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Abstract. In real-time systems, timing constraints must be satisfied in
order to guarantee that deadlines will be met. The calculation of each
task’s worst-case execution time (WCET) is a prerequisite for the schedu-
lability analysis, and hence of paramount importance for real-time sys-
tems. However, an accurate prediction can be difficult if the underlying
hardware architecture possesses features like caches and pipelines.

In this paper we report our work in progress project on ACCEPT,
an Abstraction-Carrying CodE Platform for Timing validation. Our ap-
proach counts on information gathered at source-code level (e.g. loop
bounds, infeasible paths), defined by annotations that also express the
intended timing behaviour. Furthermore, in the context of mobile code
safety and in order to minimize the trusted computing base, we produce
a checkable certificate whose validity entails compliance with the calcu-
lated WCET.
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1 Introduction

Real-time systems can be seen as sets of tasks that are expected to perform some
functionality under predefined timing constraints. In general, in order to ensure
a correct system behaviour (schedulability analysis), an upper bound estimative
for the worst-case execution time (WCET) of each task is necessary.

To improve its performance, modern processors include mechanisms like
caches and pipelines which make instruction’s execution time context depen-
dent, increasing the difficulty of static timing analysis. To cope with this, one
could be tempted to always assume the local worst case scenario (e.g. cache
miss) in order to obtain safe predictions, but two problems could arise with such
approach. On one hand, it could lead to an excessive over-approximation of the
actual WCET, thus resulting in a waste of hardware resources. By other hand,



due to timing anomalies [RWTT06], the obtained prediction could in fact, be
unsafe (an under-approximation).

While our platform considers the extraction of information from the source-
code level (e.g. loop bounds, infeasible paths), in this paper we focus on the
underlying mechanisms for the production of certificates and their validation
process.

1.1 Motivation

The determination of safe and tight upper bounds for the WCET has been the
object of intensive study in the literature [WEET08]. Yet, there is no attempt,
up to the present and to the best of our knowledge, to provide an independent
validation mechanism w.r.t. the correctness of the predicted time bounds.

Mobile code safety has been progressively gaining notoriety in the sphere of
real-time systems [SP01], both at research and industry levels, since they rep-
resent an enabling technology to tackle the limitations of standard client-server
based approaches. In this context, in spite of the fact that previous method-
ologies are leveraged by the undertake of a formal approach, one would still
have to put his faith on a potential untrusted third party, without being able to
independently validate the correctness of the predicted time bounds.

One could argue that typically, applications loaded in embedded systems
need not to satisfy real-time requirements (e.g. ring tones for mobile phones).
However, in [KSHO05|, Kirsch et al identify the mobility of real-time programs
as a challenging, but desirable feature for embedded systems. Indeed, even a
software/system update can be seen as mobile code. Thus, being able to in-
dependently validate its timing behaviour would be of major interest for such
systems. Moreover, a timing validation mechanism could also be a valuable asset
for original equipment manufacturers and sub-contractors applications.

For instance, consider the following application scenario. There are several
embedded systems that due to the functionality that they are expected to carry
out, cannot be easily reachable. Coral sensors or control computers for satellites
are examples of such embedded systems, where even a routine software/system
update can be considered as mobile code. This updated software is also expected
to satisfy stringent timing constraints, i.e. behave as mobile real-time code. Thus,
being able to independently validate its timing behaviour would be of major
interest for such systems.

This lack of an independent validation process is the issue that we address
in this paper.

1.2 Related Work

There are numerous approaches in the literature focused in algorithms and tools
for the derivation of the WCET [WEET08]. Our goal here is not to present
yet another approach of that type, but rather to emphasize how to produce a
certificate that can be then used to validate the predicted time bounds.



Nevertheless, we should refer that the problem of certifying resource con-
sumption, namely execution time, has already been addressed before, like in the
work of Crary and Weirich [CWO00], that use an extended type system capable of
specifying and certifying bounds on resource consumption. However, this work
makes no effort to determine bounds on execution times, but rather provides a
mechanism to certify those bounds (for instance, obtained via a previous pro-
gram analysis). The result of their approach is an executable that is certified
w.r.t. resource consumption.

Furthermore, Bonenfant et al [BFHHO07] present an interesting combination
of information retrieved at source code level, with low-level timing information
gathered with AbsInt’s aiT tool [FHO04]. This work provides guaranteed bounds
on worst-case execution times for a strict, higher-order programming language.

The Mobility, Ubiquity and Security (MOBIUS) [BBCT06], and the Mobile
Resource Guarantees (MRG) [Gua05] research projects also aim at the certifica-
tion of resource consumption, their approaches rely mostly on theorem proving,
whereas ours relies on abstract interpretation.

1.3 Contributions

The work reported here is included in a broader effort to provide a source level
feedback on a BCET and WCET computation platform with certificate gener-
ation in the context of mobile code. This platform considers a high-level anno-
tation language, preserving its semantics through a WCET-aware compilation
process, and a back-annotation mechanism [HKO0T7]. However, details on these
features will be reported elsewhere.

In this paper, we focus on the low level interface. In this sense, this paper is
a work in progress report on the BCET and WCET certificate generation and
validation, and it intends to introduce and justify the underlying architecture.

1.4 Organization of the Paper

The remainder of this paper is organised as follows. Section 2 presents our archi-
tecture proposal towards an Abstraction-Carrying Code [APH04] platform. We
explain the emergence of the certificate and how it can be used for independent
validation of the calculated WCET in Section 3. Finally, conclusions and future
work are discussed in Section 4.

2 Proposed Architecture

The general framework of our proposal is as illustrated by figure 1. We begin by
extending the C programming language with annotations, following a Design-by-
Contract [LCO04] approach, that define the intended timing properties for each
function. The timing specification of the main function is of most importance,
however one may also want to define some constraints on the auxiliary functions.
Moreover, by placing these annotations directly into the source code, we are also



able to express valuable informations for the subsequent WCET analysis, such
as infeasible paths and loop bounds. This is achieved by the use of a WCET-
aware compilation process, targeting the ARM instruction set, that preserves
the annotations semantics.
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Fig. 1. Abstraction-Carrying Code based BCET/WCET Platform

Only at the hardware level one can accurately calculate the WCET, but
feedback about the compliance of the given timing specification should be done
at source-code level. Hence, in order to perform timing validation w.r.t. the
functions’ timing specification, we perform the WCET analysis at machine-code
level, taking into account the effects of the hardware specific features, and alert
of any possible non-compliance throughout the use of back annotations [HKO07].
This is what is represented by the bottom left area of Figure 1. The idea of this
mechanism is to propagate the timing information back to the source-code level,
warning the system developers about the violation w.r.t. the timing specification.
However, as stated in subsection 1.3, details on this mechanism will be reported
elsewhere.

Let the set of execution times of a program P be denoted by [P]. The
problem of verifying the compliance of the given timing specification can be
thus formulated as follows:

P respects the timing specification I if [P] C Z,

where Z stands for the intended timing behaviour, i.e., the set of accepted ex-
ecution times. The idea is to express the collecting semantics [WWO08] of P as
the fixpoint of a set of recursive equations. In general, however, the state space
to be considered is too large to exhaustively explore all possible executions and
some abstraction of the application domain is required in order to make the
timing analysis feasible. With this in mind, our approach relies on abstract in-
terpretation as the underlying technique. With its use, not only it provides us



an adequate framework to reason about, but also with an elegant way to infer
an abstract model of the program that can play the role of a certificate.

2.1 Abstract Interpretation

In the abstract interpretation framework, a program P is interpreted over a
simpler abstract domain D,. This abstract domain permits to trade efficiency
over precision, i.e., although it is an approximation, by computing the fixpoint
over this abstract domain, we will be able to produce precise, yet safe, (over-
Japproximations of the collecting semantics.

The fixpoint calculation over this abstract domain will allow us to safely pre-
dict the processor behaviour for the program’s execution (e.g. cache miss). With
that information, and following the approach from the standard WCET archi-
tecture [Wil04], we can calculate the WCET, by determining its path through its
control-flow graph. This is achieved by solving its corresponding integer linear
program maximized for execution time. The process of determining the best-case
execution time (BCET) is performed analogously.

Let [P]a be the set of execution times calculated over the abstract domain
D,. It is clear that [P], is lower- and upper-bounded by BCET and WCET,
respectively. Moreover, since the comparison between actual and intended se-
mantics is easier if done in the same domain, we assume that the intended
timing specification is also given in the abstract domain, i.e., Z,, € D,.

The problem of verifying the compliance with the given timing specification
can now be reformulated as

P respects the timing specification Ty, if [Pla C Za.

At this stage, feedback regarding any possible non-compliance of P w.r.t. the
timing specification can be reported through the use of back annotations [HK07],
allowing the system developers to proceed accordingly.

2.2 Abstraction-Carrying Code

Proof-Carrying Code (PCC) [Nec97] is a general mechanism enabling a program
consumer to locally check the validity of the code w.r.t. some safety policy. The
inherent key benefit is that there is no need to trust any third party. However,
there are three essential challenges for PCC to be used in practice:

(i) definition of expressive safety and functionality policies,
(ii) automatic generation of the certificate, i.e., proving the program correct, and
(iii) efficient certificate checking in the consumer side.

In the context of mobile code safety, most approaches rely on theorem prov-
ing, whereas Abstraction-Carrying Code (ACC) [APHO04] relies on abstract in-
terpretation.

In ACC, and in particular for the purposes of our platform, the above chal-
lenges are addressed by (i) getting hold of the effects that the processor specific



features (e.g. caches, pipeline) have on the execution time, which has already
been addressed in the literature [The04,GR09]; (ii) using a fixpoint static an-
alyzer to automatically infer an abstract model of the program, which can be
then used as a certificate; and (iii) by a simple, easy-to-trust fixpoint checker.

3 Certificate Production and Validation

Let us now elaborate on this process applied to our platform proposal. A program
is characterized by its control-flow graph, constituted by a set of edges F C
V xInsxV  where V represents the program points, v; € V models the program’s
entry point and Ins models the instruction to be executed whenever taking that
edge.

A semantic function [.] : Ins — (S — S) assigns to each ins € Ins, a
transfer function that models its effect on the program state S, being evaluated.
For instance, in the ARM instruction set, the instruction B address is specified
as R15 := address, i.e., update of the program counter register to the address
given by the evaluation of the expression address, and thus would have to be
modelled accordingly to its specification.

The collecting semantics assigns for each program point V', the set of program
states S, which may occur in any possible execution, i.e., C'S : V' — P(S) (where
P(S) stands for powerset of S). The analysis to be performed can be specified
by extracting a number of equations from the program being considered. There
are two types of equations. The first one, relates exit with entry information for
each program point V. While the second, relates entry information of a program
point V;, with exit information of nodes from which there exists an edge to the
program point V;, i.e., [ {V} | (Vj,ins,V;) € E}.

The resulting system of equations can be solved by computing the least fix-
point I fp(F) = F™*(Av.0) of the functional F : (V — P(S)) — (V — P(9)):

So if v = vy,

U(v,ins,v/) (S [[Znsﬂ(f(v)) otherwise,

F(f)(') = { 1)
where Sy C S is the set of the program’s initial states.

However, as mentioned in Section 2, computing the collecting semantics of a
large and complex program P can be too much expensive to be feasible. Hence,
the analysis is performed on a simpler abstract domain D, = (S, L, 3,7), where
L= (L,C,||,L,T)is a complete semi-lattice and 3 : S — L is a representation
function, mapping concrete to abstract states. The idea, is that 8 maps a state
S to the best property describing it. Finally, v : L — P(S) is a concretization
function mapping abstract states to concrete states.

As we have seen above, the collecting semantics operates over sets of states,
while our abstract domain, operates over sets of properties. Thus, with the pur-
pose of relating these two domains, we define an abstraction function o : P(S) —
L, by a(S") = |{B(s) | s € S’}. The concretization function -, and the abstrac-
tion function «, will therefore yield the following relation:
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P(S) % L

The above relation is defined such that a(X) C I & X C ~(I), and thus
establishing the pair («,7) as a Galois connection. Furthermore, in order to
ensure termination we require the Ascending Chain Condition to hold, i.e., every
ascending chain of elements eventually terminates. For this, both the abstraction
function «, and the concretization function v, must be monotonic w.r.t. the =
and C operators, respectively.

The semantic function defined above, can now be redefined as an abstract
semantic function [.], : Ins — (L — L), over the abstract domain. The abstract
counterparts of the transfer functions [ins], i.e., [ins],, must also be monotonic
w.r.t. the C operator. Finally, the analysis can now be applied with the abstract
collecting semantics CSy : V' — L, such that Vo € V : CS(s) C y(CS,(v)), i.e.,
the computed results are either precise or an over-approximation of the collecting
semantics, and thus are safe.

The resulting system of equations can be solved by computing the fixpoint
lfp(Fy) = F2(Av.L) of the functional Fy, : (V — L) — (V — L):

if v/ = vy,

Fa(f)() = {ZO (@)

|_|(v,ins,1/) (S [[Zns]]@(f(v)) otherwise,

where the abstraction of the concrete initial states is defined as initial abstract
state, thus «(Sp) C lo.

It should be clear that, since the abstract transfer functions, [ins],, are
monotonic w.r.t. the C operator, by induction we obtain F*(Av.L) C F? T (\v. 1)
for all n. All the elements of the sequence are in L, and since this is a finite set,
not all elements of the sequence can be distinct. Thus, there must be some n
such that:

FrH(\w.l) = F"(\w. 1)

Furthermore, since F" 1 (\v.1) = F,(F(A\v.L1)), we have reached the least
fixpoint of F,, i.e., Ifp(F,), and thus found a solution to the equation system.

The analysis to be instantiated depends on the target processor being evalu-
ated. In our current prototype implementation of ACCEPT, we focus ourselves
in the ARM7TDMI-S and ARM920T processors. While for the former only a
pipeline analysis is performed that captures the instruction’s overlapping effect,
for the latter, since it also features a cache memory, an integrated cache and
pipeline analysis is performed [The04].

3.1 Program Producer - Certificate Production

After computing this fixpoint, and thus having the cycles counts for each basic
block of the control-flow graph, we are able to calculate both the BCET and



WCET by means of integer linear programming techniques, and thus verify the
compliance with the giving timing specification (Figure 1). However, we can also
let the obtained fixpoint play the role of a certificate.

In the context of mobile code safety one cannot trust the origin of the pro-
gram. Hence, by adding to the code the certificate and sending both to the
program consumer, it can be performed a local and independent check of the
program’s timing behaviour, thereby avoiding the need to trust in the code pro-
ducer.

3.2 Program Consumer - Certificate Validation

The program consumer receives a program along with its certificate. In order
to check the compliance with the intended timing specification, the first step
is to compute the program’s control-flow graph and verify that the certificate
is a valid abstraction. Then, since the certificate is supposedly a fixpoint, the
checking procedure can be written as:

True if F,(Certificate) = Certificate,
False otherwise.

Check(Certificate) = { (3)

Since the certificate is supposed to be a fixpoint, another iteration over it
cannot change anything, thus, on the program consumer side, a simple one-pass
computation is suficient to check that the certificate is indeed a fixpoint.

In the cases where the received certificate does not behave as a fixpoint, the
program consumer can simply reject the program. One could argue that we could
let the program run, and kill its execution in the case of a timing behaviour non-
compliance. However, that would be a waste of resources, and in the context of
embedded systems, which tend to have very limited computational resources, it
is unacceptable. On the other hand, if the certificate is indeed a fixpoint, then
the program consumer can locally compute the BCET and WCET by standard
integer linear programming techniques, and thus check the compliance with the
timing specification. Furthermore, it should be noted that in this framework,
it is also possible for the program consumer to define new timing policies. For
instance, one can be interested in tightening the timing constraints.

This validation process requires that both the producer and consumer share
the same abstract transfer functions. Indeed, if the consumer used different ab-
stract transfer functions the certificate checking process would be inefficient, and
thus prohibitive for such scarce resource equipments as embedded systems. One
could argue that the independence in the timing validation process is compro-
mised by that fact, however, it should be noted that the trusted computing base
is limited to this checking operation, i.e., a simple, easy-to-trust fixpoint checker,
that only has to perform a one iteration process. Hence, this approach allows
to detect if a program has been tampered with, since an adulteration in the
program code would be detected when performing the checking operation, i.e.,



the fixpoint iteration. In the context of mobile code, this is particularly relevant
since, rather than simply put a blind confidence on a previous timing analysis,
one can validate the program’s timing behaviour by solely relying on a fixpoint
checker.

4 Conclusions and Future Work

Abstract Interpretation has been widely used in the industry, being static tim-
ing analysis one of its most successful applications [WWO08]. In our approach
we also use the Abstract Interpretation framework as the underlying technique,
we obtain our BCET and WCET predictions taking into account the hardware
specificities (cache, pipeline) [The04,GR09], by explicitly following a standard
fixpoint computation strategy [Kil73], and then apply standard integer linear
programming techniques in order to compute the BCET and WCET. This fix-
point computation will allow us to infer an abstract model of the program, which
can then be used as a certificate, i.e., a program consumer can locally validate
the received program w.r.t. to its timing behaviour, by simply checking that this
abstract model is indeed a fixpoint (a one-pass process), and then compute the
BCET and WCET with the received certificate.

This paper is a work in progress report on the timing certificate generation
and validation and intend to introduce and justify the underlying architecture.
We presented our architecture proposal for ACCEPT, an Abstraction-Carrying
CodFE Platform for Timing validation. In our prototype being implemented, we
avoid a binary-to-assembly translation phase, by making our compilation process
directly produce ARM assembly.

At this stage there are still some open issues that remain to be addressed.
One of the main challenges that we face in order to make our ACCEPT platform
useful in practice is the size of the produced certificates. Embedded systems are
known for their scarce resources, and thus, cannot afford to waste computational
means. In [AASPHO06], Albert et al introduce the notion of a reduced certificate,
with the objective of producing a certificate that only contains the essential
information which the program consumer cannot reproduce by itself, while not
yielding an overhead in the certificate checking process.

Our actual focus on the certification generation part of the ACCEPT plat-
form is now on the pragmatical evaluation of our proposal. For now we are not
concerned with performance, but with correctness and adequacy (in the context
of mobile code). However, a BCET/WCET platform is only useful if it provides
tight and safe time bounds. In this sense, we use state of the art algorithms
for their calculation. Nevertheless, comparing equitably this kind of platform
against reference tools [FH04], even pragmatically in the form of benchmark, is
not a trivial task, the same source-code, compilation process and/or low-level
code and target architecture must be considered. However, we plan to report on
case studies and practical results of our framework very soon.

To the best of our knowledge this is the first work applying the concepts of
Abstraction-Carrying Code to the static timing analysis field.
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