
1

On the Average Complexity of Partial Derivative
Transducers

Stavros Konstantinidis b, António Machiavelo a, Nelma Moreira a,∗,
Rogério Reis a

aCMUP & DM-DCC, Faculdade de Ciências da Universidade do Porto, Rua do Campo
Alegre, 4169-007, Porto, Portugal

bSaint Mary’s University, 923, Robie Str, Halifax, Nova Scotia, Canada

Abstract

2D regular expressions represent rational relations over two alphabets Σ and ∆.
In standard 2D expressions (S2D-RE) the basic terms are generators of Σ!×∆!,
while in generalised 2D expressions (2D-RE) the basic terms are pairs of (ordi-
nary) regular expressions over one alphabet (1D). In this paper we study the
average state complexity of partial derivative standard transducers (TPD) for
both S2D-RE and 2D-RE. For S2D-RE we obtain the same asymptotic bounds
as for partial derivative automata. For 2D-RE, while in the worst case the
number of states of TPD can be O(n2), where n is the size of the expression,

asymptotically and on average that value is bounded from above by O(n
3
2). We

also show that asymptotically and on average the alphabetic size of a 2D-RE
is half of its size. All results are obtained in the framework of analytic combi-
natorics considering generating functions of parametrised combinatorial classes
defined implicitly by algebraic curves. In particular, we generalise the methods
developed in previous work to a broad class of analytic functions.

Keywords: Transducers, Rational Expressions, Partial Derivatives, Analytic
Combinatorics, Average Case Complexity

!This is a completely revised and expanded version of a paper presented at the 46th
International Conference on Current Trends in Theory and Practice of Informatics, SOFSEM
2020 [1].

!!This work was partially supported by NSERC, Canada and CMUP, which is financed by
national funds through FCT – Fundação para a Ciência e a Tecnologia, I.P., under the project
with reference UIDB/00144/2020.

∗Corresponding author

Email addresses: s.konstantinidis@smu.ca (Stavros Konstantinidis),

antonio.machiavelo@fc.up.pt (António Machiavelo), nelma.moreira@fc.up.pt (Nelma

Moreira), rogerio.reis@fc.up.pt (Rogério Reis)

Preprint submitted to Elsevier March 9, 2024

https://orcid.org/0000-0002-6628-067X
https://orcid.org/0000-0002-7595-7275
https://orcid.org/0000-0003-0861-0105
https://orcid.org/0000-0001-9668-0917
https://orcid.org/0000-0002-6628-067X
https://orcid.org/0000-0002-7595-7275
https://orcid.org/0000-0003-0861-0105
https://orcid.org/0000-0001-9668-0917

1. Introduction

We consider 2D expressions that represent rational (word) relations over
two alphabets. Expressions and transducers with labels over finitely generated
monoids were studied by Konstantinidis et al. [2, 3], and also by Demaille [4].
Partial derivative methods have become a standard method to manipulate sev-
eral kinds of expressions [5, 6, 4, 7, 8, 9], not only because they are in general
more succinct than other equivalent constructions, but for some operators they
are easier to define (e.g. for intersection [7]). For regular languages, the average
complexity of partial derivative automata (APD), considering different kinds of
expressions, has been studied [10, 7, 9, 11]. Using the framework of analytic
combinatorics, for ordinary (1D) regular expressions of (tree-)size n (with con-
catenation, union and Kleene star) it was shown that, asymptotically and on
average, the number of states of APD is 1

4n, (with the worst-case being O(n2))
while for expressions with intersection of (tree-)size n that number is upper
bounded by (1.056 + o(1))n (with the worst-case being O(2n)) [10, 12, 7].

In this paper we consider standard 2D expressions (S2D-RE) where basic
terms are generators of the product of two free monoids, and generalised 2D
expressions (2D-RE) where basic terms are pairs of ordinary 1D regular expres-
sions over an alphabet. For these two kinds of expressions we define a partial
derivative standard transducer (TPD), and study its average state complexity.
While for S2D-REs the analytic combinatorial methods used for ordinary 1D
regular expressions could still be applied, for the 2D-REs this was not the case.
In particular, to get explicit expressions for the generating functions involved
would be unmanageable. So, generating functions implicitly defined by algebraic
curves must be used, and in previous work it was shown how to get the required
information for the asymptotic estimates with an indirect use of the existence
of Puiseux expansions at singularities [8]. In this paper, as the involved alge-
braic curves are more intricate, we needed to refine the methods described in
the literature, and use Puiseux expansions together with the Newton’s polygon
technique to find the estimates for the asymptotic behaviours of parametrised
families of combinatorial classes.

The paper structure and the main results are the following. Section 2 reviews
the partial derivative construction for ordinary 1D regular expressions. In Sec-
tion 3 we define the two kinds of 2D expressions, and present the corresponding
constructions of partial derivative transducers (TPD). While for standard 2D ex-
pressions partial derivatives have been considered before [13, 3], for generalised
2D expressions our presentation is novel. In Section 4 we consider the analytic
combinatorics framework and the refined method developed to deal with the
parametrised families of combinatorial classes. This method is an enhancement
of the one represented before [8], and a more detailed exposition is presented
in [11]. Section 5 presents the average complexity results obtained using the
framework of Section 4. For generalised 2D expressions, 2D-RE, while in the
worst case the number of states of TPD can be O(n2), where n is the size of the
expression, asymptotically and on average, that value is bounded from above
by O(n

3
2) (Section 5.1). Restricting to pairs of 1D expressions, the previous

3

bound is already reached, showing that these expressions are responsible for
the increasing of complexity (Section 5.2). For ordinary 1D regular expressions,
the number of alphabetic symbols in an expression is, asymptotically and on
average, one half of the size of the expression [14, 10]. Finally, in Section 5.3, a
similar result is obtained for generalised 2D expressions, 2D-RE. In Section 5.4,
we show that for S2D-RE, asymptotically and on average, the number of states
of TPD is 1

4 of the size of the expression. Some experimental results are discussed
in Section 6 and Section 7 concludes.

The present paper contains the proofs of propositions and lemmata of Sec-
tion 3.1 that were missing from the conference paper [1]. Several illustrative
examples are included. We added the study of standard 2D expressions and,
in particular, the average state complexity of TPD (sections 3.2 and 5.4). The
average complexity of the alphabetic size of generalised 2D expressions is also
new, as well as, the experimental results.

2. Preliminares

A nondeterministic finite automaton (NFA) is a five-tuple A = 〈Q,Σ, δ, I, F 〉
where Q is a finite set of states, Σ is a finite alphabet, I ⊆ Q is the set of initial
states, F ⊆ Q is the set of final states, and δ : Q × Σ → 2Q is the transition
function. The size of an NFA is its number of states. The transition function can
be extended to words and to sets of states in the natural way. When I = {q0}, we
use I = q0. The language accepted by A is L(A) = {w ∈ Σ! | δ(I, w) ∩ F ∕= ∅}.
Given an alphabet Σ, the set RE of (1D) regular expressions, r, over Σ consists
of ∅ and the expressions defined by the following grammar:

r := ε | σ ∈ Σ | (r + r) | (r · r) | (r!), (1)

where the operator · (concatenation) and the outermost parentheses are often
omitted. The language associated to r is denoted by L(r) and defined as usual
(with ε representing the empty word). If S ⊆ RE, L(S) = ∪r∈SL(r). Two
expressions r1 and r2 are equivalent, r1 ∼ r2 if L(r1) = L(r2), and this notion
extends to sets of expressions. The (tree-)size |r| of r ∈ RE is the number of
symbols in r (disregarding parentheses). The alphabetic size |r|Σ is the number
of letters occurring in r. We define the constant part of r, c(r), by c(r) = ε
if ε ∈ L(r), and c(r) = ∅ otherwise. This function is extended to sets of
expressions by c(S) = ε if and only if exists r ∈ S such that c(r) = ε. In the
case of a singleton {s} we write it simply as s. Given L ⊆ Σ! and σ ∈ Σ, the
quotient of L by σ is σ−1L = {w | σw ∈ L}. This notion can be extended to
words and languages. The partial derivative automaton of a regular expression
was introduced independently by Mirkin [15] and Antimirov [5]. For a regular
expression r ∈ RE, let the linear form of r, n : RE → 2Σ×RE, be inductively
defined by

n(∅) = n(ε) = ∅,
n(σ) = {(σ, ε)},

n(r + r′) = n(r) ∪ n(r′),
n(rr′) = n(r)r′ ∪ c(r) n(r′),
n(r!) = n(r)r!,

(2)

4

where for any S ⊆ Σ × RE, we define S∅ = ∅S = ∅, Sε = εS = S, and
Sr′ = { (σ, rr′) | (σ, r) ∈ S ∧ r ∕= ε } ∪ { (σ, r′) | (σ, ε) ∈ S } if r′ ∕= ∅, ε (and
analogously for r′S).

Proposition 1 ([5]). For all r ∈ RE, r ∼
!

(σ,r′)∈n(r) σr
′ ∪ c(r).

For a regular expression r ∈ RE and a symbol σ ∈ Σ, the set of partial
derivatives of r w.r.t. σ is defined by ∂σ(r) = { r′ | (σ, r′) ∈ n(r) }. We have
L(∂σ(r)) = σ−1L(r). Partial derivatives can be extended w.r.t words. The set
of partial derivatives of an expression r can be defined by iterating the linear
form. Let π0(r) = ↓2(n(r)), where ↓2(s, t) = t is the standard second projection
on pairs of objects and naturally extended to sets of pairs. Iteratively applying
the operator π0 we have,

πi(r) = π0(πi−1(r)),

for i ∈ N, and
π(r) =

"

i∈N0

πi(r).

The set PD(r) = π(r)∪ {r} is the set of partial derivatives of r and π(r) is the
support1.

Proposition 2 ([15]). The support π(r) is inductively defined by

π(∅) = ∅,
π(ε) = ∅,
π(σ) = {ε},

π(r + r′) = π(r) ∪ π(r′),
π(rr′) = π(r)r′ ∪ π(r′),
π(r!) = π(r)r!,

where, for any S ⊆ RE, we define S∅ = ∅S = ∅, Sε = εS = S, and Sr′ =
{ rr′ | r ∈ S ∧ r ∕= ε } ∪ { r′ | ε ∈ S } if r′ ∕= ∅, ε (and analogously for r′S).

Proposition 3 ([5, 15]). |π(r)| ≤ |r|Σ and |PD(r)| ≤ |r|Σ + 1.

The partial derivative automaton of r is defined to be the NFA APD(r) =
〈PD(r),Σ, δPD, r, F 〉, where F = { r1 ∈ PD(r) | c(r1) = ε }, and δPD =
{ (r1,σ, r′) | r1 ∈ PD(r) ∧ (σ, r′) ∈ n(r1) }.

Proposition 4 ([5, 15]). For all r ∈ RE, L(APD(r)) = L(r).

3. 2D Expressions

Let Σ and ∆ be two alphabets. A relation R is any subset of Σ! ×∆!. The
concatenation of two relations R and S is the relation RS = {(u1u2, v1v2) |
(u1, v1) ∈ R∧ (u2, v2) ∈ S}. The Kleene closure of the relation R is the relation

1Extending partial derivatives w.r.t. words, one could also define PD(r) =
!

w∈Σ! ∂w(r).

5

R! =
!

n≥0 R
n. The monoid Σ! ×∆! has the identity (ε, ε), and the following

set of generators {(σ, ε), (ε, τ) | σ ∈ Σ ∧ τ ∈ ∆} with the set of equations

{ (σ, ε)(ε, τ) .
= (σ, τ), (ε, τ)(σ, ε)

.
= (σ, τ) | σ ∈ Σ ∧ τ ∈ ∆ }. (3)

For a relation R ⊆ Σ! ×∆!, the quotient of R by a symbol is defined as before,
but one needs to take into account the above equations. For σ ∈ Σ and τ ∈ ∆,
one has

(σ, ε)
−1

R = { (u, v) | (σu, v) ∈ R },
(ε, τ)

−1
R = { (u, v) | (u, τv) ∈ R }.

The set of rational relations is the smallest set of relations that contains
the finite relations and is closed under union, concatenation and Kleene closure.
Rational relations are accepted by transducers. A finite transducer in standard-
form (SFT) over two alphabets Σ and ∆ is defined as an NFA, except that the
transition function is δ : Q× (Σε×∆ε) → 2Q, where for a set X, Xε = X ∪{ε}.
The relation realised by an SFT t is denoted by R(t). More details about
rational relations and transducers can be found in [16, 17].

In the following subsections we consider two types of expressions that repre-
sent rational relations: standard 2D expressions and generalised 2D expressions.
The notions of linear form, of partial derivative and of partial derivative trans-
ducers are extend to 2D expressions. However, some differences occur related
with the equations (3). For both types of 2D expressions we define partial
derivative transducers. In Section 5 we study the average state complexity of
these transducers.

Expressions representing n-ary relations definable by multitape automata
with n tapes [18], were first considered by Rosenberg [19], Makarevskii and
Stotskaya [20] and Mirkin [13]. For n = 2 those expressions coincide with the
standard 2D expressions. Using techniques similar to those in [15], Mirkin in-
troduced the notions of partial derivatives and of partial derivative (multitape)
automata to prove the equivalence between expressions and (multitape) au-
tomata2. The definition of TPD in Section 5.4 differs from that work in notation
and the use of linear forms. Kaplan and Kay [22] use generalised 2D expressions
to represent phonological and morphological rewrite rules, but the authors did
not present the construction of equivalent transducers. These formalisms were
widely used and extended for Natural Language Processing [23, 24, 25]. Re-
cently, Demaille [4] defined derivative automata for multitape weighted regular
expressions. The generalised 2D expressions and transducers studied in this
paper are restrictions of those models to two tapes and the Boolean semiring,
however, our results address different aspects of these objects.

2The author presents a Kleene’s Theorem for 2-tape automata and 2D expressions but the
claim that the proofs would directly extend to n-tape automata turned out to be wrong [21].

6

3.1. Generalised 2D-RE Expressions

A generalised 2D regular expression (2D-RE) over Σ and ∆, where Σ is the
input alphabet and ∆ the output alphabet, is an expression that is either ∅, or
can be defined by the following grammar

g := r/r′ | (g + g) | (g · g) | (g!), (4)

where r ∈ RE over Σ and r′ ∈ RE over ∆. The relation R(g) ⊆ Σ! × ∆!

realised by a 2D-RE g is defined inductively as follows

R(r/r′) = L(r)× L(r′),
R(g · g′) = R(g)R(g′),

R(g!) = (R(g))!.

Two expressions g, g′ are equivalent, g ∼ g′, if R(g) = R(g′). A relation is
rational if and only if it is represented by a 2D-RE3. The size and the alphabetic
size of a 2D-RE is defined as for RE. The constant part of a 2D-RE expression
g is given by c : 2D-RE −→ {∅, ε/ε} such that c(g) = ε/ε if (ε, ε) ∈ R(g),
and c(g) = ∅, otherwise. For S ⊆ 2D-RE or S ⊆ (Σε × ∆ε) × 2D-RE and an
expression g, we adopt the same conventions as for 1D expressions regarding
gS and Sg. In particular, we let (ε/ε)S = S(ε/ε) = S.

Now we define the linear form function n : 2D-RE → 2(Σε×∆ε)×2D-RE. For
an expression g ∈ 2D-RE, the linear form n(g) is defined as in Equations (2),
except for the case where g is of the form r1/r2:

4

n(r1/r2) = (n(r1) || n(r2)) ∪ c(r2)(n(r1) ||{(ε, ε)}) (5)

∪ c(r1)({(ε, ε)} || n(r2)),

where for N ⊆ Σε × RE and M ⊆ ∆ε × RE,

N ||M = { ((γ, γ′) , r/r′) | (γ, r) ∈ N ∧ (γ′, r′) ∈ M }.

Example 1. Let r1 = ab and r2 = abc. We have

n(ab) = {(a, b)}, n(abc) = {(a, bc)},
n(ab/abc) = n(ab) || n(abc) = {(a, a), b/bc},
n(b/bc) = n(b) || n(bc) = {(b, b), ε/c},
n(ε/c) = c(ε)

#
{(ε, ε)} ||{(c, ε)},

$
= {(ε, c), ε/ε}.

The correctness of the definition of n(r1/r2) is given by the following propo-
sition.

3This follows from the definition above.
4We note that one possibility was to consider n(r1/r2) = {(r1/r2, ε/ε)} (see [3]), but then

one could not construct directly an SFT for r1/r2.

7

Proposition 5. For all r1, r2 ∈ RE,

r1/r2 ∼
"

((γ,γ′),g′)∈n(r1/r2)

(γ/γ′)g′ ∪ c(r1/r2).

Proof. By Proposition 1 each expression r ∈ RE satisfies

r ∼
"

(σ,r′)∈n(r)

σr′ ∪ c(r).

Thus, one can check that

r1/r2 ∼
"

(σ, r) ∈ n(r1)
(τ, r′′) ∈ n(r2)

(σ/τ)(r/r′′) ∪ c(r2)

%

&
"

(σ,r)∈n(r1)

(σ/ε)(r/ε)

'

(

∪ c(r1)

%

&
"

(τ,r′′)∈n(r2)

(ε/τ)(ε/r′′)

'

(∪ c(r1/r2).

In the first three terms, the unions go exactly through the elements of n(r1/r2)
in Equation (5). And c(r1/r2) = ε/ε iff c(r1) = c(r2) = ε, from which the
result follows.

Then, we have

Proposition 6. For all g ∈ 2D-RE, g ∼
"

((γ,γ′),g′)∈n(g)

(γ/γ′)g′ ∪ c(g).

As before, one can obtain the support π(g) of an expression g by iterating the
linear form. Only the base cases differ from the ones in Proposition 2. Instead of
considering partial derivatives, one can consider the following operators. Again,
let π0(r) = ↓2(n(r)), where ↓2(s, t) = t is the standard second projection on
pairs of objects. Iteratively applying the operator π0 we have,

πi(r) = π0(πi−1(r)),

for i ∈ N, and
π(r) =

"

i∈N0

πi(r).

The following lemma is used in the proof of Proposition 8 and is easy to prove.
For S, T ⊆ RE, we have the notation S ||T = { r/r′ | r ∈ S ∧ r′ ∈ T }.

Lemma 7. For all r1, r2 ∈ RE,

π0(r1/r2) = π0(r1) ||π0(r2) ∪ c(r2)(π0(r1) ||{ε}) ∪ c(r1)({ε} ||π0(r2)),

π0(ε/r2) = {ε} ||π0(r2),

π0(r1/ε) = π0(r1) ||{ε}.

8

From this we obtain the following

Proposition 8. For all r1, r2 ∈ RE,

π(r1/r2) ⊆ π(r1) ||π(r2) ∪ π(r1) ||{ε} ∪ {ε} ||π(r2).

Proof. We prove by induction on i ≥ 0 that

πi(r1/r2) ⊆ π(r1) ||π(r2) ∪ π(r1) ||{ε} ∪ {ε} ||π(r2).

For i = 0, and from Equation (5), we have

π0(r1/r2) = π0(r1) ||π0(r2) ∪ c(r2)(π0(r1) ||{ε}) ∪ c(r1)({ε} ||π0(r2))

⊆ π(r1) ||π(r2) ∪ π(r1) ||{ε} ∪ {ε} ||π(r2).

Now suppose that
πi(r1/r2) ⊆ ∆(r1, r2),

where
∆(r1, r2) = π(r1) ||π(r2) ∪ π(r1) ||{ε} ∪ {ε} ||π(r2).

Then, πi+1(r1/r2) = π0(πi(r1/r2)) and

π0(πi(r1/r2)) ⊆ π0(π(r1) ||π(r2)) ∪ π0({ε} ||π(r1)) ∪ π0({ε} ||π(r2)).

For every r/r′′ ∈ π(r1) ||π(r2)), π0(r/r
′′) ⊆ ∆(r1, r2). So, we conclude that

π0(π(r1) ||π(r2)) ⊆ ∆(r1, r2). Moreover, π0(ε/r
′′) = {ε}||π0(r

′′), and thus

π0({ε} ||π(r2)) ⊆ {ε} ||π0(π(r3)) ⊆ {ε} ||π(r2)).

In the same manner,

π0(π(r1) ||{ε}) ⊆ π0(π(r1)) ||{ε} ⊆ π(r1) ||{ε}),

from which we conclude that πi+1(r1/r2) = π0(πi(r1/r2)) ⊆ ∆(r1, r2).

The following example shows that the inclusion in Proposition 8 may be
strict.

Example 2. Let r1 = ab and r2 = abc. We have π(ab) = {ε, b}, π(abc) =
{ε, bc, c} and c(ab) = c(abc) = ∅. To calculate π(ab/abc) consider the following

π0(ab) = ↓2(n(ab)) = ↓2({(a, b)}) = {b},
π0(abc) = ↓2(n(abc)) = ↓2({(a, bc)}) = {bc},

π0(ab/abc) = {b/bc},
π1(ab/abc) = π0({b/bc}) = {ε/c},
π2(ab/abc) = π0({ε/c}) = {ε/ε}.

Thus, we have

π(ab/abc) = {b/bc, ε/c, ε/ε} ⊂ π(r1) ||π(r2) ∪ {ε} ||π(r1) ∪ {ε} ||π(r2).

The transducer TPD(r1/r2) is depicted below.

9

ab/abc b/bc ε/c ε/ε
(a, a) (b, b) (ε, c)

Proposition 8 and Proposition 2 ensure that for every g ∈ 2D-RE, the sup-
port π(g) is finite and in the worst-case of size O(n2), where n is the alphabetic
size of g.

Corollary 1. For all g ∈ 2D-RE, |π(g)| ≤ (|g|Σ∪∆)
2.

Proof. The proof follows by induction on the structure on g, being trivial for ∅.
For r1/r2, one has |r1/r2|Σ∪∆ = |r1|Σ + |r2|∆. Thus,

|π(r1/r2)| ≤ |π(r1)||π(r2)|+ |π(r1)|+ |π(r2)|
≤ |r1|Σ|r2|∆ + |r1|Σ + |r2|∆
≤ (|r1|Σ + |r2|∆)2

= (|r1/r2|Σ∪∆)
2.

For g1 + g2, we have

|π(g1 + g2)| ≤ |π(g1)|+ |π(g2)|
≤ (|g1|Σ∪∆)

2 + (|g2|Σ∪∆)
2

≤ (|g1 + g2|Σ∪∆)
2.

In the same way we have the result for g1g2. For g
!
1 ,

|π(g!
1)| = |π(g1)|

≤ (|g1|Σ∪∆)
2

= (|g!
1 |Σ∪∆)

2.

The following example shows that the quadratic blow-up is achieved.

Example 3. Let rn = (a!)n, n ≥ 1, and consider the 2D-RE expressions
rn/rn. Since π(rn) = {r1, . . . , rn}, we have |π(rn)| = |rn|Σ = n. Thus, we
have |rn/rn|Σ∪∆ = 2n and

|π(rn/rn)| = |π(rn) ||π(rn) ∪ π(rn) ||{ε} ∪ {ε} ||π(rn)| = n2 + 2n.

The partial derivative transducer of a g ∈ 2D-RE is defined as follows

TPD(g) = 〈π(g) ∪ {g},Σ,∆, δPD, g, F 〉,

where F = { g1 ∈ π(g) ∪ {g} | c(g1) = ε/ε }, and δPD = { (g1, (γ, γ′) , g′) | g1 ∈
π(g) ∪ {g} ∧ ((γ, γ′) , g′) ∈ n(g1) }.

10

Theorem 9. For all g ∈ 2D-RE, R(TPD(g)) = R(g).

Proof. The proof is by induction on the structure of g. We only consider the
case where g is r1/r2. The other cases follow from the proof for 1D regular
expressions or from a more general proof considering expressions with user-
defined labels over a finitely generated graded monoid [3]. First we note that if a
state is labeled by an expression of the form r/ε (or ε/r, respectively) it can only
have transitions for states of the same form and labeled by pairs (σ, ε) ((ε, τ),
respectively). This follows from the definition of the linear form and it means
that from that point on we are in a (copy of a) subautomaton of one of the initial
expressions. We begin by proving that R(r1/r2) ⊆ R(TPD(r1/r2)). Let (u, v) ∈
R(r1/r2). If (u, v) = (ε, ε) then c(r1) = c(r2) = ε and c(r1/r2) = ε/ε, and by
construction the initial state of TPD(r1/r2) is final; thus (u, v) ∈ R(TPD(r1/r2)).

Now let (u, v) ∈ R(r1/r2) with u = u1 · · ·uℓ ∈ L(r1), v = v1 · · · vk ∈ L(r2),
uj ∈ Σ, vi ∈ ∆ for 1 ≤ j ≤ ℓ and 1 ≤ i ≤ k (and ℓ or k is greater than
0). We also know that u ∈ L

#
APD(r1)

$
and v ∈ L

#
APD(r2)

$
. If ℓ ≥ 1,

there will be an accepting path P1 = 〈sj−1, uj , sj〉ℓj=1 of APD(r1) with s0 =
r1, c(sℓ) = ε and (uj , sj) ∈ n(sj−1) for all j. In the same way, if k ≥ 1,
there will be an accepting path P2 = 〈ti−1, vi, ti〉ki=1 of APD(r2) with t0 = r2,
c(tk) = ε and (vi, ti) ∈ n(si−1) for all i. We assume that k ≤ ℓ—the case
ℓ ≤ k is symmetric. Then, ((ui, vi), si/ti) ∈ n(si−1/ti−1) for all i = 1, . . . , k,
and ((uj , ε), sj/ε) ∈ n(sj−1/ε) for all j = k + 1, . . . , ℓ. Let tj = vj = ε for
j = k + 1, . . . , ℓ. Then R = 〈sj−1/tj−1, (uj , vj) , sj/tj〉ℓj=1 is a path of TPD(g)
such that c(sℓ/tℓ) = (ε/ε), which implies that the path R is accepting and
(u, v) ∈ R(TPD(g)) as required.

We now prove that R(TPD(g)) ⊆ R(g). Let (u, v) ∈ R(TPD(g)). If (u, v) =
(ε, ε), then the initial state of TPD(g) is final (c(g) = ε/ε). We have also
c(r1) = c(r2) = ε, and thus ε ∈ L(APD(r1)) = L(r1), ε ∈ L(APD(r2)) = L(r2)
and (u, v) ∈ R(g).

Now let (u, v) ∈ R(TPD(g)) with u ∕= ε or v ∕= ε. Then there exists an
accepting path R = 〈si−1/ti−1, (ui, vi) , si/ti, 〉mi=1 of TPD(g) with s0/t0 = r1/r2,
c(sm/tm) = ε/ε, w = (u1, v1) · · · (um, vm), and ((ui, vi) , si/ti) ∈ n(si−1/ti−1)
for all i. If there exists a smallest 1 ≤ ℓ ≤ m with uℓ = ε (resp., 1 ≤ k ≤ m
with vk = ε) then uj = ε and sj = ε (resp., vi = ε and ti = ε) for all
j > ℓ (resp., i > k) and u = u1 · · ·uℓ−1 (resp., v = v1 · · · vk−1). If such an ℓ
(resp., k) does not exist, let ℓ = m + 1 (resp., k = m + 1). We can conclude
that u ∈ L(APD(r1)) = L(r1) (resp., v ∈ L(APD(r2)) = L(r2)), and thus
(u, v) ∈ R(g).

Example 4. Considering g1 = a!bc!/aa!, we compute TPD(g1). The linear

11

forms are

n(a!bc!) = {(a, a!bc!), (b, c!)},
n(aa!) = {(a, a!) },
n(c!) = { (c, c!)},

n(a!bc!/aa!) = {((a, a) , a!bc!/a!), ((b, a) , c!/a!)},
n(a!bc!/a!) = {((a, a) , a!bc!/a!), ((b, a) , c!/a!), ((a, ε) , a!bc!/ε), ((b, ε) , c!/ε)},

n(c!/a!) = {((c, a) , c!/a!), ((c, ε) , c!/ε), ((ε, a) , ε/a!)},

where n(c!/ε), n(a!bc!/ε) and n(ε/a!) can be computed from the above values.
From these, we obtain the following SFT:

a!bc!/aa!

a!bc!/a!

c!/a!

a!bc!/a!

c!/ε

a!bc!/ε ε/a!

(a, a)

(b, a)

(a, ε)

(b, a) (b, ε)

(a, a)

(c, a)

(ε, a)

(c, ε)

(c, ε)

(b, ε)

(a, ε) (ε, a)

An upper bound of the number of states of TPD(g) is obtained if one assumes
that

π(r1/r2) = π(r1) ||π(r2) ∪ π(r1) ||{ε} ∪ {ε} ||π(r2)
always holds, and as usual π(g + g′) = π(g) ∪ π(g′), π(gg′) = π(g)g′ ∪ π(g′),
and π(g!) = π(g)g!. These equalities are used in Section 5 to obtain an upper
bound for the average case size of partial derivative transducers. In Section 4
we set up the analytic combinatorics framework that allows to obtain those
estimates.

3.2. Standard S2D-RE Expressions

To represent rational relations over Σ and ∆, one can just consider 1D
expressions where basic terms correspond to the generators of Σ! ×∆!. Those
expressions are called standard 2D regular expressions (S2D-RE) and are a
particular case of the ones considered by Konstantinidis et al. [3].

A standard 2D regular expression (S2D-RE) over Σ×∆, where Σ is the input
alphabet and ∆ the output alphabet is an expression that is either ∅, or can be
defined by the following grammar

β := σ/τ | ε/τ | σ/ε
s := β | ε/ε | (s+ s) | (s · s) | s!, (6)

12

where σ ∈ Σ and τ ∈ ∆. The relation R(s) ⊆ Σ! ×∆! realised by an S2D-RE
s is defined as for general expressions. A relation is rational if it is represented
by a S2D-RE.

The definition of linear form can be adapted directly from Equation (2)
by considering n(ε/ε) = ∅ and n(γ/γ′) = {((γ, γ′) , ε/ε)}, where γ ∈ Σε and
γ′ ∈ ∆ε, but not both simultaneously equal to ε.

Proposition 10. For all s ∈ S2D-RE, s ∼
!

((γ,γ′),s′)∈n(s)(γ/γ
′)s′ ∪ c(s).

Proof. Follows from Proposition 1, except for the base cases. For s = ε/ε is
true because c(ε/ε) = ε/ε. For σ/τ , c(σ/τ) = ∅, and the result follows.

In order to obtain an SFT equivalent to a expression s, one needs to iterate
n(s), and thus compute a subset of the set of partial derivatives w.r.t to words
in Σ!×∆!. We note that the support satisfies Proposition 2 except for the base
cases, which are now the following: π(ε/ε) = ∅ and π(β) = {ε/ε}, where β is as
defined in (6). It follows that π(s) is finite. The partial derivative transducer of s
is TPD(s) = 〈π(s) ∪ {s},Σ,∆, δPD, s, F 〉, where F = { s1 ∈ π(s) ∪ {s} | c(s1) =
ε/ε }, and δPD = { (s1, (γ, γ′) , s′) | s1 ∈ π(s) ∪ {s} ∧ ((γ, γ′) , s′) ∈ n(s1) }.

Proposition 11. For all s ∈ S2D-RE, R(TPD(s)) = R(s).

Proof. It is an easy extension of Proposition 4 or it can also follows from a more
general proof considering expressions with user-defined labels over a finitely
generated graded monoid [3]. Also see [13].

Any 2D-RE can be transformed into an equivalent S2D-RE. For that one
needs to transform the expressions of the form r/r′ where r, r′ are not both
simultaneously ε, using the following equivalences, for ◦ ∈ {+, ·}:

r1/r2 ∼ (r1/ε) · (ε/r2),
(r1 ◦ r2)/ε ∼ (r1/ε) ◦ (r2/ε),
ε/(r1 ◦ r2) ∼ (ε/r1) ◦ (ε/r2),

r!1/ε ∼ (r1/ε)
!,

ε/r!1 ∼ (ε/r1)
!.

4. The Analytic Combinatorics Framework

Given some measure of the objects of a combinatorial class, A, for each
n ∈ N0 let an be the sum of the values of this measure for all objects of size n.
Let A(z) =

)
n anz

n be the corresponding generating function (cf. [26]). We will
use the notation [zn]A(z) for an. The generating function A(z) can be seen as a
complex analytic function, and the study of its behaviour around its dominant
singularity ρ, when unique, gives us access to the asymptotic form of its coef-
ficients. In particular, if A(z) is analytic in some indented disc neighbourhood
of ρ, then one has the following [26, 12]:

13

Theorem 12. The coefficients of the series expansion of the complex function

f(z) = (1− z)α,

where α ∈ C \ N0, have the following asymptotic approximation:

[zn]f(z) =
n−α−1

Γ(−α)
+ o

#
n−α−1

$
.

Here Γ is Euler’s gamma function.

The combinatorial classes that we deal with in the present paper give rise
to generating functions implicitly defined by algebraic curves that are quite
a bit more convoluted than those previously described in the literature. We,
therefore, needed to refine the method to pursue these calculations, and we will
expound that, in some detail, here. Generically, from an unambiguous generat-
ing grammar, one obtains a set of polynomial equations involving the generat-
ing functions for the objects corresponding to the variables of the grammar, in
particular the one whose coefficients we want to asymptotically estimate. Com-
puting a Gröbner basis for the ideal generated by those polynomials, one gets
an algebraic equation for that generating function w = w(z), i.e., an equation
of the form

G(z, w) = 0,

where G(z, w) is a polynomial in Z[z][w] of which w(z) is a root.
Since w(z) is the generating function of a combinatorial class, thus a series

with non-negative integer coefficients which is not a polynomial, it must have,
by Pringsheim’s Theorem (cf. [26], Thm IV.6), a real positive singularity, ρ,
smaller than or equal to 1. In all that follows we will assume that there is no
other singularity with that norm, which is the case of all generating functions
dealt with in this paper, as we will see. At this singularity, ρ, two cases may
occur:

Case I: limz→ρ w(z) = a, where a is a positive real number.

Case II: limz→ρ w(z) = +∞.

In the first case the curve defined byG has a shape similar to the one depicted
in Fig. 1, on the left, and

∂G

∂w
(ρ, a) = 0. (7)

This, together with the fact that G(ρ, a) = 0, shows that ρ is a root of the
resultant,

resw(G(z, w),
∂G

∂w
(z, w)),

of G(z, w) and ∂G
∂w (z, w) with respect to w (cf. [27, p. 204]).

With the help of a numerical solver and drawing the relevant part of the
algebraic curve G(z, w) = 0, one can, by an elimination process, find out the

14

a

Figure 1: Generic shape of G(z, w) near its dominant singularity (cases I and II).

minimum polynomial, in Q[z], of ρ. We will denote this polynomial by m(z).
Using now the

resz(G(z, w),
∂

∂w
G(z, w)),

one can get, in a similar fashion, an irreducible polynomial that has a as a root.
In Case II, the irreducible polynomial for ρ is a factor of the leading coeffi-

cient of G(z, w), seen as a polynomial in w (cf [28], Th. 12.2.1).
In Case I, after making the change of variable s = 1− z/ρ, one knows that

w = w(s) has a Puiseux series expansion at the singularity s = 0, i.e., there
exists a slit neighbourhood of that point in which w(s) has a representation as
a power series with fractional powers (cf. [28], Chap. 12). In particular, w must
have the form

w(s) = a− g(s)sα, (8)

for some α ∈ Q+, the first positive exponent of that expansion, and where g(s)
is such that

g(s) = b+ h(s)sβ , (9)

with h(0) ∕= 0, β ∈ Q+, and b ∈ R!.
The value of α can be obtained by looking at the Taylor expansion of G(z, w)

at (ρ, a),

G(z, w) =
*

i,j≥0

1

i!j!

∂i+jG

∂ziwj

++++ z=ρ
w=a

(z − ρ)i(w − a)j .

Noticing that z = ρ− ρs, and using Equation (8), one has

G(ρ− ρs, a− g(s)sα) =
*

i,j≥0

(−1)i+j

i!j!

∂i+jG

∂ziwj

++++ z=ρ
w=a

ρig(s)jsi+jα. (10)

Using that G(z, w(z)) = 0, G(ρ, a) = 0, and (7), and dividing it through by sα,
one gets

0 =
*

i,j≥0
(i,j)/∈{(0,0),(0,1)}

(−1)i+j

i!j!

∂i+jG

∂ziwj

++++ z=ρ
w=a

ρig(s)jsi+(j−1)α. (11)

15

One can now compute

pij(z) = resw

,
G(z, w),

∂i+jG

∂ziwj

-
,

and gcd(pij(z),m(z)) to see which derivatives are non-zero at ρ. Then, one can
use the Newton’s polygon technique to find α [29, 30, 31]. The interested reader
can also see Broda et al. [11] for a more detailed explanation of the use of that
tecnique in this context.

The points of Newton polygon that lead to the value of α correspond to the
terms of (11) with the lowest exponent, that must cancel out together. This
conduces, after setting s = 0, to a polynomial equation for the value b in (9).

One then uses this value in Theorem 12 to get the desired asymptotic ap-
proximation. In conclusion, for the case where limz→ρ w(z) = a, one has

[zn]w(z) ∼ −b

Γ(−α)
ρ−nn−α−1. (12)

In Case II, the one where limz→ρ w(z) = +∞, making v = 1
w one concludes

as above that
v = csα − g(s)sα+β ,

for some 0 < α < 1, β > 0, and for some Puiseux series g(s), with non-negative
exponents. Denoting bym the degree of G relative to w, the polynomial satisfied
by v is then

H(z, v) = vmG

,
z,

1

v

-
, (13)

which is the reciprocal polynomial of G(z, w) with respect to the variable w. In
this case the equation that corresponds to equation (10) is:

H(ρ− ρs, csα − g(s)sα+β) =
*

i,j≥0

(−1)i

i!j!

∂i+jH

∂ziwj

++++ z=ρ
w=0

ρi(c− g(s)sβ)jsi+jα. (14)

Using the same procedure as above, one computes ρ, and then the value of
c. Since

w =
1

csα − g(s)sα+β
=

1

c
s−α 1

1− g(s)
c sβ

=
1

c
s−α

,
1 +

g(s)

c
sβ +

g(s)2

c2
s2β + · · ·

-
,

one sees, using again Theorem 12, that

[zn]w(z) ∼ 1

cΓ(α)
ρ−nnα−1. (15)

Summing up, we have the following.

16

Theorem 13. With the notations and in the conditions above described, one
has

[zn]w(z) ∼
.

−b
Γ(−α)ρ

−nn−α−1, if limz→ρ w(z) = a,
1

cΓ(α)ρ
−nnα−1, if limz→ρ w(z) = +∞,

where b, c, ρ and α can be computed as above described.

5. Average Descriptional Complexity Results

Using the framework just described, we obtain asymptotic estimates for an
upper bound of the average state complexity of partial derivative transducer
for 2D expressions of size n > 0. Those estimates depend on the size of the
alphabets Σ and ∆, which we assume both to be equal to some integer k > 0.
Moreover we denote by REk the set of 1D expressions over an alphabet of size k.

5.1. Average State Complexity of TPD for 2D-RE

The generating function Gk(z) associated with g ∈ 2D-RE is the following5,
where Rk(z) is the generating function of regular expressions r ∈ REk [12].

Gk(z) = zRk(z)
2 + zGk(z) + 2zGk(z)

2, (16)

Rk(z) = (k + 1)z + zRk(z) + 2zRk(z)
2. (17)

Considering Proposition 2, let ℓ(r) be an upper bound of the size of the support
of an expression r ∈ REk [10] which is defined by

ℓ(ε) = 0, ℓ(σ) = 1, ℓ(s!) = ℓ(s),

ℓ(s+ s′) = ℓ(s · s′) = ℓ(s) + ℓ(s′).
(18)

Note that ℓ(r) counts exactly the number of letters occurring in r and will be
used in Section 5.3. An upper bound for the size of the support π(g), q(g), is
defined by

q(r/r′) = ℓ(r)ℓ(r′) + ℓ(r) + ℓ(r′),

q(g + g′) = q(g · g′) = q(g) + q(g′),

q(g!) = q(g).

Thus, the generating function Qk(z) =
)

g q(g)z
|g| for an upper bound of

|π(g)| satisfies the following equation,

Qk(z) = zQk(z) + 4zQk(z)Gk(z) + 2zPk(z)Rk(z) + zPk(z)
2, (19)

where Pk(z) is the generating function for an upper bound of the support of
regular expressions in REk, which satisfy

Pk(z) = kz + zPk(z) + 4zRk(z)Pk(z). (20)

5I.e. [zn]Gk(z) gives the number of expressions g of size n.

17

Figure 2: Possible values for (ρk, ak).

From equations (17), (20), (16) and (19), using Gröbner basis, one obtains
algebraic equations for Gk(z) and Qk(z):

CG(z, w) = 16z3w4 + 16(z3 − z2)w3 − g2(z)w
2 + g1(z)w+ (1+ k)2z3 = 0, (21)

where g2(z) = 2z((1 + 4k)z2 + 6z − 3) and g1(z) = (1− z)((3 + 4k)z2 + 2z − 1)
and

CQ(z, w) = p(z)4q4(z)w
4 − k2z2p(z)2q2(z)w

2 + k4z8q0(z)
2 = 0, (22)

where

p(z) = (8k + 7)z2 + 2z − 1,

q4(z) = (16k2 + 40k + 23)z4 − 4(4k + 3)z3 + (8k + 2)z2 + 4z − 1,

q2(z) = (200k3 + 544k2 + 474k + 133)z6 − (48k2 + 24k − 10)z5+

(24k2 − 44k − 41)z4 + 28(2k + 1)z3 + (3− 14k)z2 − 6z + 1,

q0(z) = (25k2 + 37k + 14)z2 + (6k + 4)z − (3k + 2).

For Gk(z), we conclude to be in Case I. The irreducible polynomial that
implicitly defines the singularity ρk of Gk(z) is, computed using the resultant

resw(CG(z, w),
∂CG
∂w

(z, w)).

In this case we obtain two candidates for the minimal polynomial mG(z) of
the singularity ρk, each one having only one root in]0, 1[. Using a computer
algebra system, one can show that those roots are only equal for k = −1. This
implies, by continuity (in k), that they always keep their relative position, for
all k > −1. Now,

resz(CG(z, w),
∂CG
∂w

(z, w))

18

factors into three irreducible polynomials, one of which has ak as a root. These
three polynomials have, among them, four positive roots, which a computer
algebra system can find, as a function of k. Then, one can check which pairs
(ρ′k, a

′
k), where ρ′k is a candidate for ρk, and a′k a candidate for ak, belong to

the curve CG, and their relative location. By a simple topological argument, one
then can conclude that

mG(z) = (8k + 7)z2 + 2z − 1, ρk =
1

1 +
√
8k + 8

and ak =

√
2− 1

2

√
k + 1.

One then checks that
∂CG
∂z

(ρk, ak) and
∂2CG
∂w2

(ρk, ak) are both non-zero, for

all k, which entails that α = 1
2 . The value for bk can then be computed, and

one obtains

bk ∼
/

k

2
. (23)

As for Qk(z), one sees that Case II applies, and that the minimal polynomial
is either p(z) or q4(z). It turns out that each of these polynomials has exactly
one positive real root, ρk and ζk. One can then check that these roots coincide
only for k = −1, and so that one of them is always bigger than the other for all
positive values of k, namely ρk. One then can check that the curve CQ crosses
the vertical line z = ζk exactly once above the z-axis, which makes clear that
the singularity for Qk(z) is ρk, thus the same as for Gk(z). In this case, the
Newton polygon analysis shows that α = 1 and that the polynomial satisfied
by c, as explained after (11), and noticing that here we make use of inversion
explained in (13), is given by

∂4H

∂v4

++++ z=ρ
v=0

c4 + 6
∂4H

∂z2v2

++++ z=ρ
v=0

ρ2 c2 +
∂4H

∂z4

++++ z=ρ
v=0

ρ4 = 0.

This is a quadratic equation in c2, whose discriminant can be seen to be zero.
One gets

c2k = −3ρ2k

0
∂4H

∂z2∂v2

++++ z=ρ
v=0

120
∂4H

∂v4

++++ z=ρ
v=0

1
. (24)

From all this, it follows that

Theorem 14. With the notations above introduced, the ratio of the total number
of states in the partial derivative transducer TPD(g) of expressions of size n to
the total number of expressions of the same size is given by

[zn]Qk(z)

[zn]Gk(z)
∼

−Γ(− 1
2)

bkck
n

3
2 , for all k, and lim

k→∞

−Γ(− 1
2)

bkck
=

√
π

8
√
2
.

5.2. Average State Complexity of TPD for pairs of REs

If we consider only 2D-expressions of the form r/r′,with r, r′ ∈ RE, the
generating function for these expressions is

G′
k(z) = zR2

k(z),

19

and for the support π is, following Proposition 8,

Q′
k(z) = 2zPk(z)Rk(z) + zP 2

k (z).

From these, one can deduce the following algebraic equations for G′
k(z) and

Q′
k(z):

CG′(z, w) = 4zw2 + ((4k + 3)z2 + 2z − 1)w + (k + 1)2z2 = 0, (25)

and
CQ′(z, w) = p(z)2w2 + kzg′1(z)w + k2z4g′0(z) = 0, (26)

where p(z) is as above, and

g′1(z) = (80k2 + 126k + 49)z4 + 4(9k + 7)z3 − 2(9k + 5)z2 − 4z + 1,

g′0(z) = (25k2 + 37k + 14)z2 + (6k + 4)z − 3k − 2.

Let us first deal with G′
k(z). We easily conclude that we are in Case I.

The irreducible polynomial that implicitly defines the singularity ρk of G′
k(z) is

computed using

resw(CG′(z, w),
∂CG′

∂w
(z, w)).

In this case we obtain a single candidate for the minimal polynomial, mG′(z),
of the singularity, ρk, namely

mG′(z) = (8k + 7)z2 + 2z − 1,

and thus ρk = 1
1+

√
8k+8

. One has

resw(CG′(z, w),
∂CG′

∂w
(z, w)) = 4(7 + 8k)w2 + 4(1 + k)w − (1 + k)2,

from which one gets

ak =
−(1 + k) + 2(1 + k)

3
2(1 + k)

2(7 + 8k)
,

where ak = G′
k(ρk). Using now the Newton’s polygon method, one gets that

α = 1
2 , and

bk =

45562ρk
∂CG′
∂z (ρk, ak)

∂2CG′
∂w2 (ρk, ak)

∼
√
k

2
.

As for Q′
k, one sees that one is in Case II, and that the dominant singularity

is the same as for G′
k. Using the methods expounded above, one gets that α = 1,

and that ck is a zero of the equation

∂2H

∂v2
(ρk, 0)c

2
k − 2ρk

∂2H

∂z∂v
(ρk, 0)ck + ρ2k

∂2H

∂z2
(ρk, 0) = 0,

20

where

H(z, v) = v2GQ′(z,
1

v
).

It turns out that this equation has a single solution, namely

ck =
4

k2

7
8 + 8k + (9 + 8k)

√
2 + 2k

8
∼ 32

/
2

k
.

Therefore, in this case an upper bound of the average state complexity of
TPD(r/r

′) is,

Theorem 15. With the notations above introduced, one has

[zn]Q′
k(z)

[zn]G′
k(z)

∼
−Γ(− 1

2)

bkck
n

3
2 ∼

√
π

8
√
2
n

3
2 .

We conclude that, as the alphabetic size grows, the upper bound of the
average state complexity of TPD(r/r

′) is exactly the same as for TPD(g), for
g ∈ 2D-RE6.

5.3. Average Number of Letters in 2D-RE

Let ℓ(r) be the number of letters in r ∈ REk as computed in (18), the
number of letters in a expression g ∈ 2D-RE, d(g), can be computed in the
following way:

d(r/r′) = ℓ(r) + ℓ(r′),

d(g + g′) = d(g · g′) = d(g) + d(g′),

d(g!) = d(g).

Thus, the generating function D(z) =
)

g d(g)z
|g| for the number of letters in

expressions g ∈ 2D-RE satisfies the following

Dk(z) = 2zLk(z)Rk(z) + zDk(z) + 4zDk(z)Gk(z), (27)

Lk(z) = kz + zLk(z) + 4zLk(z)Rk(z), (28)

where Lk(z) is the generating function for the number of letters in r ∈ REk.
From equations (17), (28), and (16), using Gröbner basis, one obtains the fol-
lowing algebraic equation for Dk(z):

CD(z, w) = p(z)2q4(z)w
4 − k2z2p(z)d2(z)w

2 + 4k4(k + 1)2z8 = 0, (29)

where

d2(z) = (16k2 + 36k + 19)z4 + (−8k − 4)z3 + (4k − 2)z2 + 4z − 1.

6In the conference paper [1] there was an error in the definition of G′(z) that lead to a
slightly different limit.

21

One can solve (29) to explicitly get the function w = w(z), obtaining:

w(z) = kz

9
d2(z) + (1− z)3

3
−p(z)

2p(z)q4(z)
(30)

=
2
√
2 k(k + 1)z3/

p(z)
7
d2(z)− (1− z)3

3
−p(z)

8 , (31)

and then one can see that d2(z) has no roots in the interval [0, ρk], using Sturm’s
theorem, and therefore it is always negative. This shows that

d2(z)− (1− z)3
3
−p(z)

has no roots in that same interval, and hence the singularity comes necessarily
from p(z), being therefore the same as for Gk(z), i.e.

ρDk = ρGk =
1

1 +
√
8k + 8

.

We are, thus, dealing with Case II, and an analysis entirely similar to what
was done above for Qk(z) yields α = 1

2 , and

∂4H

∂v4

++++ z=ρ
v=0

c4 − 12
∂3H

∂z∂v2

++++ z=ρ
v=0

ρc2 + 12
∂2H

∂z2

++++ z=ρ
v=0

ρ2 = 0.

This is a quadratic equation in c2, whose discriminant turns out to be zero. One
then gets

c2k = 6ρk

0
∂3H

∂z∂v2

++++ z=ρ
v=0

120
∂4H

∂v4

++++ z=ρ
v=0

1
,

or

ck =
2

k

:
8 + 8k +

√
8 + 8k.

From all this, it follows that

Theorem 16. With the notations above introduced, the ratio of the total number
of letters in a 2D-RE is

lim
n→∞

[zn]Dk(z)

n[zn]Gk(z)
=

2

bkck
, for all k, and lim

k→∞

2

bkck
=

1

2
. (32)

5.4. Average State Complexity of TPD for S2D-RE

For the S2D-RE expressions, from the grammar (6) one sees that the gener-
ating functions for β and s, respectively Bk(z) and Sk(z), satisfy the following
equations:

Bk(z) = (k2 + 2k)z3,

Sk(z) = (k2 + 2k + 1)z3 + zSk(z) + 2zSk(z)
2.

(33)

22

Letting t(s) be the size of the support π(s), we have by Proposition 2 and
Proposition 5,

t(ε/ε) = 0, t(β) = 1,

t(s+ s′) = t(s · s′) = t(s) + t(s′),

t(s!) = t(s).

So, the generating function for π, Tk(z) =
)

s t(s)z
|s|, satisfies the following

equation:
Tk(z) = Bk(z) + zTk(z) + 4zTk(z)Sk(z). (34)

From (33), we know that the generating function Sk(z) is an algebraic function,
root of

CS(z, w) = 2zw2 + (z − 1)w + (k + 1)2z3 = 0.

Since the leading coefficient, in w, has no positive roots, we are, therefore, in
Case I, as explained above. Thus, in order to find the irreducible polynomial
that implicitly defines the singularity ρk of Sk(z), we compute

resw(CS(z, w),
∂CS
∂w

(z, w)),

obtaining 2z mS(z), where

mS(z) = 8(k + 1)2z4 − (z − 1)2

= (
√
8 (k + 1)z2 − z + 1)(

√
8 (k + 1)z2 + z + 1).

From this we easily get that

ρk =
−1 +

:
1 + 8

√
2 (k + 1)

4
√
2 (k + 1)

.

On the other hand,

resz(CS(z, w),
∂CS
∂w

(z, w)) =
7√

2w (4w + 1)− k − 1
87√

2w (4w + 1) + k + 1
8
,

from which one gets

ak =
1

8

,
−1 +

:
8
√
2 (k + 1) + 1

-
,

where ak = Sk(ρk).

Using this, one can check that
∂CS
∂z

(ρk, ak) and
∂2CS
∂w2

(ρk, ak) are both non-

zero, for all k. Therefore, using Newton’s polygon method, as above explained,
one gets that the value of α in (8) is 1

2 , and that the value for bk (as in (12)) is

bk =

/
ak(8ak + 1)

2
. (35)

23

From (33) and (34), using Buchberger’s algorithm, one obtains that the
generating function Tk(z) satisfies

CT (z, w) = mS(z)w
2 + k2(k + 2)2z6 = 0,

and, clearly this falls under Case II, and Tk(z) has the same singularity as Sk(z).
One also sees that α = 1

2 in the case, and proceeding as explained in the previous
section, one can compute ck (as in (15)), obtaining

ck =
(k + 1)2

:
k + 1 +

√
2 ak (32a2k − 1)

23/4k (k + 2) a
5
2

k

. (36)

From all this, it follows that,

Theorem 17. With the notations above introduced, the ratio of the total number
of states in the partial derivative automata for a S2D-RE is

lim
n→∞

[zn]Tk(z)

n[zn]Sk(z)
=

2

bkck
, for all k, and lim

k→∞

2

bkck
=

1

4
. (37)

The above ratio is the same as the one for 1D expressions [10].

6. Experimental Results

We ran some experiments by uniformly generating 2D-RE expressions and
computing the size of the corresponding partial derivative transducer, using the
FAdo system [32]. For the results to be statistically significant, expressions were
uniformly random generated using a version of the grammar in prefix notation.

For each alphabet size k ∈ {2, 5, 20, 50} and for each size of expressions
n ∈ {50, 100, 200}, samples of 1000 regular expressions were generated. This is
sufficient to ensure a 95% confidence level within a 1% error margin. For each
sample we computed the average of the alphabetic size (|g|Σ∪∆) and the size
(number of states) of the partial derivative transducer (TPD(g)). In Table 1 are
some results for expressions of the form r/r (which are the ones that lead to a
larger blow-up). The results suggest that the average size of TPD is even smaller
that the upper bound obtained in Section 5.2.

7. Conclusions

We considered partial derivative transducers for 2D regular expressions over
pairs of 1D regular expressions. For studying the average state complexity,
and given the intricacy of the resulting generating functions, we refine known
methods within the analytic combinatorics framework. In Section 5, we conclude
that for 2D expressions of size n, both general and restricted, asymptotically and
on average, the state complexity of the partial derivative transducers is bounded
from above by O(n

3
2). For ordinary 1D regular expressions, the number of letters

24

Table 1: Experimental Results for 2D-REs of the form r/r.

k |g| |g|Σ∪∆ |TPD(g)| |g|
|g|Σ∪∆

Q′
k

G′
k

2
50 20.5 24.4 0.41 55.39
100 40.5 49.5 0.41 156.66
200 80.5 160.4 0.40 443.11

5
50 22.1 23.0 0.44 55.39
100 43.7 55.4 0.44 156.66
200 95.7 109.3 0.47 443.11

20
100 46.8 48.4 0.47 156.66
200 93.1 111.2 0.47 443.11

50
100 42.5 48.1 0.48 156.66
200 95.8 104.7 0.48 443.11

in an expression is, asymptotically and on average, 1
2n [14, 10]. The same

holds for general 2D expressions. Considering standard 2D expressions of size
n, asymptotically and on average, the state complexity of the partial derivative
transducers is bounded from above by O(n/4). This bound coincides with the
one for the partial derivative automata for 1D ordinary regular expressions.

References

[1] S. Konstantinidis, A. Machiavelo, N. Moreira, R. Reis, On the average
state complexity of partial derivative transducers, in: A. Chatzigeorgiou,
R. Dondi, H. Herodotou, C. A. Kapoutsis, Y. Manolopoulos, G. A. Pa-
padopoulos, F. Sikora (Eds.), Proc. SOFSEM 2020, Vol. 12011 of LNCS,
Springer, 2020, pp. 174–186. doi:10.1007/978-3-030-38919-2_15.

[2] S. Konstantinidis, N. Moreira, R. Reis, J. Young, Regular expres-
sions and transducers over alphabet-invariant and user-defined labels, in:
C. Câmpeanu (Ed.), Proc. 23rd CIAA, Vol. 10977 of LNCS, Springer, 2018,
pp. 1–27, Full version in: Int. J. Found. Comput. Sci. 31 (8) (2020) 983–
1019. doi:10.1142/S0129054120420010.

[3] S. Konstantinidis, N. Moreira, J. Pires, R. Reis, Partial derivatives of regu-
lar expressions over alphabet-invariant and user-defined labels, in: M. Hos-
podár, G. Jirásková (Eds.), Proc. 24th CIAA, Vol. 11601 of LNCS, 2019,
pp. 184–196, Full version in: Theor. Comput. Sci. 870(16) (2021) 103–120.
doi:10.1016/j.tcs.2020.12.029.

[4] A. Demaille, Derived-term automata of multitape expressions with compo-
sition, Scien. Annals of Comput. Science 27 (2) (2017) 137–176.

25

https://doi.org/10.1007/978-3-030-38919-2_15
https://doi.org/10.1142/S0129054120420010
https://doi.org/10.1016/j.tcs.2020.12.029

[5] V. M. Antimirov, Partial derivatives of regular expressions and finite au-
tomaton constructions., Theoret. Comput. Sci. 155 (2) (1996) 291–319.

[6] S. Lombardy, J. Sakarovitch, Derivatives of rational expressions with mul-
tiplicity, Theor. Comput. Sci. 332 (1-3) (2005) 141–177. doi:10.1016/j.

tcs.2004.10.016.

[7] R. Bastos, S. Broda, A. Machiavelo, N. Moreira, R. Reis, On the aver-
age complexity of partial derivative automata for semi-extended expres-
sions, J. Autom. Lang. Comb. 22 (1–3) (2017) 5–28. doi:10.25596/

jalc-2017-005.

[8] S. Broda, A. Machiavelo, N. Moreira, R. Reis, On average behaviour of
regular expressions in strong star normal form, Int. J. Found. Comput. Sci.
30 (6–7) (2019) 899–920. doi:10.1142/S0129054119400227.

[9] S. Broda, A. Machiavelo, N. Moreira, R. Reis, Automata for regular
expressions with shuffle, Inf. Comput. 259 (2) (2018) 162–173. doi:

10.1016/j.ic.2017.08.013.

[10] S. Broda, A. Machiavelo, N. Moreira, R. Reis, On the average state
complexity of partial derivative automata: an analytic combinatorics ap-
proach, Int. J. Found. Comput. Sci. 22 (7) (2011) 1593–1606. doi:

10.1142/S0129054111008908.

[11] S. Broda, A. Machiavelo, N. Moreira, R. Reis, Analytic combinatorics and
descriptional complexity of regular languages on average, ACM SIGACT
News 51 (1) (2020) 38–56, SIGACT News Complexity Theory Column 104,
Editor, Hemaspaandra, Lane A. doi:10.1145/3388392.3388400.

[12] S. Broda, A. Machiavelo, N. Moreira, R. Reis, A hitchhiker’s guide to de-
scriptional complexity through analytic combinatorics, Theoret. Comput.
Sci. 528 (2014) 85–100. doi:10.1016/j.tcs.2014.02.013.

[13] B. G. Mirkin, On the theory of multitape automata, Cybernetics 2 (5)
(1968) 9–14. doi:10.1007/BF01073664.

[14] C. Nicaud, On the average size of Glushkov’s automata, in: A. Dediu, A.-
M. Ionescu, C. M. Vide (Eds.), Proc. 3rd LATA, Vol. 5457 of LNCS, 2009,
pp. 626–637.

[15] B. G. Mirkin, An algorithm for constructing a base in a language of regular
expressions, Eng. Cybernetics 5 (1966) 51—57.

[16] J. Berstel, Transductions and Context-Free Languages, B.G. Teubner,
Stuttgart, 1979.

[17] J. Sakarovitch, Elements of Automata Theory, CUP, 2009.

[18] M. O. Rabin, D. Scott, Finite automata and their decision problems, IBM
Journal of Research and Development 3 (1959) 114–125.

26

https://doi.org/10.1016/j.tcs.2004.10.016
https://doi.org/10.25596/jalc-2017-005
https://doi.org/10.1142/S0129054119400227
https://doi.org/10.1016/j.ic.2017.08.013
https://doi.org/10.1142/S0129054111008908
https://doi.org/10.1145/3388392.3388400
https://doi.org/10.1016/j.tcs.2014.02.013
https://doi.org/10.1007/BF01073664

[19] A. L. Rosenberg, On n-tape finite state acceptors, in: Proceedings of the
Fifth Annual Symposium on Switching Circuit Theory and Logical Design,
1964, p. 6. doi:10.1109/swct.1964.17.

[20] A. Y. Makarevskii, E. D. Stotskaya, Representability in deterministic
multi-tape automata, Cybernetics 5 (4) (1969) 390–399. doi:10.1007/

BF01073050.

[21] A. Godlevsky, H. A. Grigoryan, T. Grigoryan, S. K. Shoukourian, Some
results on regular events for multitape finite automata: A preliminary re-
port, Bull. EATCS 133 (2021).
URL http://eatcs.org/beatcs/index.php/beatcs/article/view/645

[22] R. M. Kaplan, M. Kay, Regular Models of Phonological Rule Systems,
Computational Linguistics 20 (3) (1994) 48.

[23] K. R. Beesley, L. Karttunen, Finite State Morphology, Vol. 3, CSLI Publi-
cations, 2003.

[24] A. Yli-Jyrä, K. Koskenniemi, Compiling generalized two-level rules and
grammars, in: T. Salakoski, F. Ginter, S. Pyysalo, T. Pahikkala (Eds.),
Proc. 5th International Conference on NLP, FinTAL, Vol. 4139 of LNCS,
Springer, 2006, pp. 174–185. doi:10.1007/11816508_19.

[25] Helsinki Finite-State Technology, Helsinki finite-state transducer toolkit,
http://hfst.github.io (Access date:1.4.2021).

[26] P. Flajolet, R.Sedgewick, Analytic Combinatorics, CUP, 2008.

[27] S. Lang, Algebra, 3rd Edition, Vol. 211 of Grad. Texts Math., Springer,
2001.

[28] E. Hille, Analytic Function Theory, Vol. 2, Blaisdell Publishing Company,
1962.

[29] R. J. Walker, Algebraic Curves, Princeton University Press, 1950.

[30] C. T. C. Wall, Singular Points of Plane Curves, no. 63 in London Mathe-
matical Society Student Texts, Cambridge University Press, 2004.

[31] É. Ghys, A singular mathematical promenade, ENS Éditions, 2017.

[32] Project FAdo, tools for formal languages manipulation, https://pypi.

org/project/FAdo/ (Access date:1.1.2021).

27

https://doi.org/10.1109/swct.1964.17
https://doi.org/10.1007/BF01073050
http://eatcs.org/beatcs/index.php/beatcs/article/view/645
http://eatcs.org/beatcs/index.php/beatcs/article/view/645
https://doi.org/10.1007/11816508_19
http://hfst.github.io
https://pypi.org/project/FAdo/

