
Manipulation of Regular Expressions Using
Derivatives: an Overview⋆

Nelma Moreira and Rogério Reis
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Abstract. The notions of derivative and partial derivative of regular
expressions revealed themselves to be very powerful and have been suc-
cessfully extended to many other formal language classes and algebraic
structures. Although the undisputed elegance of this formalism, its ef-
ficient practical use is still a challenging research topic. Here we give a
brief historical overview and summarise some of these aspects.

1 Preliminares

Regular expressions are the common choice to represent regular languages due
to their succinctness and clear syntax. Deterministic finite automata are an ex-
cellent representation for testing equivalence, containment, or membership, as
these problems are easily solved for this model. However, minimal deterministic
finite automata (DFA) can be exponentially larger than the associated regular
expression, while corresponding nondeterministic finite automata (NFA) are only
linearly larger. The computational and descriptional complexity of regular ex-
pressions and of conversions to and from finite automata are well studied. Good
surveys on the subject are [40, 39]. In recent years, the average size of different
NFA constructions from regular expressions were studied using the framework of
analytic combinatorics [63, 14, 17]. For the average case, the uniform distribu-
tion on the set of regular expressions is considered although that does not imply
a uniform representation of regular languages. In this survey, we focus on the
derivative and partial derivative based constructions. First, we recall some basic
notions and fix notation.

Given an alphabet Σ = {σ1, . . . , σk} of size k ≥ 1, a language L is a subset
of the free monoid Σ⋆. The left-quotient of a language L by a word w ∈ Σ⋆, is
the language w−1L = {x | wx ∈ L}.

The set Rk of (standard) regular expressions r over Σ is composed by ∅ plus
the expressions defined by the following context-free grammar:

r := ε | σ1 | · · · | σk | (r+ r) | (r⊙ r) | (r⋆), (1)

where the symbol ⊙ is normally omitted and represents concatenation. The
(regular) language represented by an expression r ∈ Rk is denoted by L(r) and
⋆ Research supported by CMUP through FCT project UIDB/00144/2021.
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is inductively defined as follows for r, r′ ∈ Rk: L(∅) = ∅, L(ε) = {ε}, L(σ) = {σ},
L(r+ r′) = L(r)∪L(r′), L(r⊙ r′) = L(r)L(r′) = {wv | w ∈ L(r)∧ v ∈ L(r′) }, and
L(r⋆) = L(r)⋆ =

⋃
n∈N(L(r)n). For the size of a regular expression r, denoted by

∥r∥, we consider the size of its syntactic tree, i.e., the number of symbols in r, not
counting parentheses but including ⊙. The alphabetic size of r, denoted by |r|Σ ,
is just the number of alphabetic symbols in r. We define ε(r) = ε if ε ∈ L(r), and
ε(r) = ∅, otherwise. The function ε() is easily defined inductively in the structure
of r. Two expressions r and s are equivalent if their languages are the same, and
we write r = s. With this interpretation, the algebraic structure (Rk,+, ·, ∅, ε) is
a idempotent semiring that with ⋆ forms a Kleene algebra.

A nondeterministic finite automaton (NFA) is a quintuple A = ⟨Q,Σ, δ, I, F ⟩
where Q is a finite set of states, Σ is a finite alphabet, I ⊆ Q is the set of initial
states, F ⊆ Q is the set of final states, and δ : Q × Σ → 2Q is the transition
function. The language accepted by A is L(A) = {w ∈ Σ⋆ | δ(I, w) ∩ F ̸= ∅}.
When I = {q0}, we use I = q0. If |I| = 1 and |δ(q, σ)| ≤ 1, for all q ∈ Q, σ ∈ Σ,
A is deterministic (DFA). For a DFA A, w ∈ L(A) if δ(q0, w) ∈ F . Two NFAs
A and A′ are equivalent if their languages are the same. An automaton A is
equivalent to a regular expression r if L(A) = L(r). We can convert an NFA A
into an equivalent DFA D(A) by the determinisation operation D, using the well-
known subset construction. An equivalence relation ≡ on Q is right invariant
w.r.t. an NFA A if and only if ≡⊆ (Q− F )2 ∪ F 2 and ∀p, q ∈ Q, σ ∈ Σ, if p ≡ q
then ∀p′ ∈ δ(p, σ) ∃q′ ∈ δ(q, σ) such that p′ ≡ q′. The quotient automaton A/≡
is given by A/≡ = ⟨Q/≡, Σ, δ/≡, I/≡, F/≡⟩, where δ/≡([p], σ) = { [q] | q ∈
δ(p, σ) } = δ(p, σ)/≡. It is easy to see that L (A/≡) = L(A).

2 Derivatives

In 1962, Janusz Brzozowski introduced the notion of derivative of a regular
expression in his Ph.D. thesis Regular Expression Techniques for Sequential Cir-
cuits [22]. Based on nerve nets of McCulloch and Pitts [52], in 1956 Kleene [44]
showed the equivalence of finite automata and regular expressions. Brzozowski
proposed regular expressions as a simple formalism for describing the behaviour
of sequential circuits as opposed to use directly finite automata (state graphs),
as regular expressions are in general more readable. A theory of regular expres-
sions was developed for the conversion of expressions to finite automata and
vice-versa. Methods for converting finite automata into regular expression were
already known [61, 53] but a simple method was presented, nowadays known as
the state elimination method [21]. For the conversion from regular expressions
into finite automata, there existed already methods such as the McNaugthon-
Yamada automaton (AMY) [53]. Brzozowski defined a deterministic finite au-
tomaton equivalent to a regular expression using the notion of derivative [22,
25]. The derivative by σ ∈ Σ of a regular expression r is a regular expression
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dσ(r), inductively defined by:

dσ(∅) = dσ(ε) = ∅,

dσ(σ
′) =

{
{ε} if σ′ = σ,

∅ otherwise,

dσ(r+ r′) = dσ(r) + dσ(r
′),

dσ(rr
′) =

{
dσ(r)r

′ if ε(r) = ∅,
dσ(r)r

′ + dσ(r
′) otherwise,

dσ(r
⋆) = dσ(r)r

⋆.
(2)

This notion can be extended to words: dε(r) = r and dσw(r) = dw(dσ(r)). The
language of dw(r) is L(dw(r)) = {x | wx ∈ L(r) } = w−1L(r). The set of all
derivatives of r, { dw(r) | w ∈ Σ⋆ }, may not be finite. For finiteness, Brzozowski
considered the quotient of that set modulo some regular expression equivalences,
namely the associativity, commutativity, and idempotence of + (ACI) and the
following rules: rε = εr = r, ∅r = r∅ = ∅, and ∅+ r = r+ ∅ = r.1 Let D(r) be the
resulting set. The Brzozowski’s automaton for r is the DFA defined as follows

AB(r) = ⟨D(r), Σ, δB, [r], FB⟩, (3)

where FB = { [r′] ∈ D(r) | ε(r′) = ε }, and δB([r
′], σ) = [dσ(r

′)], for all [r] ∈ D(r)
and σ ∈ Σ. The proof that D(r) is finite constitute one of the first results on
state complexity bounds. A language L is recognised by a finite automaton if
and only if it has a finite number of left-quotients [62], and that number is the
state complexity of L. The language of a derivative is a left-quotient, but two
derivatives may represent the same language. Known upper bounds for the state
complexity of several operations can be obtained using derivatives by tightening
the bounds of |D(r)| [23]. Both the size |D(r)| and the size of the elements of
D(r) can grow exponentially with ∥r∥.

Derivatives can be used to decide problems such as the word membership,
universality, or equivalence of regular expressions, avoiding the automaton con-
struction.

Membership A word w ∈ L(r) if and only in ε(dw(r)) = ε. This method can be
extended to nonregular languages.

Universality A regular expression r represents Σ⋆ if and only if for all [r′] ∈ D(r),
ε([r′]) = ε.

Equivalence The correctness of the Brzozowski’s automaton relies in the follow-
ing equivalence

r = ε(r) +
∑
σ∈Σ

σ dσ(r), (4)

If D(r) = {r = r1, . . . , rn}, then the following system of equations is satisfied

ri = ε(ri) +
k∑

j=1

σjri,j , (5)

1 The necessity of these equalities was pointed out by Salomaa [72].
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where ri,j is [dσj
(ri)]. One has that r = s if and only if ε(r) = ε(s) and [dσj

(r)] =
[dσj

(s)] for all σj ∈ Σ. Below we present a refutation method such that testing
the equivalence of the two expressions corresponds to an iterated process of
testing the equivalence of their derivatives [5, 2].

equivP ( r, s ) :
S = {(r, s)}
H = ∅
while (r, s) = POP(S ) :

i f ε(r) ̸= ε(s) : return False
PUSH(H, (r, s))
for σ ∈ Σ :

(r′, s′) = ([dσ(r)], [dσ(s)])
i f (r′, s′) /∈ H : PUSH(S , (r′, s′))

return True

This method is related to the Hopcroft and Karp’s algorithm for testing the
equivalence of two deterministic finite automata that avoids their minimisa-
tion [41, 3]. Ginzburg [36] argues that the above method is cumbersome due to
the computation of derivatives and equivalence classes, and presents a similar
method but using NFAs.

Regular expressions can be extended to include any Boolean operation ⊕ on
regular languages. Brzozowski defined dσ(⊕(r1, . . . , rn)) = ⊕(dσ(r1), . . . ,dσ(rn)),
for σ ∈ Σ. In particular, dσ(r ∩ r′) = dσ(r) ∩ dσ(r

′) and dσ(¬r) = ¬dσ(r).
Again, he proved that an extended regular expression has a finite number of
derivatives modulo some equivalences and thus a DFA could be constructed,
solving a problem stated in [53].

In the next decades, derivatives were useful in several algebraic character-
izations, for instance [72, 33, 24, 48]; inspired conversions from expressions to
automata, such as the Thompson automaton (Aε-T) [77]; or were the based of
regular expression equivalence tests [36, 58]. However, for practical applications,
manipulation methods based directly on regular expressions were thought much
more inefficients than the ones based on the conversion of regular expressions to
finite automata. Also the fact that regular expressions needed to be considered
modulo ACI was a disadvantage. One exception is Berry and Sethi’s method of
constructing the McNaughton-Yamada DFA (AMY) using derivatives [9].

3 Partial Derivatives

In 1966, Boris G. Mirkin [57] presented an algorithm for constructing an NFA that
is a nondeterministic counterpart of Brzozowski’s automaton. Mirkin considered
a system of equations as (5) but where the ri,j can be sums of expressions. The
solution of the system leads to a nondeterminitic automaton construction. Given
a regular expression r0, a set of expressions π(r0) = {r1, . . . , rn} is a support of r0
if for each ri ∈ {r0} ∪ π(r0) the equation (5) holds where each ri,j is a (possibly
empty) sum of elements in π(r0). The set {r0} ∪ π(r0) is a pre-base of r0. Mirkin
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proved that a support of r ∈ Rk can be inductively defined as follows

π(∅) = ∅,
π(ε) = ∅,
π(σ) = {ε},

π(r+ s) = π(r) ∪ π(s),
π(rs) = π(r)s ∪ π(s),
π(r⋆) = π(r)r⋆,

(6)

where, for any S ⊆ Rk, we define S∅ = ∅S = ∅, Sε = εS = S, and Sr′ = { rr′ |
r ∈ S∧ r ̸= ε }∪{ r′ | ε ∈ S } if r′ ̸= ∅, ε (and analogously for r′S). It is easy to see
that |π(r)| ≤ |r|Σ and thus a relatively small NFA can be constructed. Moreover,
it follows also from Mirkin’s proof that set of transitions of this automaton can
be inductively defined [13, 19].

Almost thirty years later, and independently, Valentin Antimirov [4] intro-
duced partial derivatives as a (non-deterministic) generalisation of derivatives
and obtained an NFA construction, called the partial derivative automaton, APD

Champarnaud and Ziadi [27] proved that the Mirkin and Antimirov automaton
constructions are equivalent. Essentially, Antimirov associates to a left-quotient
of L(r) a set of regular expressions instead of a unique expression. For a regular
expression r ∈ Rk and a symbol σ ∈ Σ, the set of partial derivatives by σ of r is
defined inductively as follows:

∂σ(∅) = ∂σ(ε) = ∅,

∂σ(σ
′) =

{
{ε} if σ′ = σ,

∅ otherwise,

∂σ(r+ r′) = ∂σ(r) ∪ ∂σ(r
′),

∂σ(rr
′) = ∂σ(r)r

′ ∪ ε(r)∂σ(r
′),

∂σ(r
⋆) = ∂σ(r)r

⋆,
(7)

where for S ⊆ Rk and r ∈ Rk, we consider Sr or rS as above. The set of partial
derivatives by a word w ∈ Σ⋆ of r ∈ Rk is inductively defined by ∂ε(r) = {r}
and ∂wσ(r) = ∂σ(∂w(r)). We have that L(dw(r)) = L(∂w(r)) =

⋃
r′∈∂w(r) L(r′),

for w ∈ Σ⋆. The set of all partial derivatives of r by nonempty words is ∂+(r) =⋃
w∈Σ⋆\{ε} ∂w(r) and coincides with π(r), i.e., ∂+(r) = π(r) [27]. Equation (2)

can be redefined as follows

r = ε(r) ∪
⋃
σ∈Σ

σ∂σ(r), (8)

where we denote the right-hand side by Lε(r). This means that membership,
universality, equivalence, and related decision problems can be solved, adapting
the procedures given above, to sets of partial derivatives.

The partial derivative automaton of r ∈ Rk is defined as

APD(r) = ⟨PD(r), Σ, δPD, r, FPD⟩,

where PD(r) = ∂+(r) ∪ {r}, FPD = { r′ ∈ PD(r) | ε(r′) = ε }, and δPD(r
′, σ) =

∂σ(r
′), for all r′ ∈ PD(r) and σ ∈ Σ. We have, |PD(r)| ≤ |r|Σ + 1.
Both Mirkin and Antimirov argued that the DFA obtained fromAPD(r) by de-

terminisation, D(APD(r)), has several advantages over AB(r): avoids the compu-
tation of a equivalence relation; has at most 2|r|Σ states; each state of D(APD(r))
is a set of partial derivatives ∂w(r) ⊆ PD(r) and thus each of these sets could be
defined using references to some elements of PD(r).
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We note that D(APD(r)) is not isomorphic to AB, i.e., D(APD(r)) ̸≃ AB. This
is mainly due to the distributivity of the concatenation over a set of expressions in
Equation (7) (see [64]). In [6, 11] it was shown that D(APD(r))/≡Lε ≃ AB(r)/≡Lε

where ≡Lε is a right-invariant equivalence relation w.r.t. these automata such
that S ≡Lε

S′ if and only if Lε(S) = Lε(S
′), for S, S′ ⊆ Rk. The resulting

quotient automaton can be directly obtained by the determinisation of yet an-
other automaton construction based on partial derivatives, that we denote by
A←−

Pre
. From Equation (8), the elements of Lε(r) are either ε or expressions of

the form σr′. Consider the function ←−p w(r) on words w ∈ Σ⋆ defined induc-
tively by ←−p ε(r) = Lε(r) and ←−p wσ(r) =

⋃
σr′∈←−p w(r) Lε(r

′). It is immediate that

L(←−p w(r)) = w−1L(r). The automaton A←−
Pre

(r) is a NFA equivalent to r defined
by

A←−
Pre

(r) = ⟨
←−
Pre(r), Σ, δ←−

Pre
, Lε(r), ε⟩,

where
←−
Pre(r) =

⋃
w∈Σ⋆

←−p w(r) and δ←−
Pre

(r′, σ) = Lε(r
′′) if r′ = σr′′, and δ←−

Pre
(r′, σ) =

∅, otherwise. Then , we have [11]

D(APD(r))/≡Lε ≃ AB(r)/≡Lε ≃ D(A←−
Pre

(r)).

This DFA is interesting because, it is the smallest among several deterministic
automata constructions obtained from regular expressions, although not always
the minimal [11].

For a language L ⊆ Σ⋆ and a word w ∈ Σ⋆ one can also define the right-
quotient of L by w, as Lw−1 = {x | xw ∈ L }. The notions of derivative and
partial-derivative can also be defined in this case, as well as the correspondent
automata. However, that is tantmount to consider the left constructions in the
double reverse, i.e., A(rR)R where R is the reversal operation. Of course, one has
L(A(r)) = L(A(rR)R) = L(r). In particular, A←−

Pre
(r) ≃ APre(r

R)R where APre

is the prefix automaton introduced by Yamamoto [78] and studied in [19, 11].
Broda et al [11] presented a taxonomy of conversions from regular expressions
to finite automaton that includes the above ones and that are related with the
position automaton, which we consider in the next section.

3.1 Position Automaton

The position automaton APOS, introduced by Victor Glushkov [37] in 1961,
permits us to convert a regular expression r into an equivalent NFA without
ε-transitions. McNaughton-Yamada 1960’s automaton [53], AMY, corresponds
to the determinisation of APOS and the construction is similar. Leiss inductive
automaton construction [49] leads to the same automaton [30]. This automaton
is also called standard as it has a unique initial state which is non-returning [70,
71]. Below we will see its connection with the partial derivative automaton, APD.

The states in the position automaton correspond to the positions of alpha-
betic symbols in r plus an additional initial state. Formally, given r ∈ Rk, one
can mark each occurrence of a symbol σ ∈ Σ with its position in r, con-
sidering reading it from left to right. The resulting regular expression is a
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marked regular expression r with all alphabetic symbols distinct. Then, a posi-
tion i ∈ [1, |r|Σ ] corresponds to the symbol σi in r, and consequently to exactly
one occurrence of σ in r. The same notation is used to remove the markings,
i.e., r = r. Let Pos(r) = {1, 2, . . . , |r|Σ}, and let Pos0(r) = Pos(r) ∪ {0}. To de-
fine the APOS(r) we consider the following sets: First(r) = { i | σiw ∈ L(r) },
Last(r) = { i | wσi ∈ L(r) }, and Follow(r, i) = { j | uσiσjv ∈ L(r) }. Given a set
S ⊆ Pos(r) and σ ∈ Σ, let Select(S, σ) = { i | i ∈ S∧σi = σ }. Then, the position
automaton for r is

APOS(r) = ⟨Pos0(r), Σ, δPOS, 0, Last(r) ∪ ε(r){0}⟩,

where δPOS(i, σ) = Select(Follow(r, i), σ).
Champarnaud and Ziadi [28] proved that APD is a quotient of the position

automaton APOS by the right-invariant equivalence relation ≡c, that we define
in the following. Given a position i, for all w ∈ Σ⋆

r , ∂wσi(r) is either empty or
equal to the singleton {c(r, i)}, which element is called the i’s c-continuation of
r. For i ∈ Pos(r), c-continuations are inductively defined by: c(∅, i) = c(ε, i) = ∅,
and c(σi, i) = ε. Now consider r of the form r1 + r2, r1r2, or r⋆1. If i occurs in
r1, then c(r1 + r2, i) = c(r1, i), c(r1r2, i) = c(r1, i)r2, and c(r⋆1, i) = c(r1, i)r

⋆
1. If i

occurs in r2, then c(r1 + r2, i) = c(r1r2, i) = c(r2, i). Considering c(r, 0) = r, for
i, j ∈ Pos0(r) we define i ≡c j ⇔ c(r, i) = c(r, j).

Proposition 1 ([28]). APD(r) ≃ APOS(r)/≡c.

The proof of this proposition relies in the following relations

– ∂+(r) = { c(r, i) | i ∈ Pos(r) };
– ∂σi

(r) = {c(r, i)} ⇐⇒ i ∈ First(r);
– ε(c(r, i)) = ε ⇐⇒ i ∈ Last(r);
– c(r, i) ∈ ∂σi(c(r, j)) ⇐⇒ i ∈ Follow(r, j).

From that, one has that APD(r) ≃ APOS(r)/≡′c, where i ≡′c j ⇔ c(r, i) = c(r, j).
And, thus APD(r) ≃ APOS(r)/≡′c, where A means an automaton equal to A
but with the transition labels unmarked. Now, noting that for σ ∈ Σ, ∂σ(r) =⋃

i∈Select(Pos(r),σ) ∂σi(r), the result follows.

4 Complexity of Partial Derivatives

Here we will focus on the partial derivative based automata constructions and,
due to Proposition 1, on the position automaton. We will consider both the
size of the automata, as well as, the complexity of the associated constructions.
Moreover we restrict to standard regular expressions with union, concatenation,
and Kleene star. First, we consider the APOS.

Proposition 2 ([20, 32, 67]). The position automaton APOS(r) has |r|Σ + 1
states and the number of transitions is Θ(∥r∥2). It can be constructed in O(∥r∥2)
time and use just O(∥r∥) space.
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The star normal form of a regular expression r, introduced by Bruggemann-
Klein [20], corresponds to ensure that in any subexpression s⋆ one has that
ε(s) = ∅. The conversion of an expression to star normal form can be done in
linear time; the APOS of both expressions coincide; and for star normal forms its
construction runs in quadratic time. Gruber and Gulan [38] extended this form
to strong star normal form (ssnf) that is the one we will consider here.

Nicaud [63] studied the average size of APOS for the uniform distribution.
Broda et al. [13], using a variant of the computation of the ssnf(r), improved the
result for the number of transitions.

Proposition 3 ([63]). Asymptotically, and as the alphabet size grows, the av-

erage number of states in APOS is ∥r∥2 .

Proposition 4 ([63, 13]). Asymptotically, and as the alphabet size grows, the
average number of transitions in APOS is ∥r∥.

Now, we turn to the complexity of partial derivatives and APD. The next
two propositions follow directly from Equation (6).

Proposition 5 ([57],[4]Th. 3.4). For any regular expression r ∈ Rk, the fol-
lowing inequality holds |∂+(r)| ≤ |r|Σ.

Proposition 6 ([4], Th. 3.8). Given r ∈ Rk, a partial derivative of r is either
ε or a concatenation r1r2 · · · rn such that each ri is a subexpression of r and n−1
is no greater than the number of occurrences of concatenations and stars in r.

Corollary 1. For r1 ∈ ∂+(r), the size ∥r1∥ is O(∥r∥2).

In general, the same bounds apply for partial derivatives by an alphabetic sym-
bol. To improve the computation of ∂σ(r), Antimirov defined the linear form φ
of a regular expression r that allows the computation of the partial derivatives
by all alphabetic symbols in a unique transversal of the expression:

φ(r) = { (σ, r′) | r′ ∈ ∂σ(r) }. (9)

Proposition 7 ([4, 57]). For r ∈ Rk, we have |φ(r)| ≤ |r|Σ and for (σ, r′) ∈
φ(r), the size ∥r′∥ is O(∥r∥2). If r contains no subexpression of the form r⋆1, then
the size ∥r′∥ is O(∥r∥).

From the above we have

Corollary 2. For r ∈ Rk, |δPD(r)| is O(|r|2Σ).

The following examples show that the above upper bounds are attained.

Example 1. Let rn = a⋆1a
⋆
2 · · · a⋆n, with |r|Σ = n, n ≥ 1. Then ∂+(rn) = { a⋆i · · · a⋆n |

2 ≤ i ≤ n }, and |φ(rn)| = |rn|Σ = n. The largest partial derivative has size

3n− 1, and |δPD(rn)| =
∑n−1

i=1 i = n(n+1)
2 .
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Example 2. Consider r0 = a and rn = (r⋆n−1a), for n ≥ 1 over the unary alphabet
{a}. The size of rn is 3n+ 1, for n ≥ 0. For n ≥ 1, the largest partial derivative
of ∂a(rn) = { ri · · · rn | 1 ≤ i ≤ n } ∪ {ε} is r1r2 · · · rn whose size is

n− 1 +

n∑
i=1

(3i+ 1) =
3n2 + 7n− 2

2
= Θ(n2).

AlthoughAPD is no larger thanAPOS, the quadratic size of the partial deriva-
tives can burden the computation of APD. Before considering the complexity of
the construction algorithms, we recall some average-case estimates.

Proposition 8 ([12, 13]). Asymptotically in the size of the expression r ∈ Rk,
and as the alphabet size grows, the average of upper bounds of: the size of φ(r)

is the constant 6; the size of ∂+(r) is ∥r∥4 ; the size of δPD(r) is
∥r∥
2 .

In particular, we can conclude that, asymptotically, on average the size of APD

is half the size of APOS. The estimation of the average size of partial derivatives
is also important and was studied by Konstantinidis et al [46]. Moreover, if the
regular expression is in ssnf, the size of partial derivalives are on average linear
in the size of the expression. Let Sk be the set of regular expressions in ssnf,
then, we have the following.

Proposition 9 ([46] Th.3 and Th.4). Asymptotically and as the alphabet size
grows, the average of an upper bound of the maximum size of partial derivatives

of r ∈ Rk is
√
π
4 (∥r∥) 3

2 . For s ∈ Sk, that value is ∥s∥2 .

Proposition 6 shows that a partial derivative is a concatenation of subexpres-
sions of the original expression. Thus, one can estimate the average number of
new concatenations when computing ∂σ(r) and ∂+(r).

Proposition 10 ([46, 45]). Asymptotically and as the alphabet size grows: the
average of an upper bound of the number of new concatenations in a partial
derivative by an alphabetic symbol of a regular expression s ∈ Sk is 14; the aver-
age of an upper bound of the number new concatenations in all partial derivatives
of a regular expression s ∈ Sk is 1

8

√
π
2 ∥s∥

3
2 .

4.1 Complexity of Building APD

Antimirov [4] presented a construction of the APD with worst-case time com-
plexity O(|r|3Σ∥r∥2) and worst-case space complexity O(|r|Σ∥r∥2). Mirkin’s con-
struction of APD has a worst-case time complexity O(∥r∥3). Champarnaud and
Ziadi [31] presented a quadratic algorithm to construct APD that first builds
APOS and then, using Proposition 1, computes the equivalence relation ≡c

on the set of states of APOS. The set of c-continuations can be computed in
O(∥r∥2|r|Σ). To compute the relation ≡c one can lexicographically sort the set
of c-continuations using Paige and Tarjan linear algorithm [66] and then com-
pare consecutive identical expressions. Thus, the set ∂+(r) can be computed in
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O(∥r∥2|r|Σ) time and space. But several improvements can be done and Cham-
parnaud and Ziadi showed that APD(r) can be computed in time and space
O(∥r∥2).

An improved method was proposed by Khorsi and Ziadi [43], which has
worst-case time and space complexity O(∥r∥|r|Σ). The main difference is the
substitution of the lexicographic sorting of the c-continuations by the minimi-
sation of an acyclic DFA and which can be performed in time O(∥r∥) [68]. More
recently Ouardi et al [65] presented a similar algorithm using the Thompson
automaton, Aε-T, instead of APOS.

For practical applications, the drawbacks of these methods rely on the need
to build a larger automaton and the computation of equivalence relations. Thus,
it is interesting to construct the APD in quadratic time and linear space avoiding
the computation of larger automata. Using the average estimates given above,
Konstantinis et al [45] presented an algorithm for computing APD which for

ssnf expressions of size n uses, on average, time O
(
n3/2 4

√
log(n)

)
and space

O
(
n3/2/(log n)3/4

)
. The regular expression and the set of its partial derivatives

are represented by a directed acyclic graph (DAG) with shared common subex-
pressions. Flajolet et al. [35] showed that a tree of size n has, in this compact
form, an expected size of O

(
n /
√
log n

)
. The algorithm computes APD(r) by

constructing a DAG for r, and simultaneously builds the set of all partial deriva-
tives by adding new concatenation nodes to the DAG. Empirical tests suggest
that this algorithm can outperform Khorsi and Ziadi’s algorithm.

A possible advantage of a direct method is its easy adaptation to other regular
operations, such as intersection and shuffle [7, 16, 75], and its efficient extension to
decision problems such as membership and equivalence. Partial derivatives have
already been considered for solving these problems, but a fine-grain complexity
analysis is needed [3, 64, 74, 59, 26].

5 Beyond Regular Languages

The notions of derivative and partial derivative are easily extended to other
regularity preserving operations. We note that even for intersection and shuffle
extending the position automaton is more challenging [15, 18]. However, in some
cases, e.g. intersection, the Mirkin’s construction may lead to automata that are
not initially connected [8].

As left-quotients are defined for any formal language, derivatives have been
defined for context-free languages both considering grammars and µ-expressions [1,
76]. Interestingly, parsing context-free grammars with derivatives can be achieved
in cubic time. Parsing expression grammars (PEG) are a recognition-based for-
malism for which parsing can be achieved in linear time. Deterministic context-
free languages are recognisable by PEGs but it is not known if all context-
free grammars are recognisable, although some non-context-free languages are.
Derivatives for PEGs were proposed in [60].

Derivatives of weighted rational expressions, that represent formal power
series with coefficients in a semiring, have also been extensively studied [50, 29,
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70, 71]. In this case, derivatives are also connected with the notion of quotient
of a series. In the same manner, if one consider trees instead of words the above
methods can be extended to tree regular expressions and tree automata [55, 56,
54].

More recently, partial derivatives for regular expressions with labels over
finitely generated monoids (possible non-free) were studied by Konstantinidis
et al [47] and also by Demaille [34]. In particular, those expressions allow to
represent (weighted) rational relations. In this case, using an appropriate version
of the linear form of an expression, the equations (8) and (6) hold and a partial
derivative automaton can be defined. Lombardy and Sakarovitch [51] expanded
and generalised this approach, showing that the partial derivative automaton is
a quotient of position automaton, even considering weighted regular expressions
over non free monoids.

Finally we briefly point to the fast literature on category theory of automata
and algebraic and coalgeraic approaches to characterise general state-based sys-
tems where the notion of derivative plays also an important role [69, 73, 10, 42].
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