1 = c(α"

1, p).
Finally, consider an expression of the form α1 α2 and β ∈ ∂w(α1 α2), for
some w ∕= ε. Then, β = β1 β2, where β1 ∈ ∂w1

(α1) and β2 ∈ ∂w2
(α2), for some

w1, w2 such that w ∈ w1 w2. If both w1, w2 ∕= ε, then there is pi ∈ Loc(αi)
such that βi = c(αi, pi) for i = 1, 2. Thus,

β = β1 β2 = c(α1, p1) c(α2, p2) = c(α1 α2, (p1, p2))

and (p1, p2) ∈ Loc(α1 α2). If w = w1 and w2 = ε, then β1 ∈ ∂w(α1) and β2 =
α2. By induction, there is p1 ∈ Loc(α1) such that β1 = c(α1, p1). Consequently,
(p1, 0) ∈ Loc(α1 α2) and

β = β1 α2 = c(α1, p1) α2 = c(α1 α2, (p1, 0)).

Proposition 10. For α ∈ R(), p ∈ Loc0(α), and σi ∈ Σα, one has

β ∈ ∂σi
(c(α, p)) ⇐⇒ ∃q ∈ Loc(α) : β = c(α, q) ∧ i ∈ l2pos(q) ∧ (σi, q) ∈ Follow(α, p).

Proof. The proof is by structural induction on α.
(⇒) The result is trivially true for ε, and also for σi and p = i, for which

∂σi
(c(σi, i)) = ∂σi

(ε) = ∅. If p = 0, we have ∂σi
(c(σi, 0)) = ∂σi

(σi) = {ε},
i.e., β = ε = c(σi, i). Also, i ∈ Loc(σi), (σ, i) ∈ Follow(σi, 0), and σ = σi.

Now, we consider an expression of the form α1 + α2 and p ∈ Loc(α1) ⊆
Loc(α1 + α2). If β ∈ ∂σi

(c(α1 + α2, p)) = ∂σi
(c(α1, p)), then by the induction

hypothesis there exists q ∈ Loc(α1) ⊆ Loc(α1 + α2) such that β = c(α1, q) =
c(α1 + α2, q), i ∈ l2pos(q), and (σi, q) ∈ Follow(α1, p) = Follow(α1 + α2, p). The
case of p ∈ Loc(α2) is analogous. Finally, for p = 0 we have that

β ∈ ∂σi(α1 + α2) = ∂σi(α1) ∪ ∂σi(α2) = ∂σi(c(α1, 0)) ∪ ∂σi(c(α2, 0)).

Suppose that β ∈ ∂σi(c(α1, 0)). Then, by induction there exists q ∈ Loc(α1) ⊆
Loc(α1 + α2) such that β = c(α1, q), i ∈ l2pos(q), and

(σi, q) ∈ Follow(α1, 0) = First(α1) ⊆ First(α1 + α2) = Follow(α1 + α2, 0).

For the remaining operators the proof for the subcase of p = 0 is similar to the
others and will be omitted.

Next, we consider an expression of the form α1α2 and p ∈ Loc(α1α2) =
Loc(α1) ∪ Loc(α2). First, suppose that p ∈ Loc(α1) and

β ∈ ∂σi
(c(α1α2, p)) = ∂σi

(c(α1, p)α2) = ∂σi
(c(α1, p))α2 ∪ ε(c(α1, p))∂σi

(α2).

31

If β ∈ ∂σi
(c(α1, p))α2, then β = β1α2 with β1 ∈ ∂σi

(c(α1, p)). By induction,
there is some q ∈ Loc(α1) and i ∈ l2pos(q) such that

β1 = c(α1, q), and (σi, q) ∈ Follow(α1, p).

Thus, there is some q ∈ Loc(α1) ⊆ Loc(α1α2) such that i ∈ l2pos(q) and

β1α2 = c(α1, q)α2 = c(α1α2, q) and (σi, q) ∈ Follow(α1, p) ⊆ Follow(α1α2, p).

If β ∈ ε(c(α1, p))∂σi(α2) = ∂σi(α2), then p ∈ Last(α1) by Lemma 9. It follows
by induction from β ∈ ∂σi(α2) = ∂σi(c(α2, 0)) that there is some q ∈ Loc(α2) ⊆
Loc(α1α2) with i ∈ l2pos(q), β = c(α2, q) and (σi, q) ∈ Follow(α2, 0) = First(α2).
Thus, β = c(α2, q) = c(α1α2, q) and (σi, q) ∈ First(α2) ⊆ Follow(α1α2, p) (this
last inclusion follows from p ∈ Last(α1)).
Next, suppose that p ∈ Loc(α2) and β ∈ ∂σi(c(α1α2, p)) = ∂σi(c(α2, p)). By
induction there exists q ∈ Loc(α2) ⊆ Loc(α1α2) such that i ∈ l2pos(q), β =
c(α2, q) = c(α1α2, q) and (σi, q) ∈ Follow(α2, p) = Follow(α1α2, p).

Now consider an expression α"
1 and that

β ∈ ∂σi(c(α
"
1, p)) = ∂σi(c(α1, p)α

"
1) = ∂σi(c(α1, p))α

"
1 ∪ ε(c(α1, p))∂σi(α1)α

"
1.

If β = β1α
"
1 and β1 ∈ ∂σi

(c(α1, p)), then by induction there is some q ∈
Loc(α1) = Loc(α"

1) such that i ∈ l2pos(q), β1 = c(α1, q) and (σi, q) ∈ Follow(α1, p).
Consequently, β = β1α

"
1 = c(α1, q)α

"
1 = c(α"

1, q) and

(σi, q) ∈ Follow(α1, p) ⊆ Follow(α"
1, p).

Now, suppose that β ∈ ε(c(α1, p))∂σi
(α1)α

"
1. Then, p ∈ Last(α1) and β = β1α

"
1

with β1 ∈ ∂σi(α1) = ∂σi(c(α1, 0)). By induction there exists q ∈ Loc(α1) =
Loc(α"

1) with i ∈ l2pos(q), β1 = c(α1, q) and, consequently, β = c(α"
1, q), and

(σi, q) ∈ Follow(α1, 0) = First(α1) ⊆ Follow(α"
1, p).

Finally, consider an expression of the form α1 α2 and p = (p1, p2), such
that

β ∈ ∂σi
(c(α1 α2,(p1, p2))) = ∂σi

(c(α1, p1) c(α2, p2))

= ∂σi(c(α1, p1)) c(α2, p2) ∪ c(α1, p1) ∂σi(c(α2, p2)).

If β ∈ ∂σi(c(α1, p1)) c(α2, p2), then β = β1 c(α2, p2) with β1 ∈ ∂σi(c(α1, p1)).
By induction, there exists q1 ∈ Loc(α1) such that i ∈ l2pos(q1), β1 = c(α1, q1)
and (σi, q1) ∈ Follow(α1, p1). We have (q1, p2) ∈ Loc(α1 α2),

β = c(α1, q1) c(α2, p2) = c(α1 α2, (q1, p2)),

and (σi, (q1, p2)) ∈ Follow(α1 α2, (p1, p2)). The case of β ∈ c(α1, p1)
∂σi

(c(α2, p2)) is analogous.
(⇐) The result is trivially true for ε and for σi and p = i, for which

Follow(σi, i) = ∅. For σi and p = 0, we have Follow(σi, 0) = First(σi) = {(σi, i)}.
Thus,

β = c(σi, i) = ε ∈ ∂σi
(σi) = ∂σi

(c(σi, 0)).

32

Next consider α1 + α2 and suppose that p ∈ Loc(α1) ⊆ Loc(α1 + α2). Suppose
there is some q ∈ Loc(α1 + α2) = Loc(α1) ∪ Loc(α2), such that i ∈ l2pos(q),
(σi, q) ∈ Follow(α1 + α2, p) = Follow(α1, p) and β = c(α1 + α2, q). We conclude
that q ∈ Loc(α1) and consequently β = c(α1 + α2, q) = c(α1, p). Then, by
induction β ∈ ∂σi(c(α1, p)) = ∂σi(c(α1 + α2, p)). Again, the case of p = 0 is
straightforward and will be omitted here and also for the other operators.

Now, consider α1α2 with p ∈ Loc(α1) ⊆ Loc(α1α2). Suppose there is
some q ∈ Loc(α1α2) = Loc(α1) ∪ Loc(α2), such that i ∈ l2pos(q), (σi, q) ∈
Follow(α1α2, p). If (σi, q) ∈ Follow(α1, p), then q ∈ Loc(α1) and β = c(α1α2, q) =
c(α1, q)α2 = β1α2. By induction, β1 ∈ ∂σi(c(α1, p)). Thus,

β = β1α2 ∈ ∂σi(c(α1, p))α2 ⊆ ∂σi(c(α1, p)α2).

Otherwise, p ∈ Last(α1) and (σi, q) ∈ First(α2) = Follow(α2, 0). Thus, q ∈
Loc(α2), i ∈ l2pos(q), and β = c(α2, q). By induction,

β ∈ ∂σi(c(α2, 0)) = ∂σi(α2) ⊆ ∂σi(c(α1, p)α2) = ∂σi(c(α1α2, p)),

where the inclusion follows from Lemma 9. The remaining case of p ∈ Loc(α2)
follows directly from the definitions and induction.

The proof for α"
1 follows the structure of the case for α1α2 with p ∈ Loc(α1),

considering both p ∈ Last(α1) and p ∕∈ Last(α1).
Finally, consider an expression of the form α1 α2 and p = (p1, p2) ∈

Loc(α1 α2), i.e. αi ∈ Loc0(αi) for i = 1, 2. Furthermore, suppose that there
exists q ∈ Loc(α1 α2), such that i ∈ l2pos(q), (σi, q) ∈ Follow(α1 α2, (p1, p2)).
Let q = (p1, q2) (the case of q = (q1, p2) is identical), i ∈ l2pos(q2), (σi, q2) ∈
Follow(α2, p2), and

β = c(α1 α2, (p1, q2)) = c(α1, p1) c(α2, q2).

By induction, β2 = c(α2, q2) ∈ ∂σi
(c(α2, p2)). Thus,

β = c(α1, p1) β2 ∈ c(α1, p1) ∂σi
(c(α2, p2))

⊆ ∂σi(c(α1, p1) c(α2, p2)) = ∂σi(c(α1 α2, p)).

33

