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ABSTRACT
There are many different constructions when converting regular expressions to finite
automata. In this paper we focus on the prefix automaton, APre, introduced by Ya-
mamoto in 2014. We present two different methods for the construction of APre. First,
an inductive one, based on a system of expression equations. A second one using an
iterative function for computing the states and transitions. We establish relationships
between APre and other constructions, such as the position automaton, partial deriva-
tive automaton and their double reversal (dual) counterparts. We study the average
size of these constructions, both experimentally and from an analytic combinatorics
point of view. Finally, we extend the construction of the prefix automaton to regular
expressions with intersection and show that the relationships with the other automaton
constructions also hold for these expressions.

Keywords: regular expressions, nondeterministic finite automata, prefix automata, av-
erage complexity, regular expressions with intersection

1. Introduction

Conversions from regular expressions to equivalent nondeterministic finite automata
can be with or without spontaneuos (ε) transitions. The classic construction with
ε transitions is the Thompson construction (Aε-T) [20], while the Glushkov/position
automaton is a standard ε-free construction (APOS) [14]. It is well known that if ε
transitions are eliminated from the Thompson automaton, the result is the Glushkov
automaton [13]. In 2014, Yamamoto [21] presented a new construction of an ε-free
automaton starting from the Thompson automaton. For that, each state s of Aε-T
was labelled with two regular expressions, one corresponding to the left language of
the state, LP(s), and the other to its right language, LS(s). Merging states with
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the same LP label leads to the prefix automaton, and with the same LS leads to the
suffix automaton. While the suffix automaton corresponds to the partial derivative
automaton (APD) which has been well studied [18, 1, 9, 10, 5], the prefix automaton
was not studied before (as far as we know). Yamamoto’s final automaton was obtained
as follows: first constructing one of these automata; then for the states of the original
Aε-T that were not joined, i.e., their equivalence class w.r.t that labelling was a
singleton, the possible mergings w.r.t. the other labelling were taken in consideration.

In this paper we further study the prefix automaton (APre) and consider relation-
ships between this automaton and other ε-free constructions, such as the position
automaton, the partial derivative automaton and their double reversal (dual) coun-
terparts. We also study the average size of these constructions, experimentally and
from an analytic combinatorics point of view. Finally, we extend the prefix automaton
construction to regular expressions with intersection and show that the relationships
with the other automaton constructions also hold for these expressions. This paper
expands and revises some results that appeared in Maia et al. [17]. In particular,
most results in Sections 3.1, 4.3, 4.4, and 5 have been stated therein without proofs,
which are provided here as well as some new results. The extension of the prefix
automaton for expressions with intersection in Section 6 is completely new. Broda
et al. [3] presented a taxonomy of conversions from (standard) regular expressions
to equivalent deterministic and nondeterministic finite automata. In particular, the
determinisation of the prefix automaton and its double reversal (A←−Pre) were placed
in the conversion’s taxonomy. Noticeable the determinisation of A←−Pre is the smallest
automaton among the studied constructions in that paper.

We now summarise our contributions and the structure of the paper. The next
section recalls some basic notions on regular expressions and finite automata. In
Section 3, we first define the inductive construction of the prefix automaton using a
system of left expression equations from [17] and prove its correctness. This paral-
lels with the Mirkin’s construction for the partial derivative automaton and a similar
construction for the right-partial derivative automaton (A←−PD) (which are recalled in
Appendix A and Appendix B, following Maia [16]). Note that these constructions
are essential to obtain average case results using analytic combinatorics. Section 3.2
presents a new iterative definition of APre which is shown to coincide with the in-
ductive definition given before. In Section 4 the prefix automaton APre is shown to
be a quotient of the position automaton APOS and it is related with the position
automaton dual A←−−POS, as well as with APD and A←−PD [17]. In Sections 4.1, 4.2 and 4.3
we start by reviewing these four constructions. In particular, we relate APD with
A←−PD and A←−−POS. The average size complexity of APre is studied in Section 5 [17].
First some experimental results are presented that compare the sizes of APOS, APD,
A←−PD and APre obtained from uniformly random generated regular expressions. Using
the framework of analytic combinatorics, we estimate a lower bound for the num-
ber of mergings of states that arise when computing APre from APOS. Recently, the
partial derivative automaton and the position automaton were extended to regular
expressions with the intersection operator [2, 8]. In Section 6 we extend the prefix
automaton for those expressions and show that it is also in this case a quotient of the
position automaton. Section 7 concludes with some final remarks.
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2. Preliminaries

Given an alphabet Σ = {σ1, σ2, . . . , σk} of size k, the set RE of regular expressions α
over Σ is defined by the following grammar:

α := ∅ | ε | σ1 | · · · | σk | (α + α) | (α · α) | (α"), (1)

where the · is often omitted. If two α and β are syntactically equal, we write α
.= β.

We denote by Σα the alphabet consisting of the letters that occur in α. The size of
a regular expression α, |α|, is its number of symbols, disregarding parentheses, and
its alphabetic size, |α|Σ, is its number of letters from Σ. The language represented by
a regular expressions α is denoted by L(α). Given a set S of regular expressions let
L(S) = ∪α∈SL(α). Two regular expressions α and β are equivalent if L(α) = L(β),
and we write α = β. We define the function ε by ε(α) = ε if ε ∈ L(α) and ε(α) = ∅,
otherwise. This function can be naturally extended to sets of regular expressions and
languages. If a set of expressions is a singleton {α}, the parenthesis may be omitted.
We consider regular expressions reduced by the following rules:

εα = α = αε,

∅ + α = α = α + ∅,

∅α = ∅ = α∅,

∅" = ε.

In particular, ∅ does not occur in any expression but ∅ itself. The same rules apply
if α is substituted by a set of expressions. Given a language L ⊆ Σ" and w ∈ Σ", the
left quotient of L w.r.t. w is w−1L = { x | wx ∈ L }, and the right quotient of L w.r.t.
w is the language Lw−1 = { x | xw ∈ L }. The reversal of a word w = σ1σ2 · · · σn

is wR = σn · · · σ2σ1. The reversal of a language L, denoted by LR, is the set of
words whose reversal is in L. We have Lw−1 = ((wR)−1LR)R. The reversal of a
regular expression α is denoted by αR, and is inductively defined by: αR = α for
α ∈ Σ ∪ {ε, ∅}, (α + β)R = βR + αR, (αβ)R = βRαR and (α")R = (αR)". The reversal
expression αR describes L(α)R.

A nondeterministic finite automaton (NFA) is a five-tuple A = (Q, Σ, δ, I, F ) where
Q is a finite set of states, Σ is a finite alphabet, I ⊆ Q is the set of initial states,
F ⊆ Q is the set of final states, and δ : Q × Σ → 2Q is the transition function. The
transition function can be extended to words and to sets of states in the natural way.
When I = {q0}, we use I = q0. If |Q| = n we can consider Q = [0, n − 1]. Given
a state q ∈ Q, the right language of q is Lq(A) = { w ∈ Σ" | δ(q, w) ∩ F ∕= ∅ }, and
the left language is ←−L q(A) = { w ∈ Σ" | q ∈ δ(I, w) }. The language accepted by A
is defined by L(A) =

!
q∈I Lq(A). Two NFAs are equivalent if they accept the same

language. If two NFAs A and B are isomorphic, we write A ≃ B.
Given an automaton A = 〈Q, Σ, δ, I, F 〉 its reversal is AR = 〈Q, Σ, δR, F, I〉, where

for q ∈ Q, σ ∈ Σ, we have δR(q, σ) = { p | q ∈ δ(p, σ) } and L(AR) = L(A)R.
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The right languages Li, for i ∈ Q = [0, n − 1], define a system of right equations,

Li =
k"

j=1
σj

#

$
"

m∈Iij

Lm

%

& ∪ ε(Li),

where Iij ⊆ [0, n − 1], m ∈ Iij ⇐⇒ m ∈ δ(i, σj), and L(A) =
!

i∈I Li. In the same
manner, the left languages of the states of A define a system of left equations

←−L i =
k"

j=1

#

$
"

m∈Iij

←−L m

%

& σj ∪ ε(←−L i),

where Iij ⊆ [0, n − 1], m ∈ Iij ⇐⇒ i ∈ δ(m, σj), and L(A) =
!

i∈F

←−L i.
An equivalence relation ≡ on Q is right invariant w.r.t. an NFA A if it satisfies
• ≡ ⊆ (Q \ F )2 ∪ F 2 and
• ∀p, q ∈ Q, if p ≡ q, then ∀σ ∈ Σ, p′ ∈ δ(p, σ) ∃q′ ∈ δ(q, σ) such that p′ ≡ q′.
Given a set of states S ⊆ Q, we denote S/ ≡ = { [q] | q ∈ S }. Note that p ≡ q im-

plies δ(p, σ)/ ≡ = δ(q, σ)/ ≡ , for p, q ∈ Q and σ ∈ Σ. If ≡ is a right-invariant relation
on Q, the quotient automaton A/ ≡ is given by A/ ≡ = 〈Q/ ≡ , Σ, δ/ ≡ , I/ ≡ , F/ ≡ 〉,
where δ/ ≡ ([p], σ) = { [q] | q ∈ δ(p, σ) } = δ(p, σ)/ ≡ . We have L (A/ ≡ ) = L(A). In
the same way, an equivalence relation ≡ on Q is left invariant w.r.t. A if

• ≡ ⊆ (Q \ I)2 ∪ I2 and
• ∀p, q ∈ Q, if p ≡ q, then ∀σ ∈ Σ, p′ ∈ δR(p, σ) ∃q′ ∈ δR(q, σ) such that p′ ≡ q′.

It follows that,

Lemma 1. A relation ≡ is a left-invariant relation w.r.t. an automaton A if and
only if it is a right-invariant relation w.r.t. AR.

3. The Prefix Automaton

Yamamoto [21] presented a new algorithm for converting a regular expression into an
equivalent ε-free NFA. First, a labelled version of the usual Thompson automaton [20]
is obtained, where each state q is labelled with two regular expressions, one that
corresponds to its left language, LP(q), and the other to its right language, LS(q).
States whose in-transitions are labelled with a letter are called sym-states. In the set
of sym-states two equivalence relations ≡pre and ≡suf are defined such that for two
states p and q one has p ≡pre q if and only if LP(p) .= LP(q); and p ≡suf q if and only
if LS(p) .= LS(q). Then the author defines the prefix automaton APre and the suffix
automaton ASuf whose sets of states are the equivalence classes of ≡pre and ≡suf ,
respectively. The final automaton was a combination of these two. He also shows
that ASuf coincides with the partial derivatives automaton, APD.

In this section we present two different methods for the construction of APre. First,
an inductive one, based on a system of expression equations. A second one using an
iterative function for computing the states and transitions.
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3.1. Inductive Definition of APre

In the following we present Yamamoto’s construction for the prefix automaton using
a system of left expression equations. The set of states of APre(α) is S(α) ∪ {α0},
where α0

.= ε and S(α) is inductively defined by the following equations.

S(∅) = S(ε) = ∅, S(σ) = {σ}, (2)
S(α + α′) = S(α) ∪ S(α′), S(αα′) = α S(α′) ∪ S(α),

S(α") = α" S(α),

where for any S ⊆ RE we have S∅ = ∅S = ∅, Sε = εS = S, and α′S = { α′α | α ∈ S }
for α′ ∈ RE \{∅, ε} (and analogously for Sα′).

Proposition 2. The set S(α) = {α1, . . . , αn} satisfies a system of equations of the
form

α1 = X1σℓ1 , . . . , αn = Xnσℓn

such that Xi are linear combinations of elements of {α0, α1, . . . , αn}, where α0
.= ε

and i ∈ [1, n], ℓi ∈ [1, k], and n ≥ 0. Moreover, we have

α =
'

i∈I⊆[0,n]

αi.

Proof. We will prove by structural induction on α that whenever S(α) ∕= ∅, then the
set S(α) satisfies a system of equations of the form αi = Xiσℓi where α0

.= ε, and
such that Xi are linear combinations of elements of {α0, α1, . . . , αn}, for all i ∈ [1, n],
ℓi ∈ [1, k], and n ≥ 0. Furthermore, α0

.= ε is a component of at least one Xi. For
the cases α

.= ∅ or α
.= ε we have S(α) = ∅ and there is nothing to prove. For α

.= σ,
we have S(α) = {σ} = {α1}, which satisfies the following set of equations.

α = α1,

α1 = α0σ, where α0
.= ε.

Now, consider

β =
'

i∈I⊆[0,n]

βi,

βi = Xiσℓi , ℓi ∈ [1, k], for all i ∈ [1, n] with S(β) = {β1, . . . , βn} and β0
.= ε,

and

γ =
'

i∈I′⊆[0,m]

γi,

γi = Yiσℓi
, ℓi ∈ [1, k], for all i ∈ [1, m] with S(γ) = {γ1, . . . , γm} and γ0

.= ε.

Let α
.= β + γ, then

β + γ =
'

i∈I⊆[1,n]

βi +
'

i∈I′⊆[1,m]

γi.
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Consequently S(α) = {β1, . . . , βn} ∪ {γ1, . . . , γm} satisfies the system containing the
equations for β as well as for γ. The condition on α0

.= ε
.= β0

.= γ0 follows from the
induction hypothesis.

Consider α
.= βγ. Then

βγ = β(
'

i∈I′⊆[0,m]

γi),

=
(

β(
)

i∈I′⊆[1,m] γi), , if 0 ∕∈ I ′,

β(
)

i∈I′⊆[1,m] γi) +
)

i∈I⊆[0,n] βi if 0 ∈ I ′,

and βγi = β(Yiσℓi). We know that ε is a component of at least one of the Yi for
i ∈ [0, m]. Consequently, S(α) = {βγ1, . . . , βγm} ∪ {β1, . . . , βn} satisfies the system
containing the equations βγi = βYiσℓi

, as well as the equations for β. By the induction
hypothesis, ε is a component of at least one of the Xi for i ∈ [1, n].

Consider α
.= β" with S(α) = {β"β1, . . . , β"βn}. Then,

β" = β"β + ε,

= β"(
'

i∈I⊆[1,n]

βi) + ε.

and

β"βi = β"(Xiσℓi), for all i ∈ [1, n].

Each β"Xi can be written as a sum of elements of S(α) ∪ {β"β0}. We have that

β"β0 = β" = β"(
'

i∈I⊆[1,n]

βi) + ε,

is also a linear combination of elements of S(α)∪{α0}, where α0
.= ε. Since β0 appears

in at least one Xi the condition on α0
.= ε is also satisfied. □

It is easy to see that S(α) is always finite and contains at most |α|Σ elements.
Moreover every element in S(α) is of the form α′σ. The system of equations

α1 = X1σℓ1 , . . . , αn = Xnσℓn

satisfied by S(α) defines the automaton APre, whose set of states is S(α) ∪ {ε}. The
left language of a state labelled with β is L(β). The initial state has label ε and there
is a transition by σl from a state αi to a state αj if and only if αi is a component of
Xj (which we write as αi ∈ Xj) and l = ℓj . The set of final states is

Rε(α) =
"

i∈I

{αi},

where I is the set of indices such that

α =
'

i∈I⊆[0,n]

αi.
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The proof of Proposition 2 provides us with inductive methods for computing the
set of final states Rε(α) and the set of transitions of APre(α). For α ∈ RE, we have
Rε(α) = R(α) ∪ ε(α), where the set R(α) is computed by the following rules.

R(∅) = R(ε) = ∅, R(σ) = {σ}, (3)
R(α + α′) = R(α) ∪ R(α′), R(αα′) = α R(α′) ∪ ε(α′) R(α),

R(α") = α" R(α).

It is easy to see that L(α) = L(Rε(α)). The set of outgoing transitions from the initial
state ε is {ε} × ψ(α), where

ψ(α) = { (σℓi , αi) | ε ∈ Xi ∧ i ∈ [1, n] ∧ ℓi ∈ [1, k] }

is inductively defined as R(α) except for the following two cases,

ψ(σ) = {(σ, σ)} and ψ(αα′) = ψ(α) ∪ ε(α)αψ(α′).

In the above definition, the concatenation of an α\{∅, ε} with a tuple (σ, τ) is defined
by (σ, τ)β = (σ, τβ) and β(σ, τ) = (σ, βτ). These definitions also extend to sets of
tuples. The set of remaining transitions

T(α) = { (αi, σℓj , αj) | αi ∈ Xj ∧ i, j ∈ [1, n] ∧ ℓj ∈ [1, k] }

satisfies the following inductive definition.

T(∅) = T(ε) = T(σ) = ∅, (4)
T(α + α′) = T(α) ∪ T(α′),

T(αα′) = T(α) ∪ α T(α′) ∪ (R(α) × (αψ(α′))),
T(α") = α" T(α) ∪ α"(R(α) × ψ(α)).

Note that the result of the × operation is seen as a set of triples (α′, σ, β′). The
concatenation of a transition (α, σ, β) with a regular expression γ ∈ RE \{∅, ε} is
defined by (α, σ, β)γ = (αγ, σ, βγ) and γ(α, σ, β) = (γα, σ, γβ). Moreover, we define
∅(α, σ, β) = (α, σ, β)∅ = ∅ and ε(α, σ, β) = (α, σ, β)ε = (α, σ, β). These definitions
also extend to sets of transitions. Using the above, the prefix automaton for α is

APre(α) = 〈S(α) ∪ {ε}, Σ, {ε} × ψ(α) ∪ T(α), ε, Rε(α)〉. (5)

From Proposition 2 we conclude the following.

Proposition 3 [21]. L(APre(α)) = L(α).

Example 4. The prefix automaton APre for the expression α = (ab" + b)"a is de-
picted in Figure 1. We illustrate the computation of the set S(α) following the proof
of Proposition 2. Let α1 be (ab" + b)". We have S(a) = {a}, with a = ε · a, and
Rε(a) = {a}. The same for S(b) = {b}. Next, we have S(b") = {b"b}, with

b"b = (b"b + ε)b,

b" = b"b + ε,
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ε α1b

α1ab!b

α1a
b

a

a

b

b a

b

b

b
a

Figure 1: APre((ab! + b)!a), where α1 = (ab! + b)!.

and Rε(b") = {b"b, ε}. Then S(ab") = {ab"b, a}, with

ab"b = (ab"b + a)b,

ab" = ab"b + a,

and Rε(ab") = {ab"b, a}. Finally,

S(α1) = {α1ab"b, α1a, α1b},

with

α1ab"b = (α1ab"b + α1a)b,

α1b = (α1ab"b + α1a + α1b + ε)b,

α1a = (α1ab"b + α1a + α1b + ε)a,

and Rε(α1) = {α1ab"b, α1a, α1b, ε}. From these sets S(α) and APre(α) are easily
obtained.

3.2. Iterative Definition of APre

The definition of the prefix automaton above is similar to Mirkin’s characterisation
of the partial derivative automaton as a solution of a system of right expression equa-
tions [18] (see also Section 4.2). In [1] a different iterative construction for APD was
independently given by Antimirov. His method starts with expression α as the initial
state of APD and the remaining states and transitions are obtained by successively
deriving (labels of) states by the symbols of the alphabet. In the following we present
a similar iterative approach for the construction of APre. Starting with Rε(α) as the
set of final states, the automaton will be successively constructed backwards as fol-
lows. For each state of the form α′σ the set Rε(α′) is computed and a transition by σ
is added from each element α′′ ∈ Rε(α′) to α′σ. The state labelled by ε is the initial
state. Formally, consider the function pw(α) for words w ∈ Σ" defined as follows:

pε(α) = Rε(α), pσw(α) =
"

α′σ ∈ pw(α)

Rε(α′). (6)

Note that Rε(α) ⊆ S(α) ∪ {ε}. It is straightforward to show the following fact.
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Fact 1. Every element in pw(α) is of the form α′σ or ε.

Lemma 5. For any w ∈ Σ" and α ∈ RE, we have
(I) L(pw(α)) = { x | xw ∈ L(α) } = L(α)w−1.

(II) w ∈ L(α) if and only if ε ∈ L(pw(α)) if and only if ε ∈ pw(α) if and only if
exists α′σ′ ∈ pw(α) such that ε(α′) = ε.

Proof. We prove (I) by induction on the length of w. For w = ε,

L(pε(α)) = L(Rε(α)) = L(α).

For w = σw′,
L(pw(α)) = L(

"

α′σ∈pw′ (α)

Rε(α′)).

Then x ∈ L(pw(α)) if and only if exists α′σ ∈ pw′(α) such that

x ∈ L(Rε(α′)) = L(α′).

By the inductive hypothesis one has xσ ∈ L(pw′(α)) = L(α)w′−1, and x ∈ L(α)w−1.
By (I), the first equivalence of (II) is immediate. For the second and third, just
consider Fact 1 and the definition of pw(α). □

Finally, let Pre(α) =
!

w∈Σ! pw(α). Now, consider the automaton

〈Pre(α), Σ, δPre, ε, Rε(α)〉, (7)

where

δPre = { (τ, σ, βσ) | βσ ∈ Pre(α) ∧ τ ∈ Rε(β) ∧ σ ∈ Σ },

i.e., we have δR
Pre(βσ, σ) = Rε(β), for all βσ ∈ Pre(α), σ ∈ Σ.

In the following we prove that this automaton coincides with APre(α) as defined
in (5). First note that the initial state and set of final states coincide in both defini-
tions. Thus we need to prove that S(α)∪{ε} = Pre(α) and δPre = {ε}×ψ(α) ∪ T(α).

Lemma 6. For all α ∈ RE we have,
(I) If α′σ ∈ S(α), then S(α′) ⊆ S(α).

(II) For w ∈ Σ", one has pw(α) ⊆ S(α) ∪ {ε}.

Proof.
(I) We proceed by structural induction on α. For ∅, ε, and σ, the result is vacuously

true. Let α = α1 + α2 and consider α′σ ∈ S(α1 + α2) = S(α1) ∪ S(α2). Without
loss of generality we suppose that α′σ ∈ S(α1). Then, S(α′) ⊆ S(α1) ⊆ S(α)
follows by the induction hypothesis.

Let α = α1α2, and let α′σ ∈ α1 S(α2) ∪ S(α1). If α′σ ∈ S(α1), then as
in the previous case, the result follows from the induction hypothesis and by
definition of S. If α′σ ∈ α1 S(α2), there are two cases to consider. Either, we
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have α′σ = α1α′′σ with α′′σ ∈ S(α2), or α′ = α1 and σ ∈ S(α2). In the first
case, S(α′′) ⊆ S(α2), and consequently

S(α1α′′) = α1 S(α′′) ∪ S(α1) ⊆ α1 S(α2) ∪ S(α1) = S(α).

In the second case, S(α′) = S(α1) ⊆ α1 S(α2) ∪ S(α1) = S(α).
Let α = α"

1, and let α′σ ∈ S(α"
1) = α"

1 S(α1). If α′σ = α"
1α′′σ for some

α′′σ ∈ S(α1), then

S(α′) = S(α"
1α′′) = α"

1 S(α′′) ∪ S(α"
1) ⊆ α"

1 S(α1) = S(α),

because S(α′′) ⊆ S(α1) by the induction hypothesis. Otherwise, α′ = α"
1 = α

and σ ∈ S(α1) and the result is trivially true.
(II) We prove the statement by induction on length of w ∈ Σ". If w = ε, then

pε(α) = Rε(α) ⊆ S(α) ∪ {ε}.

Now, let w = σw′ and consider α′′ ∈ pσw′(α), i.e. α′′ ∈ Rε(α′), such that
α′σ ∈ pw′(α) for some expression α′. Furthermore, suppose that α′′ ∕= ε. It
follows from the induction hypothesis that α′σ ∈ S(α). By (I), S(α′) ⊆ S(α).
Thus α′′ ∈ Rε(α′) ⊆ S(α′) ∪ {ε} ⊆ S(α) ∪ {ε}.

□

As a consequence of Lemma 6 (II) we obtain the following result.

Proposition 7. Pre(α) ⊆ S(α) ∪ {ε}.

To prove the inclusion S(α) ∪ {ε} ⊆ Pre(α), we define

Pre+(α) = Pre(α) \ {ε}

and

p+
w(α) = pw(α) \ {ε}.

From the Proposition 7 we have that Pre+(α) ⊆ S(α). For the other inclusion we
need the two lemmas below. In the following, to show that an inclusion Pre+(α) ⊆ E
(resp. α′Pre+(α) ⊆ E ) holds for some set E, we show by induction on the length of
w that for every w ∈ Σ" one has p+

w(α) ⊆ E (resp. α′p+
w(α) ⊆ E ). First, we show

that the set Pre+ also satisfies the statement of Lemma 6 (I).

Lemma 8. For all α ∈ RE we have,
(I) If α′σ ∈ Pre+(α), then Pre+(α′) ⊆ Pre+(α).

(II) If α′σ ∈ Pre+(α), then α′′α′σ ∈ Pre+(α′′α), for all α′′ ∈ RE.

Proof.
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(I) If α′σ ∈ Pre+(α) there exists w ∈ Σ" such that α′σ ∈ pw(α) and, by definition
R(α′) ⊆ p+

σw(α) ⊆ Pre+(α). Suppose that p+
x(α′) ⊆ Pre+(α) for x ∈ Σ".

Then, for σ′ ∈ Σ, we have

p+
σ′x(α′) =

"

α′′σ′∈p+
x(α′)

R(α′′) ⊆
"

α′′σ′∈Pre+(α)

R(α′′) ⊆ Pre+(α).

(II) We prove the result by induction on the length of an word w′ ∈ Σ" such that
α′σ ∈ p+

w′(α). If α′σ ∈ R(α), then

α′′α′σ ∈ R(α′′α) ⊆ Pre+(α′′α).

In the case α′σ ∈ p+
σ′w(α), there exists α′′′σ′ ∈ p+

w(α) such that α′σ ∈ R(α′′′).
Then

α′′α′σ ∈ R(α′′α′′′) ⊆ Pre+(α′′α′′′)

and, by the inductive hypothesis, we conclude that α′′α′′′σ′ ∈ Pre+(α′′α). By
(I), Pre+(α′′α′′′) ⊆ Pre+(α′′α), and thus, finally, α′′α′σ ∈ Pre+(α′′α).

□

Lemma 9. Pre+ satisfies the following

Pre+(∅) = Pre+(ε) = ∅, Pre+(σ) = {σ},

Pre+(α + α′) ⊇ Pre+(α) ∪ Pre+(α′), Pre+(αα′) ⊇ αPre+(α′) ∪ Pre+(α),
Pre+(α") ⊇ α"Pre+(α).

Proof. The proof proceeds by induction on the structure of α. For ∅, ε, and σ the
result is obvious.

• For α + α′, we have p+
ε(α) = R(α) ⊆ R(α + α′) ⊆ Pre+(α + α′) and

p+
σw(α) =

"

α′′σ ∈ p+
w(α)

R(α′′) ⊆
"

α′′σ ∈ Pre+(α+α′)

R(α′′) ⊆ Pre+(α + α′).

The same applies for α′, and thus Pre+(α) ∪ Pre+(α′) ⊆ Pre+(α + α′).
• For αα′, we first note that αPre+(α′) ⊆ Pre+(αα′) is a direct consequence

of Lemma 8 (II). Now, we prove that Pre+(α) ⊆ Pre+(αα′). Suppose that
ε(α′) = ε, then p+

ε(α) = R(α) ⊆ R(αα′) ⊆ Pre+(αα′), as well as

p+
σw(α) =

"

α′′σ ∈ p+
w(α)

R(α′′) ⊆
"

α′′σ ∈ Pre+(αα′)

R(α′′) ⊆ Pre+(αα′).

If ε(α′) = ∅ then applying Lemma 5 (II) there exists α′′σ ∈ Pre+(α′) such that
ε(α′′) = ε. By the previous case, one has Pre+(α) ⊆ Pre+(αα′′). On the other
hand, by Lemma 8 (II), αα′′σ ∈ Pre+(αα′). Applying once more Lemma 8
(I), we conclude that Pre+(αα′′) ⊆ Pre+(αα′). By transitivity, it follows that
Pre+(α) ⊆ Pre+(αα′).
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• For α", we have α"p+
ε(α) = α" R(α) = R(α") ⊆ Pre+(α") and

α"p+
σw(α) =

"

α′σ ∈ p+
w(α)

α" R(α′) ⊆
"

α′σ ∈ p+
w(α)

Pre+(α"α′) ⊆ Pre+(α"),

where the first inclusion follows from Lemma 8 (II) and the second inclu-
sion follows from Lemma 8 (I) (as if α"α′σ ∈ α"p+

w(α) ⊆ Pre+(α") then
Pre+(α"α′) ⊆ Pre+(α")).

□

From Lemma 9 and the definition of S it is immediate that S(α) ⊆ Pre+(α), and so
we proved the following proposition.

Proposition 10. S(α) ∪ {ε} ⊆ Pre(α).

The following theorem ensures that APre(α) is the automaton defined in (7), i.e.,

〈Pre(α), Σ, δPre, ε, Rε(α)〉.

Theorem 11. S(α) ∪ {ε} = Pre(α) and δPre = {ε} × ψ(α) ∪ T(α).

Proof. The equality S(α) ∪ {ε} = Pre(α) follows from Proposition 10 and Proposi-
tion 7. Moreover, we have Pre+(α) = S(α). The set of transitions δPre can be seen as
the union of following two sets, where we assume that σ ∈ Σ.

{ (ε, σ, βσ) | βσ ∈ Pre(α) ∧ ε(β) = ε } ∪ { (τ, σ, βσ) | βσ ∈ Pre+(α) ∧ τ ∈ R(β) }.

The first set is exactly {ε} × ψ(α). Using induction on the structure of α we show
that the second set is equal to T(α), i.e.,

T(α) = { (τ, σ, βσ) | βσ ∈ Pre+(α) ∧ τ ∈ R(β) }.

For the base cases the equality holds. Suppose that the equality holds for α1 and α2.
Let α = α1 + α2. Then

{ (τ, σ, βσ) | βσ ∈ Pre+(α1 + α2) ∧ τ ∈ R(β) }
= { (τ, σ, βσ) | βσ ∈ Pre+(α1) ∧ τ ∈ R(β) }
∪ { (τ, σ, βσ) | βσ ∈ Pre+(α2) ∧ τ ∈ R(β) }
= T(α1) + T(α2) = T(α1 + α2).

Let α = α1α2. Then

{ (τ, σ, βσ) | βσ ∈ Pre+(α1α2) ∧ τ ∈ R(β) }
= { (τ, σ, βσ) | βσ ∈ α1Pre+(α2) ∧ τ ∈ R(β) }
∪ { (τ, σ, βσ) | βσ ∈ Pre+(α2) ∧ τ ∈ R(β) }
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By the induction hypothesis, the second set is T(α2). On the other hand, we have

{ (τ, σ, βσ) | βσ ∈ α1Pre+(α2) ∧ τ ∈ R(β) }
= { (τ, σ, βσ) | β

.= α1γ ∧ γσ ∈ Pre+(α2) ∧ τ ∈ R(α1γ) }
= { (τ, σ, βσ) | β

.= α1γ ∧ γσ ∈ Pre+(α2) ∧ τ
.= α1γ′ ∧ γ′ ∈ R(γ) }

∪ { (τ, σ, βσ) | β
.= α1γ ∧ γσ ∈ Pre+(α2) ∧ ε(γ) = ε ∧ τ ∈ R(α1) }

= α1 T(α2) ∪ R(α1) × α1ψ(α2).

We conclude that

{ (τ, σ, βσ) | βσ ∈ Pre+(α1α2) ∧ τ ∈ R(β) } = T(α2) ∪ α1 T(α2) ∪ R(α1) × α1ψ(α2).

Let α = α"
1. Then

{ (τ, σ, βσ) | βσ ∈ Pre+(α"
1) ∧ τ ∈ R(β) }

= { (τ, σ, βσ) | βσ ∈ α"
1Pre+(α1) ∧ τ ∈ R(β) }

= { (τ, σ, βσ) | β
.= α"

1γ ∧ γσ ∈ Pre+(α1) ∧ τ ∈ R(α"
1γ) }

= { (τ, σ, βσ) | β
.= α"

1γ ∧ γσ ∈ Pre+(α1) ∧ τ
.= α"

1γ′ ∧ γ′ ∈ R(γ) }
∪ { (τ, σ, βσ) | β

.= α"
1γ ∧ γσ ∈ Pre+(α1) ∧ ε(γ) = ε ∧ τ ∈ α"

1 R(α1) }
= α"

1 T(α1) ∪ α"
1(R(α1) × ψ(α1)).

□

4. Relation with Other Constructions

In this section we relate the prefix automaton with several other constructions from
regular expressions to NFAs. From Section 4.1 to Section 4.3 we recall the definitions
and some properties of the position automaton and the partial derivative automaton
as well as their duals, i.e., the dual position automaton (A←−−POS) and the right-partial
derivative automaton (A←−PD). For the A←−PD we also show that it is (isomorphic to)
a quotient A←−−POS. The subsequent sections relate APre with these automata. While
A←−PD is a quotient of A←−−POS, APre is a quotient of APOS. For completeness we also
consider the dual prefix automaton A←−Pre and relate it with APD.

4.1. The Position Automaton and its the Dual

The position automaton, introduced by Glushkov [14], permits us to convert a regular
expression α into an equivalent NFA without ε-transitions. The states in the position
automaton correspond to the positions of letters in α plus an additional initial state.
Formally, given α ∈ RE, one can mark each occurrence of a letter σ with its position
in α, considering reading it from left to right. The resulting regular expression is
a marked regular expression α with all symbols distinct and over the alphabet Σα.
Then, a position i ∈ [1, |α|Σ] corresponds to the symbol σi in α, and consequently to
exactly one occurrence of σ in α. The same notation is used to remove the markings,
i.e., α = α. Marking and unmarking can also be applied to a set of expressions.
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Example 12. The marked version of τ = (ab" + b)"a is τ = (a1b"
2 + b3)"a4.

Let Pos(α) = {1, 2, . . . , |α|Σ}, and let Pos0(α) = Pos(α) ∪ {0}. To define the APOS(α)
we consider the following sets:

First(α) = { i | σiw ∈ L(α) },

Last(α) = { i | wσi ∈ L(α) },

Follow(α, i) = { j | uσiσjv ∈ L(α) }.

It is convenient to extend Follow(α, 0) = First(α) and define that Last0(α) is Last(α)
if ε(α) = ∅, or is Last(α) ∪ {0}, otherwise. We define the position automaton using
the approach by Broda et al. [3], where the transition function is expressed as the
composition of functions Select and Follow. Given a letter σ and a set of positions
S, the function Select selects the subset of positions in S that correspond to letter σ.
Formally, given a subset S of Pos(α) and σ ∈ Σ, let

Select(S, σ) = { i | i ∈ S ∧ σi = σ }.

Then, the position automaton for α is

APOS(α) = 〈Pos0(α), Σ, δPOS, 0, Last0(α)〉,

where δPOS(i, σ) = Select(Follow(α, i), σ). Broda et al. [3] defined a dual of the posi-
tion automaton, A←−−POS, which has only one final state n + 1, where n = |α|Σ and the
initial states are Follow(α, 0) ∪ ε(α){n + 1}. Formally

A←−−POS(α) = 〈Pos(α) ∪ {n + 1}, Σ, δ←−−POS, Follow(α, 0) ∪ ε(α){n + 1}, {n + 1}〉,

where for i ∈ Pos(α) ∪ {n + 1} one has δ←−−POS(i, σ) = Follow(α, i) ∪ ε(i){n + 1}, if
i ∕= n + 1 and σi = σ, being the empty set otherwise. In particular, it was shown that

APOS(αR)R ≃ A←−−POS(α).

Example 13. For α = (ab" + b)"a with α = (a1b"
2 + b3)"a4 we can compute the sets:

First(α) = {1, 3, 4}, Last(α) = {4},

Follow(α, 1) = {1, 2, 3, 4}, Follow(α, 2) = {1, 2, 3, 4},

Follow(α, 3) = {1, 3, 4}, Follow(α, 4) = ∅.

The corresponding position automaton and its dual are depicted in Figure 2 and in
Figure 3, respectively.

4.2. The Partial Derivative Automaton

The partial derivative automaton of a regular expression was introduced indepen-
dently by Mirkin [18] and Antimirov [1]. Champarnaud and Ziadi [9] proved that
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Figure 2: APOS((ab! + b)!a).
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Figure 3: A←−−POS((ab! + b)!a).

the two formulations are equivalent. For a regular expression α ∈ RE and a symbol
σ ∈ Σ, the set of partial derivatives of α w.r.t. σ is defined inductively as follows:

∂σ(∅) = ∂σ(ε) = ∅,

∂σ(σ′) =
(

{ε} if σ′ = σ,

∅ otherwise,

∂σ(α + α′) = ∂σ(α) ∪ ∂σ(α′),
∂σ(αα′) = ∂σ(α)α′ ∪ ε(α)∂σ(α′),
∂σ(α") = ∂σ(α)α".

(8)

The definition of partial derivatives can be extended in a natural way to sets of regular
expressions, words, and languages. For w ∈ Σ∗, we have

w−1L(α) = L(∂w(α)) =
"

τ∈∂w(α)

L(τ).

The set of all partial derivatives of α w.r.t. words is denoted by PD(α) = ∂Σ∗(α).
The partial derivative automaton of α is

APD(α) = 〈PD(α), Σ, δPD, α, FPD〉,

where FPD = { τ ∈ PD(α) | ε(τ) = ε }, and δPD(τ, σ) = ∂σ(τ), for all τ ∈ PD(α)
and σ ∈ Σ. Mirkin’s construction of the APD(α) is based on the existence of a set of
expressions π(α) = {α1, . . . , αn} that satisfies a system of equations

αi = σ1αi1 + · · · + σkαik + ε(αi),

with α0
.= α and such that αij are linear combinations of elements of π(α), for all

i ∈ [1, n] and j ∈ [1, k]. It follows that PD(α) = π(α) ∪ {α} and that APD can be
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(ab! + b)!a b!(ab! + b)!a ε
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a

a

b

a

a, b

Figure 4: APD((ab! + b)!a).

defined in an inductive manner [4, 17, 16]. For completeness we give that inductive
construction in the appendix.

Champarnaud and Ziadi [10] proved that APD is a quotient of APOS by the
relation ≡c, which is a right-invariant relation w.r.t. APOS. Given a position i
there is some expression ci(α) such that for all w ∈ Σ"

α, either ∂wσi(α) = ∅ or
∂wσi(α) = {ci(α)}. For i, j ∈ Pos0(α) and considering c0(α) = α, one has

i ≡c j ⇐⇒ ci(α) .= cj(α).

Proposition 14 [10]. APD(α) ≃ APOS(α)/≡c.

Example 15. Figure 4 presents the automaton APD((ab" + b)"a). Considering the
set Pos0((a1b"

2 + b3)"a4)) = {0, 1, 2, 3, 4} we have 0 ≡c 3 and 1 ≡c 2.

4.3. The Right-Partial Derivative Automaton

Partial derivatives correspond to left-quotients of the language of a regular expression.
In the same way one can consider the right-quotients and define the right-partial
derivatives of an expression in a dual manner. For a regular expression α ∈ RE and
a symbol σ ∈ Σ, the set of right-partial derivatives of α w.r.t. σ,

←−
∂ σ(α), is defined

inductively as in (8) except for the following cases:
←−
∂ σ(αβ) = α

←−
∂ σ(β) ∪ ε(β)

←−
∂ σ(α) and

←−
∂ σ(α") = α"←−

∂ σ(α). (9)
The definition of right-partial derivative can be extended in a natural way to sets

of regular expressions, words, and languages. The set of all right-partial derivatives
of α w.r.t. words is denoted by

←−PD(α) =
!

w∈Σ!

←−
∂ w(α). The next results relate the

left and the right partial derivatives, where the reversal of set a of regular expressions
is the set of the reversals of its elements.

Lemma 16. For any α ∈ RE, σ ∈ Σ, and w ∈ Σ" we have
(I) (∂σ(αR))R =

←−
∂ σ(α).

(II) (∂wR(αR))R =
←−
∂ w(α).

(III) L(
←−
∂ w(α)) = L(α)w−1.

(IV)
←−PD(α) = (PD(αR))R.
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Proof. The proof of (I) proceeds by induction on the structure of α using the defini-
tions. The proof of (II) proceeds by induction on the size of w using (I). Finally, (III)
and (IV) are consequences of the first two items. □

The right-partial derivative automaton of α is

A←−PD(α) = 〈
←−PD(α), Σ,

←−−
δPD,

←−−
FPD(α), α〉,

where ←−−
δPD = { (τ, σ, β) | τ ∈

←−
∂ σ(β) ∧ τ ∈

←−PD(α) ∧ σ ∈ Σ },
←−−
FPD = { τ ∈

←−PD(α) | ε(τ) = ε }.

Proposition 17 [16]. L(A←−PD(α)) = L(α).

Note that A←−PD(α) has always one final state although it can have more than one
initial state. Similarly to APD, the A←−PD(α) can also be defined based on the existence
of a set of expressions ←−π (α) = {α1, . . . , αn} that satisfies a system of equations of the
form

αi = αi1σ1 + · · · + αikσk + ε(αi),

with α0
.= α and such that αij are linear combinations of ←−π (α) for all i ∈ [1, n] and

j ∈ [1, k] [16, 17]. Using the results above we can relate APD with A←−PD.

Proposition 18. (APD(αR))R ≃ A←−PD(α).

From Proposition 18 and Proposition 14 we have the following.

Corollary 19. A←−PD(α) ≃ (APOS(αR))R/≡c.

Proof. The following hold

A←−PD(α) ≃ (APD(αR))R ≃
*

APOS(αR)!≡c

+R

≃ (APOS(αR))R
!≡c

.

□
Note that ≡c is a left-invariant relation on the set of states of (APOS(αR))R. As

mentioned in Section 4.1 this last automaton is isomorphic to the A←−−POS [3].

Example 20. For α = (ab" + b)"a, A←−PD(α) is represented in Figure 5 and can be
obtained from A←−−POS(α) in Figure 3, by merging states 1, 3 and 4.

4.4. APre as a quotient of APOS

As mentioned before Yamamoto showed that ASuf coincides with APD. This fact
could lead us to think that A←−PD coincides with APre, which is not true. For instance,
considering α = a + b, the A←−PD(α) has two states and the APre(α) has three states
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(ab! + b)! (ab! + b)!ab! (ab! + b)!a

a, b

a

a

b

b

Figure 5: A←−PD((ab! + b)!a)

(see Figure 6). While A←−PD(α) is a left-quotient of A←−−POS, we will see that APre(α) is
a left-quotient of APOS(α).

0

1

2

a

b

(a) APOS(α)

1

2

3

a

b

(b) A←−−POS(α)

ε

a

b

a

b

(c) APre(α)

ε a + b
a, b

(d) A←−PD(α)

Figure 6: Automata for α = a + b.

Considering a marked regular expression α, APOS(α) is deterministic and thus all
its states, labelled with indexes i ∈ Pos(α) ∪ {0}, have distinct left-languages. On the
other hand, for each index i ∈ Pos(α) there is exactly one state βσi in APre(α). The
initial states of the two automata are respectively labelled with 0 and ε. We conclude
that |Pre(α)| = |α|Σ. The fact that APre(α) ≃ APOS(α) follows from the following
lemma which can be proved by induction on the structure of α [16].

Lemma 21. For any marked regular expression α we have
(I) First(α) = { i | βσi ∈ Pre+(α) ∧ ε(β) = ε }.

(II) Last(α) = { i | βσi ∈ R(α) }.
(III) For all βσi, τσj ∈ Pre+(α), one has (βσi, σj , τσj) ∈ δPre iff j ∈ Follow(α, i).

Proposition 22. APre(α) ≃ APOS(α).

Proof. To prove that these automata are isomorphic we just consider the bijection
ϕp : Pre → Pos0 such that ϕp(ε) = 0, and ϕp(γ) = Last(γ), if γ ∈ Pre(α) \ {ε}. For
the initial and final states the isomorphism is obvious. For the transition functions
the isomorphism follows from Lemma 21. □

Moreover, considering the automaton APre(α) that is obtained from APre(α) by
unmarking the letters labelling the transitions, we have the following result.

Proposition 23. APre(α) ≃ APOS(α).

To show that APre(α) is a quotient of APOS(α), we first consider an equivalence
relation on the set Pre(α). For β, τ ∈ Pre(α), let ≡p be defined by

β ≡p τ ⇐⇒ β
.= τ .
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The following lemma is immediate by the definition of R.

Lemma 24. For all βσi, τσj ∈ Pre(α), if βσi
.= τσj, then Rε(β) = Rε(τ).

Lemma 25. The relation ≡p is left-invariant w.r.t. APre(α).

Proof. We have ≡p⊆ (Pre+(α))2 ∪ {(ε, ε)}. Let βσi, τσj ∈ Pre(α) with βσi ≡p τσj .
Let τ ′ ∈ δR(τσj , σ) = Rε(τ) with σj

.= σ. Then τ ′ ∈ Rε(τ) and by Lemma 24 there
exists β′ ∈ Rε(β) = δR(βσi, σ) such that τ ′ .= β′ (i.e., β′ ∈ Rε(β)). Thus β′ ≡p τ ′. □

Corollary 26. APre(α) ≃ APre(α)/≡p.

Proof. Consider ϕu : Pre(α)/≡p → Pre(α) defined by ϕu([ε]) = ε and ϕu([β]) = β. It
is obvious that ϕu is a bijection and defines an isomorphism between the automaton
APre(α)/≡p and the automaton APre(α). □
As seen before, all the expressions of Pre(α) are of the form that α′σi or ε and for each
position i ∈ Pos(α) there exists a unique α′σi ∈ Pre(α). Let pi(α) be that expression.
Considering the isomorphism ϕp defined between Pre and Pos0 (cf. Lemma 23) we
can define ≡ℓ = ≡p ◦ ϕp which is left-invariant w.r.t. APOS and for i, j ∈ Pos0(α)
verifies the following

i ≡ℓ j ⇐⇒ pi(α) .= pj(α).

Theorem 27. APre(α) ≃ APOS(α)/≡ℓ.

Proof. Let ϕℓ : Pos(α)/≡ℓ → Pre(α) be defined by ϕℓ([0]) = ε and ϕℓ([i]) = pi(α).
From the above, it is obvious that ϕℓ is a bijection and defines an isomorphism between
the automaton APOS(α)/≡ℓ and the automaton APre(α). □

Example 28. Consider α = (ab" + b)"a, with α = (a1b"
2 + b3)"a4, and the automata

APOS and APre depicted in Fig 2 and 1, respectively. We have 1 ≡ℓ 4.

4.5. APre versus APD, and their Duals

Broda et al. [3] defined a dual version of the prefix automaton, denoted by A←−Pre, such
that

A←−Pre(α) ≃ (APre(αR))R

and

A←−Pre(α) ≃ A←−−POS(α)!≡ℓ
.

To define that automaton one uses a set Lε(α) = L(α) ∪ {ε(α)}, where L(α) is defined
as R(α) except for concatenation and Kleene star, where

L(αα′) = L(α)α′ ∪ ε(α) L(α′), L(α") = L(α)α".

These sets relate to partial (left or right) derivatives as follows.
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Table 1: Experimental results for the number of states of some automata constructions.

k |α| | Pos0 | | PD | | PD |
| POS | | ←−PD | | ←−PD |

| POS | | Pre | | Pre |
| POS | 1 − ηk

2 100 28.9 15.7 0.55 15.9 0.55 20.1 0.71 0.90
500 139.9 71.6 0.51 71.5 0.51 91.9 0.66

10
100 42.5 23.8 0.56 23.8 0.56 38.5 0.91

0.99500 207.1 113.2 0.55 112.4 0.54 186 0.90
1000 412.1 223.7 0.54 223.1 0.54 369.5 0.90

Lemma 29 [3]. For any α ∈ RE,

(I) Rε(α) =
!

σ∈Σ
←−
∂ σ(α)σ ∪ ε(α).

(II) Lε(α) =
!

σ∈Σ σ∂σ(α) ∪ ε(α).

In particular, the established relation implies that the number of states of APD(α)
is always less than or equal to the number of states of A←−Pre(α). The same holds for
A←−PD(α) and APre(α). We note that APD and APre are generally not comparable. For
instance, for α = (ab" +b)"a from Examples 4 and 15 the number of states in APD(α)
is three, while APre(α) has four states. On the other hand, for α = a"ab + (ab)" + a"

there are seven states in APD(α) and five in APre(α).

5. Average Size Complexity

In this section we analyse the average size of the automata obtained from regular
expressions by the different constructions considered in the previous sections. We use
both experimental as well as theoretical asymptotical methods considering regular
expressions of a given size following a uniform distribution. Note that although this
distribution on expressions is an adequate choice, it does not relate directly with any
distribution in the realm of regular languages.

First we consider results of experimental tests carried out in order to compare the
sizes of APOS, APD, A←−PD and APre automata. We used the FAdo library 1 that
includes implementations of those NFA conversions, and several tools for uniformly
random generate regular expressions. In order to obtain regular expressions uniformly
generated in the size of the syntactic tree, we used a prefix notation version of the
grammar (1). For each alphabet size, k, and expression size, |α|, samples of 10 000
regular expressions were generated, which is sufficient to ensure a 95% confidence level
within a 1% error margin [11]. Tables 1 and 2 present the average values obtained for
|α| ∈ {100, 500, 1000} and k ∈ {2, 10}.

These experiments suggest that, on average, the A←−PD and the APD have the same
size and the APre is not significantly smaller than the APOS.

Nicaud [19] showed that on average and asymptotically the number of transitions of
APOS is linear on the size of the expression. Broda et al. [4, 5] studied the average size
of APD and concluded that, on average and asymptotically, the APD has at most half
the number of states and transitions of the APOS. By Proposition 18, |αR|Σ = |α|Σ

1fado.dcc.fc.up.pt

fado.dcc.fc.up.pt
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Table 2: Experimental results for the number of transitions of some automata construc-
tions.

k |α| |δPOS| |δPD|
|δPD|

|δPOS| |δ←−PD
|

|δ←−PD
|

|δPOS| |δPre|
|δ←−PD

|
|δPOS|

2 100 167.5 56.0 0.33 56.4 0.34 73.7 0.44
500 1486.5 389.8 0.26 393.1 0.26 530.8 0.36

10
100 159.4 73.7 0.46 72.9 0.46 130.4 0.82
500 1019.1 423.8 0.42 425.6 0.42 807.1 0.79

1000 2182.1 884.1 0.41 884.5 0.41 1717.6 0.79

and by the fact that ε ∈ π(α) if and only if ε ∈ ←−π (α), this analysis of the average
size of APD(α) still holds for A←−PD(α). Thus the average sizes of APD and A←−PD are
asymptotically the same. However, A←−PD(α) has only one final state and its number
of initial states is the number of final states of APD(αR).

Again following the ideas in Broda et al., we estimate the number of mergings of
states that arise when computing APre from APOS. The APre has at most |α|Σ + 1
states and this only occurs when all unions in Pre+(α) are disjoint. However for some
cases this does not happen. For instance, when σ ∈ Pre+(β) ∩ Pre+(γ), then

|Pre+(β + γ)| = |Pre+(β) ∪ Pre+(γ)| ≤ |Pre+(β)| + |Pre+(γ)| − 1,

|Pre+(β"γ)| = |β"Pre+(γ) ∪ β"Pre+(β)| ≤ |Pre+(β)| + |Pre+(γ)| − 1.
(10)

In what follows, we estimate the number of these non-disjoint unions, which corre-
sponds to a lower bound for the number of states merged in the APOS automaton.
This is done in the framework of analytic combinatorics as expounded by Flajolet and
Sedgewick [12] (see also [5]). The method applies to generating functions

A(z) =
'

n

anzn

for a combinatorial class A with an objects of size n, denoted by [zn]A(z), and also
bivariate functions

C(u, z) =
'

α

uc(α)z|α|,

where c(α) is some measure of the object α ∈ A. The symbolic method [12] is a
framework that allows to express a combinatorial class C in terms of simpler ones,
B1,. . . ,Bn, by means of specific operations, yielding the generating function C(z) as
a function of the generating functions Bi(z) of Bi, for 1 ≤ i ≤ n.

Generating functions can be seen as complex analytic functions, and the study of
their behaviour around their dominant singularities gives us access to an asymptotic
estimate for their coefficients. We refer the reader to Flajolet and Sedgewick for an
extensive study on this topic. Here we only state the results relevant for this paper.
For ρ ∈ C, R > 1 and 0 < φ < π/2, consider the domain

∆(ρ, φ, R) = { z ∈ C | |z| < R, z ∕= ρ, and |Arg(z − ρ)| > φ },
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where Arg(z) denotes the argument of z ∈ C. A region is a ∆-domain at ρ if it is
a ∆(ρ, φ, R), for some R and φ. The generating functions we consider have always
a unique dominant singularity, and satisfy one of the two conditions of the following
proposition, used by Nicaud [19].

Proposition 30. Let f(z) be a function that is analytic in some ∆-domain at ρ ∈
R+. If at the intersection of a neighborhood of ρ and its ∆-domain,

(I) f(z) = a − b
,

1 − z/ρ + o
-,

1 − z/ρ
.

, with a, b ∈ R, b ∕= 0, then

[zn]f(z) ∼ b

2
√

π
ρ−nn−3/2.

(II) f(z) = a√
1−z/ρ

+ o

*
1√

1−z/ρ

+
, with a ∈ R, and a ∕= 0, then

[zn]f(z) ∼ a√
π

ρ−nn−1/2.

5.1. The Average State Complexity of APre

The regular expressions ασ for which σ ∈ Pre(ασ), σ ∈ Σ are generated by following
grammar

ασ := σ | (ασ + α) | (ασ + ασ) | (ασ · α) | (ε · ασ).

The regular expressions that are not generated by ασ are denoted by ασ and α are
regular expressions given by grammar (1) (omitting the ∅). The generating function
for regular expressions is

Rk(z) =
1 − z −

,
∆k(z)

4z
, (11)

where ∆k(z) = 1 − 2z − (7 + 8k)z2 and the zeros of ∆k(z) are

ρk = 1
1 + 2

√
2 + 2k

and ρk = 1
1 − 2

√
2 + 2k

,

Moreover [19, 4],

[zn]Rk(z) ∼
,

2(1 − ρk)
8ρk

√
π

ρ−n
k n−3/2. (12)

The generating function for ασ, Rσ,k(z), satisfies

Rσ,k(z) = z +zRσ,k(z)Rk(z)+z(Rk(z)−Rσ,k(z))Rσ,k(z)+zRσ,k(z)Rk(z)+z2Rσ,k(z)

which is equivalent to

zRσ,k(z)2 − (3zRk(z) + z2 − 1)Rσ,k(z) − z = 0.
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From this one gets

Rσ,k(z) =
(z2 + 3zRk(z) − 1) +

,
(z2 + 3zRk(z) − 1)2 + 4z2

2z
.

Using Equation (11) for Rk(z) one has

8zRσ,k(z) = −b(z) − 3
,

∆k(z) +
/

a(z) + 6b(z)
,

∆k(z) + 9∆k(z),

where a(z) = 16z4 −24z3 +65z2 +6z+1 and b(z) = −4z2 +3z+1. Using the binomial
theorem, we know that

/
a(z) + 6b(z)

,
∆k(z) + 9∆k(z) =

,
a(z) + 3 b(z),

a(z)
,

∆k(z) + o(∆k(z) 1
2 ).

Thus,

8zRσ,k(z) = −b(z) +
,

a(z) + 3
0

b(z),
a(z)

− 1
1

,
∆k(z) + o(∆k(z) 1

2 ).

As we know that the following equalities are true:
,

∆k(z) =
,

(7 + 8k)ρk(z − ρk)
,

1 − z/ρk,

,
(7 + 8k)ρk(ρk − ρk) =

,
2 − 2ρk,

and using the Proposition 30 one has

[zn]Rσ,k(z) ∼ 3
16

√
π

0
1 − b(ρk),

a(ρk)

1
,

2(1 − ρk)ρ−(n+1)
k n− 3

2 .

Thus the asymptotic ratio of regular expressions with σ ∈ Pre(α) is:

[zn]Rσ,k(z)
[zn]Rk(z) ∼ 3

2

0
1 − b(ρk),

a(ρk)

1
.

As lim
k→∞

ρk = 0, lim
k→∞

a(ρk) = 1, and lim
k→∞

b(ρk) = 1, the asymptotic ratio of regular
expressions with σ ∈ Pre approaches 0 when k → ∞.

Let i(α) be the number of non-disjoint unions appearing during the computation
of Pre(α), α ∈ RE originated by the two cases described in (10). Then i(α) verifies
the following equations

i(ε) = i(σ) = 0,

i(ασ + ασ) = i(ασ) + i(ασ) + 1,

i(ασ + ασ) = i(ασ) + i(ασ),
i(ασ + α) = i(ασ) + i(α),

i(α"
σασ) = i(α"

σ) + i(ασ) + 1,

i(α"
σασ) = i(α"

σ) + i(ασ),
i(αασ) = i(α) + i(ασ),

i(α") = i(α).
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From these equations we can obtain the cost generating function of the mergings,
Iσ(z), by adding the contributions of each one of them. For example, the contribution
of the regular expressions of the form ασ + ασ can be computed as follows:

'

ασ+ασ

i(ασ + ασ)z|(ασ+ασ)| = z
'

ασ

'

ασ

(i(ασ) + i(ασ) + 1)z|ασ|z|ασ|

= z
'

ασ

'

ασ

(i(ασ) + i(ασ))z|ασ|z|ασ| + z
'

ασ

'

ασ

z|ασ|z|ασ|

= 2zIασ,k(z)Rσ,k(z) + zRσ,k(z)2,

where Iασ,k(z) is the generating function for the mergings coming from ασ. Applying
this technique to the remaining cases, we obtain

Iσ(z) = (z + z2)Rσ,k(z)2
,

∆k(z)
.

Using again the same Proposition 30, we can conclude that:

[zn]Iσ(z) ∼ 1 + ρk

64

-
a(ρk) + b(ρk)2 − 2b(ρk)

,
a(ρk)

.

√
π

√
2 − 2ρk

ρ
−(n+1)
k n− 1

2 .

Recall that the number of states of APOS(α) is equal to the number of letters in α.
Thus in order to obtain a lower bound for the reduction in the number of states of
the APre automaton, as compared to the ones of the APOS automaton, it is enough
to compare the number of mergings for an expression α, with the number of letters in
α. From Nicaud [19] one knows that the generating function for the number of letters
Lk(z) satisfies the following

[zn]Lk(z) ∼ kρk,
π(2 − 2ρk)

ρ−n
k n−1/2.

Therefore, the asymptotic estimate for the average number of mergings is given by:

[zn]Iσ(z)
[zn]Lk(z) ∼ 1 − ρk

4kρ2
k

λk = ηk, where

λk = (1 + ρk)
16(1 − ρk)

-
a(ρk) + b(ρk)2 − 2b(ρk)

,
a(ρk)

.
.

It is not difficult to conclude that lim
k→∞

λk = 0, therefore lim
k→∞

ηk = 0.
As it is evident from the last two columns of Table 1, for small values of k, the

lower bound ηk does not capture all the mergings that occur in APre. However, it
seems that for larger values of k, the average number of states of the APre automaton
approaches the number of states of the APOS automaton.
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6. The Prefix Automaton for Regular Expressions with Intersection

In this section we extend the prefix automaton to regular expressions with the in-
tersection operator. The set RE∩ of regular expressions with intersection over Σ is
obtained by adding the rule α := (α ∩ α) in grammar (1). We have

L(α ∩ β) = L(α) ∩ L(β).

Recently, the partial derivative automaton and the position automaton were extended
to RE∩ [2, 6, 8]. In the case of the position automaton, the states were labelled by sets
of indexes. If reading a sequence of letters leads to a state with a label I = {i1, . . . , in},
then in the corresponding marked regular expression, one just reads simultaneously
letters σi1 , . . . , σin for some (unmarked) letter σ.

Example 31. Let α = (ab"a+a)" ∩ (aa+b)" with α = (a1b"
2a3 +a4)" ∩ (a5a6 +b7)".

After reading the sequence of letters aa, the letters read in the marked expressions are
either a3 and a6, or a4 and a6. Thus there will be a path in the position automaton
from the initial state to a state with label {3, 6}, as well as to a state with label {4, 6}.

Furthermore, it was shown that the partial derivative automaton is a quotient of
this position automaton construction by an extension of relation ≡c. In the case
of expressions containing intersection, and due to the fact that some subexpressions
may describe the empty language, the inductive constructions of these automata may
include useless states, i.e., states with an empty right language.

Example 32. For α from Example 31 and β = (c ∩ d) we have αβ = α(c8 ∩ d9).
In this case states {3, 6} and {4, 6} in the position automaton of αβ are now useless
states.

We now define the position automaton for expressions in RE∩, using the Select
function defined in Section 4.1. This construction leads to an initially connected
automaton, which improves the inductive definition presented in [8]. That is obtained
by defining the Follow set only for the necessary sets of indexes, i.e., labels of reachable
states. Given α ∈ RE∩, both α and Pos(α) are defined as before. For the labels of
states of APOS(α) one has to consider non-empty subsets of Pos(α) where all indexes
correspond to the same letter. For this, we define ℓ(i) = σ for σi = σ, as well as
ℓ(I) = σ if for all i ∈ I ⊆ Pos(α) one has ℓ(i) = σ. The set of all non-empty
subsets I of Pos(α), such that ℓ(I) = σ for some σ ∈ Σ, is denoted by Ind(α). For
S1, S2 ⊆ Ind(α), we define

S1 ⊗ S2 = { I1 ∪ I2 | ℓ(I1) = ℓ(I2) ∧ I1 ∈ S1, I2 ∈ S2 }.

Given a marked expression α, a subexpression β of α, and a set of indexes I ∈ Ind(α),
let I

22
β

denote the set of indexes in I that occur in β. This definition is naturally
extended to words x = I1 · · · In ∈ Ind(α)" by x

22
β

= I1
22
β

· · · In

22
β
, for n ≥ 0.

Now, we consider the sets First(α), Last(α) and Follow(α, I) ⊆ Ind(α), for I ∈
Ind(α). These sets are defined on a marked expression and as usual [3, 15], except for
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the base cases and for intersection. First is defined as follows.

First(∅) = First(ε) = ∅, First(α1 + α2) = First(α1) ∪ First(α2),

First(σi) = {{i}}, First(α1α2) =
(

First(α1) ∪ First(α2), if ε(α1) = ε;
First(α1), otherwise,

First(α") = First(α), First(α1 ∩ α2) = First(α1) ⊗ First(α2).

As usual, Last is defined as First except for the concatenation operator.

Last(α1α2) =
(

Last(α1) ∪ Last(α2), if ε(α2) = ε;
Last(α2), otherwise.

Now, consider the set Follow with I ∈ Ind(α), given by the following rules.
Follow(σi, I) = ∅,

Follow(α1 + α2, I) =

3
45

46

Follow(α1, I) if I ∈ Ind(α1),
Follow(α2, I) if I ∈ Ind(α2),
∅ otherwise.

Follow(α1α2, I) =

3
4445

4446

Follow(α1, I) if I ∈ Ind(α1) ∧ I /∈ Last(α1),
Follow(α1, I) ∪ First(α2) if I ∈ Last(α1),
Follow(α2, I) if I ∈ Ind(α2),
∅ otherwise.

Follow(α", I) =

3
45

46

Follow(α, I) if I /∈ Last(α),
Follow(α, I) ∪ First(α) if I ∈ Last(α),
∅ otherwise.

Follow(α1 ∩ α2, I) =

3
45

46

Follow(α1, I1) ⊗ Follow(α2, I2) if I = I1 ∪ I2 ∧
I1 ∈ Ind(α1) ∧ I2 ∈ Ind(α2),

∅ otherwise.
Finally, for S ⊆ Ind(α) and σ ∈ Σ one has Select(S, σ) = { I ∈ S | ℓ(I) = σ }. Then,
the position automaton APOS(α) is

APOS(α) = 〈Ind(α) ∪ {{0}}, Σ, δPos, 0, Last0(α)〉,

where Last0(α) is defined as before,

δPos(I, σ) = Select(Follow(α, I), σ), and

Follow(α, {0}) = First(α).

With these definitions we have that, given an expression α ∈ RE∩, APOS(α) is equiv-
alent to α [8].
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{0} {1, 5}

{4, 5}

{3, 6}

{4, 6} {2, 7}

{1, 6} {3, 5}
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a
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a

b

a

a

Figure 7: APOS((ab!a + a)! ∩ (aa + b)!)

Example 33. Let α = (ab"a+a)" ∩ (aa+b)" with α = (a1b"
2a3 +a4)" ∩ (a5a6 +b7)".

In Figure 7 we depict the position automaton for α. We have

First(α) = {{1, 5}, {4, 5}},

Last(α) = {{3, 6}, {4, 6}},

Follow(α, 0) = Follow(α, {3, 6}) = Follow(α, {4, 6}) = {{1, 5}, {4, 5}},

Follow(α, {1, 5}) = {{3, 6}},

Follow(α, {1, 6}) = Follow(α, {2, 7}) = {{2, 7}, {3, 5}},

Follow(α, {4, 5}) = Follow(α, {3, 5}) = {{4, 6}, {1, 6}}.

We recall that APD was extended to expressions with intersection [2] by considering,
for σ ∈ Σ

∂σ(α1 ∩ α2) = { (α ∩ α′) | α ∈ ∂σ(α1) ∧ α′ ∈ ∂σ(α2) }.

To define APre for regular expressions with intersection we extend the function R
as follows:

R(α1 ∩ α2) = { (α ∩ α′)σ | ασ ∈ R(α1) ∧ α′σ ∈ R(α2) }. (13)

With this definition, we still have that L(α) = L(Rε(α)). Consequently, APre(α)
defined as in (7) is equivalent to α. Note that the set S defined in (2) can be also
extended for expressions with intersection considering that

S(α1 ∩ α2) = { (α ∩ α′)σ | ασ ∈ S(α1) ∧ α′σ ∈ S(α2) }. (14)

However, as in the case of APD for the sets π and PD+, one has Pre(α) ⊆ S(α) but
one can have S(α) ∕⊆ Pre(α) [2]. For instance, Pre(a(b∩ c)) = ∅, but S(a(b∩ c)) = {a}.

In the following we establish that APre is also a quotient of APOS. Note that marked
expressions of the form α∩β are always either equivalent to the empty language ∅, or
to {ε}. Consequently, the result in Propositions 23 does not hold and we have to use
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a different approach here. Consider function RI that applies to marked expressions
and is defined as R in (3) except that RI(σi) = {(ε, {i})}, and

RI(α1 ∩ α2) = { (α ∩ α′, I1 ∪ I2) |
(α, I1) ∈ RI(α1) ∧ (α′, I2) ∈ RI(α2) ∧ ℓ(I1) = ℓ(I2) },

with the convention that α(β, I) = (αβ, I) and (β, I)α = (βα, I), and which extends
to sets of pairs (β, I). Given a marked expression α and w ∈ Ind(α)" consider pI

w(α)
such that:

pI
ε(α) = RI

ε(α), pI
Iw(α) =

"

(α′,I) ∈ pI
w(α)

RI
ε(α′),

where RI
ε(α) = RI(α) ∪ ε(α).

For an (unmarked) expression α ∈ RE∩ let,

PreI(α) =
"

w∈(Ind(α))!

pI
w(α).

Similar to the case without intersection, for each I ∈ Ind(α), there is exactly one
pair (αI , I) ∈ PreI(α). For α ∈ RE, we have that PreI(α) satisfies (2) considering
that PreI(σi) = {(ε, {i})}. The following lemma caracterizes PreI for expressions with
intersection.

Lemma 34.

PreI(α1 ∩ α2) \ {ε} = { (α ∩ α′, I1 ∪ I2) |
(α, I1) ∈ PreI(α1), (α′, I2) ∈ PreI(α2), ℓ(I1) = ℓ(I2) }.

Proof. We show that for all w ∈ Ind(α1 ∩ α2)" one has (β, I) ∈ pI
w(α1 ∩ α2) if

and only if β = β1 ∩ β2, I = I1 ∪ I2, (β1, I1) ∈ pI
w1(α1), (β2, I2) ∈ pI

w2(α2), and
ℓ(I1) = ℓ(I2), where I1 = I

22
β1

, I2 = I
22
β2

, w1 = w
22
β1

, and w2 = w
22
β2

. The proof is by
induction on |w|. For w = ε the result follows from the definition of RI. Furthermore,
we have (β, I) ∈ pI

Jw(α1 ∩ α2) iff there is a pair (α′, J) ∈ pI
w(α1 ∩ α2) such that

(β, I) ∈ RI
ε(α′). Thus, by the induction hypothesis α′ = α′

1 ∩ α′
2, J = J1 ∪ J2,

(α′
1, J1) ∈ pI

w1(α1), (α′
2, J2) ∈ pI

w2(α2), ℓ(J1) = ℓ(J2), where J1 = J
22
α1

, J2 = J
22
α2

,
w1 = w

22
α1

, and w2 = w
22
α2

. But (β, I) ∈ RI
ε(α′

1 ∩ α′
2) means that β = β1 ∩ β2,

I = I1 ∪ I2, (β1, I1) ∈ RI(α′
1), (β2, I2) ∈ RI(α′

2), and ℓ(I1) = ℓ(I2). And, finally, that
(β1, I1) ∈ pI

J1w1(α1) and (β2, I2) ∈ pI
J2w2(α2). □

The next lemma establishes the connection of PreI with Pre and can be proved by
induction on the structure of α.

Lemma 35. Pre+(α) = { α′σ | (α′, I) ∈ PreI(α) ∧ σ = ℓ(I) }.

The following result, which is analogous to Lemma 21, relates APOS with APre.

Lemma 36. For α ∈ RE∩ we have
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(I) First(α) = { I | (β, I) ∈ PreI(α) ∧ ε(β) = ε },
(II) Last(α) = { I | (β, I) ∈ RI(α) },

(III) For all (β, I), (γ, J) ∈ PreI(α), σI = ℓ(I) and σJ = ℓ(J), one has
(βσI , σJ , γσJ) ∈ δPre if and only if J ∈ Follow(α, I).

Proof. By induction on α ∈ RE∩ (as defined in the beginning of this section). If α
does not contain the intersection operator, then the result follows by Lemma 21. In
fact, the definitions are identical except for the case of σi, where instead of a position i
we have the singleton I = {i}. We will check the results for the case of an intersection
expression α1 ∩ α2.

(I) By Lemma 34 we have

First(α1 ∩ α2) = { I1 ∪ I2 | ℓ(I1) = ℓ(I2) ∧ I1 ∈ First(α1) ∧ I2 ∈ First(α2) }
= { I1 ∪ I2 | (α, I1) ∈ PreI(α1) ∧ (α′, I2) ∈ PreI(α2)

∧ ℓ(I1) = ℓ(I2) ∧ ε(α) = ε(α′) = ε }
= { I1 ∪ I2 | (α ∩ α′, I1 ∪ I2) ∈ PreI(α1 ∩ α2) ∧ ε(α ∩ α′) = ε }.

(II) We have

Last(α1∩α2) = Last(α1) ⊗ Last(α2)
= { I1 | (β1, I1) ∈ RI(α1) } ⊗ { I2 | (β2, I2) ∈ RI(α2) }
= { I1 ∪ I2 | ℓ(I1) = ℓ(I2) ∧ (β1, I1) ∈ RI(α1) ∧ (β2, I2) ∈ RI(α2) }
= { I1 ∪ I2 | (β1 ∩ β2, I1 ∪ I2) ∈ RI(α1 ∩ α2) }.

(III) Here we use Lemma 35. Let (β1 ∩ β2, I1 ∪ I2), (γ1 ∩ γ2, J1 ∪ J2) ∈ PreI(α1 ∩ α2).
Let σI = ℓ(I1) = ℓ(I2) and let σJ = ℓ(J1) = ℓ(J2). Then,

(β1 ∩ β2σI , σJ , γ1 ∩ γ2σJ) ∈ δPre(α1 ∩ α2)
⇐⇒ γ1 ∩ γ2σJ ∈ Pre+(α1 ∩ α2) ∧ β1 ∩ β2σI ∈ Rε(γ1 ∩ γ2)
⇐⇒ (γ1 ∩ γ2, J) ∈ PreI(α1 ∩ α2) ∧ β1σI ∈ Rε(γ1) ∧ β2σI ∈ Rε(γ2)
⇐⇒ (γ1, J1) ∈ PreI(α1) ∧ (γ2, J2) ∈ PreI(α2) ∧ β1σI ∈ Rε(γ1) ∧ β2σI ∈ Rε(γ2)
⇐⇒ (β1σI , σJ , γ1σJ) ∈ δPre(α1) ∧ (β2σI , σJ , γ2σJ) ∈ δPre(α2)
⇐⇒ J1 ∈ Follow(α1, I1) ∧ J2 ∈ Follow(α2, I2)
⇐⇒ J1 ∪ J2 ∈ Follow(α1 ∩ α2, I1 ∪ I2).

□
Finally, consider the relation ≡ℓ defined in Ind(α) ∪ {{0}} such that {0} ≡ℓ {0} and
for I, J ∈ Ind(α),

I ≡ℓ J ⇐⇒ ℓ(I) = ℓ(J) and αI
.= αJ .

This relation is left-invariant w.r.t. APOS(α). We conclude that, also for expressions
with intersection, one has the following result.
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ε αa (α1ab! ∩ α2a)a

(α1 ∩ α2a)a (α1ab! ∩ α2)b

(α1ab! ∩ α2)a

a
a

a
aa

a

b

a

b

a

Figure 8: APre((ab!a + a)! ∩ (aa + b)!)

Proposition 37. APre(α) ≃ APOS(α)/≡ℓ.

Proof. Let ϕℓ : (Ind(α) ∪ {{0}})/≡ℓ → Pre(α) defined by ϕℓ([{0}]) = ε and let
ϕℓ([I]) = αIσ, where σ = ℓ(I). It is obvious that ϕℓ is a bijection and, us-
ing Lemma 36, defines an isomorphism between APOS(α)/≡ℓ and APre(α). □

Example 38. For α from Example 33, with α = α1 ∩ α2, for α1 = (a1b"
2a3 + a4)"

and α2 = (a5a6 + b7)" we have
PreI(α1) = {ε, (α1, {1}), (α1, {4}), (α1a1b"

2, {3}), (α1a1b"
2, {2})},

PreI(α2) = {ε, (α2, {5}), (α2, {7}), (α2a5, {6})},

PreI(α) = {ε, (α1 ∩ α2, {1, 5}), (α1 ∩ α2, {4, 5}),
(α1 ∩ α2a5, {1, 6}), (α1 ∩ α2a5, {4, 6}),
(α1a1b"

2 ∩ α2a5, {3, 6}),
(α1a1b"

2 ∩ α2, {3, 5}), (α1a1b"
2 ∩ α2, {2, 7})}.

By inspection of the expressions in these pairs and since ℓ({1, 5}) = ℓ({4, 5}) = a and
also ℓ({1, 6}) = ℓ({4, 6}) = a, we conclude that an automaton isomorphic to APre(α)
can be obtained from APOS(α), merging the states with labels {1, 5} and {4, 5}, as
well as the states with labels {1, 6} and {4, 6}. The first two states merge to a non
final state with label αa, while the latter merge to a final state with label (α1 ∩α2a)a.
The automaton APre(α) is depicted in Figure 8.

In a symmetric way an extension of L to expressions with intersection can be
given, as well as a function LI, that applies to marked expressions. Using these
definitions, one shows that also for intersection the relationship between A←−−POS and
A←−Pre is A←−Pre(α) ≃ A←−−POS(α)/≡ℓ. Using the counterpart of (13) for L we have that
Lemma 29(II) is also true stablishing a relation between A←−Pre and APD. Finaly, the
right-partial derivative automaton A←−PD can be extended exactly as APD for expres-
sions with intersection, and we conclude that Lemma 29(I) also holds in this case.

Example 39. In Figure 9 is depicted the APD(α) for α = (ab"a + a)" ∩ (aa + b)".
As α = αR,we have A←−Pre(α) ≃ APre(α)R and A←−PD(α) ≃ APD(α)R.
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Figure 9: APD((ab!a + a)! ∩ (aa + b)!) where α1 = (ab!a + a)! and α2 = (aa + b)!.

α (b"a)α1 ∩ (aα2)

α1 ∩ (aα2) (b"aα1) ∩ α2

a

a

a

a a

a

b

7. Conclusion

An upper-bound for the asymptotical average number of states of APD(α) for α ∈ RE∩
of size n is (1.056 + o(1))n (cf. Bastos et al. [2]). The same upper-bound holds for
APOS and thus also for APre. In Broda et.al [3] several automaton constructions were
based on the Follow set and the Select function. Considering the definition of the set
Follow for expressions in RE∩, all those constructions can be extended and the same
relationships hold. With the extension of APre to RE∩ and the results here presented
we conclude that the relationships presented in that taxonomy also hold for APre,
A←−Pre and their determinisations.
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A. Inductive Characterization of APD

Mirkin’s construction of the APD(α) is based on the existence of a set of expressions
π(α) = {α1, . . . , αn} that satisfies a system of equations

αi = σ1αi1 + · · · + σkαik + ε(αi),

with α0
.= α and such that αij are linear combinations of elements of π(α), for all

i ∈ [1, n] and j ∈ [1, k]. The set π(α) can be obtained inductively on the structure of
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α as follows:

π(∅) = ∅, π(α + β) = π(α) ∪ π(β),
π(ε) = ∅, π(αβ) = π(α)β ∪ π(β), (15)
π(σ) = {ε}, π(α") = π(α)α".

Champarnaud and Ziadi [9] proved that PD(α) = π(α) ∪ {α} and that the An-
timirov and the Mirkin constructions lead to the same automaton. As noted by Broda
et al. [5], Mirkin’s algorithm to compute π(α) also provides an inductive definition
of the set of transitions of APD(α). Let ϕ(α) = { (σ, γ) | γ ∈ ∂σ(α) ∧ σ ∈ Σ } and
λ(α) = { α′ | α′ ∈ π(α) ∧ ε(α′) = ε }, where both sets can be inductively defined as
follows:

ϕ(∅) = ∅, ϕ(α + β) = ϕ(α) ∪ ϕ(β),
ϕ(ε) = ∅, ϕ(αβ) = ϕ(α)β ∪ ε(α)ϕ(β),
ϕ(σ) = {(σ, ε)} ϕ(α") = ϕ(α)α",

(16)

λ(∅) = ∅, λ(α + β) = λ(α) ∪ λ(β),
λ(ε) = ∅, λ(αβ) = ε(β)λ(α)β ∪ λ(β),
λ(σ) = {ε}, λ(α") = λ(α)α".

(17)

In the above definitions, for any tuple (σ, τ) and expression β, (σ, τ)β = (σ, τβ),
β(σ, τ) = (σ, βτ) and these also extend to sets of tuples. The set Tr(α) of transitions
is inductively defined by:

Tr(∅) = Tr(ε) = Tr(σ) = ∅, σ ∈ Σ,

Tr(α + β) = Tr(α) ∪ Tr(β),
Tr(αβ) = Tr(α)β ∪ Tr(β) ∪ (λ(α)β × ϕ(β)),
Tr(α") = Tr(α)α" ∪ (λ(α) × ϕ(α))α",

where the result of the × operation is seen as a set of triples (α′, σ, β′) and the
concatenation of a transition (α, σ, β) with a regular expression γ is defined by
(α, σ, β)γ = (αγ, σ, βγ) and γ(α, σ, β) = (γα, σ, γβ). These also extends to sets of
transitions. Then we can inductively construct the partial derivative automaton of α
using the following results.

Proposition 40. Tr(α) = {(τ, σ, τ ′) | τ ∈ PD+(α) ∧ τ ′ ∈ ∂σ(τ) ∧ σ ∈ Σ}.

Proof. We know [7, 9] that PD+(α) = π(α). Thus we want to prove that Tr(α) =
{(τ, σ, τ ′) | τ ∈ π(α) ∧ τ ′ ∈ ∂σ(τ) ∧ σ ∈ Σ}. Let us proceed by induction on the
structure of α. For the base cases the equality is obvious. We assume that σ ∈ Σ.
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Let α
.= α1 + α2. Then

{ (τ, σ, τ ′) | τ ∈ π(α1 + α2) ∧ τ ′ ∈ ∂σ(τ) }
= { (τ, σ, τ ′) | τ ∈ π(α1) ∪ π(α2) ∧ τ ′ ∈ ∂σ(τ) }
= { (τ, σ, τ ′) | τ ∈ π(α1) ∧ τ ′ ∈ ∂σ(τ) } ∪ { (τ, σ, τ ′) | τ ∈ π(α2) ∧ τ ′ ∈ ∂σ(τ) }
= Tr(α1) ∪ Tr(α2) = Tr(α1 + α2).

Let α
.= α1α2. Then

{ (τ, σ, τ ′) | τ ∈ π(α1α2) ∧ τ ′ ∈ ∂σ(τ) }
= { (τ, σ, τ ′) | τ ∈ π(α1)α2 ∪ π(α2) ∧ τ ′ ∈ ∂σ(τ) }
= { (τ, σ, τ ′) | τ ∈ π(α1)α2 ∧ τ ′ ∈ ∂σ(τ) } ∪ { (τ, σ, τ ′) | τ ∈ π(α2) ∧ τ ′ ∈ ∂σ(τ) }.

By the induction hypothesis, we have { (τ, σ, τ ′) | τ ∈ π(α2)∧τ ′ ∈ ∂σ(τ) } = Tr(α2).
On the other hand,

{ (τ, σ, τ ′) | τ ∈ π(α1)α2 ∧ τ ′ ∈ ∂σ(τ) }
= { (τ, σ, τ ′) | τ

.= α′
1α2 ∧ α′

1 ∈ π(α1) ∧ τ ′ ∈ ∂σ(α′
1α2) }

= { (τ, σ, τ ′) | τ
.= α′

1α2 ∧ α′
1 ∈ π(α1) ∧ τ ′ ∈ ∂σ(α′

1)α2 }
∪ { (τ, σ, τ ′) | τ

.= α′
1α2 ∧ α′

1 ∈ π(α1) ∧ ε(α′
1) = ε ∧ τ ′ ∈ ∂σ(α2) }

= Tr(α1)α2 ∪ (λ(α1)α2 × ϕ(α2)).

We conclude that { (τ, σ, τ ′) | τ ∈ π(α1α2) ∧ τ ′ ∈ ∂σ(τ) } = Tr(α1α2). Let α
.= α"

1.
Then

{ (τ, σ, τ ′) | τ ∈ π(α"
1) ∧ τ ′ ∈ ∂σ(τ) } = { (τ, σ, τ ′) | τ ∈ π(α1)α"

1 ∧ τ ′ ∈ ∂σ(τ) }
= { (τ, σ, τ ′) | τ

.= α′
1α"

1 ∧ α′
1 ∈ π(α1) ∧ τ ′ ∈ ∂σ(τ) }

= { (τ, σ, τ ′) | τ
.= α′

1α"
1 ∧ α′

1 ∈ π(α1) ∧ τ ′ ∈ ∂σ(α′
1)α"

1 }
∪ { (τ, σ, τ ′) | τ

.= α′
1α"

1 ∧ α′
1 ∈ π(α1) ∧ ε(α′

1) = ε ∧ τ ′ ∈ ∂σ(α"
1) }

= Tr(α1)α"
1 ∪ (λ(α1) × ϕ(α1))α"

1 = Tr(α"
1). □

Proposition 41. APD(α) = 〈π(α) ∪ {α}, Σ, {α} × ϕ(α) ∪ Tr(α), α, λ(α) ∪ ε(α){α}〉.

Proof. We want to prove that the right-hand side of this equality corresponds to the
definition of APD previously presented. For the set of states in both definitions of the
automata note that PD(α) = π(α) ∪ {α}. Also the initial and final states coincide.
The transition function

δPD = { (τ, σ, τ ′) | τ ∈ PD(α) ∧ τ ′ ∈ ∂σ(τ) ∧ σ ∈ Σ }

can be written as the following union:

{ (α, σ, τ ′) | τ ′ ∈ ∂σ(α)∧σ ∈ Σ }∪{ (τ, σ, τ ′) | τ ∈ PD+(α)∧τ ′ ∈ ∂σ(τ)∧σ ∈ Σ }.

The first set is clearly equal to {α} × ϕ(α), and by Proposition 40 the second set is
equal to Tr(α). Figure 10 illustrates this inductive construction, where we assume
that states are merged whenever they correspond to equal REs. □
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Figure 10: Inductive Construction of APD. Dotted states are final if ε belongs to the
language of their label. If ε(β) = ε the dotted arrow exists.
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σ′
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B. Inductive Construction of A←−PD

The set ←−π (α) can be defined inductively as in (15) except for the following cases:
←−π (αβ) = α←−π (β) ∪ ←−π (α) and ←−π (α") = α"←−π (α).

The solution of the system of equations also allows to inductively define the transition
function and the set of initial states of A←−PD [17, 16]. As before, we consider the sets
←−ϕ (α) = {(γ, σ) | γ ∈

←−
∂ σ(α), σ ∈ Σ} and

←−
λ (α) = {α′ | α′ ∈ ←−π (α), ε(α′) = ε}, which

are inductively defined as in (16) and (17), respectively, except for following cases:
←−ϕ (σ) = {(ε, σ)},

←−ϕ (α") = α"←−ϕ (α),
←−
λ (α") = α"←−

λ (α),
←−ϕ (αβ) = α←−ϕ (β) ∪ ε(β)←−ϕ (α),

←−
λ (αβ) = ε(α)α

←−
λ (β) ∪

←−
λ (α).

The set of transitions is ←−ϕ (α) × {α} ∪
←−Tr(α) where

←−Tr is defined as Tr except for:
←−Tr(αβ) =

←−Tr(α) ∪ α
←−Tr(β) ∪ (←−ϕ (α) × (α

←−
λ (β))),

←−Tr(α") = α"←−Tr(α) ∪ α"(←−ϕ (α) ×
←−
λ (α)).

Then, we have

A←−PD(α) = 〈←−π (α) ∪ {α}, Σ, ←−ϕ (α) × {α} ∪
←−Tr(α),

←−
λ (α) ∪ ε(α){α}, α〉.


