
November 29, 2019 8:30 WSPC/INSTRUCTION FILE ws-ijfcs

International Journal of Foundations of Computer Science
c© World Scientific Publishing Company

Regular Expressions and Transducers over

Alphabet-invariant and User-defined Labels∗

Stavros Konstantinidis, Nelma Moreira, Rogério Reis, Joshua Young

Mathematics and Computing Science, Saint Mary’s University,
923 Robie Str., Halifax, Nova Scotia BH 3C3, Canada

s.konstantinidis@smu.ca, jyo04@hotmail.com

CMUP & DCC, Faculdade de Ciências da Universidade do Porto,
Rua do Campo Alegre 4169-007 Porto, Portugal

nam@dcc.fc.up.pt, rvr@dcc.fc.up.pt

Received (Day Month Year)
Accepted (Day Month Year)

Communicated by (xxxxxxxxxx)

We are interested in regular expressions and transducers that represent word relations
in an alphabet-invariant way—for example, the set of all word pairs u, v where v is a
prefix of u independently of what the alphabet is. Current software systems of formal
language objects do not have a mechanism to define such objects. We define transducers
in which transition labels involve what we call set specifications, some of which are
alphabet invariant. In fact, we give a more broad definition of automata-type objects,
called labelled graphs, where each transition label can be any string, as long as that string
represents a subset of a certain monoid. Then, the behaviour of the labelled graph is a
subset of that monoid. We do the same for regular expressions. We obtain extensions of
a few classic algorithmic constructions on ordinary regular expressions and transducers
at the broad level of labelled graphs and in such a way that the computational efficiency
of the extended constructions is not sacrificed. For transducers with set specs we obtain
further algorithms that can be applied to questions about independent regular languages
as well as a decision question about synchronous transducers.

Keywords: Alphabet-invariant transducers; regular expressions; automata; algorithms;
monoids.

1. Introduction

We are interested in 2D regular expressions and transducers whose alphabet is not

of fixed cardinality, or whose alphabet is even unknown. In particular, consider the

alphabet

Γ = {0, 1, . . . , n− 1},

∗Research supported by NSERC (Canada) and by FCT project UID/MAT/00144/2013 (Portugal).
Due to page restrictions, results on partial derivatives will be treated in a companion publication.

1

November 29, 2019 8:30 WSPC/INSTRUCTION FILE ws-ijfcs

2 S. Konstantinidis, N. Moreira, R. Reis, J. Young

0 1 2
a/a′

(∀a, a′ ∈ Γ : a ∕= a′)

a/a′

(∀a, a′ ∈ Γ : a ∕= a′)

a/a (∀a ∈ Γ) a/a (∀a ∈ Γ) a/a (∀a ∈ Γ)

Fig. 1: The transducer realizes the relation of all (u, v) such that u ∕= v

and the Hamming distance of u, v is at most 2.

0t̂sub2 : 1 2
∀/∀∕= ∀/∀∕=

∀/= ∀/= ∀/=

0t̂px : 1
∀/e

∀/= ∀/e

Fig. 2: Transducers over pairing specs. The left one realizes all (u, v)

such that u ∕= v and the Hamming distance of u, v is at most 2. Trans-

ducer t̂px realizes the relation of all (u, v) such that v is a prefix of u.

where n is variable, and the 2D regular expression
󰀃
0/0 + · · ·+ (n− 1)/(n− 1)

󰀄∗󰀃
0/e+ · · ·+ (n− 1)/e

󰀄∗
,

where e is the symbol for the empty string. This 2D regular expression has O(n)

symbols and describes the prefix relation, that is, all word pairs (u, v) such that v is a

prefix of u. Similarly, consider the transducer in Fig. 1, which has O(n2) transitions.

Current software systems of formal language objects require users to enter all these

transitions in order to define and process the transducer. We want to be able to use

special labels in transducers such as those in the transducer t̂sub2 in Fig. 2. In that

figure, the label (∀/=) represents the set {(a, a) | a ∈ Γ} and the label (∀/∀∕=)

represents the set {(a, a′) | a, a′ ∈ Γ, a ∕= a′} (these labels are called pairing specs).

Moreover that transducer has only a fixed number of 5 transitions. Similarly, using

these special labels, the above 2D regular expression can be written as

(∀/=)∗(∀/e)∗.

Note that the new regular expression as well as the new transducer in Fig. 2 are

alphabet invariant as they contain no symbol of the intended alphabet Γ—precise

definitions are provided in the next sections.

We also want to be able to define algorithms that work directly on regular

expressions and transducers with special labels, without of course having to expand

these labels to ordinary ones. Thus, for example, we would like to have an efficient

algorithm that computes whether a pair (u, v) of words is in the relation realized

by the transducer in Fig. 2, and an efficient algorithm to compute the composition

of two transducers with special labels.

November 29, 2019 8:30 WSPC/INSTRUCTION FILE ws-ijfcs

Regular Expressions and Transducers over Alphabet-invariant and User-defined Labels 3

We start off with the broad concept of a set B of special labels, called a label

set, where each special label β ∈ B is simply a nonempty string that represents a

subset I(β) of a monoidM . Then we define type B automata (called labelled graphs)

in which every transition label is in B or the string representation of M ’s neutral

element. Similarly we consider type B regular expressions whose base objects (again

called labels) are elements of B and represent monoid subsets. Our first set of results

apply to any user-defined set B and associated monoidM . Then, we consider further

results specific to the cases of (i) 1D regular expressions and automata (monoid

M = Γ∗) with labels called set specs, (ii) 2D regular expressions and transducers

(monoid M = Γ∗ × Γ∗) with special labels (called pairing specs).

A labelled graph in this work can be considered to be a syntactic version of an

automaton over the monoid M in the sense of [12]. Thus, we make no attempt to

define regular expressions and automata outside of monoids; rather we use monoid-

based regular expressions and automata as a foundation such that (i) one can define

such objects with alphabet invariant labels or with a priori unknown label sets B, as

long as each of the labels represents a subset of a known monoid; (ii) many known

algorithms and constructions on monoid-based regular expressions and automata

are extended to work directly and as efficiently on certain type B objects.

We also mention the framework of symbolic automata and transducers of [16, 15].

In that framework, a transition label is a logic predicate describing a set of domain

elements (characters). The semantics of that framework is very broad and includes

the semantics of label sets in this work. As such, the main algorithmic results in

[16, 15] do not include time complexity estimates. Moreover, outside of the logic

predicates there is no provision to allow for user-defined labels and related algo-

rithms working directly on these labels.

The role of a label set is similar to that of an alphabet, or of the set of regular

expressions: it enables users to represent sets of interest. While some of our results

apply to regular expressions and labelled graphs over any user-defined label set, the

particular case where the label set is the set of pairing specs allows us to rewrite

ordinary transducers, like the one in Fig. 1, in a simpler form such that algorithms

can work directly on these simpler transducers. In particular, we can employ simple

transducers like the one in Fig. 2 to answer the satisfaction question in the theory

of independent formal languages. While it seems that set specs work well with

nondeterministic automata and transducers, this might not be true when dealing

with deterministic ones.

The paper is organized as follows. The next section makes some assumptions

about alphabets Γ of non-fixed size. These assumptions are needed in algorithms

that process regular expressions and automata with labels involving Γ-symbols. Sec-

tion 3 defines the set of set specs, a particular kind of a label set whose elements

represent subsets of Γ, and presents basic algorithms on set specs. Section 4 defines

the set of pairing specs, a particular kind of a label set that is used for transducer-

type labelled graphs. Some of these pairing specs are alphabet invariant. Section 5

discusses the general concept of a label set, with set specs and pairing specs being

November 29, 2019 8:30 WSPC/INSTRUCTION FILE ws-ijfcs

4 S. Konstantinidis, N. Moreira, R. Reis, J. Young

two specific examples of label sets. Each label set B has a behaviour I and refers

to a monoid, denoted by monB; that is, I(β) is a subset of monB for any label

β ∈ B. Section 6 defines type B labelled graphs ĝ and their behaviours I(ĝ). When

B is the set of pairing specs then ĝ is a transducer-type graph and realizes a word

relation. Section 7 establishes that the rational operations of union, catenation and

Kleene star on ordinary automata and transducers work without complications on

any labelled graphs. Section 8 defines regular expressions r over any label set B

and their behaviour I(r), and establishes the equivalence of type B graphs and

type B regular expressions (see Theorem 34 and Corollary 36). Section 9 considers

the possibility of defining ‘higher level’ versions of existing product constructions

on automata/transducers over known monoids. To this end, we consider the con-

cept of polymorphic operation ‘⊙’ that is partially defined between two elements of

some label sets B,B′, returning an element of some label set C, and also partially

defined on the elements of the monoids monB and monB′, returning an element

of the monoid monC. In this case, if ⊙ is known to work on automata/transducers

over monB,monB′ then it would also work on type B,B′ graphs (see Theorem 44).

Section 10 presents some basic algorithms on automata with set specs and trans-

ducers with set specs. Section 11 defines the composition of two transducers with

set specs such that the complexity of this operation is consistent with the case of or-

dinary transducers (see Theorem 56). Section 12 considers the questions of whether

a transducer with set specs realizes an identity and whether it realizes a function.

It is shown that both questions can be answered with a time complexity consistent

with that in the case of ordinary transducers (see Theorem 58 and Theorem 60).

Section 13 shows that transducers with set specs (i) can be processed directly (with-

out expanding them) and efficiently to answer the witness version of the property

satisfaction question for regular languages (see Corollary 64 and Example 65) and

(ii) can be used to decide efficiently whether a given synchronous transducer repre-

sents a left synchronous relation (Corollary 66). Finally, the last section contains a

few concluding remarks and directions for future research.

2. Terminology and Alphabets of Non-fixed Size

The set of positive integers is denoted by N. Then, N0 = N∪{0}. Let S be a set. We

denote the cardinality of S by |S| and the set of all subsets of S by 2S . To indicate

that f is a partial mapping of a set S into a set T we shall use the notation

f : S 󰃚󰃚󰃄 T

We shall write f(s) = ⊥ to indicate that f is not defined on s ∈ S. We shall

occassionally use the term operator for (partial) mappings.

An alphabet space Ω is an infinite and totally ordered set whose elements are

called symbols. We shall assume that Ω is fixed and contains the digits 0, 1, . . . , 9,

which are ordered as usual, as well as the special symbols

∀ ∃ /∃ = ∕= / e ⊕ ⊘

November 29, 2019 8:30 WSPC/INSTRUCTION FILE ws-ijfcs

Regular Expressions and Transducers over Alphabet-invariant and User-defined Labels 5

We shall denote by ‘<’ the total order of Ω. As usual we use the term string or word

to refer to any finite sequence of symbols. The empty string is denoted by ε. For

any string w we say that w is sorted if the symbols contained in w occur in the left

to right direction according to the total order of Ω. For example, the word 012 is

sorted, but 021 is not sorted. For any set of symbols S, we use the notation

wo(S) = the sorted word consisting of the symbols in S.

For example, if S = {0, 1, 2}, then wo(S) = 012 and wo({2, 0}) = 02.

Let g ∈ Ω and w be a string. The expression |w|g denotes the number of occur-

rences of g in w, and the expression alphw denotes the set {g ∈ Ω : |w|g > 0}, that
is, the set of symbols that occur in w. For example,

alph(1122010) = {0, 1, 2}.

An alphabet is any finite nonempty subset of Ω. In the following definitions we

consider an alphabet Γ, called the alphabet of reference, and we assume that Γ

contains at least two symbols and no special symbols.

Algorithmic convention about alphabet symbols. We shall consider algo-

rithms on automata and transducers where the alphabets Γ involved are not of

fixed size and, therefore, |Γ| → ∞; thus, the alphabet size |Γ| is accounted for in

time complexity estimates. Moreover, we assume that each Γ-symbol is of size O(1).

This approach is also used in related literature (e.g., [2]), where it is assumed im-

plicitly that the cost of comparing two Γ-symbols is O(1). A similar assumption is

made in graph algorithms where the size of a graph (V,E) is |V | + |E| → ∞, but

the size of each vertex is implicitly considered to be O(1), [10]. We note that there

are proposals to represent the elements of Γ using non-constant size objects—for

instance, [1] represents each Γ-symbol as a binary word of length O(log |Γ|).
In the algorithms presented below, we need operations that access only a part of

Γ or some information about Γ such as |Γ|. We assume that Γ has been preprocessed

such that the value of |Γ| is available and is O(log |Γ|) bits long and the minimum

symbol minΓ of Γ is also available. In particular, we assume that we have avail-

able a sorted array ARRΓ consisting of all Γ-symbols. While this is a convenient

assumption, if in fact it is not applicable then one can make the array from Γ in

time O
󰀃
|Γ| log |Γ|

󰀄
. Then, the minimum symbol of Γ is simply ARRΓ[0].

Moreover, we have available an algorithm notIn(w), which returns a symbol in

Γ that is not in alphw, where w is a sorted word in Γ∗ with 0 < |w| < |Γ|. Next we

explain that the desired algorithm

notIn(w) can be made to work in time O(|w|) (1)

The algorithm notIn(w) works by using an index i, initially i = 0, and incrementing

i until ARRΓ[i] ∕= w[i], in which case the algorithm returns ARRΓ[i].

Relations. Let Σ,∆ be alphabets. A (binary word) relation of type [Σ,∆] is a

subset R of Σ∗ ×∆∗. Then, R−1 = {(v, u) : (u, v) ∈ R}.

November 29, 2019 8:30 WSPC/INSTRUCTION FILE ws-ijfcs

6 S. Konstantinidis, N. Moreira, R. Reis, J. Young

3. Set Specifications

Here we define expressions, called set specs, that are intended to represent nonempty

subsets of the alphabet Γ. These can be used as labels in automata-type objects

(labelled graphs) and regular expressions defined in subsequent sections. We also

present some basic algorithms on set specs, which are needed for processing those

regular expressions and labelled graphs.

Definition 1. A set specification, or set spec for short, is any string of one of the

three forms

∀ ∃w /∃w

where w is any sorted nonempty string containing no repeated symbols and no special

symbols. The set of set specs is denoted by SSP.

We shall need the symbol e to represent the empty string ε. We shall use the

abbreviation

SSPε = SSP∪{e}.

Let F,∃u, /∃u,∃v, /∃v be any set specs. We define the partial operation ∩ :

SSPε × SSPε 󰃚󰃚󰃄 SSPε as follows.

e ∩ e = e, e ∩ F = F ∩ e = ⊥
∀ ∩ F = F ∩ ∀ = F

∃u ∩ ∃v = ∃wo
󰀃
alphu ∩ alph v

󰀄
, if

󰀃
alphu ∩ alph v

󰀄
∕= ∅

∃u ∩ ∃v = ⊥, if
󰀃
alphu ∩ alph v

󰀄
= ∅

/∃u ∩ /∃v = /∃wo
󰀃
alphu ∪ alph v

󰀄

∃u ∩ /∃v = ∃wo
󰀃
alphu \ alph v

󰀄
, if

󰀃
alphu \ alph v

󰀄
∕= ∅

∃u ∩ /∃v = ⊥, if
󰀃
alphu \ alph v

󰀄
= ∅

/∃u ∩ ∃v = ∃v ∩ /∃u

Example 2. As any set spec F is a string, it has a length |F |. We have that |∀| = 1

and |∃w| = 1 + |w|. Also,

∃035 ∩ ∃1358 = ∃35, /∃035 ∩ ∃1358 = ∃18, /∃035 ∩ /∃1358 = /∃01358.

Lemma 3. Given any G,F ∈ SSPε, G ∩ F can be computed in time O(|G|+ |F |).

Proof. The required algorithm works as follows. If either of G,F is e then G ∩ F

is computed according to Def. 1. Else, if either of G,F is ∀, return the other one.

Now suppose that G = ∃u and F = ∃v. As u, v are sorted, the sorted word w

consisting of their common symbols is computed by using two indices i and j,

initially pointing to the first symbols of u and v, and then advancing through them

as follows: if u[i] = v[j] then output u[i] and increment both i, j by 1; if u[i] < v[j]

then increment only i; else increment only j. So the output would be ∃w, if |w| > 0,

November 29, 2019 8:30 WSPC/INSTRUCTION FILE ws-ijfcs

Regular Expressions and Transducers over Alphabet-invariant and User-defined Labels 7

or ⊥ if |w| = 0. In either case, each symbol of u and v is not accessed more than

once, so the process works in time O(|u| + |v|). Now suppose that G = /∃u and

F = /∃v. Then one can use a process similar to the above to compute the sorted

word w consisting of the union of the symbols in u, v. So the output would be /∃w.
Now suppose that G = ∃u and F = /∃v. Again the process to compute the sorted

word w consisting of the symbols in u that are not in v involves two indices i and

j, initially pointing to the first symbols of u and v, and then advancing them as

follows: if u[i] = v[j] then increment both i, j by 1; if u[i] < v[j] then output u[i]

and increment only i; else increment only j. So the output would be ∃w, if |w| > 0,

or ⊥ if |w| = 0. The last case about G,F is symmetric to the last one.

Definition 4. Let Γ be an alphabet of reference and let F be a set spec. We say

that F respects Γ, if either F = ∀, or F is of the form ∃w or /∃w and the following

restrictions hold:

w ∈ Γ∗ and 0 < |w| < |Γ|.

The language L(F) of F (with respect to Γ) is the subset of Γ defined as follows:

L(∀) = Γ, L(∃w) = alphw, L(/∃w) = Γ \ alphw.

The set of set specs that respect Γ is denoted as follows

SSP[Γ] = {α ∈ SSP | α respects Γ}.

We also define L(e) = {ε} and SSP[Γ]ε = SSP[Γ] ∪ {e}.

Remark 5. In the above definition, the requirement |w| < |Γ| implies that there is

at least one Γ-symbol that does not occur in w. Thus, to represent Γ we must use ∀
as opposed to the longer set spec ∃wo(Γ).

Lemma 6. Let Γ be an alphabet of reference and let G,F ∈ SSP[Γ]ε. The following

statements hold true.

(1) L(F) ∕= ∅; and L(F) = Γ if and only if F = ∀.
(2) L(G ∩ F) = L(G) ∩ L(F), if G ∩ F ∕= ⊥.

(3) If F = ∃w or F = /∃w then |L(F)| ≤ |Γ|− 1.

(4) |F | ≤ |Γ|.

Proof. The first statement follows from the above definition and the following: If

F = ∃w then (alphw) /∈ {∅,Γ}, as 0 < |w| < |Γ|; and if F = /∃w then again

(Γ \ alphw) /∈ {∅,Γ}. For the second statement, we consider the definition of the

operation ‘∩ ’ as well as the above definition. Clearly the statement holds, if G =

F = e, or if one of G,F is ∀ and the other one is not e. Then, one considers the

six cases of Definition 1 where G,F contain ∃ or /∃. For example, if G = ∃u and

F = /∃v, we have that L(F) = Γ \ alph v, so L(G)∩L(F) = alphu \ alph v, which is

equal to L(G∩F). The other cases can be shown analogously. The third and fourth

statements follow from the restriction 0 < |w| < |Γ| in Definition 4.

November 29, 2019 8:30 WSPC/INSTRUCTION FILE ws-ijfcs

8 S. Konstantinidis, N. Moreira, R. Reis, J. Young

The next lemma concerns simple algorithmic questions about set specs that are

needed as basic tools in other algorithms further below.

Lemma 7. Let Γ be an alphabet of reference and let F be a set spec respecting Γ.

The following statements hold true.

(1) For given g ∈ Γ, testing whether g ∈ L(F) can be done in time O(log |F |).
(2) For given g ∈ Γ, testing whether L(F)\{g} = ∅ can be done in time O(|F |).
(3) For any fixed k ∈ N, testing whether |L(F)| ≥ k can be done in time

O(|F |+ log |Γ|), assuming the number |Γ| is given as input along with F .

(4) Testing whether |L(F)| = 1 and, in this case, computing the single element

of L(F) can be done in time O(|F |).
(5) Computing an element of L(F) can be done in time O(|F |).
(6) If |L(F)| ≥ 2 then computing two different L(F)-elements can be done in

time O(|F |).

Proof. For the first statement, we note that the condition to test is equivalent to

one of “F = ∀”, “F = ∃w and |w|g > 0”, “F = /∃w and |w|g = 0”; and that one

can use binary search to test whether g occurs in w. For the second statement, we

note that the condition to test is equivalent to one of “F = ∃g”, “F = /∃w and

|w| = |Γ|− 1 and |w|g = 0”. For the third statement, we note that the condition to

test is equivalent to one of |Γ| ≥ k, |w| ≥ k, |Γ| − |w| ≥ k, depending on whether

F is one of ∀,∃w, /∃w. The last case requires time O(|F |) to compute |w| and then

O(log |Γ|+ log |w|) time for arithmetic operations, which is O(log |Γ|) as |w| < |Γ|.
For the fourth statement, we note that |L(F)| = 1 is equivalent to whether “F = ∃g
and |g| = 1” or “F = /∃w and |w| = |Γ| − 1”. In the former case, the algorithm

returns g. In the latter case, we use the algorithm notIn(w) to get the desired

symbol in Γ \ alphw. The latter case is the worse of the two, and works in time

O(|F |+ log |Γ|) to compute |w| and test whether |w| = |Γ|− 1, plus time O(|F |) to
execute notIn(w) (see the bound in (1)). The total time is O(|F |), as |F | = |Γ|. For
the fifth statement, if F = ∀ or F = ∃w the algorithm simply returns ARRΓ[0] or

w[0], respectively. The worst case is when F = /∃w, where, as before, the algorithm

uses notIn(w) requiring time O(|F |). For the sixth statement, the algorithm first

finds any g1 ∈ L(F), then computes the set spec B = F ∩ /∃g1 and then computes

any g2 ∈ L(B).

4. Pairing Specifications

Here we define expressions for describing certain finite relations that are subsets

of
󰀃
(Γ ∪ {ε}) × (Γ ∪ {ε})

󰀄
\ {(ε, ε)}. First, we define their syntax and then their

semantics.

Definition 8. A pairing specification, or pairing spec for short, is a string of the

form

e/G F/e F/G F/= F/G ∕= (2)

November 29, 2019 8:30 WSPC/INSTRUCTION FILE ws-ijfcs

Regular Expressions and Transducers over Alphabet-invariant and User-defined Labels 9

where F,G are set specs. The set of pairing specs is denoted by PSP.

The inverse p−1 of a pairing spec p is defined as follows depending on the possible

forms of p displayed in (2):

(e/G)−1 = (G/e), (F/e)−1 = (e/F), (F/G)−1 = (G/F),

(F/=)−1 = (F/=), (F/G ∕=)−1 = (G/F ∕=)

We also define (e/e)−1 = (e/e).

Example 9. As a pairing spec p is a string, it has a length |p|. We have that

|∀/e| = 3 and |∃u//∃v| = 3 + |u| + |v|. Also, (∀/e)−1 = (e/∀) and (∃u/∀∕=)−1 =

(∀/∃u ∕=).

Definition 10. A pairing spec is called alphabet invariant if it contains no set

spec of the form ∃w, /∃w. The set of alphabet invariant pairing specs is denoted

by PSPinvar.

Definition 11. Let Γ be an alphabet of reference and let p be a pairing spec. We

say that p respects Γ, if any set spec occurring in p respects Γ. The set of pairing

specs that respect Γ is denoted as follows

PSP[Γ] = {p ∈ PSP : p respects Γ}.

The relation R(p) described by p (with respect to Γ) is the subset of Γ∗ ×Γ∗ defined

as follows.

R(e/G) = {(ε, y) | y ∈ L(G)};
R(F/e) = {(x, ε) | x ∈ L(F)};
R(F/G) = {(x, y) | x ∈ L(F), y ∈ L(G)};
R(F/=) = {(x, x) | x ∈ L(F)};
R(F/G ∕=) = {(x, y) | x ∈ L(F), y ∈ L(G), x ∕= y}.

We also define R(e/e) = {(ε, ε)} and PSP[Γ]ε = PSP[Γ] ∪ {e/e}.

Remark 12. All the alphabet invariant pairing specs are

e/∀ ∀/e ∀/∀ ∀/= ∀/∀∕=

Any alphabet invariant pairing spec p respects all alphabets of reference, as p con-

tains no set specs of the form ∃w or /∃w.

Lemma 13. Let p ∈ PSP[Γ]. The following statements hold true.

(1) R(p) = ∅ if and only if p is of the form F/G ∕= and L(F) = L(G) = {g}
for some g ∈ Γ.

(2) R(p−1) = R(p)−1.

(3) p−1 can be computed from p in time O(|p|).

November 29, 2019 8:30 WSPC/INSTRUCTION FILE ws-ijfcs

10 S. Konstantinidis, N. Moreira, R. Reis, J. Young

Proof. The first statement follows from Definition 11 when we note that the set

{(x, y) | x ∈ L(F), y ∈ L(G), x ∕= y} is empty if and only if L(F) = L(G) = {g},
for some g ∈ Γ. The last two statements follow from Definitions 8 and 11.

Some notation on pairing specs. Let p ∈ PSP[Γ]ε. The left part, left p, of p is

the string on the left of the symbol ‘/’, and the right part, right p, of p is the string

on the right of ‘/’. We have the following examples:

left(∃w/∀∕=) = ∃w right(∃w/∀∕=) = ∀∕= left(∀/=) = ∀ right(∀/=) = =

While the expression L(left p) makes sense when p respects the alphabet of reference,

this is not the case for L(right p). So we define rset p to be as follows, depending on

the structure of p according to (2)

rset(e/G) = G, rset(F/e) = e, rset(F/G) = G,

rset(F/=) = F, rset(F/G ∕=) = G, rset(e/e) = e.

The above notation implies

R(p) ⊆ L(left p)× L(rset p). (3)

Lemma 14. If p ∈ PSP[Γ] then |p| ≤ 2|Γ|+ 2.

Proof. Follows from Lemma 6.

5. Label Sets and their Monoid Behaviours

We are interested in automata-type objects (labelled graphs) ĝ in which every tran-

sition label β represents a set I(β) of elements in some monoid M . The subsets

I(β) ⊆ M are the behaviours of the labels and they are used to define the be-

haviour of ĝ as a subset of M . We focus on sets of labels in this section—see next

section for labelled graphs. We shall use the notation

εM for the neutral element of the monoid M .

If S, S′ are any two subsets of M then, as usual, we define

SS′ = {mm′ | m ∈ S, m′ ∈ S′} and Si = Si−1S and S∗ = ∪∞
i=0S

i,

where S0 = {εM} and the monoid operation is denoted by simply concatenating

elements. We shall only consider finitely generated monoids M where each m ∈ M

has a canonical (string) representation m. Then, we write

M = {m | m ∈ M}.

In the example below, we provide sample canonical representations for the two

monoids of interest to this work.

Example 15. We shall consider two standard monoids.

(1) The free monoid Γ∗ (or Σ∗) whose neutral element is ε. The canonical

representation of a nonempty word w is w itself and that of ε is e: ε = e.

November 29, 2019 8:30 WSPC/INSTRUCTION FILE ws-ijfcs

Regular Expressions and Transducers over Alphabet-invariant and User-defined Labels 11

(2) The monoid Σ∗ × ∆∗ (or Γ∗ × Γ∗) whose neutral element is (ε, ε). The

canonical representation of a word pair (u, v) is u/v. In particular, (ε, ε) =

e/e.

A label set B is a nonempty set of nonempty strings (over Ω). A label behaviour

is a mapping

I : B → 2M ,

where M is a monoid. Thus, the behaviour I(β) of a label β ∈ B is a subset of M .

We shall consider label sets B with fixed behaviours, so we shall denote by monB

the monoid of B via its fixed behaviour.

Notational Convention. We shall make the convention that for any label sets

B1, B2 with fixed behaviours I1, I2, we have:

if monB1 = monB2 then I1(β) = I2(β), for all β ∈ B1 ∩B2.

With this convention we can simply use a single behaviour notation I for all label

sets with the same behaviour monoid, that is, we shall use I for any B1, B2 with

monB1 = monB2. This convention is applied in the example below: we use L for

the behaviour of both the label sets Σ and SSP[Γ].

Example 16. We shall use some of the following label sets and their fixed label

behaviours.

(1) Σ with behaviour L : Σ → 2Σ
∗
such that L(g) = {g}, for g ∈ Σ. Thus,

monΣ = Σ∗.

(2) SSP[Γ] with behaviour L : SSP[Γ] → 2Γ
∗
, as specified in Def. 4. Thus,

monSSP[Γ] = Γ∗.

(3) REGΣ = all regular expressions over Σ with behaviour L : REGΣ →
2Σ

∗
such that L(r) is the language of the regular expression r. Thus,

monREGΣ = Σ∗.

(4) [Σ,∆] = {x/y | x ∈ Σ ∪ {e}, y ∈ ∆ ∪ {e}} \ {e/e} with behaviour

R : [Σ,∆] → 2Σ
∗×∆∗

such that R(x/e) = {(x, ε)}, R(e/y) = {(ε, y)}, R(x/y) = {(x, y)}, for any
x ∈ Σ and y ∈ ∆. Thus, mon[Σ,∆] = Σ∗ ×∆∗.

(5) PSP[Γ] with behaviour R : PSP[Γ] → 2Γ
∗×Γ∗

as specified in Def. 11. Thus,

monPSP[Γ] = Γ∗ × Γ∗.

(6) PSPinvar with behaviour R⊥ : PSPinvar → {∅}. Thus, I(β) = ∅, for any

β ∈ PSPinvar.

(7) If B1, B2 are label sets with behaviours I1, I2, respectively, then [B1, B2] is

the label set {β1/β2 | β1 ∈ B1,β2 ∈ B2} with behaviour and monoid such

that

I(β1/β2) = I1(β1)× I2(β2) and mon[B1, B2] = monB1 ×monB2.

November 29, 2019 8:30 WSPC/INSTRUCTION FILE ws-ijfcs

12 S. Konstantinidis, N. Moreira, R. Reis, J. Young

(8) [REGΣ,REG∆] with behaviour R in the monoid Σ∗ × ∆∗ such that

R(r/s) = L(r)× L(s), for any r ∈ REGΣ and s ∈ REG∆.

For any monoid of interest M and m ∈ M , M is a label set such that

monM = M and I(m) = {m}.

Thus, I(εM) = {εM}. Also, as monPSP[Γ] = monΓ∗ × Γ∗ = Γ∗ × Γ∗ and the

behaviour of PSP is denoted by R, we have R((0, 1)) = R(0/1) = {(0, 1)} =

R(∃0/∃1).
Abbreviation. Let B be any label set. We shall see further below that type B

regular expressions and graphs are constructed using labels in B ∪ {εmonB}. Thus,
we define

Bε = B ∪ {εmonB}.

The term label shall mean an element of Bε (unless we specify a label in B).

Thus, Σε = Σ ∪ {e} and SSP[Γ]ε = SSP[Γ] ∪ {e} and [Σ,∆]ε = [Σ,∆] ∪ {e/e}.

Remark 17. We shall not attempt to define the set of all labels. We limit ourselves

to those of interest in this paper. Of course one can define new label sets X at will,

depending on the application; and in doing so, one would also define concepts related

to those label sets, such as the monoid monX.

6. Labelled Graphs, Automata, Transducers

Let B be a label set with behaviour I. A type B graph is a quintuple

ĝ =
󰀃
Q,B, δ, I, F

󰀄

such that

• Q is a nonempty set whose elements are called states;

• I ⊆ Q is the nonempty set of initial, or start states;

• F ⊆ Q is the set of final states;

• δ is a set, called the set of edges or transitions, consisting of triples (p,β, q)

such that p, q ∈ Q and β ∈ B ∪ {εmonB}. The set of labels of ĝ is the set

Labels(ĝ) = {β | (p,β, q) ∈ δ}.

We shall use the term labelled graph to mean a type B graph as defined above,

for some label set B. The labelled graph is called finite if Q and δ are both finite.

Unless otherwise specified, a labelled graph will be assumed to be finite.

As a label β is a string, the length |β| is well-defined. Then, the size |e| of an
edge e = (p,β, q) is the quantity 1 + |β| and the size of δ is 󰀂δ󰀂 =

󰁓
e∈δ |e|. Then

the graph size of ĝ is the quantity

|ĝ| = |Q|+ 󰀂δ󰀂.

November 29, 2019 8:30 WSPC/INSTRUCTION FILE ws-ijfcs

Regular Expressions and Transducers over Alphabet-invariant and User-defined Labels 13

A path P of ĝ is a sequence of consecutive transitions, that is, P =

〈qi−1,βi, qi〉ℓi=1 such that each (qi−1,βi, qi) is in δ. The path P is called accept-

ing , if q0 ∈ I and qℓ ∈ F . If ℓ = 0 then P is empty and it is an accepting path if

I ∩ F ∕= ∅.
A state is called isolated , if it does not occur in any transition of ĝ. A state is

called useful , if it occurs in some accepting path. Note that any state in I ∩ F is

useful and can be isolated. The labelled graph ĝ is called trim, if

• every state of ĝ is useful, and

• ĝ has at most one isolated state in I ∩ F .

Computing the trim part of ĝ means removing the non-useful states and keeping

only one isolated state in I ∩F (if such states exist), and can be computed in linear

time O(|ĝ|).

Lemma 18. Let ĝ = (Q,B, δ, I, F) be a trim labelled graph. We have that

|Q| ≤ 2|δ|+ 1.

Proof. Q can be partitioned into three sets: Q1 = the set of states having an

outgoing edge but no incoming edge; Q2 = the set of states having an incoming

edge; and possibly a single isolated state in I ∩ F . The claim follows from the fact

that |Q1|, |Q2| ≤ |δ|.

Definition 19. Let ĝ =
󰀃
Q,B, δ, I, F

󰀄
be a labelled graph, for some label set B with

behaviour I. We define the behaviour I(ĝ) of ĝ as the set of all m ∈ monB such

that there is an accepting path 〈qi−1,βi, qi〉ℓi=1 of ĝ with

m ∈ I(β1) · · · I(βℓ).

The expansion exp ĝ of ĝ is the labelled graph
󰀃
Q,monB, δexp, I, F

󰀄
such that

δexp = {(p,m, q) | ∃ (p,β, q) ∈ δ : m ∈ I(β)}.

In some cases it is useful to modify ĝ by adding the transition (q, εmonB , q) (a self

loop) for each state q of ĝ. The resulting labelled graph is denoted by ĝε.

Remark 20. The above definition remains valid with no change if the labelled

graph, or its expansion, is not finite. The expansion graph of ĝ can have infinitely

many transitions—for example if ĝ is of type REGΣ.

Lemma 21. For each type B graph ĝ = (Q,B, δ, I, F), we have that

I(ĝ) = I(exp ĝ) and I(ĝ) = I(ĝε).

Proof. Let m ∈ I(exp ĝ). Then there is an accepting path 〈qi−1,mi, qi〉ℓi=1 of exp ĝ

such that m ∈ I(m1) · · · I(mℓ) = {m1} · · · {mℓ}; hence, m = m1 · · ·mℓ. By defini-

tion of δexp, for each i = 1, . . . , ℓ, there is (qi−1,βi, qi) ∈ δ such that mi ∈ I(βi),

so 〈qi−1,βi, qi〉ℓi=1 is an accepting path of ĝ. Then, I(β1) · · · I(βℓ) ⊆ I(ĝ), and

November 29, 2019 8:30 WSPC/INSTRUCTION FILE ws-ijfcs

14 S. Konstantinidis, N. Moreira, R. Reis, J. Young

m ∈ I(ĝ). Conversely, for any m ∈ I(ĝ), one uses similar arguments to show that

m ∈ I(exp ĝ). Thus, I(ĝ) = I(exp ĝ).
To show that I(ĝ) = I(ĝε), let δε be the set of transitions in ĝε. As δ ⊆ δε, we

have I(ĝ) ⊆ I(ĝε). For the converse, the main idea is that, if any accepting path of

ĝε contains transitions (qi−1, εmonB , qi) with qi−1 = qi, then these transitions can

be omitted resulting into an accepting path of ĝ.

As stated before, our focus is on two kinds of monoids: Σ∗ and Σ∗ ×∆∗. Recall

that, in those monoids, the neutral elements ε and (ε, ε) have canonical representa-

tions e and e/e, which are of fixed length. Thus, we shall assume that εmonB = O(1),

for any label set B. This implies that

|ĝε| = O(|ĝ|).

Definition 22. Let Σ,∆,Γ be alphabets.

(1) An ordinary automaton (over Σ) is a labelled graph â = (Q,Σ, δ, I, F). The

language L(â) accepted by â is the behaviour of â with respect to the label set

Σ. An automaton, or ε-NFA, (over Σ) is a labelled graph â = (Q,B, δ, I, F)

such that Σ ⊆ B, monB = monΣ = Σ∗, and Labels(â) ⊆ Σ ∪ {e}. Thus,
L(σ) = {σ} for σ ∈ Σ, and L(β) ⊆ Σ∗ for β ∈ B. If Labels(â) ⊆ Σ then â

is called an NFA. If in â we replace B with Σ we get an ordinary automaton

that is otherwise identical to â.

(2) An automaton with set specs is a labelled graph b̂ = (Q, SSP[Γ], δ, I, F). The

language L(b̂) accepted by b̂ is the behaviour of b̂ with respect to the label

set SSP[Γ].

(3) An ordinary transducer (over Σ,∆) is a labelled graph t̂ = (Q, [Σ,∆], δ, I, F).

The relation R(t̂) realized by t̂ is the behaviour of t̂ with respect to the label

set [Σ,∆]. A transducer (over Σ,∆) is a labelled graph t̂ = (Q,C, δ, I, F)

such that [Σ,∆] ⊆ C, monC = mon[Σ,∆] = Σ∗ × ∆∗, and Labels(t̂) ⊆
[Σ,∆] ∪ {e/e}. Thus, R(x/y) = {(x, y)} for x/y ∈ [Σ,∆], and R(β) ⊆
Σ∗ × ∆∗ for β ∈ C. If in t̂ we replace C with [Σ,∆] we get an ordinary

transducer that is otherwise identical to t̂.

(4) A transducer with set specs is a labelled graph ŝ = (Q,PSP[Γ], δ, I, F); that

is, ŝ is a type PSP[Γ] graph. The relation R(ŝ) realized by ŝ is the behaviour

of ŝ with respect to the label set PSP[Γ].

(5) An alphabet invariant transducer is a labelled graph î = (Q,PSPinvar, δ, I, F).

If Γ is an alphabet then the Γ-version of î is the transducer with set specs

î[Γ] = (Q,PSP[Γ], δ, I, F).

The above definitions of ordinary automata and transducers are equivalent to the

standard ones. The only slight deviation is that, instead of using the empty word ε

in transition labels, here we use the empty word symbol e. This has two advantages:

(i) it allows us to make a uniform presentation of definitions and results and (ii) it

is consistent with the use of a symbol for the empty word in regular expressions.

November 29, 2019 8:30 WSPC/INSTRUCTION FILE ws-ijfcs

Regular Expressions and Transducers over Alphabet-invariant and User-defined Labels 15

b̂ :
0 1

/∃01

/∃01

0/∃0 0

Fig. 3: Automaton with set specs accepting all strings over Γ =

{0, . . . , n− 1} that do not contain 011.

The terms automaton and transducer (as opposed to the ordinary ones) allow for

more flexibility in the use of label sets as components of these objects.

As usual about transducers t̂, we denote by t̂(w) the set of outputs of t̂ on input

w, that is,

t̂(w) = {u | (w, u) ∈ R(t̂)}.

Moreover, for any language L, we have that t̂(L) = ∪w∈Lt̂(w).

Remark 23. The size of an alphabet invariant transducer î is of the same order

of magnitude as |Q|+ |δ|.

Lemma 24. If b̂ is an automaton with set specs then exp b̂ is an automaton. If ŝ

is a transducer with set specs then exp ŝ is a transducer (in standard form).

Convention. Let Φ(û) be any statement about the behaviour of an automaton

or transducer û. If v̂ is an automaton or transducer with set specs then we make

the convention that the statement Φ(v̂) means Φ(exp v̂). For example, “ŝ is an

input-altering transducer” means that “exp ŝ is an input-altering transducer”—a

transducer t̂ is input-altering if u ∈ t̂(w) implies u ∕= w, or equivalently (w,w) /∈
R(t̂), for any word w.

Example 25. The transducers shown in Fig. 2 are alphabet invariant. Both trans-

ducers are much more succinct compared to their expanded Γ-versions, as |Γ| → ∞:

| exp t̂sub2[Γ]| = O(|Γ|2) and | exp t̂px[Γ]| = O(|Γ|).

If expanded, the automaton with set specs in Fig. 3, will have 3n− 1 transitions, as

opposed to the current 7 ones.

Following [18], if t̂ = (Q, [Σ,∆], δ, I, F) is an ordinary transducer then t̂−1 is the

ordinary transducer (Q, [∆,Σ], δ′, I, F), where δ′ = {(p, y/x, q) | (p, x/y, q) ∈ δ},
such that

R(t̂−1) = R(t̂)−1. (4)

Lemma 26. For each transducer ŝ with set specs we have that

exp(ŝ−1) = (exp ŝ)−1 and R(ŝ−1) = R(ŝ)−1.

November 29, 2019 8:30 WSPC/INSTRUCTION FILE ws-ijfcs

16 S. Konstantinidis, N. Moreira, R. Reis, J. Young

Proof. The first identity follows from two facts: (i) exp(ŝ−1) has transitions of the

form (p, y/x, q), where y/x ∈ R(p−1) and (p, p−1, q) is a transition in ŝ−1; and (ii)

(exp ŝ)−1 has transitions of the form (p, y/x, q), where x/y ∈ R(p) and (p, p, q) is a

transition in ŝ. The second identity follows from (4) and Definition 19.

Remark 27. Let t̂ = (Q,Γ, δ, I, F) be a transducer with set specs. By Lemma 14,

we have that

󰀂δ󰀂 ≤ (2|Γ|+ 3)|δ|.

7. Rational Operations

The three standard rational operations (union, catenation, star) on ordinary au-

tomata and transducers can be defined on labelled graphs with appropriate con-

straints on the monoids involved. Let ĝ = (Q,B, δ, I, F) and ĝ′ = (Q′, B′, δ′, I ′, F ′)

be labelled graphs such that

monB = monB′ and Q ∩Q′ = ∅.

The graph ĝ ∪ ĝ′ of type C = B ∪B′ is defined as follows

ĝ ∪ ĝ′ = (Q ∪Q′ ∪ {s}, C, δ ∪ δ′ ∪ E, {s}, F ∪ F ′),

where s is a new state not in Q ∪ Q′ and E is the set of transitions (s, εmonB , p),

for all p ∈ I ∪ I ′.

The graph ĝ · ĝ′ of type C = B ∪B′ is defined as follows

ĝ · ĝ′ = (Q ∪ {q} ∪Q′, C, δ ∪ δ′ ∪ E ∪ E′, I, F ′),

where q is a new state not in Q ∪ Q′, E is the set of transitions (f, εmonB , q), for

all f ∈ F , and E′ is the set of transitions (q, εmonB , i
′), for all i′ ∈ I ′.

The graph ĝ∗ of type B is defined as follows

ĝ∗ = (Q ∪ {s}, B, δ ∪ E1 ∪ E2, {s}, F ∪ {s}),

where s is a new state not in Q∪Q′, E1 is the set of transitions (s, εmonB , i) for all

i ∈ I, and E2 is the set of transitions (f, εmonB , s) for all f ∈ F .

Lemma 28. Let ĝ = (Q,B, δ, I, F) and ĝ′ = (Q′, B′, δ′, I ′, F ′) be trim labelled

graphs such that monB = monB′.

(1) I(ĝ ∪ ĝ′) = I(ĝ) ∪ I(ĝ′) and |ĝ ∪ ĝ′| = O(|ĝ|+ |ĝ′|).
(2) I(ĝ · ĝ′) = I(ĝ)I(ĝ′) and |ĝ · ĝ′| = O(|ĝ|+ |ĝ′|).
(3) I(ĝ∗) = I(ĝ)∗ and |ĝ∗| = O(|ĝ|).

In the above lemma, the statements about the sizes of the graphs follow im-

mediately from the definitions of their constructions. For the statements about the

behaviours of the constructed graphs, it is sufficient to show the statements about

their expansions. For example, for the third statement, one shows that

I(exp ĝ∗) = I(exp ĝ)∗.

November 29, 2019 8:30 WSPC/INSTRUCTION FILE ws-ijfcs

Regular Expressions and Transducers over Alphabet-invariant and User-defined Labels 17

But then, one works at the level of the monoid monB and the proofs are essentially

the same as the ones for the case of ordinary automata (see e.g. [17]).

8. Regular Expressions over Label Sets

We extend the definitions of regular and 2D regular expressions to include set specs

and pairing specs, respectively. We start off with a definition that would work with

any label set (called set of atomic formulas in [12]).

Definition 29. Let B be a label set with behaviour I such that no β ∈ B contains

the special symbol ⊘. The set REGB of type B regular expressions is the set of

strings consisting of the 1-symbol string ⊘ and the strings in the set Z that is

defined inductively as follows.

• εmonB is in Z.

• Every β ∈ B is in Z.

• If r, s ∈ Z then (r + s), (rs), (r∗) are in Z.

The behaviour I(r) of a type B regular expression r is defined inductively as follows.

• I(⊘) = ∅ and I(εmonB) = {εmonB};
• I(β) is the subset of monB already defined by the behaviour I on B;

• I(r + s) = I(r) ∪ I(s);
• I(r · s) = I(r)I(s);
• I(r∗) = I(r)∗.

Remark 30. The above definition implies that ⊘ occurs in any r ∈ REGB if and

only if r = ⊘.

Example 31. Let Σ,∆ be alphabets. Using Σ as a label set, we have that REGΣ

is the set of ordinary regular expressions over Σ. For the label set [Σ,∆], we have

that REG[Σ,∆] is the set of rational expressions over Σ∗ ×∆∗ in the sense of [12].

Example 32. Let Γ = {0, 1, . . . , n − 1}. In type SSP[Γ] regular expressions, the

set specs ∀,∃w, /∃w correspond to the following UNIX expressions, respectively: ‘.’,

‘[w]’, ‘[^w]’. So L(∀) = Γ. When the alphabet size n is a parameter rather than

fixed, the savings when using expressions over label sets could be of order O(n) or

even O(n2). For example, the expression ∀ is of size O(1) but the corresponding

(ordinary) regular expression of type Γ is 0 + · · · + (n − 1), which is of size O(n).

Similarly, the following regular expression over PSP[Γ]

(∀/=)∗
󰀃
∀/∀∕=

󰀄
(∀/=)∗ (5)

is of size O(1). It describes all word pairs (u, v) such that the Hamming distance of

u, v is 1. The corresponding (ordinary) regular expression over [Γ,Γ] is

󰀃
0/0 + · · ·+ (n− 1)/(n− 1)

󰀄∗ 󰀃
r0 + · · ·+ rn−1

󰀄 󰀃
0/0 + · · ·+ (n− 1)/(n− 1)

󰀄∗

November 29, 2019 8:30 WSPC/INSTRUCTION FILE ws-ijfcs

18 S. Konstantinidis, N. Moreira, R. Reis, J. Young

which is of size O(n2), where each ri is the sum of all expressions i/j with j ∕= i

and i, j ∈ Γ.

Example 33. Consider the UNIX utility tr. For any strings u, v of length ℓ > 0,

the command a

tr u v

can be ‘simulated’ by the following regular expression of type PSP[ASCII]
󰀓
(/∃u/=) + (∃u[0]/∃v[0]) + · · ·+

󰀃
∃u[ℓ− 1]/v[ℓ− 1]

󰀄󰀔∗

where ASCII is the alphabet of standard ASCII characters. Similarly, the command

tr−d u

can be ‘simulated’ by the following regular expression of type PSP[ASCII]
󰀃
∃u/e+ /∃u/=

󰀄∗

For the command

tr−s u

it seems that any regular expression over PSP[ASCII] cannot be of size O(ℓ2).

The Thompson method, [14], of converting an ordinary regular expression over

Σ—a type Σ regular expression in the present terminology—to an ordinary automa-

ton can be extended without complications to work with type B regular expressions,

for any label set B, using Lemma 28.

Theorem 34. Let B be a label set with behaviour I. For each type B regular ex-

pression r, there is a type B graph ĝ(r) such that

I(r) = I
󰀃
ĝ(r)

󰀄
and |ĝ(r)| = O(|r|).

For the converse of the above theorem, we shall extend the state elimination

method of automata, [4], to labelled graphs.

Let ĝ =
󰀃
Q,B, δ, {s}, {f}

󰀄
be a type REGB graph, where B is a label set

with some behaviour I. We say that ĝ is non-returning , if s ∕= f , there are no

transitions going into s, there are no transitions coming out of f , and there is

at most one transition between any two states of ĝ. For any states p, r ∈ Q, let

Bp,r = {β | (p,β, r) ∈ δ}, and let rp,r = β1 + · · · + βm, where the βi’s are the

elements of Bp,r, if Bp,r ∕= ∅. We define next the labelled graph ĥ that results by

eliminating a state q ∈ Q \ {s, f} from ĝ. It is the type REGB graph

ĥ =
󰀃
Q \ {q}, B, δ′, {s}, {f}

󰀄
(6)

such that δ′ is defined as follows. For any states p, r ∈ Q \ {q}:

aThe command “tr u v” takes as input a file F and outputs its characters except that each
character u[i] occurring in F is outputted as v[i]. The command “tr−d u” outputs the characters
in the input file omitting those occurring in u. The command “tr −s u” outputs the characters
in the input file suppressing any (consecutive) repetitions of each character u[i].

November 29, 2019 8:30 WSPC/INSTRUCTION FILE ws-ijfcs

Regular Expressions and Transducers over Alphabet-invariant and User-defined Labels 19

• If (p,α, r) ∈ δ then (p,α, r) ∈ δ′.

• If (p,α1, q), (q,α2, r) ∈ δ then either (p,α1(r
∗
q,q)α2, r) ∈ δ′ if Bq,q ∕= ∅, or

(p,α1α2, r) ∈ δ′ if Bq,q = ∅.

Lemma 35. Let ĝ =
󰀃
Q,B, δ, {s}, {f}

󰀄
be a non-returning labelled graph, where B

is a label set with some behaviour I. If ĥ is the type REGB graph that results by

eliminating a state q ∈ Q \ {s, f} from ĝ then I(ĥ) = I(ĝ).

Proof. The main steps of the proof are analogous to those used in traditional

proofs for the case of NFAs [17]. First, let m ∈ I(ĝ). Then, there is an accepting

path P = 〈qi−1,βi, qi〉ℓi=1 of ĝ such that ℓ ∈ N, m = m1 · · ·mℓ and each mi ∈ I(βi).

By a q-block of transitions in P we mean a path R = 〈qj−1,βj , qj〉b+r
j=b such that

r ≥ 1, qb−1 ∕= q, qb = · · · = qb+r−1 = q, qb+r ∕= q.

As ĝ has at most one transition between any two states, we have that, if r ≥ 2,

then βb+1 = · · ·βb+r−1 = rq,q for some rq,q. Then,

e = (qb−1,βb(rq,q)
∗βb+r, qb+r) or e = (qb−1,βbβb+r, qb+r)

is a transition in δ′—see (6). Moreover, mb · · ·mb+r ∈ I(βb)I(r∗q,q)I(βb+r). If we

replace in P the q-block R with the transition e, and we repeat this with all q-blocks

in P , then we get an accepting path of ĥ such that m ∈ I(ĥ).
Conversely, let m ∈ I(ĥ). Then there is an accepting path P ′ = 〈qi−1,βi, qi〉ℓi=1

of ĥ such that ℓ ≥ 1, m = m1 · · ·mℓ and each mi ∈ I(βi). For each i ∈ {1, . . . , ℓ},
we define a path Pi of ĝ as follows. If (qi−1,βi, qi) ∈ δ then Pi = 〈qi−1,βi, qi〉. Else,
there are (qi−1,α1, q), (q,α2, qi) ∈ δ such that

βi = α1(rq,q)
∗α2 or βi = α1α2.

As mi ∈ I(βi) and, if defined, I(rq,q)∗ = ∪∞
r=0I(rq,q)r, we have that there is r ≥ 0

such that

mi = k′iki,1 · · · ki,rk′′i , k′i ∈ I(α1), k′′i ∈ I(α2), ki,1, . . . , ki,r ∈ I(rq,q).

Then, the path Pi is

〈(qi−1,α1, q), (q, rq,q, q), . . . , (q, rq,q, q), (q,α2, qi)〉,

which has r repetitions of (q, rq,q, q). Now define the sequence P to be the concate-

nation of all paths Pi. This sequence is an accepting path of ĝ and this implies that

m ∈ I(ĝ).

As a type B graph ĝ is also a type REGB graph, and as ĝ can be modified to

be non-returning, we can apply the above lemma repeatedly until we get a type

REGB graph ĥ with set of states {s, f} such that I(ĝ) = I(ĥ). Then, we have that
I(ĥ) = I(rs,f). Thus, we have the following consequence of Lemma 35.

Corollary 36. Let B be a label set with behaviour I. For each type B graph ĝ there

is a type B regular expression r such that I(ĝ) = I(r).

November 29, 2019 8:30 WSPC/INSTRUCTION FILE ws-ijfcs

20 S. Konstantinidis, N. Moreira, R. Reis, J. Young

9. Label Operations and the Product Construction

We shall consider partial operations ⊙ on label sets B,B′ such that, when defined,

the product β ⊙ β′ of two labels belongs to a certain label set C. Moreover, we

shall assume that ⊙ is also a partial operation on monB,monB′ such that, when

defined, the product m⊙m′ of two monoid elements belongs to monC. We shall call

⊙ a polymorphic operation (in analogy to polymorphic operations in programming

languages) when I(β ⊙ β′) = I1(β) ⊙ I2(β′) where I1, I2, I are the behaviours of

B,B′, C. This concept shall allow us to also use ⊙ as the name of the product

construction on labelled graphs that respects the behaviours of the two graphs.

Below, the outcome of a label operation β ⊙ β′ could be ⊥ (undefined). For

convenience we shall write I(⊥) = ∅. For any S ⊆ monB and S′ ⊆ monB′, we

shall use the notation

S ⊙ S′ = {m⊙m′ | m ∈ S,m′ ∈ S′,m⊙m′ ∕= ⊥}.

Example 37. We shall consider the following partial monoid operations, which are

better known when applied to subsets of the monoid.

• ∩ : Σ∗×Σ∗ 󰃚󰃚󰃄 Σ∗ such that u∩ v = u if u = v; else, u∩ v = ⊥. Of course,

for any two languages K,L ⊆ Σ∗, K ∩ L is the usual intersection of K,L.

• ◦ : (Σ∗
1 ×∆∗) × (∆∗ × Σ∗

2) 󰃚󰃚󰃄 (Σ∗
1 × Σ∗

2) such that (u, v) ◦ (w, z) = (u, z)

if v = w; else, (u, v) ◦ (w, z) = ⊥. For any two relations R,S, R ◦ S is the

usual composition of R,S.

• ↓: (Σ∗ × ∆∗) × Σ∗ 󰃚󰃚󰃄 (Σ∗ × ∆∗) such that (u, v) ↓ w = (u, v) if u = w;

else, (u, v) ↓ w = ⊥. For a relation R and language L,

R ↓ L = R ∩ (L×∆∗). (7)

• ↑: (Σ∗ × ∆∗) × ∆∗ 󰃚󰃚󰃄 (Σ∗ × ∆∗) such that (u, v) ↑ w = (u, v) if v = w;

else, (u, v) ↓ w = ⊥. For a relation R and language L,

R ↑ L = R ∩ (Σ∗ × L). (8)

Definition 38. Let B,B′, C be label sets with behaviours I1, I2, I, respectively. A
polymorphic operation ⊙ over B,B′, C, denoted as “⊙ : B ×B′ ⇒ C”, is defined as

follows.

• It is a partial mapping: ⊙ : Bε ×B′
ε 󰃚󰃚󰃄 Cε

• It is a partial mapping: ⊙ : monB ×monB′ 󰃚󰃚󰃄 monC.

• For all β ∈ Bε and β′ ∈ B′
ε we have

I(β ⊙ β′) = I1(β)⊙ I2(β′).

Example 39. The following polymorphic operations are based on label sets of or-

dinary automata and transducers using the monoid operations in Ex. 37.

• “∩ : Σ× Σ ⇒ Σ” is defined by

November 29, 2019 8:30 WSPC/INSTRUCTION FILE ws-ijfcs

Regular Expressions and Transducers over Alphabet-invariant and User-defined Labels 21

– the label operation ∩ : Σε ×Σε 󰃚󰃚󰃄 Σε such that x∩ y = x, if x = y, else

x ∩ y = ⊥; and

– the monoid operation ∩ : Σ∗ × Σ∗ 󰃚󰃚󰃄 Σ∗.

Obviously, L(x ∩ y) = L(x) ∩ L(y).
• “◦ : [Σ,∆]× [∆,Σ′] ⇒ [Σ,Σ′]” is defined by

– the label operation ◦ : [Σ,∆]ε × [∆,Σ′]ε 󰃚󰃚󰃄 [Σ,Σ′]ε such that (x/y1) ◦
(y2/z) = (x/z) if y1 = y2, else (x/y1) ◦ (y2/z) = ⊥; and

– the monoid operation ◦ : (Σ∗ ×∆∗)× (∆∗ × Σ′∗) 󰃚󰃚󰃄 (Σ∗ × Σ′∗).

Obviously, R((x, y1) ◦ (y2, z)) = R((x, y1)) ◦R((y2, z)).

• “↓: [Σ,∆]× Σ ⇒ [Σ,∆]” is defined by

– the label operation ↓: [Σ,∆]ε×Σε 󰃚󰃚󰃄 [Σ,∆]ε such that (x/y) ↓ z = (x/y)

if x = z, else (x/y) ↓ z = ⊥; and

– the monoid operation ↓: (Σ∗ ×∆∗)× Σ∗ 󰃚󰃚󰃄 (Σ∗ ×∆∗).

Obviously, R((x/y) ↓ z) = R(x/y) ↓ L(z).
• “↑: [Σ,∆]×∆ ⇒ [Σ,∆]” is defined by

– the label operation ↑: [Σ,∆]ε×∆ε 󰃚󰃚󰃄 [Σ,∆]ε such that (x/y) ↑ z = (x/y)

if y = z, else (x/y) ↑ z = ⊥; and

– the monoid operation ↑: (Σ∗ ×∆∗)× Σ∗ 󰃚󰃚󰃄 (Σ∗ ×∆∗).

Obviously, R((x/y) ↑ z) = R(x/y) ↑ L(z).

Example 40. The following polymorphic operations are based on label sets of au-

tomata and transducers with set specs.

• “∩ : SSP[Γ]×SSP[Γ] ⇒ SSP[Γ]” is defined by the monoid operation ∩ : Γ∗×
Γ∗ 󰃚󰃚󰃄 Γ∗, and the label operation ∩ : SSP[Γ]ε×SSP[Γ]ε 󰃚󰃚󰃄 SSP[Γ]ε defined

in Section 3. By Lemma 6 and having L(⊥) = ∅, for any α,β ∈ SSP[Γ]ε,

we have that

L(α ∩ β) = L(α) ∩ L(β).

• “↓: PSP[Γ]×Γ ⇒ PSP[Γ]” is defined by the monoid operation ↓: (Σ∗×∆∗)×
Σ∗ 󰃚󰃚󰃄 (Σ∗ ×∆∗) and by the label operation ↓: PSP[Γ]ε × Γε 󰃚󰃚󰃄 PSP[Γ]ε
such that e/e ↓ e = e/e and e/e ↓ g = ⊥ for g ∈ Γ, and for p ∈ PSP[Γ]

and x ∈ Γε

p ↓ x =

󰀻
󰁁󰁁󰀿

󰁁󰁁󰀽

e/ right p, if x = e and left p = e;

∃x/ right p, if x, left p ∕= e and x ∈ L(left p);
⊥, otherwise.

Assuming β ∈ PSP[Γ]ε and having R(⊥) = ∅, we have that

R(β ↓ x) = R(β) ↓ L(x)

Moreover we have that β ↓ x can be computed from β and x in time O(|β|).

November 29, 2019 8:30 WSPC/INSTRUCTION FILE ws-ijfcs

22 S. Konstantinidis, N. Moreira, R. Reis, J. Young

• “↑: PSP[Γ]×∆ ⇒ PSP[Γ]” is defined by the monoid operation ↑: (Σ∗×∆∗)×
∆∗ 󰃚󰃚󰃄 (Σ∗ ×∆∗), and by the label operation ↑: PSP[Γ]ε ×∆ε 󰃚󰃚󰃄 PSP[Γ]ε
such that e/e ↑ e = e/e and e/e ↑ g = ⊥ for g ∈ Γ, and p ↑ x = (p−1 ↓
x)−1 for p ∈ PSP[Γ] and x ∈ Γε. Assuming β ∈ PSP[Γ]ε, we have that

R(β ↑ x) = R(β) ↑ L(x)

Moreover we have that β ↑ x can be computed from β and x in time O(|β|).

In Sect. 11, we define the polymorphic operation ‘◦’ between pairing specs.

Definition 41. Let ĝ = (Q,B, δ, I, F) and ĝ′ = (Q′, B′, δ′, I ′, F ′) be type B and

B′, respectively, graphs and let “⊙ : B ×B′ ⇒ C” be a polymorphic operation. The

product ĝ ⊙ ĝ′ is the type C graph
󰀃
P,C, δ ⊙ δ′, I × I ′, F × F ′󰀄

defined as follows. First make the following two possible modifications on ĝ, ĝ′: if

there is a label β in ĝ such that εmonB ∈ I(β) then modify ĝ′ to ĝ′ε; and if there is

a label β′ in ĝ′ (before being modified) such that εmonB′ ∈ I(β′) then modify ĝ′ to

ĝ′ε. In any case, use the same names ĝ and ĝ′ independently of whether they were

modified. Then P and δ ⊙ δ′ are defined inductively as follows:

(1) I × I ′ ⊆ P .

(2) If (p, p′) ∈ P and there are (p,β, q) ∈ δ and (p′,β′, q′) ∈ δ′ with β⊙ β′ ∕= ⊥
then (q, q′) ∈ P and

󰀃
(p, p′),β ⊙ β′, (q, q′)

󰀄
∈ δ ⊙ δ′.

Example 42. Here we recall a few known examples of product constructions in-

volving automata and transducers.

(1) For two automata â, â′, the automaton â ∩ â′ is such that

L(â ∩ â′) = L(â) ∩ L(â′).

Note that if â, â′ are NFAs then also â ∩ â′ is an NFA.

(2) For two transducers t̂, t̂′, the transducer t̂ ◦ t̂′ is such that

R(t̂ ◦ t̂′) = R(t̂) ◦R(t̂′).

(3) For a transducer t̂ and an automaton â, the transducer t̂ ↓ â is such that

R(t̂ ↓ â) = R(t̂) ↓ L(â).

Similarly, the transducer t̂ ↑ â is such that

R(t̂ ↑ â) = R(t̂) ↑ L(â).

These product constructions were used in [8] to answer algorithmic ques-

tions about independent languages—see Sect. 13.

Lemma 43. The following statements hold true about the product graph ĝ ⊙ ĝ′ =

(P,C, δ ⊙ δ′, I × I ′, F × F ′) of two trim labelled graphs ĝ, ĝ′ as defined in Def. 41.

November 29, 2019 8:30 WSPC/INSTRUCTION FILE ws-ijfcs

Regular Expressions and Transducers over Alphabet-invariant and User-defined Labels 23

(1) |P | = O(|δ||δ′|) and |δ ⊙ δ′| ≤ |δ||δ′|.
(2) If the value β ⊙ β′ can be computed from the labels β and β′ in time, and

is of size, O(|β| + |β′|), then 󰀂δ ⊙ δ′󰀂 is of magnitude O(|δ|󰀂δ′󰀂 + |δ′|󰀂δ󰀂)
and δ ⊙ δ′ can be computed within time of the same order of magnitude.

Proof. As P ⊆ Q × Q′, Lemma 18 implies that |P | ≤ (2|δ| + 1)(2|δ′| + 1), so

|P | = O(|δ||δ′|). As we get at most one transition in δ⊙δ′ for each pair of transitions

in δ and δ′, we have that |δ ⊙ δ′| ≤ |δ||δ′|. For the second statement, we have that

δ ⊙ δ′ can be computed in time
󰁛

(p,β,q)∈δ

󰁛

(p′,β′,q′)∈δ′

Cβ,β′

where Cβ,β′ is the cost of computing the value β⊙β′ from the labels β and β′. Then,

the statement follows using standard summation manipulations and the premise

that Cβ,β′ is of magnitude O(|β|+ |β′|).

Theorem 44. If “⊙ : B × B′ ⇒ C” is a polymorphic operation and ĝ, ĝ′ are type

B,B′, respectively, graphs then ĝ ⊙ ĝ′ is a type C graph such that

I(ĝ ⊙ ĝ′) = I(exp ĝ ⊙ exp ĝ′).

Proof. Recall that each transition (p,m, q) of exp ĝ comes from a corresponding

transition (p,β, q) of ĝ such that β ∈ Bε and m ∈ I1(β); and similarly each transi-

tion (p′,m′, q′) of exp ĝ′ comes from a corresponding transition (p′,β′, q′) of ĝ′ such

that β′ ∈ B′
ε and m′ ∈ I2(β′); where we used I1, I2 for the behaviours of B,B′.

Also, if β ⊙ β′ ∕= ⊥ and m⊙m′ ∕= ⊥ then
󰀃
(p, p′),β ⊙ β′, (q, q′)

󰀄
is a transition of ĝ ⊙ ĝ′ and󰀃

(p, p′),m⊙m′, (q, q′)
󰀄
is a transition of (exp ĝ ⊙ exp ĝ′).

First consider any m ∈ I(exp ĝ⊙ exp ĝ′). Then exp ĝ⊙ exp ĝ′ has an accepting path

〈(qi−1, q
′
i−1),mi ⊙m′

i, (qi, q
′
i)〉ℓi=1 such that m = (m1 ⊙m′

1) · · · (mℓ ⊙m′
ℓ).

Then, for each i = 1, . . . , ℓ, there is a transition (qi−1,βi, qi) of ĝ with mi ∈ I1(βi);

and similarly for ĝ′, we have m′
i ∈ I2(β′

i). Then,

(mi ⊙m′
i) ∈ I(βi)⊙ I(β′

i) = I(βi ⊙ β′
i)

Moreover, ĝ ⊙ ĝ′ has the accepting path

〈(qi−1, q
′
i−1),βi ⊙ β′

i, (qi, q
′
i)〉ℓi=1

which implies that I(β1 ⊙ β′
1) · · · I(βℓ ⊙ β′

ℓ) ⊆ I(ĝ ⊙ ĝ′). Hence, m ∈ I(ĝ ⊙ ĝ′).

Conversely, consider any m ∈ I(ĝ ⊙ ĝ′). Then ĝ ⊙ ĝ′ has an accepting path

〈(qi−1, q
′
i−1),βi ⊙ β′

i, (qi, q
′
i)〉ℓi=1 such that m = m1 · · ·mℓ

and each mi ∈ I(βi ⊙ β′
i) = I1(βi)⊙ I2(β′

i), which implies that

each mi = ki ⊙ k′i with ki ∈ I1(βi) and k′i ∈ I2(β′
i).

November 29, 2019 8:30 WSPC/INSTRUCTION FILE ws-ijfcs

24 S. Konstantinidis, N. Moreira, R. Reis, J. Young

Then, for each i = 1, . . . , ℓ, there is a transition (qi−1, ki, qi) of exp ĝ and similarly

there is a transition (q′i−1, k
′
i, q

′
i) of ĝ

′. Then exp ĝ ⊙ exp ĝ′ has the accepting path

〈(qi−1, q
′
i−1), ki ⊙ k′i, (qi, q

′
i)〉ℓi=1

which implies that (k1 ⊙ k′1) · · · (kℓ ⊙ k′ℓ) ∈ I(exp ĝ⊙ exp ĝ′). Hence, m ∈ I(exp ĝ⊙
exp ĝ′).

How to apply the above theorem. Suppose that we have a known product

construction ⊙ on labelled graphs û, û′ over monoids M,M ′ (see Ex. 42), where

I(û⊙û′) = I(û)⊙I(û′). We can apply a ‘higher level’ version of ⊙ on labelled graphs

ĝ, ĝ′ of some types B,B′ with behaviours in the monoids M,M ′. This would avoid

expanding ĝ and ĝ′ to û and û′, and the theorem establishes that the behaviour of

ĝ⊙ ĝ′ is correct, that is, I(ĝ⊙ ĝ′) = I(û⊙ û′). We apply the theorem in Lemma 46.2,

in Theorem 56, in Corollary 63, and in Corollary 66.

10. Automata and Transducers with Set Specifications

Here we present some basic algorithms on automata and transducers with set specs.

These can be applied to answer the satisfaction question about independent lan-

guages (see Section 13).

Remark 45. For every ordinary automaton â = (Q,Γ, δ, I, F), one can make in

linear time an automaton with set specs â′ = (Q, SSP[Γ], δ′, I, F) such that, δ′

consists of all transitions (p, e, q) ∈ δ (if any) union all transitions (p,∃g, q) where
(p, g, q) ∈ δ and g ∈ Γ.

Lemma 46. Consider a string w and two automata with set specs

b̂ = (Q, SSP[Γ], δ, I, F) and b̂′ = (Q′, SSP[Γ], δ′, I ′, F ′).

(1) There is a O(|b̂|) algorithm nonEmptyW(b̂) returning either a word in L(b̂),
or None if L(b̂) = ∅. The decision version of this algorithm, emptyP(b̂),

simply returns whether L(b̂) is empty.

(2) There is a O(|Γ|+ |δ|󰀂δ′󰀂+ |δ′|󰀂δ󰀂) algorithm returning the automaton with

set specs b̂ ∩ b̂′ such that L(b̂ ∩ b̂′) = L(b̂) ∩ L(b̂′).
(3) There is a O(|w||b̂|) algorithm returning whether w ∈ L(b̂).

Proof. For the first statement, we simply use a breadth-first search (BFS) algo-

rithm, starting from any initial state s ∈ I, which is considered visited, and stop-

ping, either when a final state is reached (trying if necessary all initial states), or all

states have been visited. In the latter case the desired algorithm returns None (or

False). For the algorithm emptyP(b̂) nothing further is needed. For nonEmptyW(b̂),

when a non-visited state q is visited from a previously visited state p using a tran-

sition e = (p,β, q), an element x ∈ L(β) is computed in time O(|β|) = O(|e|), using
Lemma 7. The algorithm also constructs a labelled graph G that will be used to find

November 29, 2019 8:30 WSPC/INSTRUCTION FILE ws-ijfcs

Regular Expressions and Transducers over Alphabet-invariant and User-defined Labels 25

the desired word in L(b̂). When the above transition is accessed and x is computed

then the edge (q, x, p) is added to G. If the algorithm stops because it reached a

final state f , then there is a unique path in G from f to the initial state s, which

can be used to find the desired word in L(b̂) (the path is unique as every state is

visited only once). The cost of BFS is O(|Q|+ |δ|), but here when an edge e ∈ δ is

accessed the algorithm spends time O(|e|), so the cost is

O(|Q|+
󰁛

e∈δ

|e|).

For the second statement, we compute the product b̂ ∩ b̂′. As the value β ∩ β′

of two labels can be computed in linear time, Lemma 43 implies that b̂ ∩ b̂′ can be

computed in time O(|Γ|+ |δ|󰀂δ′󰀂+ |δ′|󰀂δ󰀂). Now we have

L(b̂ ∩ b̂′) = L(exp b̂ ∩ exp b̂′) (9)

= L(exp b̂) ∩ L(exp b̂′) (10)

= L(b̂) ∩ L(b̂′) (11)

Statement (9) follows from the fact that “∩ : SSP[Γ] × SSP[Γ] ⇒ SSP[Γ]” is a

polymorphic operation—see Theorem 44 and Ex. 40. Statement (10) follows from

the fact that each exp b̂, exp b̂′ is an automaton and the operation ∩ is well-defined

on these objects—see Lemma 24 and Ex. 42.

For the third statement, one makes an automaton with set specs b̂w accepting

{w}, then computes â = b̂w ∩ b̂, and then uses emptyP(â) to get the desired answer.

Lemma 47. Let ŝ = (Q,PSP[Γ], δ, I, F) be a trim transducer with set specs, â =

(Q′,Γ, δ′, I ′, F ′) be a trim automaton and (u, v) be a pair of words.

(1) There is a O(|ŝ|) algorithm nonEmptyW(ŝ) returning either a word pair

in R(ŝ), or None if R(ŝ) = ∅. The decision version of this algorithm,

emptyP(ŝ), simply returns whether R(ŝ) is empty.

(2) There is a O(|Γ|+ |δ|󰀂δ′󰀂+ |δ′|󰀂δ󰀂) algorithm returning the transducer with

set specs ŝ ↓ â such that R(ŝ ↓ â) = R(ŝ) ↓ L(â).
(3) There is a O(|u||v||ŝ|) algorithm returning whether (u, v) ∈ R(ŝ).

Proof. The first statement is completely analogous to the first statement of

Lemma 46. For the second statement, we compute the product ŝ ↓ â. As the product

p ↓ x of two labels can be computed in linear time, Lemma 43 implies that ŝ ↓ â

can be computed in time O(|Γ|+ |δ|󰀂δ′󰀂+ |δ′|󰀂δ󰀂). Now we have

R(ŝ ↓ â) = R(exp ŝ ↓ exp â) (12)

= R(exp ŝ) ↓ L(exp â) (13)

= R(ŝ) ↓ L(â) (14)

November 29, 2019 8:30 WSPC/INSTRUCTION FILE ws-ijfcs

26 S. Konstantinidis, N. Moreira, R. Reis, J. Young

Statement (12) follows from the fact that ‘↓: PSP[Γ]×Γ ⇒ PSP[Γ]” is a polymorphic

operation—see Theorem 44 and Ex. 40. Statement (13) follows from the fact that

exp ŝ is a transducer and exp â is an automaton and the operation ↓ is well-defined

on these objects—see Lemma 24 and Ex. 42.

For the third statement, first make two automata with set specs b̂u and b̂v
accepting {u} and {v} respectively, then compute t̂ = ŝ ↓ âu ↑ âv, and then use

emptyP(t̂) to get the desired answer.

11. Composition of Transducers with Set Specifications

Here we are interested in defining the composition p1 ◦ p2 of two pairing specs in

a way that R(p1) ◦ R(p2) is equal to R(p1 ◦ p2). By Definition 11, the operator

R() is defined with respect to an alphabet of reference Γ, so the value of p1 ◦ p2
should depend on Γ. It turns out that, for a particular subcase about the structure

of p1, p2, the operation p1 ◦ p2 can produce two or three pairing specs. To account

for this, we define a new label set:

PSP+[Γ] consists of strings p1 ⊕ · · ·⊕ pℓ,

where ℓ ∈ N and each pi ∈ PSP[Γ]. Moreover we have the (fixed) label behaviour

R : PSP+[Γ] → 2Γ
∗×Γ∗

such that

R(p1 ⊕ · · ·⊕ pℓ) = R(p1) ∪ · · · ∪R(pℓ).

Definition 48. Let Γ be an alphabet of reference. The label operation

◦ : PSP[Γ]ε × PSP[Γ]ε 󰃚󰃚󰃄 PSP+[Γ]ε

is defined between any p1, p2 ∈ PSP[Γ]ε as follows—again ⊥ means undefined.

p1 ◦ p2 = ⊥, if L(rset p1) ∩ L(left p2) = ∅.

Now we assume that the above condition is not true and we consider the pos-

sible structure of p1, p2 using A,B, F,G ∈ SSP[Γ] and W,X, Y, Z ∈ SSP[Γ]ε as

components—thus, we assume below that L(B) ∩ L(F) ∕= ∅ and L(X) ∩ L(Y) ∕= ∅.

(W/X) ◦ (Y/Z) = W/Z

(W/B) ◦ (F/=) = W/B ∩ F

(W/B) ◦
󰀃
F/G ∕=

󰀄
=

󰀻
󰁁󰁁󰀿

󰁁󰁁󰀽

W/G, if |L(B ∩ F)| ≥ 2

W/G ∩ /∃b, if L(B ∩ F) = {b} and L(G) \ {b} ∕= ∅
⊥, otherwise.

(B/=) ◦ (F/Z) = B ∩ F/Z

(B/=) ◦ (F/=) = B ∩ F/=

(B/=) ◦ (F/G ∕=) =

󰀫
⊥, if L(G) = L(B ∩ F) = {g}
B ∩ F/G ∕=, otherwise

November 29, 2019 8:30 WSPC/INSTRUCTION FILE ws-ijfcs

Regular Expressions and Transducers over Alphabet-invariant and User-defined Labels 27

(A/B ∕=) ◦ (F/Z) =

󰀻
󰁁󰁁󰀿

󰁁󰁁󰀽

A/Z, if |L(B ∩ F)| ≥ 2

A ∩ /∃b/Z, if L(B ∩ F) = {b} and L(A) \ {b} ∕= ∅
⊥ otherwise.

(A/B ∕=) ◦ (F/=) =

󰀫
⊥, if L(A) = L(B ∩ F) = {a}
A/B ∩ F ∕=, otherwise

(A/B ∕=) ◦ (F/G ∕=) =

󰀻
󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰀽

A/G, if |L(B ∩ F)| ≥ 3

A ∩ /∃b/G ∩ /∃b, if L(B ∩ F) = {b} and L(A) \ {b}
∕= ∅ and L(G) \ {b} ∕= ∅

D, if L(B ∩ F) = {b1, b2}
⊥, otherwise

where D consists of up to three ⊕-terms as follows:

D includes A ∩ /∃b1b2/G, if L(A) \ {b1, b2} ∕= ∅;
D includes ∃b1/G ∩ /∃b2, if b1 ∈ L(A) and L(G) \ {b2} ∕= ∅;
D includes ∃b2/G ∩ /∃b1, if b2 ∈ L(A) and L(G) \ {b1} ∕= ∅;

and D = ⊥ if none of the above three conditions is true.

Remark 49. In the above definition, we have omitted cases where p1 ◦ p2 is obvi-

ously undefined. For example, as F/= and F/G ∕= are only defined when F,G ∕= e,

we omit the case (W/e) ◦ (F/=).

Remark 50. If we allowed ⊥ to be a pairing spec, then the set PSP[Γ] with the

composition operation ‘◦’ would be ‘nearly’ a semigroup: the subcase “(A/B ∕=) ◦
(F/G ∕=) with L(B ∩ F) = {b1, b2}” in the above definition is the only one where

the result of the composition is not necessarily a single pairing spec. For example,

let the alphabet Γ be {0, 1, 2} and A = ∃01, B = F = ∃12, and G = ∃012. Then,

R(A/B ∕=) ◦R(F/G ∕=) = {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1)},

which is equal to R({∃0/∃012, ∃1/∃01}). This relation is not equal to R(p), for

any pairing spec p.

Lemma 51. The relation R(p1 ◦ p2) is equal to R(p1) ◦ R(p2), for any p1, p2 ∈
PSP[Γ]ε.

Proof. We shall use the following shorthand notation:

Q = R(p1) ◦R(p2) and R = R(p1 ◦ p2) and R(⊥) = ∅ .

We shall distinguish several cases about the form of p1 ◦ p2 according to Def. 48.

By looking at that definition and using (3), we have that

Q,R ⊆ L(left p1)× L(rset p2) (15)

November 29, 2019 8:30 WSPC/INSTRUCTION FILE ws-ijfcs

28 S. Konstantinidis, N. Moreira, R. Reis, J. Young

Case (W/X) ◦ (Y/Z) = W/Z. We have that R = R(W/Z) = L(W) × L(Z). As

Q consists of all pairs (w, z) = (w, x) ◦ (x, z) with w ∈ L(W), z ∈ L(Z) and x ∈
L(X) ∩ L(Y), we have that Q = R.

Case (W/B)◦(F/=) = W/B∩F . We have that R = R(W/B∩F) = L(W)×L(B∩
F). As Q consists of all pairs (w, f) = (w, b) ◦ (f, f) with w ∈ L(W), b ∈ L(B), f ∈
L(F) and b = f , we have that Q = R.

Case (W/B)◦
󰀃
F/G ∕=

󰀄
. We have three subcases. First, when |L(B∩F)| ≥ 2. Then,

R = L(W) × L(G). By (15), Q ⊆ R. Now let (w, g) ∈ R = L(W) × L(G), and

pick any b ∈ L(B ∩ F) \ {g}. Then, (w, g) = (w, b) ◦ (b, g) ∈ Q. Hence, R ⊆ Q. In

the second subcase, L(B ∩ F) = {b}, for some b ∈ Γ, and L(G) \ {b} ∕= ∅. Then,
R = L(W)× L(G ∩ /∃b). The claim R = Q follows by noting that Q consists of all

pairs (w, g) = (w, b) ◦ (f, g) with w ∈ L(W), f ∈ L(F), g ∈ L(G) and f = b and

f ∕= g. In the third subcase, L(G) = L(B ∩ F) = {b}, so Q = ∅, so Q = R.

Case (B/=) ◦ (F/Z) = B ∩ F/Z. Analogous to case (W/B) ◦ (F/=) = W/B ∩ F .

Case (B/=) ◦ (F/=) = B ∩ F/=. Similar to case (W/B) ◦ (F/=) = W/B ∩ F ,

where here R = {(b, b) | b ∈ B ∩ F}.

Case (B/=) ◦ (F/G ∕=). First, note that (b, g) ∈ Q iff “(b, g) = (b, b) ◦ (f, g) with

g ∕= f = b ∈ L(B ∩ F)”. Thus, if L(G) = L(B ∩ F) = {g}, for some g ∈ Γ,

then Q = ∅ = R. Otherwise, any (b, g) ∈ Q must be in R(B ∩ F/G ∕=) = R; and

conversely, if (b, g) ∈ R then g ∕= b and b ∈ L(B ∩ F). As (b, g) = (b, b) ◦ (b, g) we

have that (b, g) ∈ R(B/=) ◦R(F/G ∕=) = Q.

Case (A/B ∕=) ◦ (F/Z). Analogous to case (W/B) ◦
󰀃
F/G ∕=

󰀄
.

Case (A/B ∕=) ◦ (F/=). First note that (a, f) ∈ Q iff (a, f) = (a, b) ◦ (b, f) with

a ∕= b = f ∈ L(B ∩ F). Thus, if L(A) = L(B ∩ F) = {a}, for some a ∈ Γ,

then Q = ∅ = R. Otherwise, any (a, f) ∈ Q must be in R(A/B ∩ F ∕=) = R; and

conversely, if (a, f) ∈ R then a ∕= f and f ∈ L(B ∩F). As (a, f) = (a, f) ◦ (f, f) we
have that (a, f) ∈ R(A/B ∕=) ◦R(F/=) = Q.

Case (A/B ∕=) ◦ (F/G ∕=). First note that, if (a, g) ∈ Q, then (a, g) ∈ L(A) × L(G)

and

(a, g) = (a, b) ◦ (f, g) with a ∕= b = f ∕= g, b ∈ L(B) ∩ L(F).

We have three subcases. First, L(B ∩ F) ≥ 3. Then R = R(A/G) and, by (15),

Q ⊆ R. Now let (a, g) ∈ R and pick any b ∈ L(B ∩ F) \ {a, g}. Then, (a, g) =

(a, b) ◦ (b, g) ∈ R(A/B ∕=) ◦ R(F/G ∕=). Hence, R ⊆ Q. In the second subcase,

L(B ∩ F) = {b} and L(A) \ {b} ∕= ∅ and L(G) \ {b} ∕= ∅, for some b ∈ Γ. Then

the claim Q = R follows by simple inspection on the elements of Q,R. In the third

subcase, L(B∩F) = {b1, b2}, for some b1, b2 ∈ Γ. The relation Q can be partitioned

into three subsets:

Q0 = {(a, g) | a ∈ L(A) \ {b1, b2}, g ∈ L(G)}

November 29, 2019 8:30 WSPC/INSTRUCTION FILE ws-ijfcs

Regular Expressions and Transducers over Alphabet-invariant and User-defined Labels 29

Q1 = L(A)× L(G) ∩ {(b1, g) | g /∈ L(G) \ {b2}}
Q2 = L(A)× L(G) ∩ {(b2, g) | g /∈ L(G) \ {b1}}

Then we have that

R(A ∩ /∃b1b2/G) = Q0, if L(A) \ {b1, b2} ∕= ∅;
R(∃b1/G ∩ /∃b2) = Q1, if b1 ∈ L(A) and L(G) \ {b2} ∕= ∅;
R(∃b2/G ∩ /∃b1) = Q2, if b2 ∈ L(A) and L(G) \ {b1} ∕= ∅.

Corollary 52. The polymorphic operation “◦ : PSP[Γ] × PSP[Γ] ⇒ PSP+[Γ]” is

well-defined by the partial operation ◦ in Def. 48 and the monoid operation ◦ in

Ex. 37.

Lemma 53. For any p1, p2 ∈ PSP[Γ]ε, we have that p1 ◦ p2 can be computed in

time O
󰀃
|p1|+ |p2|

󰀄
.

Proof. Follows from Lemma 7 and the fact that |p1 ◦ p2| = O(|p1| + |p2|) as seen

in Def. 48.

Definition 54. Let t̂ = (Q,PSP[Γ], δ, I, F) and ŝ = (Q′,PSP[Γ], δ′, I ′, F ′) be trans-

ducers with set specs. The transducer t̂⊚ ŝ with set specs is defined as follows. First

compute the transducer t̂ ◦ ŝ with labels in PSP+[Γ]. Then, t̂⊚ ŝ results when each

transition (p, p1 ⊕ · · ·⊕ pℓ, q) of t̂ ◦ ŝ, with ℓ > 1, is replaced with the ℓ transitions

(p, pi, q).

Lemma 55. We have that R(t̂⊚ ŝ) = R(t̂ ◦ ŝ).

Proof. We show the direction R(t̂ ⊚ ŝ) ⊆ R(t̂ ◦ ŝ); the other direction is similar.

Let (u, v) ∈ R(t̂⊚ ŝ). Then there is an accepting path P = 〈qi−1, pi, qi〉ℓi=1 of t̂⊚ ŝ

such that

(u, v) ∈ R(p1) · · ·R(pℓ).

For each transition e = (qi−1, pi, qi), define the triple (qi−1, p
′
i, qi) as follows: p

′
i = pi,

if e is in t̂ ◦ ŝ; else, by Def. 54, there is a transition (qi−1, p
′
i, qi) in t̂ ◦ ŝ such that p′i

is a ⊕-sum of terms that include pi. Then, the sequence P ′ = 〈qi−1, p
′
i, qi〉ℓi=1 is an

accepting path of t̂ ◦ ŝ such that

(u, v) ∈ R(p′1) · · ·R(p′ℓ).

Thus, (u, v) ∈ R(t̂ ◦ ŝ).

Theorem 56. For any two trim transducers t̂ = (Q,PSP[Γ], δ, I, F) and ŝ =

(Q′,PSP[Γ], δ′, I ′, F ′) with set specs, t̂⊚ ŝ can be computed in time O(|Γ|+ |δ|󰀂δ′󰀂+
|δ′|󰀂δ󰀂). Moreover, R(t̂⊚ ŝ) = R(t̂) ◦R(ŝ).

Proof. The algorithm computes the transducer t̂◦ ŝ using the product construction

in Def. 41. As the composition p ◦ p′ of any two labels of t̂, ŝ can be computed in

November 29, 2019 8:30 WSPC/INSTRUCTION FILE ws-ijfcs

30 S. Konstantinidis, N. Moreira, R. Reis, J. Young

linear time, we have that t̂ ◦ ŝ can be computed in time O(|δ|󰀂δ′󰀂+ |δ′|󰀂δ󰀂). Then,
in linear time, the algorithm replaces each transition (p, p1 ⊕ · · · ⊕ pℓ, q) of t̂ ◦ ŝ,

with ℓ > 1, with the ℓ transitions (p, pi, q). Now we have

R(t̂⊚ ŝ) = R(t̂ ◦ ŝ) (16)

= R(exp t̂ ◦ exp ŝ) (17)

= R(exp t̂) ◦R(exp ŝ) (18)

= R(t̂) ◦R(ŝ). (19)

Statement (17) follows from Theorem 44 and Corollary 52, and statement (18)

follows from Lemma 24.

12. Transducer Identity and Functionality

The question of whether a given transducer is functional is of central importance

in the theory of rational relations [11]. Also important is the question of whether a

given transducer t̂ realizes an identity , that is, whether t̂(w) = {w}, when |t̂(w)| > 0.

In [2], the authors present an algorithm identityP(t̂) that works in time O(|δ| +
|Q||∆|) and tells whether t̂ = (Q, [Σ,∆], δ, I, F) realizes an identity. In view of

Lemma 18, we have that

for trim t̂, identityP(t̂) works in time O(|δ||∆|). (20)

The algorithm functionalityP(ŝ) deciding functionality of a transducer t̂ =

(Q, [Σ,∆], δ, I, F) first constructs the square transducer û, [3], in which the set

of transitions δû consists of tuples ((p, p′), y/y′, (q, q′)) such that (p, x/y, q) and

(p′, x/y′, q′) are any transitions in t̂ε. Then, it follows that t̂ is functional if and

only if û realizes an identity. Note that û has O(|δ|2) transitions and its graph size

is O(|t̂|2). Thus, we have that

for trim t̂, functionalityP(t̂) works in time O(|δ|2|∆|). (21)

Lemma 57. Let ŝ = (Q,PSP[Γ], δ, I,H) be a trim transducer with set specs. If

any label p of ŝ satisfies one of the following conditions then ŝ does not realize an

identity. (Below, F,G are set specs.)

(C1) p is of the form F/G or F/e or e/G, and |L(F)| > 1 or |L(G)| > 1.

In the following conditions, p is of the form F/G ∕=.

(C2) |L(F)| > 2 or |L(G)| > 2.

(C3) |L(F)| = 2 and |L(G)| = 2.

(C4) |L(F)| = 1 and |L(G)| = 2 and L(F) ∩ L(G) = ∅.
(C5) |L(F)| = 2 and |L(G)| = 1 and L(F) ∩ L(G) = ∅.

Testing whether there is a label of ŝ satisfying one of the above conditions can be

done in time O(󰀂δ󰀂).

November 29, 2019 8:30 WSPC/INSTRUCTION FILE ws-ijfcs

Regular Expressions and Transducers over Alphabet-invariant and User-defined Labels 31

Proof. Suppose (C1) is true. We only present the subcase where p = F/G and

|L(F)| > 1 (the other subcases can be dealt with similarly). Then, there are f1, f2 ∈
L(F), with f1 ∕= f2, and y ∈ L(G). Also, exp ŝ has two transitions of the form

(p, f1/y, q) and (p, f2/y, q). As ŝ is trim, there is a path from I to p with some label

u/v and a path from p to F with some label u′/v′. As (uf1u
′, vyv′), (uf2u

′, vyv′) ∈
R(exp ŝ) and f1 ∕= f2, exp ŝ cannot realize an identity. Now suppose one of (C2)–

(C5) is true. One works as above and shows that again exp ŝ cannot realize an

identity. For the time complexity, Lemma 7 implies that each condition can be

tested in time O(p). For all transitions (p, p, q) ∈ δ this can be done in time O(󰀂δ󰀂).

Theorem 58. The question of whether a trim transducer ŝ = (Q,PSP[Γ], δ, I,H)

with set specs realizes an identity can be answered in time O
󰀃
|δ||Γ|

󰀄
.

Proof. As ŝ is trim, we have that |Q| ≤ 2|δ|+1. First, the algorithm goes through

the labels of ŝ and returns False the first time a label p satisfies one of the conditions

(C1)–(C5) in Lemma 57. Now suppose that no label p of ŝ satisfies any of those

conditions. Then, the algorithm computes exp ŝ and returns what identityP(exp ŝ)

returns. For each transition (p, p, q) ∈ δ the corresponding transition(s) (p, x/y, q) ∈
δexp are computed depending on the following five cases about the form of p.

(1) (e/e): Then, x/y = e/e.

(2) (F/G) or (F/e) or (e/G): As (C1) is false, L(F) = {f} and/or L(G) = {g}.
Then x/y = f/g or x/y = f/e or x/y = e/g, depending on whether

p = F/G or p = F/e or p = e/G, respectively.

(3) (F/=): x/y ∈ {(f, f) | f ∈ L(F)}.
(4) (F/G ∕=): with L(F) = {f} and L(G) = {g}. If f = g then R(p) = ∅, so no

label x/y is defined. If f ∕= g then x/y = f/g.

(5) (F/G ∕=): with L(F) = {f} and L(G) = {f, g}, or L(F) = {f, g} and

L(G) = {g}. Then x/y = f/g.

All cases other than the third one result in at most one transition for each (p, p, q) ∈
δ. The third case results into O(|Γ|) transitions. Thus, |δexp| = O(|δ||Γ|). Then, as
| exp ŝ| = |δexp|+ |Q| and |Q| ≤ 2|δ|+ 1, we have that

|δexp| = O(|δ||Γ|) and | exp ŝ| = O(|Γ||δ|). (22)

The correctness of the algorithm follows from Lemma 57 and the fact that

R(ŝ) = R(exp ŝ).

Now we establish the claim about the time complexity. The total time consists

of three parts: T1 = time to test conditions (C1)–(C5); T2 = time to construct exp ŝ;

and T3 = time to execute identityP(exp ŝ). Lemma 57 implies that T1 = O(󰀂δ󰀂).
For T2, we have that

T2 =
󰁛

e=(p,p,q)∈δ

Cp,

November 29, 2019 8:30 WSPC/INSTRUCTION FILE ws-ijfcs

32 S. Konstantinidis, N. Moreira, R. Reis, J. Young

where Cp is the cost of computing the set of x/y for which (p, x/y, q) ∈ δexp. We

show that Cp = O(|Γ|), which implies that T2 = O
󰀃
|δ||Γ|

󰀄
. Using Lemma 7, testing

for things like |L(F)| ≥ 2 can be done in time O(|F |) and also the same time for

computing the single element of L(F) when |L(F)| = 1. The most time intensive

task can be in the third case above: compute L(F) when F = ∃w and |w| = |Γ|−1,

or F = /∃w and |w| = 1. In the former case, L(F) is computed in time O(|w|) by

simply reading off w. In the latter case, we can read Γ and make the word u = wo(Γ),

and then use Lemma 3 to compute ∃u ∩ /∃w in time O(|Γ|), which is of the form

∃v and equal to L(F). For T3, statement (20) implies that identityP(exp ŝ) works

in time O
󰀃
|δexp|+ |Q||Γ|

󰀄
, which is O(|δ||Γ|) using (22) and |Q| ≤ 2|δ|+ 1. Hence,

T3 = O(|δ||Γ|). Thus, T1 + T2 + T3 = O(|δ||Γ|) using Remark 27.

Remark 59. Consider the trim transducer ŝ with set specs in the above theorem. Of

course one can test whether it realizes an identity by simply using identityP(exp ŝ),

which would work in time O(|δexp||Γ|) according to (20). This time complexity is

clearly higher than the time O(|δ||Γ|) in the above theorem when |δexp| is of order

|δ||Γ| or |δ||Γ|2 (for example if ŝ involves labels ∀/= or ∀/∀).

Theorem 60. The question of whether a trim transducer ŝ = (Q,PSP[Γ], δ, I,H)

with set specs is functional can be answered in time O(|δ|2|Γ|).

Proof. Consider any trim transducer ŝ with set specs. The algorithm consists of

two main parts. First, the algorithm computes ŝ−1 and then the transducer with

set specs û = ŝ ◦ ŝ−1 using the product construction in Def. 41. The second part

is to test whether û realizes an identity using Theorem 56. As the composition of

any two labels β,β′ of ŝ, ŝ−1 results in at most three labels, we have that û has

O(|δ|2) transitions and is of size O(|δ|󰀂δ󰀂), and can be computed in time O(|δ|󰀂δ󰀂).
Thus, testing û for identity can be done in time O(|δ|2|Γ|). So the total time of

the algorithm is of order |δ|󰀂δ󰀂+ |δ|2|Γ|, which is O(|δ|2|Γ|) by Remark 27. For the

correctness of the algorithm we have that

R(ŝ) is functional iff R(exp ŝ) is functional (23)

iff R(exp ŝ ◦ (exp ŝ)−1) is an identity (24)

iff R(exp ŝ ◦ (exp ŝ−1)) is an identity (25)

iff R(exp ŝ) ◦R(exp ŝ−1) is an identity (26)

iff R(ŝ) ◦R(ŝ−1) is an identity. (27)

Statement (24) follows from the fact that a relation R is functional iff R ◦ R−1 is

an identity—see also Lemma 5 of [2]. Statement (25) follows from Lemma 26.

Remark 61. Consider the trim transducer ŝ with set specs in the above theorem. Of

course one can test whether ŝ is functional by simply using functionalityP(exp ŝ),

which would work in time O(|δexp|2|Γ|) according to (21). This time complexity is

November 29, 2019 8:30 WSPC/INSTRUCTION FILE ws-ijfcs

Regular Expressions and Transducers over Alphabet-invariant and User-defined Labels 33

clearly higher than the time O(|δ|2|Γ|) in the above theorem when |δexp| is of order

|δ||Γ| or |δ||Γ|2 (for example if ŝ involves labels ∀/= or ∀/∀).

13. Some Applications in Independent Languages and

Synchronous Transducers

Here we show that some algorithms about independent regular languages and syn-

chronous transducers can be improved in terms of time complexity by employing

transducers with set specs (see Example 65 and Corollary 66).

Let t̂ be a transducer. A language L is called t̂-independent, [13], if

u, v ∈ L and v ∈ t̂(u) implies u = v. (28)

If the transducer t̂ is input-altering then, [9], the above condition is equivalent to

t̂(L) ∩ L = ∅. (29)

The property described by t̂ is the set of all t̂-independent languages. Main exam-

ples of such properties are code-related properties. For example, the transducer

t̂sub2 describes all the 1-substitution error-detecting languages and t̂px describes all

prefix codes. The property satisfaction question is whether, for given transducer t̂

and regular language L, the language L is t̂-independent. The witness version of

this question is to compute a pair (u, v) of different L-words (if exists) violating

condition (28).

Remark 62. The witness version of the property satisfaction question for input-

altering ordinary transducers ŝ (see Eq. (29)) can be answered in time O(|ŝ| · |â|2),
where â is the given ordinary automaton accepting L (see [9]). This can be done

using the function call

nonEmptyW(ŝ ↓ â ↑ â).

Further below we show that the same question can be answered even when ŝ has set

specs, and this could lead to time savings.

Corollary 63. Let ŝ = (Q,PSP[Γ], δ, I, F) be a transducer with set specs and let

b̂ = (Q′,Γ, δ′, I ′, F ′) be an ordinary automaton. The type [Γ,Γ] transducers ŝ ↓ b̂

and ŝ ↑ b̂ can be computed in time O(|Γ|+ |δ|󰀂δ′󰀂+ |δ′|󰀂δ󰀂). Moreover, we have that

R(ŝ ↓ b̂) = R(ŝ) ↓ L(b̂) and R(ŝ ↑ b̂) = R(ŝ) ↑ L(b̂).

Proof. The statement about the complexity follows from Lemma 43. Then, we

have

R(ŝ ↓ b̂) = R(exp ŝ ↓ exp b̂) (30)

= R(exp ŝ) ↓ L(exp b̂) (31)

= R(ŝ) ↓ L(b̂). (32)

Statement (30) follows from Theorem 44 and Ex. 40, and statement (31) follows

from Lemma 24. The proof for R(ŝ ↑ b̂) is similar.

November 29, 2019 8:30 WSPC/INSTRUCTION FILE ws-ijfcs

34 S. Konstantinidis, N. Moreira, R. Reis, J. Young

Corollary 64. Consider the witness version of the property satisfaction question

for input-altering transducers ŝ. The question can be answered in time O(|ŝ| · |â|2)
even when the transducer ŝ involved has set specs.

Example 65. We can apply the above corollary to the transducer with set specs

t̂sub2[Γ] of Example 25, where Γ is the alphabet of b̂, so that we can decide whether

a regular language is 1-substitution error-detecting in time O(|b̂|2). On the other

hand, if we used the transducer exp t̂sub2[Γ] to decide the question, the required time

would be O(|Γ|2 · |b̂|2).

There are cases when we want to view the labels of a type B graph as single

symbols. In [5] for example, a synchronous transducer ŝ of type [Γ,Γ] is viewed as

an ordinary automaton ŝ† over the alphabet Γ× Γ, and this is helpful in the study

of synchronous relations. A transducer is synchronous if each transition label x/y is

such that x, y ∕= e, that is, x, y ∈ Γ. Suppose that Γ = Σ ∪ {#} with # /∈ Σ. In [5],

a relation R ⊆ Σ∗ ×Σ∗ is left synchronous, if there is a synchronous transducer ŝ of

type [Γ,Γ] such that

R(ŝ) = {(u, v#|u|−|v|) | (u, v) ∈ R ∧ |u| ≥ |v|}∪{(u#|v|−|u|, v) | (u, v) ∈ R ∧ |u| < |v|}.

In this case, we say that ŝ represents the left synchronous relation R. It can be

shown that a synchronous transducer ŝ of type [Γ,Γ] represents a left synchronous

relation if and only if

L(ŝ†) ⊆
󰀓
⊎x,y∈Σ (x/y)†

󰀔∗ 󰀓󰀃
⊎x∈Σ (x/#)†

󰀄∗
+

󰀃
⊎y∈Σ (#/y)†

󰀄∗󰀔
, (33)

where (i) (x/y)† denotes the single symbol (in Ω) for the label x/y; (ii) ŝ† is the

automaton of type ∆ ≜ {(x/y)† | x/y ∈ [Γ,Γ]} resulting if each transition label x/y

of ŝ is replaced with (x/y)†; (iii) the right hand side of (33) is a language written as

regular expression such that the notation ⊎i=1,...,kσi is shorthand for σ1 + · · ·+ σk.

We want an efficient test for (33). Let L be the language on the right hand side

of (33). Then, (33) is equivalent to L(ŝ†) ∩ (∆∗ \ L) = ∅, and we can define an

ordinary automaton b̂† over ∆ such that L(b̂†) = ∆∗ \L—see Fig 4. Then, we need

to test the condition

L(ŝ†) ∩ L(b̂†) = ∅ (34)

As ŝ† and b̂† are ordinary automata over ∆, we can test (34) in time O(|ŝ||Γ|2) by
computing the automaton ŝ† ∩ b̂† and testing whether it has a path from an initial

to a final state.

Next we show that testing (34) can be done in time O(|ŝ|). First note that by

dropping † from the labels of b̂† we get the transducer b̂ of type [Γ,Γ]. But then we

can define the type PSP[Γ] graph û such that R(exp û) = R(b̂) and |û| = O(1)—see

Fig 5. Our goal now is to define a new condition equivalent to (34) that can be

tested in time O(|ŝ|). We consider ∆ to be the label set with mon∆ = ∆∗ and

behaviour L((x/y)†) = {(x/y)†}, for all (x/y)† ∈ ∆. We also define

November 29, 2019 8:30 WSPC/INSTRUCTION FILE ws-ijfcs

Regular Expressions and Transducers over Alphabet-invariant and User-defined Labels 35

b̂† :

(x/#)†[x∈Σ]

(#/y)†[y∈Σ]

(x/y)†[x,y∈Σ]
(#/g)†[g∈Γ]

(#/#)†

(x/g)†[x∈Σ,g∈Γ]

(#/#)†
(x/y)†[x,y∈Σ]

(x/#)†[x∈Σ]

(#/y)†[y∈Σ]

(f/g)†[f,g∈Γ]

Fig. 4: The automaton b̂† accepts ∆∗ \ L, where L is the language in

the right hand side of (33) and ∆ = {(x/y)† | x, y ∈ Γ}.

û :

(/∃#/#)

(∃#//∃#)

(/∃#//∃#)
(∃#/∀)

(∃#/∃#)

(/∃#/∀)

(∃#/∃#)
(/∃#//∃#)

(/∃#/∃#)

(∃#//∃#)

(∀/∀)

Fig. 5: The type PSP[Γ] graph û is such that R(û) = R(b̂), where b̂ is

the type [Γ,Γ] transducer resulting by dropping from b̂† all † ’s.

• the label set PSP[Γ]† = {p† | p ∈ PSP[Γ]} with monPSP[Γ]† = ∆∗ and

behaviour

L(p†) = {(x/y)† | (x, y) ∈ R(p)};

• the polymorphic operation “[Γ,Γ]† ∩PSP[Γ]† ⇒ [Γ,Γ]†” based on the stan-

dard monoid operation ∩ : ∆∗×∆∗ 󰃚󰃚󰃄 ∆∗ (recall Ex. 37) and on the label

operation ∩ : [Γ,Γ]†ε ×PSP[Γ]†ε 󰃚󰃚󰃄 [Γ,Γ]†ε such that (x/y)† ∩ p† = (x/y)† if

(x, y) ∈ R(p), that is, (x/y)† ∈ L(p†); and ⊥ otherwise. One confirms that

L
󰀃
(x/y)† ∩ p†

󰀄
= L

󰀃
(x/y)†

󰀄
∩ L(p†).

By Theorem 44 and the fact that exp(ŝ†), exp(û†) are automata over ∆, we have

that L(ŝ†∩ û†) = L(ŝ†)∩L(û†). If we show that L(û†) = L(b̂†), then condition (34)

November 29, 2019 8:30 WSPC/INSTRUCTION FILE ws-ijfcs

36 S. Konstantinidis, N. Moreira, R. Reis, J. Young

would be equivalent to

L(ŝ† ∩ û†) = ∅. (35)

That L(û†) = L(b̂†) is indeed true follows when we note that (i) the graphs û† and

b̂† are isomorphic; (ii) a transition (p, p†, q) of û† expands exactly to the transitions

(p, (x/y)†, q) of b̂† for all (x/y)† ∈ L(p†). Finally, we note that, as |û| = O(1), we

have |ŝ† ∩ û†| = O(|ŝ|); hence, (35) can be tested in time O(|ŝ|).

Corollary 66. Whether a given synchronous transducer of type [Σ∪{#},Σ∪{#}]
represents a left synchronous relation can be decided in time O(|ŝ|).

14. Concluding Remarks

Regular expressions and transducers over pairing specs allow us to describe many

independence properties in a simple, alphabet invariant, way and such that these

alphabet invariant objects can be processed as efficiently as their ordinary (alphabet

dependent) counterparts. This is possible due to the efficiency of basic algorithms

on these objects presented here. A direction for further research is to investigate

how other algorithms (not considered here) can be extended to regular expressions

and transducers over pairing specs.

Algorithms on deterministic machines with set specs might not work as ef-

ficiently as their alphabet dependent counterparts. For example the question of

whether w ∈ L(b̂), for given word w and DFA b̂ with set specs, is probably not

decidable efficiently within time O(|w|)—see for instance the DFA with set specs in

Fig. 3. Despite this, it might be of interest to investigate this question further.

Label sets can have any format as long as one provides their behaviour. For

example, a label can be a string representation of a FAdo automaton, [7], whose

behaviour of course is a regular language. At this broad level, we were able to obtain

a few results like the product construction in Theorem 44. A research direction is to

investigate whether more results can be obtained at this level, or what results obtain

for different label sets. For example, for set specs F,G, one can add to PSP[Γ] the

new labels F/G< and F/G> with their obvious behaviours. In this case, Lemma 47

would still hold, but composition of labels becomes problematic.

We close by noting that a concept of label set similar to the one defined here

is considered in [6]. In particular, [6] considers label sets with weights, and the

objectives of that work are different from the ones here.

References

[1] P. A. Abdulla, J. Deneux and L. K. Nilsson, Minimization of non-deterministic au-
tomata with large alphabets, Proceedings of CIAA 2005, Sydney, Australia, eds.
J. Farré, I. Litovsky and S. Schmitz Lecture Notes in Computer Science 3845 (2006),
pp. 31–42.

[2] C. Allauzen and M. Mohri, Efficient algorithms for testing the twins property, Journal
of Automata, Languages and Combinatorics 8(2) (2003) 117–144.

November 29, 2019 8:30 WSPC/INSTRUCTION FILE ws-ijfcs

Regular Expressions and Transducers over Alphabet-invariant and User-defined Labels 37

[3] M.-P. Béal, O. Carton, C. Prieur and J. Sakarovitch, Squaring transducers: An ef-
ficient procedure for deciding functionality and sequentiality, Theoretical Computer
Science 292(1) (2003) 45–63.

[4] J. A. Brzozowski and E. J. McCluskey, Signal flow graph techniques for sequential
circuit state diagrams, IEEE Trans. Electronic Computers 12 (1963) 67–76.

[5] O. Carton, Left and right synchronous relations, Proceedings of DLT 2009 , ed.
V. Diekert Lecture Notes in Computer Science 5583 (2009), pp. 170–182.

[6] A. Demaille, A. Duret-Lutz, S. Lombardy, L. Saiu and J. Sakarovitch, A type system
for weighted automata and rational expressions, Proceedings of CIAA 2014 , eds.
M. Holzer and M. Kutrib Lecture Notes in Computer Science 8587 (2014), pp. 162–
175.

[7] FAdo, Tools for formal languages manipulation URL address:
http://fado.dcc.fc.up.pt/ Accessed in April, 2018.

[8] S. Konstantinidis, Transducers and the properties of error-detection, error-correction
and finite-delay decodability, Journal of Universal Computer Science 8 (2002) 278–
291.

[9] S. Konstantinidis, Applications of transducers in independent languages, word dis-
tances, codes, Proceedings of DCFS 2017 , eds. G. Pighizzini and C. Câmpeanu Lecture
Notes in Computer Science 10316 (2017), pp. 45–62.

[10] U. Manber, Introduction to Algorithms: A Creative Approach (Addison-Wesley, 1989).
[11] J. Sakarovitch, Elements of Automata Theory (Cambridge University Press, Berlin,

2009).
[12] J. Sakarovitch, Automata and rational expressions, arXiv.org arXiv:1502.03573

(2015).
[13] H. J. Shyr and G. Thierrin, Codes and binary relations, Séminaire d’Algèbre Paul

Dubreil, Paris 1975–1976 (29ème Année), ed. M. P. Malliavin Lecture Notes in Math-
ematics 586 (1977), pp. 180–188.

[14] K. Thompson, Regular expression search algorithm, Communications of the ACM
(CACM) 11 (1968) 419–422.

[15] M. Veanes, Applications of symbolic finite automata, Proceedings of CIAA 2013 , ed.
S. Konstantinidis Lecture Notes in Computer Science 7982 (2013), pp. 16–23.

[16] M. Veanes, P. Hooimeijer, B. Livshits, D. Molnar and N. Bjorner, Symbolic finite state
transducers: Algorithms and applications, Proceedings of the 39th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL 2012 , eds.
J. Field and M. Hicks (2012), pp. 137–150.

[17] D. Wood, Theory of Computation (Harper & Row, New York, 1987).
[18] S. Yu, Regular languages, Handbook of Formal Languages, Vol. I , eds. G. Rozenberg

and A. Salomaa 1997, pp. 41–110.

