
Block Languages and their Bitmap
Representations

Guilherme Duarte[0000−0002−4119−0694]1, Nelma Moreira[0000−0003−0861−0105]1,
Luca Prigioniero[0000−0001−7163−4965]2, and Rogério Reis[0000−0001−9668−0917]1⋆

1 CMUP & DCC, Faculdade de Ciências da Universidade do Porto
Rua do Campo Alegre, 4169-007 Porto, Portugal

{guilherme.duarte,nelma.moreira,rogerio.reis}@fc.up.pt
2 Department of Computer Science, Loughborough University, UK

L.Prigioniero@lboro.ac.uk

Abstract. In this paper we consider block languages, namely sets of
words having the same length, and we propose a new representation
for these languages. In particular, given an alphabet of size k and a
length ℓ, a block language can be represented by a bitmap of length kℓ,
where each bit indicates whether the corresponding word, according to
the lexicographical order, belongs, or not, to the language (bit equal to 1
or 0, respectively). This representation turns out to be a good tool for
the investigation of several properties of block languages, making proofs
simpler and reasoning clearer. First, we show how to convert bitmaps into
deterministic and nondeterministic finite automata. We then focus on the
size of the machines obtained from the conversion and we prove that their
size is minimal. Finally, we give an analysis of the maximum number of
states sufficient to accept every block language in the deterministic and
nondeterministic case.

1 Introduction

In the area of formal languages and automata theory, the class of regular lan-
guages is one of the most investigated. Classical recognizers for this class are
finite automata, in both deterministic and nondeterministic variants. The capa-
bilities of these machines to represent languages in a more or less succinct way
have been widely studied in the area of descriptional complexity. In this context,
the size of a model is measured in terms of number of symbols used to write
down its description. In the specific case of finite automata, it is often considered
the number of states as a measure of complexity. In this area, the minimality
of finite automata has been also studied. For example, it is well known that,
given a language, the deterministic finite automaton of minimal size accepting
it is unique (up to isomorphisms), and there exist efficient algorithms for the

⋆ This work was partially supported by CMUP, member of LASI, which is financed by
national funds through FCT – Fundação para a Ciência e a Tecnologia, I.P., under
the projects with reference UIDB/00144/2020 and UIDP/00144/2020.

2 G. Duarte, N. Moreira, L. Prigioniero, R. Reis

minimization of these machines [2]. The situation in the nondeterministic case
is more challenging as minimal nondeterministic finite automata are not nec-
essarily unique. Furthermore, given an integer n, deciding whether there is a
nondeterministic finite automaton with less than n states accepting a language
is a PSPACE-hard problem [17]. In this paper we consider finite languages where
all words have the same length, which are called homogeneous or block languages.
Their investigation is mainly motivated by their applications to several contexts
such as code theory [4,9] and image processing [6,7]. A typical problem in code
theory is the construction of (maximal) block languages (codes) capable of de-
tecting and correcting errors. Several properties of block codes using automata
theory have also been studied, e.g. [15]. On the other hand, an image can be
represented by a set of words of a same length (pixels). Then, automata can be
used to generate, compress, and manipulate images.

As a subclass of finite languages, block languages inherit some properties
known for that class. For instance, the minimization of deterministic finite au-
tomata can be done in linear time in the case of finite (and hence also block)
languages [13]. Due to the fact that all words have the same length, there are
some gains in terms of descriptional complexity. It is known that the elimina-
tion of nondeterminism from an n-state nondeterministic finite automaton for a
block language costs 2Θ(

√
n) in size [7], which is smaller than the general case, for

which the cost in size is 2Θ(n) [11,14]. The maximum number of states of mini-
mal deterministic finite automata for finite and block languages were studied by
Câmpeanu and Ho [3], and Hanssen and Liu determined the number of block
languages that attain the maximum state complexity [8]. Minimal determinis-
tic finite automata for finite languages were enumerated by Almeida et al. [1].
Asymptotic estimates and exact formulae for the number of n-state minimal
deterministic finite automata accepting finite languages over alphabets of size k
were obtained by J. Priez [12] and by Price et al. [5].

Here we propose a new representation for block languages. In particular, given
an alphabet of size k and a length ℓ, each block language can be represented
by a binary string of length kℓ, also called bitmap, in which each symbol (or
bit) indicates whether the correspondent word, according to the lexicographical
order, belongs to the language (bit equal to 1) or not (bit equal to 0). We use this
representation as a tool to investigate several properties of block languages. More
precisely, in Sections 4 and 5 we show how to convert bitmaps into deterministic
and nondeterministic finite automata, respectively. It is important to notice that
the devices yielded by such conversions have minimal size. While the conversion
to deterministic finite automata can be done in polynomial time in the size of
the bitmap, we prove that the transformation in the nondeterministic case is
NP-complete. For the deterministic case, we also refine the analysis of the state
complexity of block languages given by Câmpeanu and Ho [3], and we present a
family of languages that witnesses the optimality of such costs (Section 4.1). On
the other hand, for nondeterministic finite automata, we determine the sufficient
number of states to accept every block language (Section 5.1).

Block Languages and their Bitmap Representations 3

2 Preliminaries

In this section we review some basic definitions about finite automata and lan-
guages and fix notation. Given an alphabet Σ, a word w is a sequence of symbols,
and a language L ⊆ Σ⋆ is a set of words on Σ. The empty word is represented
by ε. The (left) quotient of a language L by a word w ∈ Σ⋆ refers to the set
w−1L = {w′ ∈ Σ⋆ | ww′ ∈ L}. The reversal of a word w = σ0σ1 · · ·σn−1 is
denoted as wR and is obtained by reversing the order of the symbols of w, that
is wR = σn−1σn−2 · · ·σ0. Given two integers i, j with i < j, let [i, j] denote the
range from i to j, including both i and j, namely {i, . . . , j}. Moreover, we shall
omit the left bound if it is equal to 0, thus [j] = {0, . . . , j}.

A nondeterministic finite automaton (NFA) is a five-tuple A = ⟨Q,Σ, δ, I, F ⟩
where Q is a finite set of states, Σ is a finite alphabet, I ⊆ Q is the set of
initial states, F ⊆ Q is the set of final states, and δ : Q × Σ → 2Q is the
transition function. We consider the size of an NFA as its number of states. The
transition function can be extended to words and sets of states in the natural way.
When I = {q0}, we use I = q0. An NFA accepting a non-empty language is trim
if every state is accessible from an initial state and every state leads to a final
state. Given a state q ∈ Q, the right language of q is Lq(A) = {w ∈ Σ⋆ | δ(q, w)∩
F ̸= ∅ }, and the left language is

←−
L q(A) = {w ∈ Σ⋆ | q ∈ δ(I, w) }. The language

accepted by A is L(A) =
⋃

q∈I Lq(A). An NFA A is minimal if it has the smallest
number of states among all NFAs that accept L(A). An NFA is deterministic
(DFA) if |I| = 1 and |δ(q, σ)| ≤ 1, for all (q, σ) ∈ Q×Σ. We can convert an
NFA into an equivalent DFA by using the well-known subset construction. Two
states q1, q2 of an automaton A are equivalent (or indistinguishable) if Lq1(A) =
Lq2(A). If a DFA is minimal it has no equivalent states and it is unique up to
renaming of states. IfA is the minimal DFA for L, then, for each state q, Lq(A) =
w−1

q L for some wq ∈ Σ⋆, and if q ̸= q′ then w−1
q L ̸= w−1

q′ L. The state complexity
of a language L, denoted sc(L), is the size of the minimal DFA accepting L. The
nondeterministitic state complexity of a language L, denoted nsc(L), is defined
analogously.

A trim NFA A = ⟨Q,Σ, δ, I, F ⟩ for a non-empty finite language, whose
longest word is ℓ ≥ 0, is acyclic and ranked, i.e., the set of states Q can be
partitioned into Q0 ∪ Q1 ∪ · · · ∪ Qℓ such that for every state q in rank Qr,
A reaches a final state by words of length at most r (Qr = {q ∈ Q | ∀w ∈
Σ⋆, δ(q, w) ∈ F =⇒ |w| ≤ r}) and all transitions from states in rank Qr lead
only to states in rank Qs, with s < r. We define the width of a rank Qr as the
cardinality of Qr, the width of A to be the maximal width of all ranks. In the
following, for the ease of notation, we shall denote the ranks by their indices,
e.g., we refer to rank Qr as rank r.

A DFA for a finite language is also ranked but it may have a dead state Ω,
which is the only cyclic state, is usually omitted, and has no rank. Formally,
A = ⟨Q ∪ {Ω}, Σ, δ, q0, F ⟩, with F ⊆ Q, q0 ̸= Ω, and, for each symbol σ ∈ Σ,
δ(Ω, σ) = Ω. Moreover, for each nonempty word w and each state q ∈ Q,
δ(q, w) ̸= q. In a trim acyclic automaton, two states q and q′ are equivalent if
they are both in the same rank, either final or not final, and their transition

4 G. Duarte, N. Moreira, L. Prigioniero, R. Reis

functions lead to equivalent states, i.e., δ(q, w) ∈ F ⇐⇒ δ(q′, w) ∈ F , for each
word w ∈ Σ⋆. An acyclic DFA can be minimized by merging equivalent states
and the resulting algorithm runs in linear time in the size of the automaton
(Revuz algorithm, [1,13]).

In the following we shall consider sequences of Boolean values, B ∈ {0, 1}n
that we denote by bitmaps. Given two bitmaps B1,B2 ∈ {0, 1}n, B1 ◦B2 rep-
resents the bitmap obtained by carrying out the bitwise operation ◦ ∈ {∨,∧},
and B1 the bitwise complement of B1.

3 Block Languages and Bitmaps

Given an alphabet Σ = {σ0, . . . , σk−1} of size k > 0 and an integer ℓ ≥ 0, a
block language L ⊆ Σℓ is a set of words of length ℓ over Σ. The language L can

be characterized by a word in {0, 1}kℓ

that we call bitmap and denote as

B(L) = b0 · · · bkℓ−1,

where bi = 1 if the word w is in L, and i ∈ [kℓ − 1] is the index of w in the
lexicographical ordered list of all the words of Σℓ. We will denote the bitmap of
a language as B when it is unambiguous to which language the bitmap refers to.

Moreover, each bitmap B ∈ {0, 1}kℓ

represents a block language of length ℓ over a
k-ary alphabet, thus one can use any alphabet of size k. Boolean bitmap bitwise
operations trivially correspond to boolean set operations on block languages of
the same length.

Example 1. Let L = {aaaa, aaba, aabb, abab, abba, abbb, babb, bbaa, bbab, bbba} be
a language over {a, b} and ℓ = 4. The bitmap of L is B(L) = 1011011100011110.

A bitmap B ∈ {0, 1}kℓ

can be split into factors of length kr, for r ∈ [ℓ].
Let sri = bikr · · · b(i+1)kr−1 denote the i-th factor of length kr, for i ∈ [kℓ−r − 1].
Since each factor of length kr can also be split into k factors, sri is inductively
defined as:

sri =

{
bi, if r = 0,

sr−1
ik · · · sr−1

(i+1)k−1, otherwise.

The following lemma formally introduces the observation that each factor sri ,
with r ∈ [ℓ] and i ∈ [kℓ−r − 1], represents the bitmap of a quotient of L.

Lemma 1. Let L ⊆ Σℓ be a block language, |Σ| = k, ℓ ≥ 0, and B the bitmap
of L. Let r ∈ [ℓ], i ∈ [kℓ−r − 1], and w ∈ Σℓ−r be the word of index i of size
ℓ− r, in lexicographic order. Then, sri corresponds to the bitmap of w−1L.

Proof. Let us prove by induction on r ∈ [ℓ]:

– Base case r = 0: by definition, s0i = bi. Additionally, we have that bi = 1 if
the word w is the i-th word inΣℓ and w ∈ L. Since |w| = ℓ either w−1L = {ε}
or w−1L = ∅, according to the membership of w in L.

Block Languages and their Bitmap Representations 5

– Inductive step: since r > 0, we have that sri = sr−1
ik · · · sr−1

(i+1)k−1. By hypoth-

esis, we have that sr−1
ik+j corresponds to the bitmap of the language w−1

j L,
where wj denotes the (ik + j)-th word of length ℓ − (r − 1) over Σ, for
each j ∈ [k− 1]. One can observe that the words (wj)j∈[k−1] are all equal on
the first ℓ− r symbols corresponding to the i-th word of size ℓ− r. Thus, sri
corresponds to the bitmap of the quotient of L by the i-th word of length ℓ−r.

⊓⊔

Example 2. Recall the Example 1, where B = 1011011100011110, k = 2 and
ℓ = 4. We have that s20 = 1011 is the bitmap of (aa)−1L = {aa, ba, bb}, s31 =
00011110 the bitmap of b−1L = {abb, baa, bab, bba}, and s40 = B the bitmap of L.

Given a bitmap B ∈ {0, 1}kℓ

, let Br be the set of factors of B of length kr,
for r ∈ [ℓ], in which there is at least one bit different than zero, that is,

Br = { s ∈ {0, 1}k
r

| ∃i ∈ [kℓ−r − 1] : s = sri and sri ̸= 0k
r

}.

Example 3. Consider the bitmap of Example 1, B = 1011011100011110, with k =
2 and ℓ = 4. We have B0 = {1}, which contains the only factor of length 1 in B
different than 0, B1 = {01, 10, 11}, which contains the factors of length 2 different
than 00 occurring in even positions of B, B2 = {0001, 0111, 1011, 1110}, which
contains the factors of length 4 in positions multiple of 4 in B. Analogously, we
have B3 = {00011110, 10110111} and B4 = {B}.

The size of Br is bounded by the number of factors with size kr. Additionally,
each factor is a composition of factors from the previous set. These two conditions
are formally stated in the following lemma.

Lemma 2. Let L ⊆ Σℓ be a block language of words of length ℓ ≥ 0 over an
alphabet Σ of size k > 0, with a correspondent bitmap B. Then, the cardinality
of Br is bounded by:

|Br| ≤

{
1, if r = 0,

min(kℓ−r, (|Br−1|+ 1)k − 1), otherwise.

Proof. The case r = 0 is trivial, as B0 contains at most the factor 1. This happens
when L is not empty. Since there are at most kℓ−r unique factors of size kr in
a bitmap of size kℓ, for r ∈ [ℓ], then |Br| ≤ kℓ−r. Now, let s ∈ Br, for some
r ∈ [1, ℓ]. By definition, s = s0 · · · sk−1 (with |sj | = kr−1), and either sj ∈ Br−1

or it is composed only by zeros, for every j ∈ [k− 1]. Since s ∈ Br, it must have
at least one bit equal to 1. Therefore, |Br| ≤ (|Br−1|+ 1)k − 1. ⊓⊔

The sets Br are related to the states of the finite automata representing
the block language with bitmap B, as described in the next sections. A finite
automaton for a block language is, of course, also acyclic and ranked. If two
states belong to the same rank, their right languages contain only words of
the same length. All final states belong to Q0 and, therefore, can be merged.
Additionally, if an NFA for a block language has multiple initial states, they can
also be merged.

6 G. Duarte, N. Moreira, L. Prigioniero, R. Reis

4 Bitmaps for Block Languages and Minimal DFAs

In this section we relate the bitmap of a block language to its minimal DFA.
Given a bitmap B associated with a block language L ⊆ Σℓ, with |Σ| = k
and ℓ ≥ 0, one can directly build a minimal DFA A for L. Let Q =

⋃
r∈[ℓ] Br be

the set of states of A, and the transition function mapping the states in Br with
the ones in Br−1, r ∈ [1, ℓ]. We will now detail this construction. We start by
the final state, that is the factor 1 ∈ B0, as well as the dead state corresponding
to the factor 0. Then, for each rank r = 1, . . . , ℓ, we consider every factor s ∈ Br
as a state in rank r. As stated in Lemma 1, every factor s corresponds to the
bitmap of the quotient of the language L by some word w. The transitions from
s are then given by the decomposition of s into s0 · · · sk−1, where |si| = kr−1,
for every i ∈ [k − 1]. Then, we set δ(s, σi) = si, where si ∈ Br−1. Note that,
if the language L is not empty, this construction creates exactly one initial and
one final state, since |B0| = |Bℓ| = 1.

Lemma 3. Let L ⊆ Σℓ be a block language with bitmap B, where ℓ ≥ 0. Then,
the DFA A obtained by applying the above construction to B accepts L, that
is, L(A) = L.

Proof. Let us show that both L(A) ⊆ L and L ⊆ L(A).

– L(A) ⊆ L: Let w ∈ Σℓ \ L. By construction, each state of A is also a factor
which, by Lemma 1, is the bitmap of the quotient of L by some word. Since
w /∈ L, w can be split into two words w = w1w2 such that w−1

1 L = ∅.
Then, since for every word x, x−1∅ = ∅, we get w−1L = (w1w2)

−1L =
w2

−1(w−1
1 L) = ∅. The empty language corresponds to the bitmap associated

with the dead state, therefore w /∈ L(A).
– L ⊆ L(A): Let w ∈ L. Then, w−1L = {ε}, whose bitmap is the final state,

therefore w ∈ L(A). ⊓⊔

Lemma 4. Let L ⊆ Σℓ be a block language with bitmap B, where ℓ ≥ 0. Then,
the DFA A obtained by applying the above construction to B is minimal.

Proof. Let s1, s2 be two distinct states of A. It can be noticed that if s1 and s2
do not belong to the same rank, they are distinguishable. Otherwise, if they
belong to the same rank, by construction, s1 ̸= s2, and consequently they have
distinct right languages. Therefore, s1 and s2 are distinguishable. ⊓⊔

Combining the results of Lemmas 3 and 4, we obtain:

Theorem 1. Let L ⊆ Σℓ be a block language. The above construction of a DFA
from the bitmap B(L) yields the minimal DFA for L.

Example 4. Let L ⊆ {a, b}4 be the language of Example 1 with bitmap B(L) =
1011011100011110. The correspondent minimal DFA is depicted in Fig. 1. The
final state (in rank 0) labeled by s00 represents the bitmap factor 1 and the
dead state is omitted as well as all transitions from and to it. States in rank

Block Languages and their Bitmap Representations 7

1 correspond to 2-bit factors, in this case: s10 = 10, s11 = 11, and s12 = 01. We
have δ(s10, a) = s00, δ(s

1
2, b) = s00, etc. States in rank 2 correspond to 22 = 4-

bit words: s20 = 1011, s21 = 0111, s22 = 0001 and s23 = 1110. And we have, for
instance, δ(s20, a) = s10 and δ(s20, b) = s11. Similarly for ranks 3 and 4. The initial
state corresponds to B.

B

s31

s30

s22

s21

s23

s20

s12

s11

s10

s00

a

b

a

b

a

b

b

a

b

a

b

a

b

b

a, b

a

rank 2rank 3rank 4 rank 1 rank 0

Fig. 1. Minimal DFA accepting the language of Example 1, where s00 = 1, s10 = 10,
s11 = 11, s12 = 01, s20 = 1011, s21 = 0111, s22 = 0001, s23 = 1110, s30 = 10110111,
s31 = 00011110, and B = 1011011100011110.

4.1 Maximal Size of Minimal DFAs for Block Languages

Câmpeanu and Ho [3] showed that the number of states of a DFA accepting
a block language L ⊆ Σℓ, over an alphabet of size k and ℓ ≥ 0, is at most
kℓ−r−1
k−1 +

∑r−1
n=0(2

kn − 1) + 1, where r = min{n ∈ [ℓ] | kℓ−n ≤ 2k
n − 1}. In the

next result we give an estimation of the value of r.

Theorem 2. Let ℓ > 0, k > 1, and r = min{n ∈ [ℓ] | kℓ−n ≤ 2k
n − 1}.

Then, r = ⌊logk ℓ⌋+ 1 + x, for some x ∈ {−1, 0, 1}.

Proof. By definition of r, we have that both the following inequalities hold:
kℓ−r ≤ 2k

r − 1 and kℓ−(r−1) > 2k
r−1 − 1. From the first inequality we obtain:

kℓ−r ≤ 2k
r

− 1 =⇒ kℓ−r < 2k
r

=⇒ (ℓ− r) · log2 k < kr =⇒
=⇒ logk(ℓ− r) + logk(log2 k) < r =⇒

=⇒ logk(ℓ− r) < r =⇒ logk(ℓ(1−
r

ℓ
)) < r =⇒

=⇒ logk ℓ+ logk(1−
r

ℓ
) < r =⇒ logk ℓ < r

8 G. Duarte, N. Moreira, L. Prigioniero, R. Reis

While, from the second inequality, we get:

kℓ−r+1 > 2k
r−1

− 1 =⇒ kℓ−r+1 ≥ 2k
r−1

=⇒
=⇒ (ℓ− r + 1) · log2 k ≥ kr−1 =⇒

=⇒ logk(ℓ− r + 1) + logk(log2 k) ≥ r − 1 =⇒

=⇒ logk(ℓ− r + 1) > r − 2 =⇒ logk ℓ+ logk(1 +
1− r

ℓ
) > r − 2

=⇒ logk ℓ > r − 2

⊓⊔
We now present a family of witness languages recognized by minimal DFAs

of maximal size, according to the bounds given in Theorem 2. The bitmaps of
these languages correspond to sequences of binary representations of the first m
positive integers, as we will see in Lemma 5. Given an integer i, let us denote
by i[2] its binary representation, and let pad(s, t) be the function that adds
leading zeros to a binary string s until its length equals t. Moreover, to indicate
that the j-th least significant bit of i[2] is 1, we will use the notation i ∧ 2j ̸= 0.

Given a block language L ⊆ Σℓ and a word w ∈ L, we denote by ind(w) the
index of w in the lexicographical ordered list of the words of Σℓ.

Let ℓ > 0, k = 2, and r = min{n ∈ [ℓ] | 2ℓ−n ≤ 22
n − 1} as in Theorem 2. In

a minimal DFA with maximal size, the rank having the largest size is either r
or r − 1, depending on whether 2ℓ−r > 22

r−1 − 1 or not, respectively. Let rℓ
be that rank and m = max(2ℓ−r, 22

r−1 − 1) its width. Then, we consider the
following family of witnesses, defined for every ℓ > 0:

MAXℓ = {w1w2 |w1 ∈ Σℓ−rℓ , w2 ∈ Σrℓ ,

i = ind(w1), j = ind(w2), (i+ 1) ∧ 2j ̸= 0}.

Example 5. For ℓ = 5, we have r = min{n ∈ [5] | 25−n ≤ 22
n − 1} = 2.

Moreover, m = max(25−2, 22
2−1 − 1) = max(8, 3) = 8, implying that rℓ = r.

Then, consider for Σ = {a, b},

MAX5 = {aaaaa, aabab, abaaa, ababa, abbba, baaaa,
baaba, babab, babba, bbaaa, bbaab, bbaba, bbbbb}.

For example, let w1 = baa where i = ind(w1) = 4 and (i+1)[2] = 101. For j = 0
and j = 2, we have that (i+ 1) ∧ 2j ̸= 0, which correspond to the words aa and
ba, respectively. Thus, baaaa, baaba ∈ MAX5.

Lemma 5. Let r, rℓ, and m be defined as before for ℓ > 0 and alphabet size
k = 2. Let Pm,rℓ =

∏m
i=1 pad(i[2], 2

rℓ)R. Then, the bitmap of the language MAXℓ

is given by

B(MAXℓ) =

{
Pm,rℓ , if m = 2ℓ−r,

Pm,rℓ · 02
rℓ , if m = 22

r−1 − 1.

Block Languages and their Bitmap Representations 9

Proof. Let us show that the bitmap is correct, for either value of m.

1. m = 2ℓ−r:
In this case rℓ = r. Also, |B(MAXℓ)| = 2ℓ. Let w1 ∈ Σℓ−rℓ , i = ind(w1),
w2 ∈ Σrℓ , and j = ind(w2). We must prove that w2 ∈ w−1

1 MAXℓ if, and only
if, the j-th most significant bit of (i+1)R[2] is set to 1, and vice versa. If w2 ∈
w−1

1 MAXℓ then, by definition, the j-th bit of the binary representation of
i + 1 is set to 1, that is, (i + 1) ∧ 2j ̸= 0, thus the condition holds. In the
other direction a similar argument applies.

2. m = 22
r−1 − 1:

Now, rℓ = r − 1. Let us first prove that the size of B(MAXℓ) is 2
ℓ. It can be

noticed that both 22
r−1 − 1 > 2ℓ−r and 22

r−1 − 1 < 2ℓ−r+1 hold. These two
conditions imply that 2r−1 = ℓ − r + 1. Then, |B(MAXℓ)| = 2r−122

r−1

=
2ℓ−r+1+r−1 = 2ℓ.
Since m is odd, we add a padding of 2rℓ zeros to ensure that the length of
the bitmap is 2ℓ. By Lemma 1, these particular bits of the bitmap corre-
spond to w−1

1 MAXℓ such that ind(w1) = 22
r−1 − 1. Thus, we need to prove

that w−1
1 MAXℓ = ∅. By the definition of MAXℓ, for (i+1)∧2j ̸= 0 to hold, j

must be at least 2r−1, but for every w2 ∈ Σrℓ we have ind(w2) ≤ 2r−1 − 1.
Thus, w−1

1 MAXℓ = ∅. ⊓⊔

Example 6. According to Lemma 5, the bitmap of the language MAX5 given
in Example 5 is

B(MAX5) =

8∏
i=1

pad(i[2], 4)
R = 10000100110000101010011011100001.

To have a DFA of maximal size for a block language contained in Σℓ, for

some ℓ ≥ 0, the width of each rank r′ ∈ [ℓ] must be either 22
r′ −1, for r′ ∈ [r−1],

or 2ℓ−r′ , for r′ ∈ [r, ℓ], from which the result from Câmpeanu and Ho was
established [3]. From this observation, it follows:

Lemma 6. Let r, rℓ, and m be defined as before for ℓ > 0 and alphabet size
k = 2. Then, the minimal DFA accepting the language MAXℓ has maximal size.

Proof. Let Q = Q0 ∪ . . .∪Qℓ be the set of states of the minimal DFA for MAXℓ,
such that q ∈ Qr′ is in rank r′ ∈ [ℓ]. Then, the DFA has maximal size if |Qr′ | =
22

r′ − 1, for r′ ∈ [r − 1], and if |Qr′ | = 2ℓ−r′ , for r′ ∈ [r, ℓ]. To that aim, one
analyses the cardinalities of the sets Br′ , with r′ ∈ [ℓ], for the possible values of
m.

1. m = 2ℓ−r:

(a) (∀r′ ∈ [r − 1])|Br′ | = 22
r′ − 1: we have that Br′ = {pad(i[2], 2r

′
)R | ∀i ∈

[1,m]}. Since both |Br′ | ≤ 22
r′ − 1 and m ≥ 22

r′ − 1, the proposition
holds.

10 G. Duarte, N. Moreira, L. Prigioniero, R. Reis

(b) (∀r′ ∈ [r, ℓ])|Br′ | = 2ℓ−r′ : clearly |Br| = 2ℓ−r. Let x ∈ [ℓ − r] and r′ =
r+x. The set Br′ is given by splitting B(MAXℓ) into factors of length 2r

′
.

Of course, |Br′ | = 2ℓ−r′ .

2. m = 22
r−1 − 1:

(a) (∀r′ ∈ [r − 1])|Br′ | = 22
r′ − 1: analogous to the first case (1a).

(b) (∀r′ ∈ [r, ℓ])|Br′ | = 2ℓ−r′ : it suffices to show that |Br| = 2ℓ−r, as we saw
on the previous case (1b). By construction, B(MAXℓ) is composed by m
different blocks of length 2rℓ and a single block of zeros. Since m is odd,
each element of Br, consisting of blocks of length 2r, will be equal either
to the binary representation of two consecutive numbers or the second
number represented is zero. Therefore, |Br| = 22

r−1−1 and, as mentioned
in proof of Lemma 5, 2r−1 = ℓ− r + 1. Then, |Br| = 2ℓ−r. ⊓⊔

5 Bitmaps for Block Languages and Minimal NFAs

We now show that the bitmap of a block language L can be used to obtain a
minimal NFA for L. However, in this case the problem is NP-complete. Given
a bitmap B associated with a block language L ⊆ Σℓ, one can build a minimal
NFA similarly to the previous construction for minimal DFAs, by iteratively
finding the minimal number of states required at each rank. The main difference
with the deterministic case is that the quotients of the language, corresponding
to factors from the bitmap, are represented by sets of states, instead of single
ones.

First, let us define what a cover is. Let C be a finite set of binary words of
length n, that is, C ⊆ 2{0,1}

n

, for some n ∈ N. We say that C is a cover for
a word s ∈ {0, 1}n (or, alternatively, s is covered by C) if there is a subset of
words in C such that the bitwise disjunction of those words equal s. Formally, C
covers s if and only if (∃m ∈ [1, | C |])(∃{c1, . . . , cm} ⊆ C)(

∨m
i=1 ci = s).

We extend this definition to sets in the natural way, that is, C is a cover of
a finite set of binary words B if every word in B is covered by C. Moreover, we
say that C is a minimal cover for B if there is no smaller set that covers B.

Example 7. Let C = {1100, 1010, 0001} and B = {1100, 1110, 1101, 1111}. Then, C
covers B because C covers every word from B:

– 1100 = 1100;
– 1110 = 1100 ∨ 1010;
– 1101 = 1100 ∨ 0001;
– 1111 = 1100 ∨ 1010 ∨ 0001.

One can observe that the set C is a minimal cover for B, but it is not unique
since C′ = {1100, 0010, 0001} also cover B and | C | = | C′ |.

Let us now show how to obtain an NFA for a non-empty block language L ⊆
Σℓ, for some ℓ ≥ 0 and an alphabet Σ = {σ0, . . . , σk−1} of size k, and with
bitmap representation B. The construction starts as before, where the final
state 1 is added at rank 0. Additionally, we define the function ρ : {0, 1}⋆ →

Block Languages and their Bitmap Representations 11

2{0,1}
⋆

which maps a factor into the set that covers it. First, let ρ(1) = {1}.
Then, for each rank i = 1, 2, . . . , ℓ, we look for the minimal set Ci that covers
the set Bi, the collection of factors of B with length ki with at least one bit set
to 1.

The rank i in the NFA will be Ci. Subsequently, for each factor s ∈ Bi we
set ρ(s) = {c0, . . . , cm−1} ⊆ Ci, such that ρ(s) covers s.

The transitions from rank i to rank i−1 will then be determined in a similar
way to the DFA construction. For each state c in rank i, we split c = c0 · · · ck−1,

where |cj | = ki−1, for every j ∈ [k − 1], and set δ(c, σj) = ρ(cj), if cj ̸= 0k
i−1

.
We must also guarantee that ρ is defined in cj , i.e., that cj ∈ Bi−1. For that,

we need to limit the search space of the cover Ci, so that each word in the set is a
concatenation of k words from Bi−1 or 0k

i−1

. Formally, Ci ⊆ (Bi−1∪0k
i−1

)k \0ki

.
Also, as we previously saw, Bℓ = {B}, so the minimal cover for Bℓ is itself.

This result implies that B will be the single initial state at rank ℓ.

Lemma 7. Let L ⊆ Σℓ be a block language, for some ℓ ≥ 0, with bitmap B.
Then, the NFA A given by the above construction applied to B accepts L, that
is, L(A) = L.

Proof. Recall the construction of the minimal DFA from a bitmap in Lemma 3.
For r ∈ [ℓ], let s ∈ Br be a state from the DFA. By construction, ρ(s) =
{c0, . . . , cn−1}, where ci are states in A that exactly cover the bitmap s. As
L(s) =

⋃
i∈[n−1] L(ci), one concludes that L(A) = L. ⊓⊔

Lemma 8. Let L ⊆ Σℓ be a block language, for some ℓ ≥ 0, with bitmap B.
Then, the NFA A given by the above construction applied to B is minimal.

Proof. Let w ∈ Σℓ−r, for some r ∈ [ℓ], and P be the set of states reachable from
the initial state q0 of A after consuming w, that is, P = δ(q0, w). Let P1, P2 be
two non-empty subsets of P such that P1∩P2 ̸= ∅ and let s1 =

∨
q∈P1

q and s2 =∨
q∈P2

q correspond to the bitmaps of the right languages of the states P1 and P2,
respectively. Suppose that s1 = s2, so P1 and P2 cover the same bitmaps. Then,
Cr \P2 would also cover the set Br, hence Cr would not be minimal. ⊓⊔

From Lemmas 7 and 8, we obtain the following.

Theorem 3. The construction of an NFA from a bitmap B of a block lan-
guage L ⊆ Σℓ results in a minimal NFA A such that L(A) = L.

Example 8. Let L ⊆ {a, b}4 be the language of Example 1 with bitmap B =
1011011100011110. A correspondent NFA is depicted in Fig. 2. One has B1 =
{01, 11, 10} but C1 = {01, 10} is a minimal cover. Thus, only two states are
needed in rank 1 of the NFA. Then, B2 = {1011, 0111, 0001, 1110}, and let C2 =
{1010, 0110, 0001}. We have 1011 = 0001∨1010, 0111 = 0110∨0001, and 1110 =
1010∨0110. In rank 3 two states are needed and rank 4 has only the initial state.

The problem of obtaining a minimal NFA from the bitmap is NP-complete,
as proved in the following result.

12 G. Duarte, N. Moreira, L. Prigioniero, R. Reis

c0

c1

c2

c4

c3

c5

c6

c7

c8

a

b

b

a

b

a

b

a, b

a, b

a

b

b

a

b

rank 2rank 3rank 4 rank 1 rank 0

Fig. 2. A minimal NFA accepting the language of Example 1, where c8 = 1, c7 = 01,
c6 = 10, c5 = 0001, c4 = 0110, c3 = 1010, c2 = 10110111, c1 = 00011110, and
c0 = 1011011100011110.

Theorem 4. Let B be a bitmap of length kℓ. Given a set of factors Br, each
with length kr where r ∈ [ℓ], the problem of finding the minimal cover Cr for Br
is NP-complete.

Proof. The problem we aim to solve is characterized as:

– Instance: Collection of factors Br and a positive integer n ≤ |Br|.
– Question: Is there a collection of subsets Cr of size n such that, for each s ∈
Br, there is a sub collection of Cr whose bitwise disjunction is exactly s?

By Lemma 1, each bitmap factor corresponds to a quotient of the language L.
Therefore, the bitwise disjunction over factors corresponds to the union over
sets. Thus, this problem is the set-basis problem and Stockmeyer proved that
it is NP-complete by reduction to the vertex-cover problem [16]. ⊓⊔

One can use an SMT-solver [10] to find a cover of size n of a set, wherein
every factor of size kr can be represented by a bit vector of the same size, and
then use binary search on the solution to determine the minimal one.

5.1 Maximal Size of Minimal NFAs for Block Languages

The width of each rank of the NFA given by the construction described above
is bounded by the width of the same rank on the DFA. Also, to cover factors of
length kr, we show that a cover of kr elements is sufficient. These bounds are
formally stated in the following lemma.

Lemma 9. Let A = ⟨Q,Σ, δ, q0, {qf}⟩ be an NFA for a block language L ⊆ Σℓ

over Σ of size k and ℓ ≥ 0, given by the construction of NFAs from bitmaps.
Let Q = Q0 ∪ . . . ∪ Qℓ, such that Qr is the rank r, for r ∈ [ℓ]. Then, the width
of rank Qr is bounded by |Qr| ≤ min(kℓ−r, kr), for all r ∈ [ℓ].

Block Languages and their Bitmap Representations 13

Proof. The bound |Qr| ≤ kℓ−r, for r ∈ [ℓ], refers to the size of Br, that is, the
number of unique factors of length kr. We showed in Lemma 2 that |Br| ≤ kℓ−r.
On the other hand, we have that |Qr| ≤ kr since the set Br can be covered by
the set of unit factors {ui}i∈[kr−1] of size k

r, where ui represents the factor filled
with zeros, apart from the i-th position which is set to 1. ⊓⊔

Lemma 9 allows us to determine the exact maximal size of a minimal NFA
for a block language, and easily prove the following theorem.

Theorem 5. The maximal size of a minimal NFA for a block language L ⊆ Σℓ,

with ℓ ≥ 0 and |Σ| = k, is nsc(L) ≤ 2 · k
ℓ
2 − 1

k − 1
+ k

ℓ
2 if ℓ is even, and nsc(L) ≤

2 · k
⌈ ℓ
2 ⌉ − 1

k − 1
, otherwise.

Proof. If ℓ is even, there is an odd number of ranks and the width of the minimal
NFA with maximal size is achieved by the rank ℓ

2 . So the maximal number of

states is given by 2 ·
∑ ℓ

2−1
r=0 kℓ−r + k

ℓ
2 . If ℓ is odd, the width of the minimal NFA

with maximal size is reached both in rank ⌈ ℓ2⌉ − 1 and ⌈ ℓ2⌉. So the NFA has at

most 2 ·
∑⌈ ℓ

2 ⌉−1
r=0 kℓ−r states. ⊓⊔

References

1. Almeida, M., Moreira, N., Reis, R.: Exact generation of minimal acyclic de-
terministic finite automata. Int. J. Found. Comput. S. 19(4), 751–765 (2008).
https://doi.org/10.1142/S0129054108005930

2. Almeida, M., Moreira, N., Reis, R.: Finite automata minimization algorithms. In:
Wang, J. (ed.) Handbook of Finite State Based Models and Applications, pp. 145–
170. CRC Press (2012)

3. Câmpeanu, C., Ho, W.H.: The maximum state complexity for finite languages. J.
Autom. Lang. Comb. 9(2-3), 189–202 (2004)

4. Dudzinski, K., Konstantinidis, S.: Formal descriptions of code properties: Decid-
ability, complexity, implementation. Int. J. Found. Comput. Sci. 23(1), 67–85
(2012). https://doi.org/10.1142/S0129054112400059

5. Elvey Price, A., Fang, W., Wallner, M.: Compacted binary trees admit a stretched
exponential. J. Comb. Theory, Ser. A 177, 105306 (2021). https://doi.org/10.
1016/J.JCTA.2020.105306

6. Karhumäki, J., Kari, J.: Finite automata, image manipulation, and automatic real
functions. In: Pin, J. (ed.) Handbook of Automata Theory, pp. 1105–1143. Euro-
pean Mathematical Society (2021). https://doi.org/10.4171/AUTOMATA-2/8

7. Karhumäki, J., Okhotin, A.: On the determinization blowup for finite automata
recognizing equal-length languages. In: C. S. Calude, R.F., Iwama, K. (eds.) Com-
puting with New Resources - Essays Dedicated to Jozef Gruska. LNCS, vol. 8808,
pp. 71–82. Springer (2014). https://doi.org/10.1007/978-3-319-13350-8_6

8. Kjos-Hanssen, B., Liu, L.: The number of languages with maximum state complex-
ity. In: Gopal, T.V., Watada, J. (eds.) 15th TAMC. LNCS, vol. 11436, pp. 394–409.
Springer (2019). https://doi.org/10.1007/978-3-030-14812-6_24

https://doi.org/10.1142/S0129054108005930
https://doi.org/10.1142/S0129054108005930
https://doi.org/10.1142/S0129054112400059
https://doi.org/10.1142/S0129054112400059
https://doi.org/10.1016/J.JCTA.2020.105306
https://doi.org/10.1016/J.JCTA.2020.105306
https://doi.org/10.1016/J.JCTA.2020.105306
https://doi.org/10.1016/J.JCTA.2020.105306
https://doi.org/10.4171/AUTOMATA-2/8
https://doi.org/10.4171/AUTOMATA-2/8
https://doi.org/10.1007/978-3-319-13350-8_6
https://doi.org/10.1007/978-3-319-13350-8_6
https://doi.org/10.1007/978-3-030-14812-6_24
https://doi.org/10.1007/978-3-030-14812-6_24

14 G. Duarte, N. Moreira, L. Prigioniero, R. Reis

9. Konstantinidis, S., Moreira, N., Reis, R.: Randomized generation of error control
codes with automata and transducers. RAIRO 52, 169–184 (2018)

10. Kroening, D., Strichman, O.: Decision Procedures:An Algorithmic Point of View.
Springer (2016). https://doi.org/10.1007/978-3-662-50497-0

11. Meyer, A.R., Fischer, M.J.: Economy of description by automata, grammars, and
formal systems. In: 12th Annual Symposium on Switching and Automata Theory.
pp. 188–191. IEEE, Los Alamitos (1971)

12. Priez, J.B.: Enumeration of minimal acyclic automata via generalized parking func-
tions. In: 27th FPSAC. DMTCS, vol. 2471 (2015), https://doi.org/10.46298/
dmtcs.2471

13. Revuz, D.: Minimisation of acyclic deterministic automata in linear time. Theoret.
Comput. Sci. 92(1), 181–189 (1992)

14. Salomaa, K., Yu, S.: NFA to DFA transformation for finite languages over arbitrary
alphabets. J. Autom. Lang. Comb. 2(3), 177–186 (1997)

15. Shankar, P., Dasgupta, A., Deshmukh, K., Rajan, B.S.: On viewing block codes
as finite automata. Theor. Comput. Sci. 290(3), 1775–1797 (2003). https://doi.
org/10.1016/S0304-3975(02)00083-X

16. Stockmeyer, L.: Set basis problem is NP-complete. Tech. Rep. Report No. RC-5431,
IBM Research Center (1976)

17. Stockmeyer, L., Meyer, A.R.: Word problems requiring exponential time: Prelimi-
nary report. In: 5th Annual ACM Symposium on Theory of Computing. pp. 1–9.
ACM (1973)

https://doi.org/10.1007/978-3-662-50497-0
https://doi.org/10.1007/978-3-662-50497-0
https://doi.org/10.46298/dmtcs.2471
https://doi.org/10.46298/dmtcs.2471
https://doi.org/10.1016/S0304-3975(02)00083-X
https://doi.org/10.1016/S0304-3975(02)00083-X
https://doi.org/10.1016/S0304-3975(02)00083-X
https://doi.org/10.1016/S0304-3975(02)00083-X

	Block Languages and their Bitmap Representations

