
1

Location Automata for
Synchronised Shuffle Expressions

Sabine Broda 0000-0002-3798-9348a, António
Machiavelo 0000-0002-7595-7275a, Nelma Moreira 0000-0003-0861-0105a,∗,

Rogério Reis 0000-0001-9668-0917a

aCMUP & DM-DCC, Faculdade de Ciências da Universidade do Porto, Rua do Campo
Alegre, 4169-007, Porto, Portugal

Abstract

Several notions of synchronisation in concurrent systems can be modelled by
regular shuffle operators. In this paper we consider regular expressions extended
with three operators corresponding respectively to strong, arbitrary, and weak
synchronisation. For these expressions, we define a location based position
automaton. Furthermore, we show that the partial derivative automaton is
still a quotient of the position automaton.

Keywords: Regular Expressions, Locations, Shuffle Operators, Position
Automaton, Synchronisation, Partial Derivatives

1. Introduction

Several notions of synchronisation in concurrent systems can be modelled
by regular shuffle operators. These operations range from the plain shuffle to
intersection, which can be seen as two extreme cases, corresponding respectively
to pure interleaving and strict synchronisation. If only a subset of letters is al-
lowed to synchronise, several variants of synchronisation can be considered when
shuffling two words [1]. In particular, one may require synchronising letters to
always synchronise — strong synchronised shuffle; they may synchronise or not
— arbitrary synchronised shuffle; or synchronising letters can optionally be in-
terleaved from one word, but not from the other until the next synchronisation
occurs — weak synchronised shuffle. Sulzmann and Thiemann [2, 3] introduced

󰂏This work was partially supported by CMUP, which is financed by national funds through
FCT à Fundação para a Ciência e a Tecnologia, I.P., under the project with reference
UIDB/00144/2021.

∗Corresponding author
Email addresses: sabine.broda@fc.up.pt (Sabine Broda 0000-0002-3798-9348),

antonio.machiavelo@fc.up.pt (António Machiavelo 0000-0002-7595-7275),
nelma.moreira@fc.up.pt (Nelma Moreira 0000-0003-0861-0105), rogerio.reis@fc.up.pt
(Rogério Reis 0000-0001-9668-0917)

Preprint submitted to Elsevier October 3, 2024

a general synchronised shuffling operator, that subsumes the above three oper-
ators, among others. For their general shuffling operator, the authors extended
the notions of partial derivative and partial derivative automaton (APD) [4]. An-
other conversion from standard regular expressions to automata is the position
automaton, of which the partial derivative automaton is a quotient. Positions
correspond to the occurrences of letters in the expression, and there is a one-to-
one correspondence between the set of states in the position automaton and the
set of positions. That is no longer true if one considers regular expressions with
shufflings. Broda et al. [5, 6] extended the notion of position to shuffle and to
intersection by considering tree-like structures, called locations, that keep track
of the set of positions, that correspond to the states of the automaton.

In this paper we show that locations can also be used to define a position
automaton (APOS) for the general shuffling operator, more precisely for each of
the synchronised shuffle operators. This allows to extend the taxonomy of con-
versions from expressions to automata presented in [7] to include synchronised
shuffle operators. Furthermore, we show that for expressions with synchronised
shuffle operators, the partial derivative automaton is still a quotient of the po-
sition automaton.

The paper is organised as follows. Section 2 recalls standard notions regard-
ing regular expressions and finite automata, as well as the different synchronised
shuffle operators. In Section 3 we define locations for expressions with synchro-
nised shuffle operators. Using locations we extend the construction of the posi-
tion automaton to those expressions, and show its correctness. In Section 4 the
partial derivative automaton, defined by Sulzmann and Thiemann [3], is shown
to be a quotient of APOS introduced in Section 3. Section 5 concludes with
some final remarks and points to future work. Due to their length, some of the
proofs are omitted in the main text, and can be found in the appendix.

2. Preliminaries

In this section we review some basic definitions about regular expressions
and finite automata and fix notation. More details can be found, e.g., in [8].

The set of standard regular expressions over an alphabet Σ is denoted by
RE and contains ∅ plus all terms generated by the grammar

α → ε | σ | (α+ α) | (α · α) | (α󰂏) (σ ∈ Σ).

The language associated with an expression α ∈ RE is denoted by L(α) and
defined inductively as usual. The empty word is denoted by ε. We define ε(α) by
ε(α) = true if ε ∈ L(α), and ε(α) = false otherwise. Given a set of expressions
S, the language associated with S is L(S) =

󰁖
α∈S L(α). Moreover, we consider

εS = Sε = S and ∅S = S∅ = ∅, for any set S of expressions. The alphabetic
size of α, |α|Σ, is the number of occurrences of letters (alphabet symbols) in α.
We denote the subset of Σ containing the symbols that occur in α by Σα.

A nondeterministic finite automaton (NFA) is a quintuple A = 〈Q,Σ, δ, I, F 〉
where Q is a finite set of states, Σ is a finite alphabet, I ⊆ Q is the set of initial

3

states, F ⊆ Q is the set of final states, and δ : Q × Σ → 2Q is the transition
function. The language of A is denoted by L(A) and two automata are equiv-
alent if they have the same language. Two automata A1 = 〈Q1,Σ, δ1, I1, F1〉
and A2 = 〈Q2,Σ, δ2, I2, F2〉 are isomorphic, A1 ≃ A2, if there is a bijection ϕ :
Q1 −→ Q2 such that ϕ(I1) = I2, ϕ(F1) = F2, and ϕ(δ1(q1,σ)) = δ2(ϕ(q1),σ),
for all q1 ∈ Q1, σ ∈ Σ. Given an automaton A, one might be interested in
obtaining an equivalent one with fewer states. This goal can be achieved by
considering the quotient automaton of some right-invariant relation on the set
of states of A. An equivalence relation ≡ defined on the set of states Q is
right-invariant w.r.t. A if and only if ≡ ⊆ (Q − F)2 ∪ F 2 and if p≡ q, then
(∀σ ∈ Σ)(∀p′ ∈ δ(p,σ))(∃q′ ∈ δ(q,σ)) (p′ ≡ q′), for all p, q ∈ Q. If ≡ is a
right-invariant relation on Q, the right-quotient automaton A/≡ is given by
A/≡ = 〈Q/≡ ,Σ, δ/≡ , I/≡ , F/≡〉, where δ/≡ ([p],σ) = { [q] | q ∈ δ(p,σ) }.
Then, L (A/≡) = L(A).

The Position Automaton. Given α ∈ RE, one can mark each occurrence of an
alphabet symbol σ with its position in α, reading it from left to right. The
resulting regular expression is a marked regular expression α with all alphabet
symbols occurring only once (linear) and belonging to Σα. The same notation
is used for unmarking, i.e., α = α. In a marked expression α, a position i ∈
[1, |α|Σ] = {1, . . . , |α|Σ} corresponds to a symbol σi, and thus to exactly one
occurrence of σ in α. Given a position i, we denote by ℓ(i) the symbol σ = σi.
For instance, if α = a(bb+ aba)󰂏b, then α = a1(b2b3 + a4b5a6)

󰂏b7 and ℓ(4) = a.
Let Pos(α) = [1, |α|Σ], and Pos0(α) = Pos(α) ∪ {0}. Positions were used

by Glushkov [9] to define an NFA equivalent to α, usually called the position
or Glushkov automaton, APOS(α). Each state of the automaton, except for the
initial one, corresponds to a position, and there exists a transition from i to j
by σ such that σj = σ, if σi can be followed by σj in some word represented by
α. The sets that are used to define the position automaton are First(α) = { i |
(∃w ∈ Σ󰂏

α) (σiw ∈ L(α)) }, Last(α) = { i | (∃w ∈ Σ󰂏
α) (wσi ∈ L(α)) } and, given

i ∈ Pos(α), Follow(α, i) = { (∃u, v ∈ Σ󰂏
α) (uσiσjv ∈ L(α)) }. For the sake of

readability, whenever an expression α is not marked, we take f(α) = f(α), for
any function f that has marked expressions as arguments. We will not define
the set Last explicitly, but just annotate each position i with a Boolean b, whose
value is true iff i ∈ Last(α). Those annotations can be done, when computing
the set of positions of a given α as follows:

Pos(ε) = ∅, Pos(σi) = {i : true}, Pos(α󰂏) = Pos(α),

Pos(α1 + α2) = Pos(α1) ∪ Pos(α2),

Pos(α1α2) =

󰀫
Pos(α1) ∪ Pos(α2), if ε(α2) = true,

{ i : false | i : b ∈ Pos(α1) } ∪ Pos(α2), otherwise.

In the remainder of the paper, we generally will omit the boolean in an
annotated position i : b, and we write i ∈ Last(α) if and only if b = true, i.e.,
i : true ∈ Pos(α). The sets First and Follow are defined inductively as usual,

4

but considering explicitly the letter associated with each position (this will be
necessary when dealing with shuffle operators).

First(ε) = ∅, First(σi) = {(σi, i)}, First(α󰂏) = First(α),

First(α1 + α2) = First(α1) ∪ First(α2),

First(α1α2) =

󰀫
First(α1) ∪ First(α2), if ε(α1) = true,

First(α1), otherwise.

Follow(ε, i) = Follow(σi, i) = ∅,

Follow(α1 + α2, i) =

󰀫
Follow(α1, i), if i ∈ Pos(α1),

Follow(α2, i), if i ∈ Pos(α2),

Follow(α1α2, i) =

󰀻
󰁁󰀿

󰁁󰀽

Follow(α1, i), if i ∈ Pos(α1) \ Last(α1),

Follow(α1, i) ∪ First(α2), if i ∈ Last(α1),

Follow(α2, i), if i ∈ Pos(α2),

Follow(α󰂏, i) =

󰀫
Follow(α, i), if i /∈ Last(α),

Follow(α, i) ∪ First(α), otherwise.

We define the position automaton using the approach in Broda et al. [7], where
the transition function is expressed as the composition of functions Select and
Follow. Given a letter σ and a set of positions S, the function Select computes the
subset of positions in S that correspond to letter σ. Formally, given S ⊆ Pos(α)
and σ ∈ Σ, let Select(S,σ) = { i | i ∈ S ∧ ℓ(i) = σ }. Then, the position
automaton for α is

APOS(α) = 〈Pos0(α),Σ, δPOS, 0, Last0(α)〉,

where δPOS(i,σ) = Select(Follow(α, i),σ), Follow(α, 0) = First(α), Last0(α) =
Last(α)∪ {0} if ε(α) = true, and Last0(α) = Last(α), otherwise. Some examples
can be found in [7].

2.1. Synchronised Shuffle Operators

In this section we review three synchronised shuffle operators, that were
studied by Beek et al. [1] and by Sulzmann and Thiemann [3], presenting for
each operator two equivalent definitions.

Strongly Synchronised Shuffle w.r.t. a set Γ. Given a set of alphabet symbols
Γ ⊆ Σ, the strongly synchronised shuffle of two words w.r.t. Γ imposes syn-
chronisation on all letters of Γ. The strongly synchronised shuffle of two words
u, v ∈ Σ󰂏 w.r.t. Γ, and denoted by u s󰀂Γ v, is the finite set of words defined

5

inductively as follows [3]:

ε s󰀂Γ v =

󰀫
{v}, if Σv ∩ Γ = ∅,
∅, otherwise,

u s󰀂Γ ε =
󰀫
{u}, if Σu ∩ Γ = ∅,
∅, otherwise,

σu s󰀂Γ τv =

󰀻
󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰀽

{ σw | w ∈ u s󰀂Γ v }, if σ = τ ∧ σ ∈ Γ,

∅, if σ ∕= τ ∧ σ, τ ∈ Γ,

{ σw | w ∈ u s󰀂Γ τv }, if σ ∕∈ Γ ∧ τ ∈ Γ,

{ τw | w ∈ σu s󰀂Γ v }, if σ ∈ Γ ∧ τ ∕∈ Γ,

{σw | w ∈ u s󰀂Γ τv }
∪ { τw | w ∈ σu s󰀂Γ v }, if σ, τ ∕∈ Γ.

Note that for Γ = ∅ the operator s󰀂∅ coincides with the usual shuffle operator
, given by u ε = ε u = {u} and σu τv = {σw | w ∈ u τv } ∪ { τw |

w ∈ σu v }.
Example 1. In abca s󰀂{a} ada it is mandatory to synchronise the first occur-
rences of a in abca and in ada, as well as the last occurrences. In between,
there may be any word obtained by shuffling bc with d. Thus, abca s󰀂{a} ada =
{abcda, abdca, adbca}.

The following is an equivalent definition of the strongly synchronised shuffle
of two words [1],

u s󰀂Γ v = {x |(∃n ≥ 1)(∀i ∈ [1, n]) (σi ∈ Γ ∧ ui, vi ∈ (Σ \ Γ)󰂏∧
u = u1σ1 · · ·σn−1un ∧ v = v1σ1 · · ·σn−1vn∧
x ∈ (u1 v1)σ1 · · ·σn−1(un vn)) }.

Note that s󰀂Γ is commutative and associative.

Arbitrary Synchronised Shuffle w.r.t. a set Γ. Given a set of alphabet symbols
Γ ⊆ Σ, the arbitrary synchronised shuffle of two words w.r.t. Γ permits symbols
in Γ to synchronise, but does not force their synchronisation. Formally, the
arbitrary synchronised shuffle of words u and v, denoted by u a󰀂Γ v, is defined
as follows [3]:

ε a󰀂Γ v = v a󰀂Γ ε = {v},

σu a󰀂Γ τv =

󰀻
󰁁󰀿

󰁁󰀽

{σw | w ∈ u a󰀂Γ τv } ∪ { τw | w ∈ σu a󰀂Γ v }, if σ ∕= τ ∨ σ ∕∈ Γ,

{σw | w ∈ u a󰀂Γ τv } ∪ { τw | w ∈ σu a󰀂Γ v }
∪ { σw | w ∈ u a󰀂Γ v }, if σ = τ ∧ σ ∈ Γ.

Alternatively, we can define a󰀂Γ as follows [1]:

u a󰀂Γ v = {x | (∃n ≥ 1)(∀i ∈ [1, n]) (σi ∈ Γ ∧ ui, vi ∈ Σ󰂏∧
u = u1σ1 · · ·σn−1un ∧ v = v1σ1 · · ·σn−1vn∧
x ∈ (u1 v1)σ1 · · ·σn−1(un vn)) }.

Note that a󰀂Γ is commutative and associative.

6

Example 2. We have ab a󰀂{a} da = {abda, adba, adab, dab, daab, daba}.

Weak Synchronised Shuffle w.r.t. a set Γ. In the weak synchronised shuffle of
two words u and v, letters in Γ can be synchronised or optionally be interleaved
from one word, but not from the other, until the next synchronisation occurs.
Given two words u and v, the definition of u w󰀂Γ v resorts to an auxiliary oper-
ator 󰀂(Γ,∆,Λ). This operator memorises in ∆ (resp. Λ) the elements in Γ, that
have been interleaved from u (resp. v) since the last synchronisation has oc-
cured. Note that in every step during the computation of u w󰀂Γ v the operator
󰀂(Γ,∆,Λ) has the invariant ∆ ∩ Λ = ∅ ∧ ∆ ∪ Λ ⊆ Γ. Then,

u w󰀂Γ v = u 󰀂(Γ,∅,∅)v,

ε 󰀂(Γ,∆,Λ)v =

󰀫
{v}, if Σv ∩∆ = ∅,
∅, otherwise.

u 󰀂(Γ,∆,Λ)ε =

󰀫
{u}, if Σu ∩ Λ = ∅,
∅, otherwise,

σu 󰀂(Γ,∆,Λ)τv =

󰀻
󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰀽

{σw | w ∈ u 󰀂(Γ,∆,Λ)τv } ∪ { τw | w ∈ σu 󰀂(Γ,∆,Λ)v }, if σ, τ ∕∈ Γ,

{σw | w ∈ u 󰀂(Γ,∅,∅)v }
∪ {σw | w ∈ u 󰀂(Γ,∆∪{σ},Λ)τv ∧ σ ∕∈ Λ }
∪ { τw | w ∈ σu 󰀂(Γ,∆,Λ∪{τ})v ∧ τ ∕∈ ∆ }, if σ = τ ∈ Γ,

{σw | w ∈ u 󰀂(Γ,∆∪{σ},Λ)τv ∧ σ ∕∈ Λ }
∪ { τw | w ∈ σu 󰀂(Γ,∆,Λ∪{τ})v ∧ τ ∕∈ ∆ }, if σ ∕= τ,σ, τ ∈ Γ,

{σw | w ∈ u 󰀂(Γ,∆∪{σ},Λ)τv ∧ σ ∕∈ Λ }
∪ { τw | w ∈ σu 󰀂(Γ,∆,Λ)v }, if σ ∈ Γ, τ ∕∈ Γ,

{σw | w ∈ u 󰀂(Γ,∆,Λ)τv }
∪ { τw | w ∈ σu 󰀂(Γ,∆,Λ∪{τ})v ∧ τ ∕∈ ∆ }, if σ ∕∈ Γ, τ ∈ Γ.

The operator 󰀂(Γ,∆,Λ) as defined above coincides with the general synchronous
shuffling [3] for the weak synchronised shuffle. However, in [3] the authors
consider an extension of this operator, where ∆ and Λ can be any subsets of
Σ. For instance, for ∆ = Λ = Σ the strong synchronised shuffle operator is
obtained. In this paper, we choose to consider the three different forms of
shuffling separately, as we feel that in this way functions for the strong and
arbitrary synchronised shuffle are easier to understand and compute.

For ∆,Λ ⊆ Γ ⊆ Σ, we have the following alternative definition of u 󰀂(Γ,∆,Λ)v,
inspired by the one for u w󰀂Γ v in [1]:

u 󰀂(Γ,∆,Λ)v ={x | (∃n ≥ 1)(∀i ∈ [1, n]) (σi ∈ Γ ∧ ui, vi ∈ Σ󰂏∧
Σui ∩ Σvi ∩ Γ = Σu1 ∩ Λ = Σv1 ∩∆ = ∅ ∧
u = u1σ1 · · ·σn−1un ∧ v = v1σ1 · · ·σn−1vn ∧
x ∈ (u1 v1)σ1 · · ·σn−1(un vn)) }.

7

Note that w󰀂Γ is commutative but not associative.

Example 3. We have abca w󰀂{a,b} ada = {abcda, abdca, adbca, abcada, adabca}.

Given two languages L1, L2 ⊆ Σ󰂏 and ◦ ∈ { s󰀂Γ , a󰀂Γ , w󰀂Γ } one has, as usual,
L1 ◦ L2 =

󰁖
u∈L1,v∈L2

u ◦ v. If L1 and L2 are regular, L1 ◦ L2 is regular.1 In
the same way, we have for the auxiliary operator 󰀂(Γ,∆,Λ) that L1 󰀂(Γ,∆,Λ)L2 =󰁖

u∈L1,v∈L2
u 󰀂(Γ,∆,Λ)v.

2.2. Regular Expressions with Shuffle Operators

One can extend regular expressions to include the different shuffle operators
defined above. The set of these extended regular expressions is denoted by
RE(󰀂), and contains ∅ plus all terms generated by the grammar

α → ε | σ | (α+ α) | (α · α) | (α󰂏) | (α α) | (α s󰀂Γ α) | (α a󰀂Γ α) | (α w󰀂Γ α),

where σ ∈ Σ, Γ ⊆ Σ. The language of an expression α ∈ RE(󰀂) is defined as
usual, where for ◦ ∈ { , s󰀂Γ , a󰀂Γ , w󰀂Γ } one has L(α ◦ β) = L(α) ◦ L(β).

3. A Location Based Position Automaton

In this section we define a new construction for a position automaton for
extended regular expressions, which is based on the sets First, Last, and Follow.
In order to define those sets for expressions containing the standard shuffle oper-
ator , Broda et al. [5, 6] considered more complex structures, called locations.
Locations were defined in such a way that, given an expression with nested shuf-
fles, it allows to specify how far a word has advanced in each of the components
(shuffles) of this expression. In this paper, we define locations for expressions
in RE(󰀂). For operators s󰀂Γ and a󰀂Γ locations are defined as for . The
definition of locations for expressions of the form α w󰀂Γ β will have additional
parameters corresponding to the sets ∆ and Λ above. Additionally, we annotate
each location p with a Boolean b, whose value is true iff the location belongs
to Last. Given α ∈ RE(󰀂), the set of annotated locations Loc(α) = Loc(α) is

1Sulzmann and Thiermann [3] consider yet another concurrency operator, the synchronised
composition of two languages L1 and L2, L1|||L2. This operator can be defined using the
general synchronous shuffling parameterised with ∆ = Λ = Σ and Γ = ΣL1

∩ ΣL2
, where

ΣL is the set of alphabetic symbols that occur in L. However, as it is not straightforward to
compute ΣL(α) for an expression α that contains synchronised shuffle operators, we do not
consider the general synchronised shuffle operator in this paper.

8

defined inductively as follows:

Loc(ε) = ∅, Loc(σi) = {i : true}, Loc(α󰂏) = Loc(α),

Loc(α1 + α2) = Loc(α1) ∪ Loc(α2),

Loc(α1α2) =

󰀫
Loc(α1) ∪ Loc(α2), if ε(α2) = true,

{ p : false | p : b ∈ Loc(α1) } ∪ Loc(α2), otherwise,

Loc(α1 α2) = Loc(α1
s󰀂Γ α2) = Loc(α1

a󰀂Γ α2)

= { (p, 0) : b ∧ ε(α2) | p : b ∈ Loc(α1) }
∪ { (0, q) : b ∧ ε(α1) | q : b ∈ Loc(α2) }
∪ { (p, q) : b1 ∧ b2 | p : b1 ∈ Loc(α1) ∧ q : b2 ∈ Loc(α2) },

Loc(α1
w󰀂Γ α2) = { (p∆, 0∅) : b ∧ ε(α2) | p : b ∈ Loc(α1) ∧∆ ⊆ Γ }

∪ { (0∅, qΛ) : b ∧ ε(α1) | q : b ∈ Loc(α2) ∧ Λ ⊆ Γ } (1)

∪ { (p∆, qΛ) : b1 ∧ b2 | p : b1 ∈ Loc(α1) ∧ q : b2 ∈ Loc(α2),

∧ ∆,Λ ⊆ Γ ∧ ∆ ∩ Λ = ∅ }.

It follows from this definition, that p : b, p : b′ ∈ Loc(α) implies b = b′. As
before, we will omit the boolean of an annotated location whenever convenient.
Note that each location p in α is either a position i ∈ Pos(α), or of the form
(0, q), (p, 0), (p, q), (0∅, qΛ), (p∆, 0∅), or (p∆, qΛ), where p, q are also locations
in α and ∆,Λ ⊆ Σ. In the remaining of the paper, we frequently use pσ and
p∆,σ as abbreviations for p{σ} and for p∆∪{σ}, respectively.

The set of positions of a location p, lp(p), is defined inductively by

lp(i) = {i},
lp((0∅, pΛ)) = lp((0, p)) = lp((p∆, 0∅)) = lp((p, 0)) = lp(p),

lp((p∆, qΛ)) = lp((p, q)) = lp(p) ∪ lp(q).

Example 4. Consider α = α1
w󰀂{b} α2, where α1 = (ab)󰂏 s󰀂{a} (ca)󰂏 and α2 =

(bc)󰂏. The marked expression is α = ((a1b2)
󰂏 s󰀂{a} (c3a4)󰂏) w󰀂{b} (b5c6)󰂏. The

sets of (annotated) locations of α1, α2, and α are given below.

Loc(α1) = { p : false | p ∈ {(0, 3), (1, 0), (1, 3), (2, 3), (1, 4)} }
∪ { p : true | p ∈ {(0, 4), (2, 0), (2, 4)} },

Loc(α2) = {5 : false, 6 : true},
Loc(α) = { (pS , 0∅) : b | p : b ∈ Loc(α1), S ⊆ {b} }

∪ { (0∅, pS) : b | p : b ∈ Loc(α2), S ⊆ {b} }
∪ { (pS1

1 , pS2
2) : b1 ∧ b2 | pi : bi ∈ Loc(αi), Si ⊆ {b},

S1 ∩ S2 = ∅, i = 1, 2 }.

We have lp(((2, 3)b, 0∅)) = {2, 3}, and lp(((2, 3)∅, 5b)) = {2, 3, 5}. For instance,
the location ((1, 4)∅, 6b) corresponds to words for which the last letters read in
the subexpressions (ab)󰂏, (ca)󰂏 and (bc)󰂏, are respectively a, a, and c.

9

As an example, consider w = cabcbcbc ∈ cab w󰀂{b} bcbcbc ⊆ L(α). When pro-

cessing w in a position automaton, the word can reach the final state ((2, 4)∅, 6b),
passing successively through states labelled respectively with locations
0 →c ((0, 3)∅, 0∅) →a ((1, 4)∅, 0∅) →b ((1, 4)∅, 5b) →c ((1, 4)∅, 6b) →b ((2, 4)∅, 5∅)
→c ((2, 4)∅, 6∅) →b ((2, 4)∅, 5b) →c ((2, 4)∅, 6b). This path corresponds to a syn-
chronisation of the b in cab with the second b in bcbcbc. Synchronisations with
either the first or third b in bcbcbc lead to different paths.

Given α ∈ RE(󰀂), the states in the position automaton will be labelled by
the elements in Loc(α), except for the initial state labelled by 0. We now define
the set First(α) ⊆ Σ× Loc(α) for the different shuffle operators as follows:

First(α1
s󰀂Γ α2) = { (σ, (p, 0)) | σ /∈ Γ ∧ (σ, p) ∈ First(α1) }

∪ { (σ, (0, q)) | σ /∈ Γ ∧ (σ, q) ∈ First(α2) }
∪ { (σ, (p, q)) | σ ∈ Γ ∧ (σ, p) ∈ First(α1) ∧ (σ, q) ∈ First(α2) },

First(α1
a󰀂Γ α2) = { (σ, (p, 0)) | (σ, p) ∈ First(α1) }

∪ { (σ, (0, q)) | (σ, q) ∈ First(α2) }
∪ { (σ, (p, q)) | σ ∈ Γ ∧ (σ, p) ∈ First(α1), (σ, q) ∈ First(α2) },

First(α1
w󰀂Γ α2) = { (σ, (p∅, 0∅)) | σ /∈ Γ ∧ (σ, p) ∈ First(α1) }

∪ { (σ, (0∅, q∅)) | σ /∈ Γ ∧ (σ, q) ∈ First(α2) }
∪ { (σ, (p∅, q∅)) | σ ∈ Γ ∧ (σ, p) ∈ First(α1) ∧ (σ, q) ∈ First(α2) }
∪ { (σ, (p{σ}, 0∅)) | σ ∈ Γ ∧ (σ, p) ∈ First(α1) }
∪ { (σ, (0∅, q{σ})) | σ ∈ Γ ∧ (σ, q) ∈ First(α2) }.

Note that the definition of First(α1 α2) given in [5, 6] by

First(α1 α2) = { (σ, (p, 0)) | (σ, p) ∈ First(α1) } ∪ { (σ, (0, q)) | (σ, q) ∈ First(α2) },

coincides precisely with First(α1
s󰀂∅ α2).

Example 5. For α = ((ab)󰂏 s󰀂{a} (ca)󰂏) w󰀂{b} (bc)󰂏 of Example 4, one has,

First((ab)󰂏) = {(a, 1)}, First((ca)󰂏) = {(c, 3)}, First((bc)󰂏) = {(b, 5)},
First((ab)󰂏 s󰀂{a} (ca)󰂏) = {(c, (0, 3))},
First(((ab)󰂏 s󰀂{a} (ca)󰂏) w󰀂{b} (bc)󰂏) = {(c, ((0, 3)∅, 0∅)), (0∅, 5b)}.

Fact 1. For every element (σ, p) ∈ First(α), ℓ(lp(p)) = {σ}.

Lemma 1. Given α ∈ RE(󰀂), if there is some σw ∈ L(α), then there is a
location p such that (σ, p) ∈ First(α).

Proof. The proof is by induction on the structure of an expression α. For ε and
alphabet symbols the result is obvious. For union, concatenation and Kleene
star the proof is similar to the one for standard expressions.

10

Case α = α1
s󰀂Γ α2. Consider a word σw ∈ L(α1

s󰀂Γ α2). Then, there are
words u1σ1 · · ·σn−1un ∈ L(α1) and v1σ1 · · ·σn−1vn ∈ L(α2), where for i ∈ [1, n]
σi ∈ Γ and ui, vi ∈ (Σ \ Γ)󰂏, such that σw ∈ (u1 v1)σ1 · · ·σn−1(un vn).
If σ ∈ Γ, then u1 = v1 = ε and σ = σ1. Thus, σu2 · · ·σn−1un ∈ L(α1) and
σv2 · · ·σn−1vn ∈ L(α2). If follows from the induction hypothesis that there
are locations p1 and p2 such that (σ, p1) ∈ First(α1) and (σ, p2) ∈ First(α2).
Consequently, (σ, (p1, p2)) ∈ First(α1

s󰀂Γ α2). If σ /∈ Γ and u1 = σu′
1 (the case

v1 = σv′1 is analogous), then

σu′
1σ1 · · ·σn−1un ∈ L(α1),

and by the induction hypothesis there is a location p such that (σ, p) ∈ First(α1).
We conclude from the definition that (σ, (p, 0)) ∈ First(α1

s󰀂Γ α2).

Case α = α1
a󰀂Γ α2. The proof is similar to the proof for s󰀂Γ , dropping the

assumption σ ∈ Γ.

Case α = α1
w󰀂Γ α2. Consider a word σw ∈ L(α1

w󰀂Γ α2). Then, there are
words u1σ1 · · ·σn−1un ∈ L(α1) and v1σ1 · · ·σn−1vn ∈ L(α2), where for i ∈ [1, n]
σi ∈ Γ and Σui

∩ Σvi
∩ Γ = ∅, such that σw ∈ (u1 v1)σ1 · · ·σn−1(un vn).

If σ /∈ Γ and u1 = σu′
1 (the case v1 = σv′1 is analogous), then

σu′
1σ1 · · ·σn−1un ∈ L(α1),

and by the induction hypothesis there is a location p such that (σ, p) ∈ First(α1).
We conclude from the definition that (σ, (p∅, 0∅)) ∈ First(α1

w󰀂Γ α2).
If σ ∈ Γ, then either u1 = v1 = ε and σ = σ1, or u1 = σu′

1 (the case v1 = σv′1
is analogous) and σu′

1σ1 · · ·σn−1un ∈ L(α1). In latter case, we have by the
induction hypothesis that there is a location p with (σ, p) ∈ First(α1). Thus,
(σ, (p{σ}, 0∅)) ∈ First(α1

s󰀂Γ α2). In the former case, the induction hypothesis
applies to σu2 · · ·σn−1un ∈ L(α1) and σv2 · · ·σn−1vn ∈ L(α2). Thus, there
are locations p1 and p2 such that (σ, p1) ∈ First(α1) and (σ, p2) ∈ First(α2).
Consequently, (σ, (p∅1, p

∅
2)) ∈ First(α1

s󰀂Γ α2).

The set Last(α) ⊆ Loc(α) is defined by Last(α) = { p | p : true ∈ Loc(α) }.
Furthermore, let Last0(α) = Last(α)∪{0} if ε(α) = true, and Last0(α) = Last(α)
otherwise.

Example 6. For α = ((ab)󰂏 s󰀂{a} (ca)󰂏) w󰀂{b} (bc)󰂏 of Example 4 we have,

Last(α) = { (pS , 0∅) | p ∈ L2, S ⊆ {b} } ∪ { (0∅, 6S) | S ⊆ {b} }
∪ { (pS1 , 6S2) | p ∈ L2, S1, S2 ⊆ {b}, S1 ∩ S2 = ∅ },

where L2 = {(0, 4), (2, 0), (2, 4)}. Note that the only locations in Last(α) reach-
able by words of L(α) are ((2, 4)b, 0∅) and ((2, 4)∅, 6∅). This happens because
the only location reachable in Last((ab)󰂏 s󰀂{a} (ca)󰂏) is (2, 4).

11

Finally, we define Follow : RE(󰀂)× Loc0(α) → 2Σα×Loc(α), where Loc0(α) =
Loc(α) ∪ {0}. Let Follow(α, 0) = First(α), and for p1, q1 ∈ Loc0(α),

Follow(α1
s󰀂Γ α2, (p1, q1)) = { (σ, (p2, q1)) | (σ, p2) ∈ Follow(α1, p1) ∧ σ ∕∈ Γ }

∪ { (σ, (p1, q2)) | (σ, q2) ∈ Follow(α2, q1) ∧ σ ∕∈ Γ }
∪ { (σ, (p2, q2)) | (σ, p2) ∈ Follow(α1, p1)

∧ (σ, q2) ∈ Follow(α2, q1) ∧ σ ∈ Γ },
Follow(α1

a󰀂Γ α2, (p1, q1)) = { (σ, (p2, q1)) | (σ, p2) ∈ Follow(α1, p1) }
∪ { (σ, (p1, q2)) | (σ, q2) ∈ Follow(α2, q1) }
∪ { (σ, (p2, q2)) | (σ, p2) ∈ Follow(α1, p1)

∧ (σ, q2) ∈ Follow(α2, q1) ∧ σ ∈ Γ },
Follow(α1

w󰀂Γ α2, (p
∆
1 , q

Λ
1)) = { (σ, (p∆2 , qΛ1)) | (σ, p2) ∈ Follow(α1, p1) ∧ σ ∕∈ Γ }
∪ { (σ, (p∆1 , qΛ2)) | (σ, q2) ∈ Follow(α2, q1) ∧ σ ∕∈ Γ }
∪ { (σ, (p∅2, q∅2)) | (σ, p2) ∈ Follow(α1, p1)

∧ (σ, q2) ∈ Follow(α1, q1) ∧ σ ∈ Γ }
∪ { (σ, (p∆,σ

2 , qΛ1)) | (σ, p2) ∈ Follow(α1, p1) ∧ σ ∈ Γ \ Λ }
∪ { (σ, (p∆1 , q

Λ,σ
2)) | (σ, q2) ∈ Follow(α2, q1) ∧ σ ∈ Γ \∆ }.

Remark 1. If p, p′ ∈ Loc(α) and (σ, p) ∈ Follow(α, p′), then p ∕= 0.

Furthermore, given S ∈ 2Loc0(α) let Follow(α, S) =
󰁖

p∈S Follow(α, p). Some-
times we use the abbreviation Follow(α′) = { (p,σ, q) | (σ, q) ∈ Follow(α′, p) }.

Example 7. For α = ((ab)󰂏 s󰀂{a} (ca)󰂏) w󰀂{b} (bc)󰂏 of Example 4 and consider-
ing the set First(α) given in Example 5, part of the Follow sets are given below.

Follow((ab)󰂏) = {(1, b, 2), (2, a, 1)},
Follow((ca)󰂏) = {(3, a, 4), (4, c, 3)},
Follow((bc)󰂏) = {(5, c, 6), (6, b, 5)},

Follow((ab)󰂏 s󰀂{a} (ca)󰂏) = {((0, 3), a, (1, 4)), ((1, 4), b, (2, 4)), ((1, 4), c, (1, 3)),
((1, 3), b, (2, 3)), ((2, 3), a, (1, 4)), ((2, 4), c, (2, 3))},

Follow(α, ((0, 3)∅, 0∅)) = {(a, ((1, 4)∅, 0∅)), (b, ((0, 3)∅, 5b))},
Follow(α, (0∅, 5b)) = {(c, (0∅, 6b)), (c, ((0, 3)∅, 5b))},

Follow(α, ((1, 4)∅, 0∅)) = {(b, ((2, 4)b, 0∅)), (b, ((1, 4)∅, 5b)), (b, ((2, 4)∅, 5∅)),
(c, ((1, 3)∅, 0∅))},

Follow(α, ((0, 3)∅, 5b)) = {(a, ((1, 4)∅, 5b)), (c, ((0, 3)∅, 6b))},
Follow(α, (0∅, 6b)) = {(b, (0∅, 5b)), (c, ((0, 3)∅, 6b))},

12

Follow(α, ((2, 4)∅, 5∅)) = {(c, ((2, 3)∅, 5∅)), (c, ((2, 4)∅, 6∅))},
Follow(α, ((1, 3)∅, 0∅)) = {(b, ((2, 3)b, 0∅)), (b, ((1, 3)∅, 5b)), (b, ((2, 3)∅, 5∅))},
Follow(α, ((2, 4)b, 0∅)) = {(c, ((2, 3)b, 0∅))},
Follow(α, ((1, 4)∅, 5b)) = {(c, ((1, 3)∅, 5b)), (c, ((1, 4)∅, 6b))},

...

For a set S ⊆ Σα × Loc(α) and σ ∈ Σα, let Select(S,σ) = { p | (σ, p) ∈ S }.
The position automaton for α ∈ RE(󰀂) is

APOS(α) = 〈Loc0(α),Σ, δPOS, 0, Last0(α)〉,

where δPOS(p,σ) = Select(Follow(α, p),σ), for p ∈ Loc0(α),σ ∈ Σ. The cor-
rectness of this construction follows from the following two lemmas, which are
proved in the appendix.

Lemma 2. Given α ∈ RE(󰀂), if x = σ1 · · ·σn ∈ L(α) (n ≥ 0), then there is a
sequence p0, p1, . . . , pn ∈ Loc0(α), such that p0 = 0 and

(σi, pi) ∈ Follow(α, pi−1) (1 ≤ i ≤ n) and pn ∈ Last0(α).

Lemma 3. Given α ∈ RE(󰀂), if there are r0 = 0, r1, . . . , rn ∈ Loc0(α) and
σ1, . . . ,σn ∈ Σ (n ≥ 0) such that (1) (σi, ri) ∈ Follow(α, ri−1), 1 ≤ i ≤ n, and
(2) rn ∈ Last0(α), then σ1 · · ·σn ∈ L(α).

As a consequence, we have the following proposition stating the correctness
of APOS.

Proposition 4. L(APOS(α)) = L(α).

Example 8. Consider α = (ab)󰂏 s󰀂{a} (ca)󰂏 with α = (a1b2)
󰂏 s󰀂{a} (c3a4)󰂏. The

sets First(α) and Follow(α) have been computed in Example 5 and Example 7,
respectively. Note, that the only state attainable by a transition by letter a, is
(1, 4) corresponding to the obligatory synchronisation of a1 and a4. The position
automaton APOS(α) is

0 (0, 3) (1, 4) (2, 4)

(1, 3)(2, 3)

c a b

c

c

b

a

13

4. APD as a quotient of APOS

In this section, we relate the partial derivative automaton, defined by Sulz-
mann and Thiemann [3], and the position automaton in Section 3. For standard
regular expressions extended with the shuffle operator , the former has been
shown to be a quotient of the latter. Here, we extend this result to the synchro-
nised shuffle operators. Sulzmann and Thiemann [3] defined the set of partial
derivatives of expressions with the general shuffle operator w.r.t. an alphabet
symbol σ ∈ Σ. However, since the parameters of the general operator change
in each step of derivation, it is not straightforward to express the set of partial
derivatives w.r.t. a word w in terms of the partial derivatives w.r.t. subwords
of w. In Lemmas 5 and 7 we obtain explicit expressions for those sets for ex-
pressions containing synchronised shuffle operators. These are crucial to show
that APD(α) is a quotient of APOS(α), cf. Proposition 12. The proof of Propo-
sition 12 follows the one in [5, 6]. To each location p ∈ Loc(α) we associate
a unique partial derivative of α. This expression is denoted by c(α, p) and
called the c-continuation of p in α. Then, the partial derivative automaton
APD(α) is obtained by merging in APOS(α) states (locations) p and q, such
that c(α, p) = c(α, q). During the computation of the set of partial derivatives
of an expression of the form α1

w󰀂Γ α2 w.r.t. a word w ∈ Σ󰂏, one has to consider
all words ui ∈ L(αi), i = 1, 2, such that w ∈ u1

w󰀂Γ u2. At each step of the
derivation, it is necessary to remember which symbols in Γ have been read solely
from u1 and also from u2 since the last synchronisation happened. To this end,
we consider expressions with the operator 󰀂(Γ,∆,Λ), where this information is
respectively stored in two additional parameters ∆ and Λ, with ∆,Λ ⊆ Γ ⊆ Σ.
We denote the set of regular expressions with shuffle operators , s󰀂Γ , a󰀂Γ ,
and 󰀂(Γ,∆,Λ) by REgen(󰀂). In REgen(󰀂) the natural counterpart of α1

w󰀂Γ α2 is
α1 󰀂(Γ,∅,∅)α2. As such, we will from now on regard the set of expressions RE(󰀂)
as a subset of REgen(󰀂), and use w󰀂Γ and 󰀂(Γ,∅,∅) interchangeably in REgen(󰀂).

Since we don’t consider the general shuffle operator [3], we define ∂σ(α),
for expressions containing the operators s󰀂Γ , a󰀂Γ , and 󰀂(Γ,∆,Λ) separately as
follows:

∂σ(∅) = ∂σ(ε) = ∅, ∂σ(σ
′) =

󰀫
{ε} if σ = σ′,

∅ otherwise,
∂σ(α

󰂏) = ∂σ(α)α
󰂏,

∂σ(α+ β) = ∂σ(α) ∪ ∂σ(β), ∂σ(αβ) = ∂σ(α)β ∪ ε(α)∂σ(β),

∂σ(α
s󰀂Γ β) =

󰀫
∂σ(α)

s󰀂Γ ∂σ(β), if σ ∈ Γ,

∂σ(α)
s󰀂Γ {β} ∪ {α} s󰀂Γ ∂σ(β), otherwise,

∂σ(α
a󰀂Γ β) = (σ ∈ Γ)∂σ(α)

a󰀂Γ ∂σ(β) ∪ ∂σ(α)
a󰀂Γ {β} ∪ {α} a󰀂Γ ∂σ(β),

∂σ(α 󰀂(Γ,∆,Λ)β) =

󰀻
󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰀽

∂σ(α) 󰀂(Γ,∆,Λ){β} ∪ {α} 󰀂(Γ,∆,Λ)∂σ(β), if σ /∈ Γ,

∂σ(α) 󰀂(Γ,∅,∅)∂σ(β)
∪ (σ /∈ Λ)∂σ(α) 󰀂(Γ,∆∪{σ},Λ){β}
∪ (σ /∈ ∆){α} 󰀂(Γ,∆,Λ∪{σ})∂σ(β), otherwise,

(2)

14

where, for any S, T ⊆ REgen(󰀂) \ {∅} and ◦ ∈ { s󰀂Γ , a󰀂Γ , 󰀂(Γ,∆,Λ)}, we define
S ◦ T = {α ◦ β | α ∈ S ∧ β ∈ T }, and for α′ ∕= ε, Sα′ = {αα′ | α ∈ S ∧ α ∕=
ε } ∪ (ε ∈ S){α′}. Moreover, bS = S if condition b is true, and bS = ∅
otherwise. As usual, the set of partial derivatives of α ∈ REgen(󰀂) w.r.t. a word
w ∈ Σ󰂏 is inductively defined by ∂ε(α) = {α} and ∂σw(α) = ∂w(∂σ(α)), where,
given a set S ⊆ REgen(󰀂), ∂σ(S) =

󰁖
α∈S ∂σ(α). Moreover, L(∂w(α)) = {w1 |

ww1 ∈ L(α) }. Let ∂(α) =
󰁖

w∈Σ󰂏 ∂w(α), and ∂+(α) =
󰁖

w∈Σ+ ∂w(α). The
partial derivative automaton of α ∈ REgen(󰀂) is

APD(α) = 〈∂(α),Σ, {α}, δPD, FPD〉,

with FPD = {β ∈ ∂(α) | ε(β) = ε } and δPD(β,σ) = ∂σ(β), for β ∈ ∂(α), σ ∈ Σ.

Example 9. The partial derivative automaton for α = (ab)󰂏 s󰀂{a} (ca)󰂏, where
α1 = (ab)󰂏 and α2 = (ca)󰂏, from Example 8, is depicted below.

α α1
s󰀂{a} aα2 bα1

s󰀂{a} α2 bα1
s󰀂{a} aα2

c a

b

c

b

Note that this automaton can be obtained from the position automaton APOS(α),
represented in Example 8, by merging the states (labelled with) 0 and (2, 4), as
well as the states (0, 3) and (2, 3).

The following lemmas give explicit expressions for partial derivatives of α ∈
REgen(󰀂) w.r.t. a word. For the 󰀂(Γ,∆,Λ) operator the situation differs slightly
from the other two operators, so it is dealt with separately. Given Γ ⊆ Σ and
w ∈ Σ󰂏, we compute the set of pairs of words u and v, such that w ∈ u ◦ v,
denoted by p(◦, w), for ◦ ∈ { s󰀂Γ , a󰀂Γ }. The definition of p for ◦ = s󰀂Γ is as
follows:

p(s󰀂Γ , ε) = {(ε, ε)},
p(s󰀂Γ ,σw) = (σ ∈ Γ){ (σu,σv) | (u, v) ∈ p(s󰀂Γ , w) }

∪ (σ ∕∈ Γ){ (σu, v) | (u, v) ∈ p(s󰀂Γ , w) }
∪ (σ ∕∈ Γ){ (u,σv) | (u, v) ∈ p(s󰀂Γ , w) }.

For ◦ = a󰀂Γ we have the following:

p(a󰀂Γ , ε) = {(ε, ε)},
p(a󰀂Γ ,σw) = (σ ∈ Γ){ (σu,σv) | (u, v) ∈ p(a󰀂Γ , w) }

∪ { (σu, v) | (u, v) ∈ p(a󰀂Γ , w) }
∪ { (u,σv) | (u, v) ∈ p(a󰀂Γ , w) }.

15

Lemma 5. For α,β ∈ REgen(󰀂), w ∈ Σ+, and ◦ ∈ { s󰀂Γ , a󰀂Γ }, the following
equality holds

∂w(α ◦ β) =
󰁞

(u,v)∈p(◦,w)

∂u(α) ◦ ∂v(β).

Proof. By induction on the length of w. Let w = σ ∈ Γ. If ◦ is s󰀂Γ , then
p(s󰀂Γ ,σ) = {(σ,σ)}, and by definition, ∂σ(α

s󰀂Γ β) = ∂σ(α)
s󰀂Γ ∂σ(β). If ◦

is a󰀂Γ , then p(a󰀂Γ ,σ) = {(σ,σ), (σ, ε), (ε,σ)}. By definition, ∂σ(α
a󰀂Γ β) =

∂σ(α)
a󰀂Γ ∂σ(β) ∪ ∂σ(α)

a󰀂Γ {β} ∪ {α} a󰀂Γ ∂σ(β). Finally, if w = σ ∕∈ Γ, then
p(◦,σ) = {(σ, ε), (ε,σ)}, and by definition, ∂σ(α◦β) = ∂σ(α)◦{β}∪{α}◦∂σ(β) =
∂σ(α) ◦ ∂ε(β) ∪ ∂ε(α) ◦ ∂σ(β).

Now, consider w = σw′. We have

∂σw′(α ◦ β) = ∂w′(∂σ(α ◦ β)) =
󰁞

(u′,v′)∈p(◦,w′)
α′◦β′∈∂σ(α◦β)

∂u′(α′) ◦ ∂v′(β′)

=
󰁞

(u′,v′)∈p(◦,w′)
(α′◦β′)∈X

∂u′(α′) ◦ ∂v′(β′)

=
󰁞

(u′,v′)∈p(◦,w′)

Y =
󰁞

(u,v)∈p(◦,σw′)

∂u(α) ◦ ∂v(β),

where

• for σ ∈ Γ and ◦ = s󰀂Γ , X = ∂σ(α)
s󰀂Γ ∂σ(β) and Y = ∂σu′(α) s󰀂Γ ∂σv′(β);

• for σ ∈ Γ and ◦ = a󰀂Γ ,

X = ∂σ(α)
a󰀂Γ ∂σ(β) ∪ ∂σ(α)

a󰀂Γ {β} ∪ {α} a󰀂Γ ∂σ(β), and

Y = ∂σu′(α) a󰀂Γ ∂σv′(β) ∪ ∂σu′(α) a󰀂Γ ∂v′(β) ∪ ∂u′(α) a󰀂Γ ∂σv′(β);

• and for σ /∈ Γ,

X = ∂σ(α)◦{β}∪{α}◦∂σ(β) and Y = ∂σu′(α)◦∂v′(β)∪∂u′(α)◦∂σv′(β).

For w󰀂Γ we also need to consider the generalised operator 󰀂(Γ,∆,Λ), where
∆,Λ ⊆ Γ ⊆ Σ. Given w ∈ Σ󰂏, we want to compute the set of words u and v,
such that w ∈ u 󰀂(Γ,∆,Λ)v. To this end we define the function p as follows:

p(󰀂(Γ,∆,Λ), ε) = {(∆,Λ, ε, ε)}
p(󰀂(Γ,∆,Λ),σw) = (σ ∈ Γ){ (∆u,Λv,σu,σv) | (∆u,Λv, u, v) ∈ p(󰀂(Γ,∅,∅), w) }

∪ (σ ∈ Γ \ Λ){ (∆u,Λv,σu, v) | (∆u,Λv, u, v) ∈ p(󰀂(Γ,∆∪σ,Λ), w) }
∪ (σ ∈ Γ \∆){ (∆u,Λv, u,σv) | (∆u,Λv, u, v) ∈ p(󰀂(Γ,∆,Λ∪σ), w) }
∪ (σ ∕∈ Γ){ (∆u,Λv,σu, v) | (∆u,Λv, u, v) ∈ p(󰀂(Γ,∆,Λ), w) }
∪ (σ ∕∈ Γ){ (∆u,Λv, u,σv) | (∆u,Λv, u, v) ∈ p(󰀂(Γ,∆,Λ), w) }.

16

Lemma 6. For w ∈ Σ󰂏, ∆,Λ ⊆ Γ such that ∆ ∩ Λ = ∅, we have

(∆u,Λv, u, v) ∈ p(󰀂(Γ,∆,Λ), w) iff w ∈ u 󰀂(Γ,∆,Λ)v.

Example 10. For Γ = Σ = {a} and w = aaa, we have

p(󰀂(Γ,∅,∅), w) = {(∅, ∅, aaa, aaa), (∅, ∅, aaa, aa), (∅, ∅, aa, aaa),
(∅, ∅, aaa, a), (∅, ∅, a, aaa), ({a}, ∅, aaa, aa),
({a}, ∅, aaa, a), ({a}, ∅, aaa, ε), ({a}, ∅, aa, aa),
(∅, {a}, aa, aaa), (∅, {a}, a, aaa), (∅, {a}, ε, aaa), (∅, {a}, aa, aa)}.

Lemma 7. For α,β ∈ REgen(󰀂) and w ∈ Σ+, the following equality holds

∂w(α 󰀂(Γ,∆,Λ)β) =
󰁞

(∆u,Λv,u,v)∈p(󰀂(Γ,∆,Λ),w)

∂u(α) 󰀂(Γ,∆u,Λv)∂v(β).

Proof. By induction on the length of w. For w = σ ∕∈ Γ, by definition,

∂σ(α 󰀂(Γ,∆,Λ)β) = ∂σ(α) 󰀂(Γ,∆,Λ){β} ∪ {α} 󰀂(Γ,∆,Λ)∂σ(β).

Furthermore,
p(󰀂(Γ,∆,Λ),σ) = {(∆,Λ,σ, ε), (∆,Λ, ε,σ)}.

Thus, the result holds. For w = σ ∈ Γ, we only consider the case σ ∈ ∆
and σ ∕∈ Λ. The remaining cases are analogous. In this case, p(󰀂(Γ,∆,Λ),σ) =
{(∆,Λ,σ,σ), (∆ ∪ {σ},Λ,σ, ε)}. Also, by definition we have ∂σ(α 󰀂(Γ,∆,Λ)β) =
∂σ(α) 󰀂(Γ,∅,∅)∂σ(β) ∪ ∂σ(α) 󰀂(Γ,∆∪{σ},Λ){β}.

Now, consider the word σw, with |w| ≥ 1 and σ ∕∈ Γ. One has

∂σw(α 󰀂(Γ,∆,Λ)β) = ∂w(∂σ(α 󰀂(Γ,∆,Λ)β))

= ∂w
󰀃
∂σ(α) 󰀂(Γ,∆,Λ){β} ∪ {α} 󰀂(Γ,∆,Λ)∂σ(β)

󰀄

=
󰁞

(∆u,Λv,u,v)∈p(󰀂(Γ,∆,Λ),w)

∂u(∂σ(α)) 󰀂(Γ,∆u,Λv)∂v(β)

󰁖 󰁞

(∆u,Λv,u,v)∈p(󰀂(Γ,∆,Λ),w)

∂u(α) 󰀂(Γ,∆u,Λv)∂v(∂σ(β))

=
󰁞

(∆u,Λv,σu,v)∈p(󰀂(Γ,∆,Λ),σw)

∂σu(α) 󰀂(Γ,∆u,Λv)∂v(β)

󰁖 󰁞

(∆u,Λv,u,σv)∈p(󰀂(Γ,∆,Λ),σw)

∂u(α) 󰀂(Γ,∆u,Λv)∂σv(β)

=
󰁞

(∆u′ ,Λv′ ,u′,v′)∈p(󰀂(Γ,∆,Λ),σw)

∂u′(α) 󰀂(Γ,∆u′ ,Λv′)∂v′(β).

Finally, consider σw, with |w| ≥ 1 and σ ∈ Γ. Again, we show the result for the

17

case σ ∈ ∆ and σ ∕∈ Λ, since the remaining cases are shown analogously. Then,

∂σw(α 󰀂(Γ,∆,Λ)β) = ∂w(∂σ(α 󰀂(Γ,∆,Λ)β))

= ∂w
󰀃
∂σ(α) 󰀂(Γ,∅,∅)∂σ(β) ∪ ∂σ(α) 󰀂(Γ,∆∪{σ},Λ){β}

󰀄

=
󰁞

(∆u,Λv,u,v)∈p(󰀂(Γ,∅,∅),w)

∂u(∂σ(α)) 󰀂(Γ,∆u,Λv)∂v(∂σ(β))

󰁖 󰁞

(∆u,Λv,u,v)∈p(󰀂(Γ,∆∪{σ},Λ),w)

∂u(∂σ(α)) 󰀂(Γ,∆u,Λv)∂v(β)

=
󰁞

(∆u,Λv,σu,σv)∈p(󰀂(Γ,∅,∅),σw)

∂σu(α) 󰀂(Γ,∆u,Λv)∂σv(β)

󰁖 󰁞

(∆u,Λv,σu,v)∈p(󰀂(Γ,∆∪{σ},Λ),σw)

∂σu(α) 󰀂(Γ,∆u,Λv)∂v(β)

=
󰁞

(∆u′ ,Λv′ ,u′,v′)∈p(󰀂(Γ,∆,Λ),σw)

∂u′(α) 󰀂(Γ,∆u′ ,Λv′)∂v′(β).

Following [10], Broda et al. [5, 6] showed for regular expressions with the
shuffle operator , given a location p ∈ Loc(α), that there exists a unique
expression c(α, p), called the c-continuation of p in α, such that for all wσi ∈
Σ+

α with i ∈ lp(p), either ∂wσi
(α) = ∅, or ∂wσi

(α) = {c(α, p)}. Whenever
synchronisation is present, this result doesn’t hold anymore, since differently
marked symbols σi and σj , with σi = σj , are synchronised. However, one can
still extend the notion of c-continuation to expressions with synchronised shuffle
operators, such that the set of c-continuations relates to the set ∂+(α). Let
c(α, 0) = α. For α ∈ RE(󰀂), the c-continuationc(α, p) of a location p ∈ Loc(α)
in α is defined as follows:

c(σi, i) = ε, c(α󰂏, p) = c(α, p)α󰂏,

c(α1 + α2, p) =

󰀫
c(α1, p), if p ∈ Loc(α1),

c(α2, p), if p ∈ Loc(α2),

c(α1α2, p) =

󰀫
c(α1, p)α2, if p ∈ Loc(α1),

c(α2, p), if p ∈ Loc(α2),

c(α1
s󰀂Γ α2, (p1, p2)) = c(α1, p1)

s󰀂Γ c(α2, p2),

c(α1
a󰀂Γ α2, (p1, p2)) = c(α1, p1)

a󰀂Γ c(α2, p2),

c(α1
w󰀂Γ α2, (p

∆
1 , p

Λ
2)) = c(α1, p1) 󰀂(Γ,∆,Λ)c(α2, p2).

Example 11. Consider α = (ab)󰂏 s󰀂{a} (ca)󰂏 with α = (a1b2)
󰂏 s󰀂{a} (c3a4)󰂏

from Example 8. For p ∈ Loc0(α), we have c(α, 0) = c(α, (2, 4)) = α, c(α, (0, 3)) =
c(α, (2, 3)) = (a1b2)

󰂏 s󰀂{a} a4(c3a4)󰂏, c(α, (1, 3)) = b2(a1b2)
󰂏 s󰀂{a} a4(c3a4)󰂏, and

c(α, (1, 4)) = b2(a1b2)
󰂏 s󰀂{a} (c3a4)󰂏.

18

We now relate the set of c-continuations with ∂+(α) and, furthermore, char-
acterise the ones that correspond to final states. For readability, we denote
c(α, p) by d(α, p), for any location p ∈ Loc0(α).

Lemma 8. For α ∈ RE(󰀂), ∂+(α) ⊆ { d(α, p) | p ∈ Loc(α) }.

Proof. We show by structural induction on α that for every w ∈ Σ+, if β ∈
∂w(α), then there is some p ∈ Loc(α), such that β = d(α, p). We only consider
the cases s󰀂Γ , a󰀂Γ , and w󰀂Γ since for the remaining operators the result follows
from the one for marked expressions in [5, 6, Lemma 8].

Let α = α1
s󰀂Γ α2, w ∈ Σ+, and β ∈ ∂w(α). By Lemma 5, there are

words u, v, such that w ∈ u s󰀂Γ v and β = β1
s󰀂Γ β2 ∈ ∂u(α1)

s󰀂Γ ∂v(α2),
i.e., β1 ∈ ∂u(α1) and β2 ∈ ∂v(α2). By induction, there exist pi ∈ Loc(αi),
for i = 1, 2, such that βi = d(αi, pi). Furthermore, (p1, p2) ∈ Loc(α) and
d(α1

s󰀂Γ α2, (p1, p2)) = d(α1, p1)
s󰀂Γ d(α2, p2) = β1

s󰀂Γ β2 = β. The proof for
the operator a󰀂Γ is identical, due to Lemma 5 and because continuations for
operators s󰀂Γ and a󰀂Γ are defined in the same way.

Now, consider α = α1
w󰀂Γ α2 = α1 󰀂(Γ,∅,∅)α2. Let w ∈ Σ+ and β ∈ ∂w(α).

By Lemma 7, there is a tuple (∆u,Λv, u, v) ∈ p(󰀂(Γ,∅,∅), w) such that β =
β1 󰀂(Γ,∆u,Λv)β2, where β1 ∈ ∂u(α1) and β2 ∈ ∂v(α2). By induction, there exist

pi ∈ Loc(αi), for i = 1, 2, such that βi = d(αi, pi). Furthermore, (p∆u
1 , pΛv

2) ∈
Loc(α) and

d(α, (p∆u
1 , p∆v

2)) = d(α1, p1) 󰀂(Γ,∆u,Λv)d(α2, p2) = β.

Lemma 9. For α ∈ RE(󰀂) and p ∈ Loc(α), one has

ε(d(α, p)) = ε ⇐⇒ p ∈ Last(α).

Proof. By structural induction on α.

The next proposition relates derivatives of d(α, p) with Follow(α, p). The
proof is in the appendix.

Proposition 10. For α ∈ RE(󰀂), p ∈ Loc0(α), and σ ∈ Σα, one has

∂σ(d(α, p)) = { d(α, q) | (σ, q) ∈ Follow(α, p) }.

Consider the equivalence relation ≡c⊆ Loc0(α)× Loc0(α) defined by p ≡c q
iff d(α, p) = d(α, q).

Lemma 11. The relation ≡c is right-invariant w.r.t. APOS(α).

Proof. Consider p, q ∈ Loc0(α) such that p ≡c q, i.e., d(α, p) = d(α, q). By
Lemma 9, we have p ∈ Last(α) if and only if q ∈ Last(α). Let (σ, p′) ∈
Follow(α, p) and consider β = d(α, p′). By Proposition 10 and by p ≡c q,
we have β ∈ ∂σ(d(α, p)) = ∂σ(d(α, q)). Again by Proposition 10, there exists
q′ ∈ Loc0(α) such that β = d(α, q′), i.e. p′ ≡c q

′, and (σ, q′) ∈ Follow(α, q).

19

From the above, we have the following result for α ∈ RE(󰀂).

Proposition 12. APOS(α)/≡c ≃ APD(α).

Proof. We show that the function ϕc : Loc0(α)/≡c −→ ∂+(α), defined by
ϕc([p]) = d(α, p), is an isomorphism. Injectivity follows from Lemma 11 and
surjectivity from Lemma 8. For the initial state we have ϕc([0]) = d(α, 0) = α.
Furthermore, by Lemma 9, [p] is a final state in APOS(α)/≡c if and only if
ϕc([p]) is a final state in APD(α). Finally,

ϕc(δPOS󰃭≡c
([p],σ)) = ϕc({ [q] | (σ, q) ∈ Follow(α, p) })

= { d(α, q) | (σ, q) ∈ Follow(α, p) }
= ∂σ(d(α, p)) = δPD(ϕc([p]),σ).

Example 12. It follows from the c-continuations computed for expression α =
(ab)󰂏 s󰀂Γ (bc)󰂏 in Example 11 that 0 ≡c (2, 4) and (0, 3) ≡c (2, 3). Thus, the
partial derivative automaton in Example 9 can be obtained by merging those
states of APOS(α).

5. Conclusions

The notion of location introduced in [5, 6] provides a suitable framework for
the definition of a position automaton for several synchronised shuffle operators.
For future work, we will study the average behaviour of synchronised shuffle
expressions, and compare the results with those for regular expressions with
(standard) shuffle and intersection [11, 12].

Acknowlegdments

We thank the anonymous reviewers for their comments that helped to im-
prove previous versions of this paper.

References

[1] M. H. ter Beek, C. Mart́ın-Vide, V. Mitrana, Synchronized shuffles, Theo-
ret. Comput. Sci. (341) (2005) 263–275. doi:10.1016/j.tcs.2005.04.007.

[2] M. Sulzmann, P. Thiemann, Derivatives for regular shuffle expressions, in:
A. Dediu, E. Formenti, C. Mart́ın-Vide, B. Truthe (Eds.), 9th LATA, Vol.
8977 of LNCS, Springer, 2015, pp. 275–286. doi:10.1007/978-3-319-15579-1.

[3] M. Sulzmann, P. Thiemann, Derivatives and partial derivatives for reg-
ular shuffle expressions, J. Comput. Syst. Sci. 104 (2019) 323–341.
doi:10.1016/j.jcss.2016.11.010.

20

[4] V. M. Antimirov, Partial derivatives of regular expressions and finite au-
tomaton constructions, Theoret. Comput. Sci. 155 (2) (1996) 291–319.
doi:10.1016/0304-3975(95)00182-4.

[5] S. Broda, A. Machiavelo, N. Moreira, R. Reis, Location based automata
for expressions with shuffle, in: A. Leporati, C. Mart́ın-Vide, D. Shapira,
C. Zandron (Eds.), Proc. 15th LATA 2021, Vol. 12638 of LNCS, Springer,
2021, pp. 43–54. doi:10.1007/978-3-030-68195-1 4.

[6] S. Broda, A. Machiavelo, N. Moreira, R. Reis, Location based au-
tomata for expressions with shuffle and intersection, Inf. Comput. (2022).
doi:10.1016/j.ic.2022.104917.

[7] S. Broda, M. Holzer, E. Maia, N. Moreira, R. Reis, A mesh of automata,
Inf. Comput. 265 (2019) 94–111. doi:10.1016/j.ic.2019.01.003.

[8] J. Sakarovitch, Elements of Automata Theory, Cambridge University Press,
2009. doi:10.1017/CBO9781139195218.

[9] V. M. Glushkov, The abstract theory of automata, Russ. Math. Surv. 16
(1961) 1–53.

[10] J. M. Champarnaud, D. Ziadi, Canonical derivatives, partial derivatives
and finite automaton constructions, Theoret. Comput. Sci. 289 (2002) 137–
163. doi:10.1016/S0304-3975(01)00267-5.

[11] R. Bastos, S. Broda, A. Machiavelo, N. Moreira, R. Reis, On the average
complexity of partial derivative automata for semi-extended expressions, J.
Autom. Lang. Comb. 22 (1–3) (2017) 5–28. doi:10.25596/jalc-2017-005.

[12] S. Broda, A. Machiavelo, N. Moreira, R. Reis, Automata for reg-
ular expressions with shuffle, Inf. Comput. 259 (2) (2018) 162–173.
doi:10.1016/j.ic.2017.08.013.

Some Proofs Omitted in the Main Text

For the proof of Lemma 2 we need the following notion.

Coloured words. Given σ ∈ Σ one can consider a coloured letter σc, where
c ∈ {0, 1, 2}. Coloured words are denoted by 󰁥x. We define a version of the
shuffle operator 󰁥 as follows:

σ1 · · ·σn 󰁥 ε = {σ1
1 · · ·σ1

n },
ε 󰁥 σ1 · · ·σn = {σ2

1 · · ·σ2
n },

σu 󰁥 τv = {σ1 󰁥w | 󰁥w ∈ u 󰁥 τv } ∪ { τ2 󰁥w | 󰁥w ∈ σu 󰁥 v }.

Now, consider a word x ∈ (u1 v1)τ1 · · · τn−1(un vn) for words u =
u1τ1 · · · τn−1un and v = v1τ1 · · · τn−1vn, and τ1, . . . , τn−1 ∈ Σ. Then, there is a

21

coloured word 󰁥x = 󰁦w1τ
0
1 · · · τ0n−1󰁦wn, with 󰁦wi ∈ ui 󰁥 vi and such that the word

obtained by erasing all colours in 󰁥x is x. Furthermore, the number of letters in
󰁥x, coloured with either 1 or 0 is precisely |u|, while the number of letters in 󰁥x
coloured with 0 or 2 is |v|.

Lemma 2. Given α ∈ RE(󰀂), if x = σ1 · · ·σn ∈ L(α) (n ≥ 0), then there is a
sequence p0, p1, . . . , pn ∈ Loc0(α), such that p0 = 0 and

(σi, pi) ∈ Follow(α, pi−1) (1 ≤ i ≤ n) and pn ∈ Last0(α).

Proof. We proceed by structural induction on α ∈ RE(󰀂). As in Lemma 1, we
only consider the case α = α1◦ α2, with ◦ ∈ { s󰀂Γ , a󰀂Γ , w󰀂Γ }. Let x ∈ u◦v with
u = µ1 · · ·µ|u| ∈ L(α1) and v = ν1 · · · ν|v| ∈ L(α2), such that there is a sequence
p0 = 0, . . . , p|u| ∈ Loc0(α1), with (µi, pi) ∈ Follow(α1, pi−1) (1 ≤ i ≤ |u|)
and p|u| ∈ Last0(α1), as well as a sequence q0 = 0, . . . , q|v| ∈ Loc0(α2), with
(νi, qi) ∈ Follow(α2, qi−1) (1 ≤ i ≤ |v|) and q|v| ∈ Last0(α2).

If |v| = 0, i.e., v = ε, then |u| > 0 and x = u. For ◦ ∈ { s󰀂Γ , a󰀂Γ } the
sequence 0, (p1, 0), . . . , (p|u|, 0) satisfies the result. For ◦ = w󰀂Γ the sequence is

0, (p∆1
1 , 0∅), . . . , (p

∆|u|
|u| , 0∅), where ∆i = { µj | µj ∈ Γ ∧ j ≤ i }, for 1 ≤ i ≤ |u|.

The case |u| = 0 is analogous.
Now consider |u|, |v| > 0. Then, there is a coloured word 󰁥x = σc1

1 · · ·σcn
n ,

such that the word obtained by erasing all colours in 󰁥x is x. In the following,
we define a sequence of locations r0, r1, . . . , rn ∈ Loc0(α), such that r0 = 0,
(σi, ri) ∈ Follow(α, ri−1) (1 ≤ i ≤ n), and rn ∈ Last0(α).

We consider the cases ◦ ∈ { s󰀂Γ , a󰀂Γ } and ◦ = w󰀂Γ separately. For the
former let

r1 =

󰀻
󰁁󰀿

󰁁󰀽

(p1, 0), if c1 = 1;

(p1, q1), if c1 = 0;

(0, q1), if c1 = 2,

and for i ∈ {2, . . . , n} and ri−1 = (r1,i−1, r2,i−1),

ri =

󰀻
󰁁󰀿

󰁁󰀽

(pj+1, r2,i−1), if ci = 1 and r1,i−1 = pj ;

(pj+1, qk+1), if ci = 0, r1,i−1 = pj and r2,i−1 = qk;

(r1,i−1, qk+1), if ci = 2 and r2,i−1 = qk.

First, we show that rn ∈ Last0(α). Since the number of ci’s equal to 1
or 0 equals |u|, and the number of ci’s equal to 0 or 2 equals |v|, it follows
from the definition of the sequence r0, r1, . . . , rn that rn = (p|u|, q|v|). Since
p|u| ∈ Last0(α1) and q|v| ∈ Last0(α2), we have that rn = (p|u|, q|v|) ∈ Last0(α).

It remains to show that (σi, ri) ∈ Follow(α, ri−1) (1 ≤ i ≤ n). Here, we
consider the two shuffle operators separately.

In the case α = α1
s󰀂Γ α2, the definition of s󰀂Γ guarantees that the colours in

󰁥x are such that ci = 1 iff σi = µj ∕∈ Γ for some j ∈ [1, |u|], ci = 2 iff σi = νk ∕∈ Γ
for some k ∈ [1, |v|], and finally ci = 0 iff σi = µj = νk ∈ Γ for some j ∈ [1, |u|]

22

and k ∈ [1, |v|]. We show that for i ∈ [1, n] one has (σi, ri) ∈ Follow(α, ri−1) for
ri−1 = (r1,i−1, r2,i−1), considering the cases ci = 1 and ci = 0. The remaining
case, ci = 2, is analogous to the first one. If ci = 1 and r1,i−1 = pj , then
σi = µj+1 ∕∈ Γ and (σi, pj+1) ∈ Follow(α1, pj). Thus, (σi, (pj+1, r2,i−1)) ∈
Follow(α, (r1,i−1, r2,i−1)). If ci = 0 and (r1,i−1, r2,i−1) = (pj , qk), then σi =
µj+1 = νk+1 ∈ Γ, (σi, pj+1) ∈ Follow(α1, pj) and (σi, qk+1) ∈ Follow(α2, qk).
Thus, (σi, (pj+1, qk+1)) ∈ Follow(α, (r1,i−1, r2,i−1)).
The proof for a󰀂Γ is analogous, skipping the conditions µj+1 ∕∈ Γ and νk+1 ∕∈ Γ.

Now, consider α = α1
w󰀂Γ α2. Let,

r1 =

󰀻
󰁁󰁁󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰁁󰁁󰀽

(p∅1, 0
∅), if c1 = 1 and µ1 ∕∈ Γ,

(p
{µ1}
1 , 0∅), if c1 = 1 and µ1 ∈ Γ,

(p∅1, q
∅
1), if c1 = 0,

(0∅, q∅1), if c1 = 2 and ν1 ∕∈ Γ,

(0∅, q
{ν1}
1), if c1 = 2 and ν1 ∈ Γ,

and for i ∈ {2, . . . , n} and ri−1 = (p∆j , q
Λ
k),

ri =

󰀻
󰁁󰁁󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰁁󰁁󰀽

(p∆j+1, q
Λ
k), if ci = 1 and µj+1 ∕∈ Γ,

(p
∆,µj+1

j+1 , qΛk), if ci = 1 and µj+1 ∈ Γ,

(p∅j+1, q
∅
k+1), if ci = 0,

(p∆j , q
Λ
k+1), if ci = 2 and νk+1 ∕∈ Γ,

(p∆j , q
Λ,νk+1

k+1), if ci = 2 and νk+1 ∈ Γ.

First, we show that rn ∈ Last0(α). Again, since the number of ci’s equal to
1 or 0 equals |u|, and the number of ci’s equal to 0 or 2 equals |v|, it follows
from the definition of the sequence r0, r1, . . . , rn that rn = (p∆|u|, q

Λ
|v|), for some

∆,Λ ⊆ Γ such that ∆ ∩ Λ = ∅. Since p|u| ∈ Last0(α1) and q|v| ∈ Last0(α2), we
have by (1) that rn = (p∆|u|, q

Λ
|v|) ∈ Last0(α).

It remains to show that (σi, ri) ∈ Follow(α, ri−1) (1 ≤ i ≤ n). We show that
for i ∈ [1, n] one has (σi, ri) ∈ Follow(α, ri−1) for ri−1 = (p∆j , q

Λ
k), considering

the cases ci = 1 and ci = 0. The remaining case, ci = 2, is analogous to the
first one.

If ci = 1 and σi = µj+1 ∕∈ Γ, then by the definition of Follow we have
(σi, pj+1) ∈ Follow(α1, pj). Thus, (σi, (p

∆
j+1, q

Λ
k)) ∈ Follow(α, ri−1).

If ci = 1 and σi = µj+1 ∈ Γ, then by the definition of Follow we have

(σi, pj+1) ∈ Follow(α1, pj) and σi ∕∈ Λ. Thus, (σi, (p
∆,σi

j+1 , qΛk)) ∈ Follow(α, ri−1).
If ci = 0, then σi = µj+1 = νk+1 ∈ Γ, (σi, pj+1) ∈ Follow(α1, pj) and

(σi, qk+1) ∈ Follow(α2, qk). Thus, (σi, (p
∅
j+1, q

∅
k+1)) ∈ Follow(α, ri−1).

Lemma 3. Given α ∈ RE(󰀂), if there are r0 = 0, r1, . . . , rn ∈ Loc0(α) and
σ1, . . . ,σn ∈ Σ (n ≥ 0) such that (1) (σi, ri) ∈ Follow(α, ri−1), 1 ≤ i ≤ n, and
(2) rn ∈ Last0(α), then σ1 · · ·σn ∈ L(α).

23

Proof. The proof is by structural induction on α. As before, only the shuffle
operators are dealt with. Let α = α1 ◦ α2, with ◦ ∈ { s󰀂Γ , a󰀂Γ }. Then,
each location ri is of the form (pi, qi), for 1 ≤ i ≤ n. If rn = (pn, 0) then
ε ∈ L(α2) (analogously rn = (0, qn) implies that ε ∈ L(α1), and the proof is
similar). Moreover, if the operator ◦ is s󰀂Γ , then it follows, by the definition
of Follow, that σ1, . . . ,σn ∕∈ Γ. For both operators, we have that the sequences
of locations p1, . . . , pn and of letters σ1, . . . ,σn satisfy the conditions in this
lemma for α1. Thus, by induction, σ1 · · ·σn ∈ L(α1). On the other hand,
σ1 · · ·σn ∈ σ1 · · ·σn ◦ ε ⊆ L(α1 ◦ α2).

For the remaining of the proof we suppose that pn, qn ∕= 0 in rn = (pn, qn).
We will use sequences of the form L = (σ1, r1) · (σ2, r2) · · · (σn, rn) and define
some functions on (Σ × Loc(α))󰂏. The function tr : (Σ × Loc(α))󰂏 −→ Σ󰂏 is
given by tr((σ1, r1) · · · (σn, rn)) = σ1 · · ·σn. The function seq : (Σ × Loc(α1 ◦
α2))

󰂏 −→ (Σ × Loc(α1))
󰂏 × (Σ × Loc(α2))

󰂏 which definition follows. If L = ε,
then seq(L) = (ε, ε). If L = (σ, r) · L′, then seq(L) = (L1, L2) is obtained from
L′
1 and L′

2, where seq(L′) = (L′
1, L

′
2), as explained below.

In each step i of the computation it is ensured that for u′ = tr(L′
1), v

′ =
tr(L′

2), and w = tr(L′), if w ∈ u′ ◦ v′, then σi · w ∈ u ◦ v, where u = tr(L1) and
v = tr(L2). For L ∕= ε we define seq(L) inductively as follows:

1. If L = (σi, (pi, qi))·L′, (σi, pi) ∈ Follow(α1, pi−1), (σi, qi) ∈ Follow(α2, qi−1),
and σi ∈ Γ, then

seq(L) = ((σi, pi) · L′
1, (σi, qi) · L′

2).

We have that u = σiu
′, v = σiv

′, and σiw ∈ u ◦ v.

2. If L = (σi, (pi, qi)) · L′, (σi, pi) ∈ Follow(α1, pi−1) and qi = qi−1, then

seq(L) = ((σi, pi) · L′
1, L

′
2).

If ◦ = s󰀂Γ then σi ∕∈ Γ. For both operators, we have that u = σiu
′ and

v = v′, and σiw ∈ u ◦ v.

3. Finally, if L = (σi, (pi, qi)) · L′, (σi, qi) ∈ Follow(α2, qi−1) and pi = pi−1,
then

seq(L) = (L′
1, (σi, qi) · L′

2).

Again, if ◦ = s󰀂Γ then σi ∕∈ Γ. For both operators, we have that u = u′

and v = σiv
′, and σiw ∈ u ◦ v.

Now, consider

seq(L) = (L1, L2) = ((µ1, p
′
1) · · · (µk1 , p

′
k1
), (ν1, q

′
1) · · · (νk2 , q

′
k2
)).

It follows from pn, qn ∕= 0 that k1, k2 ≥ 1. In particular, we have p′k1
, q′k2

∕= 0,
since (µk1 , p

′
k1
) and (νk2 , q

′
k2
) are members of Follow sets. In order to apply

the induction hypothesis to the sequences of locations p′1, . . . , p
′
k1

and letters

24

µ1, . . . , µk1
(analogously for q′1, . . . , q

′
k2

and letters ν1, . . . , νk2
), we have to show

that conditions (1) and (2) hold.
Condition (1) is true, since by construction (µl, pl) ∈ Follow(α1, pl−1) for

2 ≤ l ≤ k1. Condition (2) follows directly from the definition of Last0(α1 ◦ α2)
for ◦ ∈ { s󰀂Γ , a󰀂Γ }, i.e., definition of Loc, and the fact that p′k1

, q′k2
∕= 0.

Now, we can apply the induction hypothesis and conclude that tr(L1) =
µ1 · · ·µk1 ∈ L(α1) and tr(L2) = ν1 · · · νk2 ∈ L(α2), and consequently µ1 · · ·µk1 ◦
ν1 · · · νk2

⊆ L(α1 ◦ α2). It follows from the definition of seq that σ1 · · ·σn =
tr(L) ∈ tr(L1) ◦ tr(L2). Thus, σ1 · · ·σn ∈ L(α1 ◦ α2).

Next, we consider the case α = α1
w󰀂Γ α2. The proof is similar to the proof

for the two other operators, but superscripts in pairs of locations have to be
taken into account. In fact, each location ri is now of the form (p∆i

i , qΛi
i) with

∆i,Λi ⊆ Γ, for 1 ≤ i ≤ n. Note that rn = (p∆n
n , 0∅) implies that ε ∈ L(α2)

(analogously rn = (0∅, qΛn
n) implies that ε ∈ L(α1)). Then, the sequences

of locations p1, . . . , pn and of letters σ1, . . . ,σn satisfy the conditions in this
lemma for α1. Thus, by induction σ1 · · ·σn ∈ L(α1). On the other hand,
σ1 · · ·σn ∈ σ1 · · ·σn

w󰀂Γ ε ⊆ L(α1
w󰀂Γ α2).

Considering the sequence L = (σ1, r1)·(σ2, r2) · · · (σn, rn) with p∆n
n , qΛn

n ∕= 0∅

in rn = (p∆n
n , qΛn

n) we define seq(L). For L = ε let seq(L) = (ε, ε). For
L ∕= ε the pair seq(L) = (L1, L2) is defined below. The function tr is defined as
above. Again, in each step of the computation it is ensured that for u′ = tr(L′

1),
v′ = tr(L′

2), u = tr(L1), v = tr(L2), and w = tr(L′), if w ∈ u′ 󰀂(Γ,∆i,Λi)v
′ then

the following holds. If i ≥ 2, then σi · w ∈ u 󰀂(Γ,∆i−1,Λi−1)v, and if i = 1, then
σ1 · w ∈ u 󰀂(Γ,∅,∅)v = u w󰀂Γ v. Since ε ∈ ε 󰀂(Γ,∆,Λ)ε, for any ∆,Λ ⊆ Γ, it follows
that for the initial sequence L one has σ1 · · ·σn ∈ u 󰀂(Γ,∅,∅)v = u w󰀂Γ v. The pair
of sequences seq(L) = (L1, L2), for L ∕= ε, is now defined as follows:

1. If L = (σi, (p
∅
i , q

∅
i))·L′, (σi, pi) ∈ Follow(α1, pi−1), (σi, qi) ∈ Follow(α2, qi−1),

and σi ∈ Γ, then

seq(L) = ((σi, pi) · L′
1, (σi, qi) · L′

2).

We have that u = σiu
′ and v = σiv

′. Let w ∈ u′ 󰀂(Γ,∅,∅)v′. If i ≥ 2, then
σi · w ∈ u 󰀂(Γ,∆i−1,Λi−1)v. If i = 1, then w ∈ u′ 󰀂(Γ,∅,∅)v′ also implies that
σ1 · w ∈ u 󰀂(Γ,∅,∅)v = u w󰀂Γ v.

2. If L = (σi, (p
∆i
i , qΛi

i)) ·L′, (σi, pi) ∈ Follow(α1, pi−1), σi ∈ ∆i, and σi ∕∈ Λi,
then

seq(L) = ((σi, pi) · L′
1, L

′
2).

We have that u = σiu
′, v = v′, ∆i = ∆i−1 ∪ {σi}, and Λi = Λi−1. Let

w ∈ u′ 󰀂(Γ,∆i−1∪{σi},Λi−1)v
′. If i ≥ 2, then σi · w ∈ u 󰀂(Γ,∆i−1,Λi−1)v. If

i = 1, then ∆1 = {σ1} and Λ1 = ∅. Furthermore, w ∈ u′ 󰀂(Γ,{σ1},∅)v
′

implies that σ1 · w ∈ u 󰀂(Γ,∅,∅)v = u w󰀂Γ v.
The case (σi, qi) ∈ Follow(α2, qi−1), σi ∈ Λi, and σi ∕∈ ∆i is analogous.

25

3. If L = (σi, (p
∆i
i , qΛi

i)) · L′, (σi, pi) ∈ Follow(α1, pi−1), σi ∕∈ Γ, ∆i = ∆i−1

and qΛi
i = q

Λi−1

i−1 (i.e., Λi = Λi−1) then

seq(L) = ((σi, pi) · L′
1, L

′
2).

We have that u = σiu
′ and v = v′. Let w ∈ u′ 󰀂(Γ,∆i,Λi)v

′. If i ≥ 2,
then σi · w ∈ u 󰀂(Γ,∆i,Λi)v. If i = 1, then ∆1 = Λ1 = ∅. Furthermore,
w ∈ u′ 󰀂(Γ,∅,∅)v′ implies that σ1 · w ∈ u 󰀂(Γ,∅,∅)v = u w󰀂Γ v. Again, the

case (σi, qi) ∈ Follow(α2, qi−1), σi ∕∈ Γ, Λi = Λi−1 and p∆i
i = p

∆i−1

i−1 is
analogous.

The rest of the proof for this case is identical to the one for ◦ ∈ { s󰀂Γ , a󰀂Γ }.

Proposition 10. For α ∈ RE(󰀂), p ∈ Loc0(α), and σ ∈ Σα, one has

∂σ(d(α, p)) = { d(α, q) | (σ, q) ∈ Follow(α, p) }.

Proof. It is sufficient to show the result for expressions α = α1 ◦ α2 with ◦ ∈
{ s󰀂Γ , a󰀂Γ , w󰀂Γ }. In these cases the proof follows the structure of the one for
in [5]. (⊆) First, suppose that p = 0. Let σ ∕∈ Γ and β ∈ ∂σ(d(α, 0)) = ∂σ(α) =
∂σ(α1) ◦ {α2} ∪ {α1} ◦ ∂σ(α2). If β = β1 ◦ α2 with β1 ∈ ∂σ(α1) = ∂σ(d(α1, 0)),
then by induction there exists q ∈ Loc(α1) such that β1 = d(α1, q) and (σ, q) ∈
Follow(α1, 0) = First(α1). If ◦ ∈ { s󰀂Γ , a󰀂Γ } then (σ, (q, 0)) ∈ First(α1 ◦ α2) =
Follow(α, 0). Furthermore, β = β1 ◦ α2 = d(α1, q) ◦ α2 = d(α1, q) ◦ d(α2, 0) =
d(α, (q, 0)). If ◦ = w󰀂Γ , then (σ, (q∅, 0∅)) ∈ First(α1

w󰀂Γ α2) = Follow(α, 0).
Furthermore, β = β1

w󰀂Γ α2 = d(α1, q)
w󰀂Γ α2 = d(α1, q) 󰀂(Γ,∅,∅)d(α2, 0) =

d(α, (q∅, 0∅)). The case β = α1 ◦ β2 with β2 ∈ ∂σ(α2) is identical.
Now, let σ ∈ Γ and β ∈ ∂σ(d(α, 0)) = ∂σ(α). Consider ◦ ∈ { s󰀂Γ , a󰀂Γ }.

Thus β = β1 ◦ β2 ∈ ∂σ(α1) ◦ ∂σ(α2) with βi ∈ ∂σ(αi) = ∂σ(d(αi, 0)), for
i = 1, 2. Then, by induction there exists qi ∈ Loc(αi) such that βi = d(αi, qi)
and (σ, qi) ∈ Follow(αi, 0) = First(αi). Thus, (σ, (q1, q2)) ∈ First(α1 ◦ α2) =
Follow(α, 0). Furthermore, β = β1 ◦ β2 = d(α1, q1) ◦ d(α2, q2) = d(α, (q1, q2)).
When ◦ is a󰀂Γ , one has to consider the additional case corresponding to the
situation above, i.e., β = β1

a󰀂Γ α2, etc. If ◦ = w󰀂Γ then one has,

∂σ(α) = ∂σ(α1)
w󰀂Γ ∂σ(α2) ∪ ∂σ(α1) 󰀂(Γ,{σ},∅){α2} ∪ {α1} 󰀂(Γ,∅,{σ})∂σ(α2).

If β = β1
w󰀂Γ β2 with βi ∈ ∂σ(αi) for i = 1, 2, then it follows by induction

that there are positions qi ∈ Loc(αi) such that βi = d(αi, qi) and (σ, qi) ∈
Follow(αi, 0) = First(αi). Hence, (σ, (q∅1 , q

∅
2)) ∈ First(α1

w󰀂Γ α2) = Follow(α, 0).
If β = β1 󰀂(Γ,{σ},∅)α2 with β1 ∈ ∂σ(α1), then it follows by induction that there is
a positions q1 ∈ Loc(α1) such that β1 = d(α1, q1) and (σ, q1) ∈ Follow(α1, 0) =

First(α1). Hence, (σ, (q
{σ}
1 , 0∅)) ∈ First(α1

w󰀂Γ α2) = Follow(α, 0). The remain-
ing case is analogous.

Let p = (p1, p2), ◦ ∈ { s󰀂Γ , a󰀂Γ }, and

β ∈ ∂σ(d(α1 ◦ α2, (p1, p2))) = ∂σ(d(α1, p1) ◦ d(α2, p2)).

26

If σ ∕∈ Γ, then

∂σ(d(α1, p1)◦d(α2, p2)) = ∂σ(d(α1, p1))◦{d(α2, p2)}∪{d(α1, p1)}◦∂σ(d(α2, p2)).

If β ∈ ∂σ(d(α1, p1))◦{d(α2, p2)}, then β = β1◦d(α2, p2) with β1 ∈ ∂σ(d(α1, p1)).
By induction, there exists q1 ∈ Loc(α1) such that β1 = d(α1, q1) and (σ, q1) ∈
Follow(α1, p1). We have (q1, p2) ∈ Loc(α1 ◦ α2),

β = d(α1, q1) ◦ d(α2, p2) = d(α, (q1, p2)),

and (σ, (q1, p2)) ∈ Follow(α, (p1, p2)). The remaining case is analogous.
If σ ∈ Γ and β ∈ ∂σ(d(α1, p1)) ◦ ∂σ(d(α2, p2)) then β = β1 ◦ β2, with

βi ∈ ∂σ(d(αi, pi)) for i = 1, 2. By induction, there exist qi ∈ Loc(αi) such that
βi = d(αi, qi), and (σ, qi) ∈ Follow(αi, pi). We have that (q1, q2) ∈ Loc(α1 ◦ α2),

β = d(α1, q1) ◦ d(α2, q2) = d(α, (q1, q2)),

and (σ, (q1, q2)) ∈ Follow(α, (p1, p2)).
For ◦ = a󰀂Γ we have the additional case

β ∈ ∂σ(d(α1, p1))
a󰀂Γ {d(α2, p2)} ∪ {d(α1, p1)} a󰀂Γ ∂σ(d(α2, p2)),

which is analogous to the case where σ ∕∈ Γ.
Now, let p = (p∆1 , p

Λ
2), ◦ = w󰀂Γ , and

β ∈ ∂σ(d(α1
w󰀂Γ α2, (p

∆
1 , p

Λ
2))) = ∂σ(d(α1, p1) 󰀂(Γ,∆,Λ)d(α2, p2)).

If σ ∕∈ Γ, then

∂σ(d(α1, p1) 󰀂(Γ,∆,Λ)d(α2, p2)) = ∂σ(d(α1, p1)) 󰀂(Γ,∆,Λ){d(α2, p2)}
∪ {d(α1, p1)} 󰀂(Γ,∆,Λ)∂σ(d(α2, p2)).

Consider β = β1 󰀂(Γ,∆,Λ)d(α2, p2) with β1 ∈ ∂σ(d(α1, p1)). By induction, there
exists q1 ∈ Loc(α1) such that β1 = d(α1, q1) and (σ, q1) ∈ Follow(α1, p1). We
have (q∆1 , pΛ2) ∈ Loc(α1

w󰀂Γ α2),

β = d(α1, q1) 󰀂(Γ,∆,Λ)d(α2, p2) = d(α1
w󰀂Γ α2, (q

∆
1 , pΛ2)),

and (σ, (q∆1 , pΛ2)) ∈ Follow(α, (p∆1 , p
Λ
2)). The remaining case is analogous.

If σ ∈ Γ and β ∈ ∂σ(d(α1, p1)) 󰀂(Γ,∅,∅)∂σ(d(α2, p2)), then β = β1 󰀂(Γ,∅,∅)β2

with βi ∈ ∂σ(d(αi, pi)), for i = 1, 2. By induction, there exist qi ∈ Loc(αi),
such that βi = d(αi, qi) and (σ, qi) ∈ Follow(αi, pi). We have that (q∅1 , q

∅
2) ∈

Loc(α1
w󰀂Γ α2),

β = d(α1, q1) 󰀂(Γ,∅,∅)d(α2, q2) = d(α1
w󰀂Γ α2, (q

∅
1 , q

∅
2)),

and (σ, (q∅1 , q
∅
2)) ∈ Follow(α, (p∆1 , p

Λ
2)).

If σ ∈ Γ, σ ∕∈ Λ, and β ∈ ∂σ(d(α1, p1)) 󰀂(Γ,∆∪{σ},Λ)d(α2, p2), then β =
β1 󰀂(Γ,∆∪{σ},Λ)d(α2, p2) with β1 ∈ ∂σ(d(α1, p1)). By induction, there exists

27

q1 ∈ Loc(α1), such that β1 = d(α1, q1), and (σ, q1) ∈ Follow(α1, p1). We have

that (q
∆∪{σ}
1 , pΛ2) ∈ Loc(α1

w󰀂Γ α2), and (σ, (q
∆∪{σ}
1 , pΛ2)) ∈ Follow(α, (p∆1 , p

Λ
2)).

The remaining case, σ ∈ Γ, σ ∕∈ ∆, and β ∈ d(α1, p1) 󰀂(Γ,∆,Λ∪{σ})∂σ(d(α2, p2)),
is analogous.

(⊇) Let ◦ ∈ { s󰀂Γ , a󰀂Γ }. Consider an expression of the form α = α1 ◦ α2,
and suppose that there exists q = (q1, q2) ∈ Loc(α1 ◦ α2) such that (σ, q) ∈
Follow(α1 ◦ α2, p). Let

β = d(α1 ◦ α2, (q1, q2)) = d(α1, q1) ◦ d(α2, q2) = β1 ◦ β2.

If p = 0, then Follow(α, 0) = First(α). Thus, either both (σ, qi) ∈ First(αi)
for i = 1, 2 and σ ∈ Γ, or one of q1 or q2 is 0. We just consider the former
case. It follows by induction that d(αi, qi) ∈ ∂σ(d(αi, 0)) = ∂σ(αi). Thus,
β ∈ ∂σ(α1) ◦ ∂σ(α2) = ∂σ(α).

Now, suppose that p = (p1, p2) ∈ Loc(α1 ◦α2), i.e., pi ∈ Loc0(αi) for i = 1, 2.
First, let σ ∕∈ Γ and q1 = p1, (σ, q2) ∈ Follow(α2, p2) (the case q2 = p2 is
identical). By induction, β2 ∈ ∂σ(d(α2, p2)). Thus,

β = d(α1, p1) ◦ β2 ∈ {d(α1, p1)} ◦ ∂σ(d(α2, p2))

⊆ ∂σ(d(α1, p1) ◦ d(α2, p2)) = ∂σ(d(α1 ◦ α2, p)).

Now, let σ ∈ Γ and (σ, qi) ∈ Follow(αi, pi), for i = 1, 2. By induction, βi ∈
∂σ(d(αi, pi)) and thus,

β = β1 ◦ β2 ∈ ∂σ(d(α1, p1)) ◦ ∂σ(d(α2, p2))

⊆ ∂σ(d(α1, p1) ◦ d(α2, p2)) = ∂σ(d(α1 ◦ α2, p)).

For the operator ◦ = a󰀂Γ we also need to consider the case q = (p1, q2) and
(σ, q2) ∈ Follow(α2, p2) (as well as the case q = (q1, p2)). In these cases the proof
is identical to the one above for ◦ and σ ∕∈ Γ.

Finally, let α = α1
w󰀂Γ α2. First, we consider p = 0 and (σ, q) ∈ Follow(α, 0) =

First(α). If σ ∕∈ Γ and q = (q∅1 , 0
∅), with (σ, q1) ∈ First(α1) = Follow(α1, 0), then

it follows by induction that d(α1, q1) ∈ ∂σ(d(α1, 0)) = ∂σ(α1). Thus,

d(α1
w󰀂Γ α2, (q

∅
1 , 0

∅)) = d(α1, q1) 󰀂(Γ,∅,∅)d(α2, 0) = d(α1, q1) 󰀂(Γ,∅,∅)α2

∈ ∂σ(α1) 󰀂(Γ,∅,∅){α2} ⊆ ∂σ(α).

The remaining case is analogous. If σ ∈ Γ and q = (q∅1 , q
∅
2), with (σ, qi) ∈

First(αi) = Follow(αi, 0) for i = 1, 2, then by induction d(αi, qi) ∈ ∂σ(d(αi, 0)) =
∂σ(αi). Thus,

d(α1
w󰀂Γ α2, (q

∅
1 , q

∅
2)) = d(α1, q1) 󰀂(Γ,∅,∅)d(α2, q2)

∈ ∂σ(α1) 󰀂(Γ,∅,∅)∂σ(α2) ⊆ ∂σ(α) = ∂σ(d(α, 0)).

If σ ∈ Γ and q = (q
{σ}
1 , 0∅), with (σ, q1) ∈ First(α1) = Follow(α1, 0), then by

induction d(α1, q1) ∈ ∂σ(d(α1, 0)) = ∂σ(α1). Thus,

d(α1
w󰀂Γ α2, (q

{σ}
1 , 0∅)) = d(α1, q1) 󰀂(Γ,{σ},∅)d(α2, 0)

∈ ∂σ(α1) 󰀂(Γ,{σ},∅){α2} ⊆ ∂σ(α) = ∂σ(d(α, 0)).

28

The remaining case is analogous.
Now, consider p = (p∆1 , p

Λ
2) and (σ, q) ∈ Follow(α, p). If σ ∕∈ Γ, q = (q∆1 , pΛ2)

and (σ, q1) ∈ Follow(α1, p1), then by induction d(α1, q1) ∈ ∂σ(d(α1, p1)). Thus,

d(α1
w󰀂Γ α2, (q

∆
1 , pΛ2)) = d(α1, q1) 󰀂(Γ,∆,Λ)d(α2, p2)

∈ ∂σ(d(α1, p1)) 󰀂(Γ,∆,Λ)d(α2, p2) ⊆
∂σ(d(α1, p1) 󰀂(Γ,∆,Λ)d(α2, p2)) = ∂σ(d(α, (p

∆
1 , p

Λ
2)).

The remaining case is analogous. If σ ∈ Γ and q = (q∅1 , q
∅
2), with (σ, qi) ∈

Follow(αi, pi) then by induction d(αi, qi) ∈ ∂σ(d(αi, pi)), for i = 1, 2. Thus,

d(α1
w󰀂Γ α2, (q

∅
1 , q

∅
2)) = d(α1, q1) 󰀂(Γ,∅,∅)d(α2, q2)

∈ ∂σ(d(α1, p1)) 󰀂(Γ,∅,∅)∂σ(d(α2, p2)) ⊆ ∂σ(d(α, (p
∆
1 , p

Λ
2))).

If σ ∈ Γ and q = (q
∆∪{σ}
1 , pΛ2), with (σ, q1) ∈ Follow(α1, p1) and σ ∕∈ Λ, then by

induction d(α1, q1) ∈ ∂σ(d(α1, p1)). Thus,

d(α1
w󰀂Γ α2, (q

∆∪{σ}
1 , pΛ2)) = d(α1, q1) 󰀂(Γ,∆∪{σ},Λ)d(α2, p2)

∈ ∂σ(d(α1, p1)) 󰀂(Γ,∆∪{σ},Λ){α2} ⊆ ∂σ(d(α, (p
∆
1 , p

Λ
2))).

The remaining case is analogous.

29

