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Although regular expressions do not correspond univocally to regular languages, it is
still worthwhile to study their properties and algorithms. For the average case analysis

one often relies on the uniform random generation using a specific grammar for regular
expressions, that can represent regular languages with more or less redundancy. Gener-

ators that are uniform on the set of expressions are not necessarily uniform on the set

of regular languages. Nevertheless, it is not straightforward that asymptotic estimates
obtained by considering the whole set of regular expressions are different from those

obtained using a more refined set that avoids some large class of equivalent expressions.

In this paper we study a set of expressions that avoid a given absorbing pattern. It is
shown that, although this set is significantly smaller than the standard one, the asymp-

totic average estimates for the size of the Glushkov automaton for these expressions does

not differ from the standard case. Furthermore, for this set the asymptotic density of
ε-accepting expressions is also the same as for the set of all standard regular expressions.

Keywords. Regular Expressions, Uniform Distribution, Average-case Complexity,

Analytic Combinatorics

1. Introduction

Average-case studies often rely on uniform random generation of inputs. In general,

those inputs correspond to trees, and generators are uniform on the set of these

trees, but not on the set that those inputs represent (such as languages or boolean

functions). Koechlin et al. [7, 8] studied expressions that have subexpressions which

are (semantically) absorbing for a given operator, calling them absorbing patterns.

For instance, (a + b)⋆ is absorbing for the union of regular expressions over the

alphabet {a, b}, since α+ (a+ b)⋆, or (a+ b)⋆ + α, is equivalent to (a+ b)⋆ for any

expression α. After repeatedly applying the induced simplification, in the example

above replacing α+(a+b)⋆ by (a+b)⋆, the resulting expression can be significantly

smaller. For uniformly random generated expressions of a given size, Koechlin et

al. showed that the expression resulting from this simplification has constant ex-

pected size. That result led the authors to the conclusion that uniform random
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generated regular expressions lack expressiveness, and in particular that uniform

distribution should not be used to study the average case complexity in the context

of regular languages. This conclusion is misleading in at least two aspects. First, as

pointed out above, one is considering regular expressions and not regular languages

themselves. For instance, if one wants to estimate the size of automata obtained

from regular expressions, one disregards whether they represent the same language

or not. What is implied by the results of Koechlin et al. is that, if one uniformly ran-

dom generates regular expressions, one cannot expect to obtain, with a reasonable

probability, regular languages outside a constant set of languages. This means that

a core set of regular languages have so many regular expression representatives that

the remaining languages very scarcely appear. While neither regular expressions

(RE) nor nondeterministic finite automata (NFA) behave uniformly when repre-

senting regular languages, it is known that deterministic automata (DFA) are a

better choice, in the uniform model, as they are asymptotically minimal [11]. In

this sense, minimal DFAs are a perfect model for regular languages. However, in

practice, regular expressions are usually preferred as a representation of regular

languages, and are used in a not necessarily simplified form. Moreover, all of these

objects (REs, NFAs, and DFAs) are combinatorial objects per se that can have their

behaviour, as well as of the algorithms having them as input, studied on average

and asymptotically. One should not confuse regular expressions by themselves with

the languages that they represent. Second, the results of Koechlin et al. do not

imply that asymptotic estimates obtained by considering the whole set of regular

expressions are different from those obtained by using a more refined set with less

equivalent expressions. For instance, some results obtained for expressions in strong

star normal form coincide with the ones for standard regular expressions [2]. In or-

der to further sustain the above claim, in this paper we consider the set R of regular

expressions avoiding an absorbing pattern which extends the pattern in the example

above and was the one considered by Koechlin et al. It is shown that, although the

set R is significantly smaller than the set RE, the asymptotic estimates for the size

of the Glushkov automaton on these sets is the same. We also show that for the set

R the ratio of ε-accepting expressions is asymptotically and on average the same as

for the set RE.

Given the complexity of the grammars expressing the classes here studied, we

had to deal with algebraic curves and polynomials of degree depending on the size

of the alphabet, k, which brought up challenges that are new, as far as we know.

Not only we had to use the techniques developed in our previous work [3], but

also some non-trivial estimates using Stirling approximation, and some asymptotic

equivalence reductions in order to obtain the asymptotic estimates, and their limits

with k.
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2. The Analytic Tools

Given some measure of the objects of a combinatorial class, A, for each non-negative

integer n ∈ N0, let an be the sum of the values of this measure for all objects of

size n. Now, let A(z) =
∑
n anz

n be the corresponding generating function (cf. [5]).

We will use the notation [zn]A(z) for an. The generating function A(z) can be

seen as a complex analytic function. When this function has a unique dominant

singularity ρ, the study of the behaviour of A(z) around it gives us access to the

asymptotic form of its coefficients. In particular, if A(z) is analytic in some indented

disc neighbourhood of ρ, then one has the following [5] :

Theorem 1. The coefficients of the series expansion of the complex function

f(z) ∼
z→ρ

λ

(
1− z

ρ

)ν
,

where ν ∈ C \ N0, λ ∈ C, have the asymptotic approximation

[zn]f(z) =
λ

Γ(−ν)
n−ν−1ρ−n + o

(
n−ν−1ρ−n

)
.

Here Γ is, as usual, the Euler’s gamma function and the notation f(z) ∼
z→z0

g(z)

means that lim
z→z0

f(z)
g(z) = 1.

2.1. Regular Expressions

Given an alphabet Σ = {σ1, . . . , σk}, the set RE of (standard) regular expressions,

β, over Σ contains ∅ and the expressions defined by the following grammar:

β := ε | σ ∈ Σ | (β + β) | (β · β) | (β⋆). (1)

The language associated with β is denoted by L(β) and defined as usual (with

ε representing the empty word). Two expressions β1 and β2 are equivalent, β1 =

β2, if L(β1) = L(β2). The (tree-)size |β| of β ∈ RE is the number of symbols

in β (disregarding parentheses). The alphabetic size |β|Σ is the number of letters

occurring in β. The generating function of RE is Bk(z) =
∑
β∈RE z

|β| =
∑
n>0 bnz

n,

where bn is the number of expressions of size n,cf. [10, 1]. From grammar (1) one

gets Bk(z) = (k+1)z+2zBk(z)
2+zBk(z). Considering the quadratic equation this

yields

Bk(z) =
1− z −

√
1− 2z − (7 + 8k)z2

4z
.

To use Theorem 1 one needs to obtain the singularity, ρ, as well as the constants ν

and λ. Following Broda et al [1, 3], we have

Bk(z) ∼
z→ρk

−
√
2− 2ρk
4ρk

(
1− z

ρk

) 1
2

,
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where the singularity ρk = 1
1+

√
8+8k

is the positive root of pk(z) = 1−2z−(7+8k)z2.

Thus, applying Theorem 1 and noting that Γ(− 1
2 ) =

√
π, the number of expressions

of size n is asymptotically given by

[zn]Bk(z)∼
n

√
2− 2ρk
8ρk

√
π

n−
3
2 ρ−nk , (2)

where we use the notation ∼
n

instead of ∼
n→∞

.

3. Regular Expressions without an Absorbing Pattern

Let Θ denote any expression of the form (σi1 + · · · + σik)
⋆ where σi1 , . . . , σik is a

permutation of Σ. In this paper we consider the set R of all regular expressions α

such that Θ does not occur in a union. Note that Θ represents an absorbing pattern

in the sense of [7], i.e., (α+Θ) ≡ (Θ+α) ≡ Θ, and that R still generates all regular

languages over Σ.

For illustrating purposes, we first consider Σ = {a, b}, for which we have the

following grammar G2 for R,

α := ε | a | b | (α · α) | (α⋆) | (αP + αP ) (3)

αP := ε | a | b | (α · α) | (α⋆Σ) | (αP + αP )

αΣ := ε | a | b | (α · α) | (α⋆) | γ
γ := (αab + αab) | (αab + a) | (αab + b) | (a+ αab) | (b+ αab) | (a+ a) | (b+ b)

αab := ε | (α · α) | (α⋆Σ) | (αP + αP ).

The set of expressions generated by the nonterminals of G2, are, respectively, the

following:

[[α ]] = R,

[[αP ]] = {α ∈ R | α ̸= (a+ b)⋆ ∧ α ̸= (b+ a)⋆ },
[[αΣ ]] = {α ∈ R | α ̸= (a+ b) ∧ α ̸= (b+ a) },
[[ γ ]] = { (α1 + α2) ∈ R | {α1, α2} ≠ {a, b} },

[[αab ]] = {α ∈ [[αP ]] | α ̸= a ∧ α ̸= b }.

In particular, we obtain the correctness of G2.

Lemma 2. An expression α ∈ RE is generated by G2 if and only the absorbing

pattern (a+ b)⋆ or (b+ a)⋆ does not occur in a union.

Let R2(z) denote the generating function for the class R when |Σ| = 2. It follows

from (3) that

R2(z) = 3z + zR2(z)
2 + zR2(z) + zRP (z)

2,

where RP (z) is the generating function for the class of expressions generated by αP .

Comparing [[α ]] and [[αP ]], one observes that the only expressions not generated
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by αP are (a+ b)⋆ and (b+ a)⋆, which are both of size 4. Thus,

RP (z) = R2(z)− 2z4.

In general, for an arbitrary alphabet Σ = {σ1, . . . , σk}, the expressions α ∈ R satisfy

the following grammar Gk

α := ε | σ1 | · · · | σk | (α · α) | (α⋆) | (αP + αP ), (4)

where

[[αP ]] = {α ∈ R | α ̸= (σi1 + · · ·+ σik)
⋆ ∧ {σi1 , . . . , σik} = Σ }.

As before, we obtain the following two equations for the corresponding generat-

ing functions, where (k−1)!
(
2k−2
k−1

)
denotes the number of expression (σi1+· · ·+σik)⋆

with {σi1 , . . . , σik} = Σ, each of which has size 2k,

Rk(z) = (k + 1)z + zRk(z)
2 + zRk(z) + zRP,k(z)

2, (5)

RP,k(z) = Rk(z)− (k − 1)!

(
2k − 2

k − 1

)
z2k. (6)

In the next section, the asymptotic estimates of [zn]Rk(z) are computed.

3.1. Asymptotic Estimates for the Number of Expressions in R

The generating function Rk = Rk(z) satisfies the following equation:

2zR2
k − rkRk + zsk = 0, (7)

where

rk = rk(z) = 1− z + 2z2k+1Ck,

sk = sk(z) = 1 + k + z4kC2
k ,

Ck =

(
2k − 2

k − 1

)
(k − 1)! =

(2k − 2)!

(k − 1)!
.

The discriminant of equation (7) is ∆k = ∆k(z) = pk(z) + 4z2k+1Ckhk(z), where

pk = pk(z) = 1− 2z − (7 + 8k)z2,

hk = hk(z) = 1− z − Ck z
2k+1.

Thus,

Rk = Rk(z) =
rk −

√
∆k

4z
, (8)

where the choice of the sign is determined by noticing that rk(0) = ∆k(0) = 1.

Let us now show that Rk(z) has a unique determinant singularity in the interval

]0, 1[, for all k. The ideia is to use the fact that the polynomial pk(z) has only

one positive zero, namely ρk, use Rouché’s Theorem to show that, in the disk
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|z| < 1√
8+8k

, the polynomial ∆k(z) has exactly one root in that disk, and finally

show that that unique root is real. We recall that Rouché’s Theorem states that, in

particular, for polynomials f(z) and g(z) such that |f(z) − g(z)| < |f(z)| + |g(z)|
holds for all |z| = R, in the complex plane, then f(z) and g(z) have the same

number of roots, taking into account multiplicities, in the disk |z| < R [13] .

In order to estimate |∆k(z) − pk(z)|, we start by noticing that from Stirling

approximation,
√
2π nn+

1
2 e−n ≤ n! ≤ nn+

1
2 e1−n, valid for all n ∈ N, one gets that,

for all k ≥ 2,
√
2π (2k − 2)2k−

3
2 e2−2k

(k − 1)k−
1
2 e2−k

≤ Ck =
(2k − 2)!

(k − 1)!
≤ (2k − 2)2k−

3
2 e3−2k

√
2π (k − 1)k−

1
2 e1−k

,

i.e.,
√
2π 22k−

3
2 (k − 1)k−1

ek
≤ Ck ≤ 22k−

3
2 (k − 1)k−1

√
2π ek−2

. (9)

Therefore, for |z| = 1√
8+8k

,

|∆k(z)− pk(z)| ≤ 4Ck
1

(8 + 8k)k+
1
2

|hk(z)|

≤ (k − 1)k−1

√
2π ek−2 2k+1(k + 1)k+

1
2

(
1− 1√

8 + 8k
− Ck

(8 + 8k)k+
1
2

)
≤ 1.48

(2e)k(k − 1)
√
k + 1

(
1− 1√

8 + 8k
− Ck

(8 + 8k)k+
1
2

)
.

Noticing that, from (9), one has
√
2π (k − 1)k−1

ek2k+3(k + 1)k+
1
2

≤ Ck

(8 + 8k)k+
1
2

≤ (k − 1)k−1

√
2π ek−22k+3(k + 1)k+

1
2

,

one concludes that

lim
k→∞

|∆k(z)− pk(z)| = 0.

Let us now find the minimum of |pk(z)| on the circumference |z| = 1√
8+8k

= R.

Put z = Reiθ. One has

|pk(z)|2 = |1− 2Reiθ − (7 + 8k)R2e2iθ|2

= (1− 2R cos θ − (7 + 8k)R2 cos 2θ)2 + (1− 2R sin θ − (7 + 8k)R2 sin 2θ)2

= 2 + 4R2 + (7 + 8k)2R4 − 4R(cos θ + sin θ)− 2(7 + 8k)R2(cos 2θ + sin 2θ)

+4R3(7 + 8k)(cos θ cos 2θ + sin θ sin 2θ)

= 2 +
1

2 + 2k
+

(
7 + 8k

8 + 8k

)2

− 2(cos θ + sin θ)√
2 + 2k

− (7 + 8k)(cos 2θ + sin 2θ)

4 + 4k

+
(7 + 8k)(cos θ cos 2θ + sin θ sin 2θ)

4(k + 1)
√
2 + 2k

.
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It follows that lim
k→∞

|pk(z)|2 = 3− 2(cos 2θ+ sin 2θ). Since max
θ

(cos θ+ sin θ) =
√
2,

one concludes that lim
k→∞

|pk(z)|2 ≥ 3 − 2
√
2 > 0. From all this, one concludes that

|∆k(z) − pk(z)| < |pk(z)| for large enough values of k, and so Rouché’s Theorem

applies to show that the polynomial ∆k(z) has exactly one root in the open disk

|z| < 1√
8+8k

.
a

Since ∆k(0) = 1, in order to show that that root must be real it suffices to show

that one has ∆k

(
1√

8+8k

)
< 0. This can be shown as follows. Since

∆k

(
1√

8 + 8k

)
= 2−6k− 7

2 (k + 1)−2k−1
(
23k+2

(
4
√
k + 1−

√
2
)
(k + 1)kCk

−4
√
2C2

k − 64k
(
8
√
k + 1−

√
2
)
(k + 1)2k

)
,

we want to show that

23k
(√

8k + 8− 1
)
(k + 1)kCk < C2

k + 26k−2
(
2
√
8k + 8− 1

)
(k + 1)2k.

Using (9), it is enough to show that

2kek+2
(√

8k + 8− 1
)

√
π

< 22k
(
2
√
8k + 8− 1

) (k + 1)k

(k − 1)k−1
e2k + π

(k − 1)k−1

(k + 1)k
,

that follows from this trivially true inequality
√
8k + 8− 1√

π
< 2k

(
2
√
8k + 8− 1

) (k + 1)k

(k − 1)k−1
ek−2.

The singularity of Rk(z) is therefore given by the unique root of ∆k(z) in the

interval
]
0, 1√

8k+8

[
, which will henceforth denote by ηk. It also follows from Rouché’s

Theorem that this root has multiplicity one. Now, ∆k(z) =
(
1− z

ηk

)
ψk(z), for some

ψk(z) ∈ R[z]. Using L’Hôpital’s Rule, one has

ψk(ηk) = −ηk∆′
k(ηk). (10)

Then, one has

Rk(z) ∼
z→ηk

−rk(ηk)−
√
ψk(ηk)

(
1− z

ηk

) 1
2

4ηk
.

By Theorem 1, one gets the following asymptotic approximation for the number of

regular expressions in appreciation

Theorem 3. With the notation above, one has

[zn]Rk(z)∼
n

√
ψk(ηk)

8ηk
√
π
n−

3
2 η−nk .

aIt is actually true that |∆k(z)− pk(z)| < |pk(z)| for all |z| = 1√
8+8k

and k ≥ 2.
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Using (2), we have

The asymptotic ratio of the number of expressions in R and the number of ex-

pressions in RE is given by,

[zn]Rk(z)

[zn]Bk(z)
∼
n

√
ψk(ηk)

8ηk
√
π
n−

3
2 η−nk

√
2−2ρk

8ρk
√
π
n−

3
2 ρ−nk

=

√
ψk(ηk)√
2− 2ρk

(
ρk
ηk

)n+1

.

Since, as seen before, ηk > ρk, for all k, this yields that, for every k, this ratio

tends to 0 as n → ∞. As such, considering R instead of RE, actually avoids a

significant set of redundant expressions. Such an improvement, in the sense of [7],

might influence the results obtained by asymptotic studies.

In Section 5 we show that is not the case for the average asymptotic size of the

Glushkov automaton in terms of states and transitions [10, 1]. In the next section, we

estimate the number of expressions from R that accept the word ε and show that

their density is asymptotically and on average the same as for standard regular

expressions, RE.

4. Density of ε-accepting Regular Expressions

In this section, we estimate the ratio of ε-accepting regular expressions to regular

expressions avoiding the absorbing pattern Θ. Formally, let αε ∈ R be the set of

expressions such that ε ∈ L(αε) and let αε represent the set of expressions such

that ε /∈ L(αε). We have that those sets satisfy the following grammars:

αε := ε | (αε · αε) | (α⋆) | (αP,ε + αP ) | (αP,ε + αP,ε),

αε := σ ∈ Σ | (αε · α) | (αε · αε) | (αP,ε + αP,ε),

where αP,ε and αP,ε represent the expressions αP such that ε ∈ L(αP,ε) and ε /∈
L(αP,ε), respectively. The correspondent generating functions satisfy

Rε,k(z) = z + zRε,k(z)
2 + zRk(z) + 2zRP,ε,k(z)RP,k(z)− zRP,ε,k(z)

2,

Rε,k(z) = Rk(z)−Rε,k(z),

RP,ε,k(z) = Rε,k(z),

RP,ε,k(z) = RP,k(z)−Rε,k(z) = Rε,k(z)− Ckz
2k.

From that we conclude that Rε,k = Rε,k(z) satisfies

Rε,k = z + zRk + 2zRε,kRk + zC2
kz

4k − 2zRkCkz
2k, (11)

Solving equation (6) in order to RP,k, substituting the obtained value in equa-

tion (5), one gets the polynomial having Rk as root:

g(X) = 2z X2 − (1− z + 2Ckz
2k+1)X + (k + 1)z + C2

kz
4k+1. (12)

Solving equation (11),
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in order to Rε,k, one gets

Rε,k = z
1 + C2

kz
4k +Rk − 2Ckz

2kRk
1− 2zRk

. (13)

Working in the field K = Q(k, z)[X]/⟨g(X)⟩ (g(X) is irreducible over the field

Q(k, z)), similarly to what was done in Section 6 of [9], one finds that

Rε,k = a11 + a12Rk, (14)

where

a11 =
kz(−1 + 2Ckz

2k)

1 + 2(k + 1)z − 2Ckz2k + 2C2
kz

4k+1

a12 = 1− 2kz

1 + 2(k + 1)z − 2Ckz2k + 2C2
kz

4k+1
.

Also, in K,

Rε,kRk = a21 + a22Rk, (15)

for some a21, a22 ∈ Q(k, z).

From equations (14) and (15) one obtains∣∣∣∣Rε,k − a11 −a12
−a21 Rε,k − a22

∣∣∣∣ = 0,

yielding a second degree polynomial, 2zd2X
2 − d1X + zd0 having Rε,k as a root,

where

d0 =1 + (k + 2)z − 2Ckz
2k + C2

kz
4k − 2C3

kz
6k − 4Ckkz

2k+1

+4(k + 1)C2
kz

4k+1 + 2C4
kz

8k+1

d1 =1 + z − 2(2k + 1)z2 − 2Ckz
2k + 4Ckz

2k+1 + 4Ck(2k + 1)z2k+2

−2C2
kz

4k+1 − 2C2
kz

4k+2 + 4C3
kz

6k+2

d2 =1 + 2(k + 1)z − 2Ckz
2k + 2C2

kz
4k+1.

Therefore,

Rε,k =
d1 −

√
d21 − 8z2d0d2
4z d2

(16)

(the sign was chosen so that Rε,k(0) = 0).

We now show that d2(z) is positive for 0 < z < 1, which implies, using Pring-

sheim Theorem, that the singularity comes from the smallest positive zero of the

polynomial inside the square root. To show that, one first makes the change of

variable x = 1
z > 1, so that the inequality d2(z) > 0 is then equivalent to

f(x) =
k + 1

Ck
x2k−1 +

Ck
x2k+1

> 1.
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Since f(x) → +∞ both as x → 0 and x → +∞, and as f ′(x) has only one zero,

namely

x0 =

(
2k + 1

(k + 1)(2k − 1)

) 1
4k

C
1
2k

k ,

this has to be the absolute minimum of f . Since

f(x0) = (k + 1)

(
2k+1

(k+1)(2k−1)

) 1
2−

1
4k

C
1
2k

k

+
1(

2k+1
(k+1)(2k−1)

) 1
2+

1
4k

C
1
2k

k

,

it is enough to ensure that

(k + 1)

(
2k + 1

(k + 1)(2k − 1)

) 1
2−

1
4k

+
1(

2k+1
(k+1)(2k−1)

) 1
2+

1
4k

> C
1
2k

k .

This can easily be done by noticing that the first summand is always greater that

the second, and then using the right inequality in (9).

Next we found out that:

d21 − 8z2d0d2 = tk(z)
2∆k(z), (17)

where ∆k(z) is as above, and tk(z) = 1 + 2z − 2Ckz
2k + 2C2

kz
4k+1. This implies

that ηk, defined in p. 7, is the dominant singularity of Rε,k, and that

Rε,k ∼
z → ηk

−tk(ηk)ψk(ηk)
4ηkd2(ηk)

(
1− z

ηk

) 1
2

(18)

from which one gets

[zn]Rε,k ∼
n

−tk(ηk)ψk(ηk)
4ηkd2(ηk)

n−
3
2 ηnk . (19)

Using Theorem 3, one obtains

[zn]Rε,k
[zn]Rk

∼
n

2tk(ηk)ηk
d2(ηk)

. (20)

Let us now see that

lim
k→∞

k η2k =
1

8
. (21)

Since we know that ∆k(0) = 1, and ∆k(x) has exactly one real root in the interval[
0, 1√

8+8k

]
, in order to show that ηk > ρk for all k, it is enough to show that:

∆k(ρk) = pk(ρk) + 4ρ2k+1
k Ckhk(ρk) > 0, i.e., hk(ρk) > 0.

Now, hk(ρk) > 0 ⇐⇒ 1 > ρk + Ckρ
2k+1
k ⇐⇒

√
8 + 8k > Ck

(1+
√
8+8k)2k

. From (9)

it follows that

Ck

(1 +
√
8 + 8k)2k

≤ 22k−
3
2 (k − 1)k−1

√
2π ek−2(1 +

√
8 + 8k)2k

.
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It is therefore enough to show:

22k−
3
2 (k − 1)k−1

√
2π ek−2(1 +

√
8 + 8k)2k

<
√
8 + 8k,

which is equivalent to

22k−
3
2 (k − 1)k−1 <

√
2π ek−2(1 +

√
8 + 8k)2k

√
8 + 8k.

This is the same as(
4

e

)k
(k − 1)k−1 <

2
3
2

√
2π

e2
(1 +

√
8 + 8k)2k

√
8 + 8k,

which follows from:(
4

e

)k
(k − 1)k <

2
3
2

√
2π

e2
22k+1(2 + 2k)k+

1
2 .

That is obvious when rewritten as(
4

e

)k
(k − 1)k <

(
2

3
2

√
2π

e2
2

)
4k(2 + 2k)k+

1
2 .

Thus, we conclude that

ρk =
1

1 +
√
8 + 8k

< ηk <
1√

8 + 8k
. (22)

From this it immediately follows that lim
k→∞

k η2k = 1
8 , and then lim

k→∞
pk(ηk) = 0.

Using the right hand inequality in (9) together with (22), it is not hard to show the

following result, which will be useful latter to deduce equation (31).

Lemma 5. For all t, s ∈ R, one has

lim
k→∞

Ckk
tη2k+sk = 0. (23)

Using (21) one can easily show that

2tk(ηk)ηk
d2(ηk)

∼
k

√
2

k
. (24)

We note that it follows from Lemma 2 and Equation (4) in [10] (and also [12],

Thm. 12) that for the usual regular expressions one has the exact same asymptotic

density of ε-accepting regular expressions for the set of all regular expressions as

the regular expressions avoiding the absorbing pattern Θ.
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5. Asymptotic Average Size of the Glushkov Automaton

The Glushkov automaton [6] is constructed from an equivalent regular expression

β using the set Pos(β) of positions of the letters in β, as the set of states (plus one

initial state). Let Pos(β) = {1, 2, . . . , |β|Σ}, Pos0(β) = Pos(β) ∪ {0} and β denote

the expression obtained from β by marking each letter with its position in β. The

construction is based on the position sets

First(β) = { i | (∃w) σiw ∈ L(β) },
Last(β) = { i | (∃w) wσi ∈ L(β) },

Follow(β) = { (i, j) | (∃u, v) uσiσjv ∈ L(β) }.

The Glushkov automaton for β is

APOS(β) = ⟨Pos0(β),Σ, δPOS, 0, F ⟩,

where the set of final states is F = Last(β) ∪ {0} if ε ∈ L(β), and F = Last(β),

otherwise; and the set of transitions is

δPOS = { (0, σj , j) | j ∈ First(β) } ∪ { (i, σj , j) | (i, j) ∈ Follow(β) }.

In this section, we estimate the average size of APOS for expressions in R. In the next

subsection, we estimate the average number of letters in α ∈ R, i.e., the number of

states of APOS(α). In the last subsection, we consider the number of transitions.

5.1. Estimates for the Number of Letters

The average number of letters in uniform random generated regular expressions of a

given size have been estimated for different kinds of expressions [10, 3]. For standard

regular expressions that value is half the size of the expressions as the size of the

alphabet goes to ∞. In the following we obtain the same value for expressions in R.

To count the number of letters in all expressions of a given size we use the bivariate

generating function Lk(u, z) =
∑
n,i≥1 cn,iu

izn, where cn,i is the number of regular

expressions of size n with i letters. Therefore, the total number of letters in all the

regular expressions of size n is given by the coefficients of the sum of the two series

Lk(z) =
∂Lk(u, z)

∂u

∣∣∣∣
u=1

=
∑
n,i≥1

i cn,i z
n.

From grammar (4) the generating function Lk(z) satisfies the following.

Lk(z) = kz + 2zLk(z)Rk(z) + zLk(z) + 2zPk(z)RP (z), (25)

Pk(z) = Lk(z)− k!

(
2k − 2

k − 1

)
z2k. (26)

Using equations (5), (6), (25), (26) and Buchberger’s algorithm [4] one obtains

the following equation, which is satisfied by the generating function Lk = Lk(z):

∆kL
2
k + r̄kLk − s̄k = 0, (27)
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where

r̄k = kz2kCk∆k,

s̄k = kz2 + k2z2k+1 Ck
(
(z − 1)(1 + 2z4k+1C2

k) + 2Ck(2 + k) + 2z6k+1C3
k

)
.

The discriminant of equation (27) can be shown to be

∆̄k(z) = z2k2∆k(z)gk(z)
2, (28)

where

gk(z) = 2− Ckz
2k−1

(
hk(z)− Ckz

2k−1
)
. (29)

Therefore,

Lk(z) =
kz2kCk∆k(z)±

√
∆̄k(z)

2∆k(z)
=
kz2kCk

2
± kzgk(z)

2
√

∆k(z)
.

Using the fact that we know L′
k(0) = k, one deduces that

Lk(z) =
kz2kCk

2
+

kzgk(z)

2
√
∆k(z)

. (30)

Now, applying the procedure described in Broda et al. [3] one obtains

Theorem 6. With the same notation as above, where ηk is as defined in page 7,

[zn]Lk(z)∼
n

k ηk gk(ηk)

2
√
π
√
ψk(ηk)

n−
1
2 η−nk .

Therefore, from Theorems 3 and 6, one deduces

Theorem 7. The asymptotic ratio of letters in the expressions in R is given by

[zn]Lk(z)

n[zn]Rk(z)
∼
n

4k η2k gk(ηk)

ψk(ηk)
.

From Lemma 5, and from (29) and (10), one easily gets lim
k→∞

gk(ηk) =

lim
k→∞

ψk(ηk) = 2, and thus:

lim
k→∞

4k η2k gk(ηk)

ψk(ηk)
=

1

2
. (31)

This means that the following result holds.

Theorem 8. In regular expressions without Θ in unions, the asymptotic ratio of

letters and the size of the expression goes to 1
2 as k goes to ∞.
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5.2. Estimates for the Number of Transitions

The transitions of the Glushkov automaton are defined using the sets First, Last

and Follow. These sets can be inductively define for α ∈ R, as it is usually done [1].

Let αε ∈ R be the set of expressions such that ε ∈ L(αε) and let αε represent the

set of expressions such that ε /∈ L(αε). We have

First(ε) = ∅,
First(σi) = {i},
First(α⋆) = First(α),

First(αP + α′
P ) = First(αP ) ∪ First(α′

P ),

First(αε · α) = First(αε) ∪ First(α),

First(αε · α) = First(αε).

The definition of Last is almost identical and differs only for the case of concatena-

tion, which is Last(α·αε) = Last(α)∪Last(αε) and Last(α·αε) = Last(αε). Following

Broda et al. [1] the set Follow satisfies

Follow(ε) = Follow(σi) = ∅,
Follow(αP + α′

P ) = Follow(αP ) ∪ Follow(α′
P ),

Follow(α · α′) = Follow(α) ∪ Follow(α′) ∪ Last(α)× First(α′),

Follow(α⋆) = E⋆(α),

where

E⋆(ε) = ∅, E⋆(σi) = {(i, i)}, E⋆(α⋆) = E⋆(α),

E⋆(αP + α′
P ) = E⋆(αP ) ∪ E⋆(α′

P ) ∪ Cross(αP , α
′
P ),

E⋆(αε · α′
ε) = E⋆(αε) ∪ E⋆(α′

ε) ∪ Cross(αε, α
′
ε),

E⋆(αε · α′
ε) = Follow(αε) ∪ Follow⋆(α′

ε) ∪ Cross(αε, α
′
ε),

E⋆(αε · α′
ε) = Follow⋆(αε) ∪ Follow(α′

ε) ∪ Cross(αε, α
′
ε),

E⋆(αε · α′
ε) = Follow(αε) ∪ Follow(α′

ε) ∪ Cross(αε, α
′
ε),

with Cross(α, α′) = Last(α)×First(α′)∪Last(α′)×First(α). The function that counts

the cardinality of First(α) is f(α) and is defined as follows:

f(σi) = 1,

f(αP + α′
P ) = f(αP ) + f(α′

P ),

f(αε · α′) = f(αε) + f(α′),

f(αε · α′) = f(αε),

f(α⋆) = f(α).

Note that f((σi1 + · · · + σik)
⋆) = k for any permutation σi1 , . . . , σik of Σ =

{σ1, . . . , σk}. The correspondent generating function Fk(z) =
∑
α f(α)z

|α| = Fk
satisfies

Fk = kz + zFk + 2zFP,kRP,k + zFkRε,k + zFkRk,

FP,k = Fk − kCkz
2k,

where Rε,k = Rε,k(z) is the generating function for expressions αε ∈ R, studied in

Section 4. Let s(α) be the function that counts the cardinality of Last(α) and Sk(z)
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the correspondent generating function. By symmetry we have that Sk(z) = Fk(z).

The functions counting the cardinalities of Follow(α) and E⋆(α) are e(α) and e⋆(α),

respectively. Those functions are defined as follows:

e(σ) = e(ε) = 0,

e(αP + α′
P ) = e(αP ) + e(α′

P ),

e(α · α′) = e(α) + e(α′) + s(α) f(α′),

e(α⋆) = e⋆(α),

where e⋆(α) is given by

e⋆(ε) = 0, e⋆(σ) = 1,

e⋆(αP + α′
P ) = e⋆(αP ) + e⋆(α′

P ) + c(αP , α
′
P ),

e⋆(αε · α′
ε) = e⋆(αε) + e⋆(α′

ε) + c(αε, α
′
ε),

e⋆(αε · α′
ε) = e⋆(αε) + e(α′

ε) + c(αε, α
′
ε),

e⋆(αε · α′
ε) = e(αε) + e⋆(α′

ε) + c(αε, α
′
ε),

e⋆(αε · α′
ε) = e(αε) + e(α′

ε) + c(αε, α
′
ε),

e⋆(α⋆) = e⋆(α),

with c(α, α′) = s(α) f(α′)+ s(α′) f(α). From the above the corresponding generating

functions Ek(z) =
∑
α e(α)z

|α| = Ek and E⋆k(z) =
∑
α e

⋆(α)z|α| = E⋆k , respectively,

satisfy

Ek = 2zEP,kRP,k + 2zEkRk + zF 2
k + zE⋆k ,

E⋆k = kz + 2zE⋆P,kRP,k + 2zF 2
P,k + 2zE⋆ε,kRε,k + 2zFε,kFε,k

+ zE⋆ε,kRε,k + zEε,kRε,k + 2zFε,kFε,k + zEε,kRε,k

+ zE⋆ε,kRε,k + 2zFε,kFε,k + 2zEε,kRε,k + 2zFε,kFε,k + zE⋆k

= kz + 2zE⋆P,kRP,k + 2zE⋆kRε,k + 2zEk(Rk −Rε,k)

+ 2zF 2
P,k + 2zF 2

k + zE⋆k ,

EP,k = Ek − k2Ckz
2k,

E⋆P,k = E⋆k − k2Ckz
2k.

The last two equations follow from the fact that

e((σi1 + · · ·+ σik)
⋆) =

⋆
e((σi1 + · · ·+ σik)

⋆) = k2,

for any permutation σi1 , . . . , σik of Σ. The cost function t(α) = f(α)+e(α) computes

the number of transitions in the Glushkov automaton of α. The generating function

associated to t is given by Tk(z) = Fk(z) + Ek(z). Setting w = Tk(z), one has

c2w
2 + c1w + c0 = 0,

where the ci = ci(k, z). Therefore,

w =
−c1 ±

√
c21 − 4c0c2
2c2

.
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Now, one can see that c1 = ∆ksk, c2 = ∆kakb
2
k and c21 − 4c0c2 = k2∆kq

2
k, for some

polynomialsb ak, bk, qk ∈ Q[z]. From this it follows that

w = − sk
2akb2k

± kqk

2akb2k
√
∆k

.

With ηk as defined in p.7, one can now deduce, as above, that

Tk(z) ∼
z → ηk

kqk(ηk)

2ak(ηk)bk(ηk)2
√
ψk(ηk)

(
1− z

ηk

)− 1
2

,

and therefore

[zn]Tk(z)∼
n

kqk(ηk)

2
√
πak(ηk)bk(ηk)2

√
ψk(ηk)

η−nk n−
1
2 .

From all this, one gets:

[zn]Tk(z)

[zn]Rk(z)
∼
n

4kηkqk(ηk)

ak(ηk)bk(ηk)2ψk(ηk)
n.

With the help of a symbolic and numeric computing system one can explicitly

find out the polynomials ak, bk, qk, and then reducing them modulo ∆k (which has

ηk as a root), and then using Lemma 5 and (21), one obtains:

ak(ηk)∼
k

1

2
kηk ; bk(ηk)∼

k

1

8
kηk ; qk(ηk)∼

k

1

2048
k.

This yields

lim
k→∞

4kηkqk(ηk)

ak(ηk)bk(ηk)2ψk(ηk)
= 1.

We have thus obtained the following result.

Theorem 9. For expressions of size n over an alphabet of size k, the number of

transitions in the Glushkov automaton for regular expressions, without Θ in unions,

is asymptotically, with respect to n, given by λkn, where lim
k→∞

λk = 1.

To grasp the progression of λk, observe that λ2 = 4.03, λ5 = 2.91, λ10 = 2.30,

λ10 = 1.89, λ50 = 1.54, λ100 = 1.38, λ10000 = 1.03. Theorems 8 and 9 show that

the size of the Glushkov automaton, both in states and transitions, is, on average

and asymptotically, independent of whether we consider all regular expressions or

the restricted set R mentioned by Koechlin et al. [7].

bThese polynomials are quite large, e.g. qk has 437 monomials and degree 10 + 28k.
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6. Conclusions

We consider a set of regular expressions R that avoids a given absorbing pattern Θ

and that is significantly smaller than the set of standard regular expressions, RE.

Nevertheless, the on average asymptotic estimates for several complexity measures

remain the same. Some experiments also corroborate those results. Using samples of

uniformly random generated expressions α ∈ R for small values of the alphabet size

and of the tree-size of the expressions the average values for the same complexity

measures coincide with the ones for expressions in RE. We conclude that, despite

the important conclusions on the expressivity of regular expressions obtained by

Koechlin et al. [7], the usage of the analytic combinatorics framework remains an

essential tool to study the descriptional complexity, on average, of algorithms on

regular expressions.
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