
Partial Derivative Automaton by Compressing
Regular Expressions?

Stavros Konstantinidis1, António Machiavelo2, Nelma Moreira2, and
Rogério Reis2

1 Saint Mary’s University, Halifax, Nova Scotia, Canada,
s.konstantinidis@smu.ca,

2 CMUP & DM, DCC, Faculdade de Ciências da Universidade do Porto,
Rua do Campo Alegre, 4169-007 Porto, Portugal

{antonio.machiavelo,nelma.moreira,rogerio.reis}@fc.up.pt

Abstract. The partial derivative automaton (APD) is an elegant simu-
lation of a regular expression. Although it is, in general, smaller than the
position automaton (APOS), the algorithms that build APD in quadratic
worst-case time, first compute APOS. Asymptotically, and on average for
the uniform distribution, the size of APD is half the size of APOS, being
both linear on the size of the expression. We address the construction of
APD efficiently, on average, avoiding the computation of APOS. The ex-
pression and the set of its partial derivatives are represented by a directed
acyclic graph with shared common subexpressions. We develop an algo-
rithm for building APD’s from expressions in strong star normal form of
size n that runs in time O

(
n3/2 4

√
log(n)

)
and space O

(
n3/2/(logn)3/4

)
,

on average. Empirical results corroborate its good practical performance.

1 Introduction

The partial derivative automaton (APD) is an elegant construction to obtain non-
deterministic finite automata (without ε-transitions) from regular expressions.
The use of derivatives has several advantages: they are easily extended to oper-
ations other than union, concatenation, and Kleene star; word membership can
be evaluated without the need to build the automaton; and the APD is a quo-
tient of the position (or Glushkov) automaton (APOS) [6,7]. In the worst-case,
for a standard regular expression of size n, both automata can have O(n) states,
O(n2) transitions, and can be computed in time O(n2). However, the known al-
gorithms to build APD in quadratic time first compute APOS and then compute
a right-invariant equivalence on the states of APOS [8,16]. For practical applica-
tions, the drawbacks of these methods are the need to build a larger automaton
(which is not easy to generalize for nonstandard operations) and the computa-
tion of the equivalence relation on the set of APOS states. In particular, Khorsi et
al. [16] base their algorithm on the construction and minimization of two acyclic

? Research supported by NSERC (Canada) and by CMUP through FCT project
UIDB/00144/2020.

2 S. Konstantinidis, A. Machiavelo, N. Moreira, R. Reis

deterministic finite automata, which burdens the practical performance of the
algorithm, despite their linear worst-case time.

Asymptotically, and on average for the uniform distribution, the size of APD

(both in states and transitions) is half the size of APOS, being both linear on
the size of the expression [19,3]. Being smaller, in general, it is interesting to
know if the APD can be built efficiently without the computation of the APOS.
In this paper we address this problem considering regular expressions in strong
star normal form (ssnf). The star normal form was first defined to construct the
position automaton in time O(n2), for expressions of size n [6]. The conversion of
an expression to star normal form can be done in linear time (in both the worst
and average cases). This form was extended to strong star normal form (ssnf)
by Gruber and Gulan [14]. The average-case complexity of conversions from ssnf
expressions to other models was studied by Broda et al. [4]. Then Konstantinidis
et al. [17] considered the size of partial derivatives on the average case both for
standard and ssnf expressions. For the latter, asymptotically and on average, the
size of the largest partial derivative is O(n/2), n being the size of the expression,
while one has O(n3/2) for the standard. Any partial derivative of an expression is
a concatenation of some of its subexpressions. Thus, it is interesting to estimate
the number of new concatenations obtained, on average, when partial derivatives
are computed. By using a tree representation of a regular expression and its set
of partial derivatives, those concatenations correspond to the new nodes that
are added to the initial tree. Konstantinidis et al. showed that when computing
a partial derivative w.r.t. one symbol that number is asymptotically constant.

In this paper we attain asymptotic estimates for the number of new concate-
nations when computing the set of all partial derivatives. To represent a regular
expression and the set of its partial derivatives, instead of a tree, we consider a
directed acyclic graph (DAG) with shared common subexpressions. Flajolet et
al. [13] showed that a tree of size n has, in this compact form, an expected size
of O

(
n /
√

log n
)
. We present an algorithm that computes APD(α) by construct-

ing a DAG for α, and simultaneously builds the set of all partial derivatives by
adding new concatenation nodes to the DAG. Using the asymptotic estimates
mentioned above we show that for ssnf expressions the algorithm uses, on av-

erage, time O
(
n3/2 4

√
log(n)

)
and space O

(
n3/2/(log n)3/4

)
. Experiments for

uniformly randomly generated expressions, as well as for some extreme expres-
sions, suggest that the algorithm has a good practical performance.

2 Preliminaries

A nondeterministic finite automaton (NFA) is a five-tuple A = 〈Q,Σ, δ, I, F 〉
where Q is a finite set of states, Σ is a finite alphabet, I ⊆ Q is the set of initial
states, F ⊆ Q is the set of final states, and δ : Q × Σ → 2Q is the transition
function. The size of an NFA is its number of states plus its number of transitions.
The transition function can be extended to words and to sets of states in the
natural way. The language accepted by A is L(A) = {w ∈ Σ? | δ(I, w)∩F 6= ∅}.
Given an alphabet Σ = {σ1, σ2, . . . , σk} of size k ≥ 1, the set Rk of (standard)

APD for Compressed Expressions 3

regular expressions α over Σ consists of ∅ and the expressions defined by the
following context-free grammar:

α := ε | σ1 | · · · | σk | (α+ α) | (α� α) | (α?), (1)

where the symbol� is often omitted, and represents concatenation. The language
associated with α is denoted by L(α) and is defined as usual. If S ⊆ Rk, then
L(S) =

⋃
α∈S L(α). We say that α is nullable if ε ∈ L(α) and, in this case,

define ε(α) = ε, with ε(α) = ∅, otherwise. For the size of a regular expression
α, denoted by ‖α‖, we will consider the size of its syntactic tree, i.e. the number
of symbols in α, not counting parentheses. The alphabetic size of α, denoted by
|α|Σ , is the number of letters in α. The notions of language, nullability and of the
above measures extend in a natural way to sets of expressions. The set of letters
that occur in α is denoted by Σα. The partial derivative automaton of a regular
expression was introduced independently by Mirkin [18] and Antimirov [1]. For
α ∈ Rk, let the linear form (LF) of α, ϕ(α) ⊆ Σ×Rk, be inductively defined by

ϕ(∅) = ϕ(ε) = ∅,
ϕ(σ) = {(σ, ε)},
ϕ(α?) = ϕ(α)α?,

ϕ(α+ α′) = ϕ(α) ∪ ϕ(α′),

ϕ(αα′) =

{
ϕ(α)α′ ∪ ϕ(α′), if ε(α) = ε,

ϕ(α)α′ otherwise,

(2)

where, for any S ⊆ Σ × Rk, we define S∅ = ∅, Sε = S, and Sα′ = { (σ, αα′) |
(σ, α) ∈ S ∧α 6= ε } ∪ { (σ, α′) | (σ, ε) ∈ S } for α′ 6= ∅, ε. For α ∈ Rk and σ ∈ Σ,
the set of partial derivatives of α w.r.t. σ is defined by ∂σ(α) = {α′ | (σ, α′) ∈
ϕ(α) }. Partial derivatives (PD) can be extended w.r.t. words in a natural way,
as well as w.r.t languages and, both, to sets of regular expressions. We have
L(∂w(α)) = {w′ | ww′ ∈ L(α) }, for w ∈ Σ∗. The set of all partial derivatives
of α w.r.t. nonnull words is denoted by ∂+(α), and satisfies the following.

Proposition 1 ([18]).

∂+(∅) = ∂+(ε) = ∅, ∂+(α+ α′) = ∂+(α) ∪ ∂+(α′),

∂+(σ) = {ε}, ∂+(αα′) = ∂+(α)α′ ∪ ∂+(α′), (3)

∂+(α?) = ∂+(α)α?,

where, for any S ⊆ Rk, we define S∅ = ∅, Sε = S, and Sα′ = {αα′ | α ∈
S ∧ α 6= ε } ∪ {α′ | ε ∈ S } for α′ 6= ∅, ε.
The set of all partial derivatives of α w.r.t. words is denoted by PD(α) =
∂Σ?(α) = ∂+(α) ∪ {α}. The partial derivative automaton of α is

APD(α) =
〈
PD(α), Σ, δPD, {α}, {α′ ∈ PD(α) | ε(α′) = ε}

〉
, (4)

with δPD(α′, σ) = ∂σ(α′), for all α′ ∈ PD(α) and σ ∈ Σ.

Proposition 2 ([1], Th. 3.4). For any regular expression α, |∂+(α)| ≤ |α|Σ.

Proposition 3 ([1], Th. 3.8). Given α ∈ Rk, a partial derivative of α is either
ε or a concatenation α1α2 · · ·αn such that αi is a subexpression of α and n− 1
is no greater than the number of occurrences of concatenations and stars in α.

4 S. Konstantinidis, A. Machiavelo, N. Moreira, R. Reis

Corollary 1. For β ∈ ∂+(α), the size ‖β‖ is O(‖α‖2).

Proposition 4 ([1,18]). For α ∈ Rk, we have |ϕ(α)| ≤ |α|Σ and for (σ, α′) ∈
ϕ(α), the size ‖α′‖ is O(‖α‖2). Moreover, |δPD(α)| is O(|α|2Σ). If α contains no
subexpression of the form α?1, then the size ‖α′‖ is O(‖α‖).

Example 1. Let αn = a?1 · · · a?n, with |α|Σ = n. Then ∂+(αn) = {a?i · · · a?n | 2 ≤
i ≤ n}, and |ϕ(αn)| = |αn|Σ = n. The largest partial derivative has size n − 1,

and |δPD(αn)| =
∑n−1
i=1 i = n(n+1)

2 .

Proposition 5 ([19,2,3]). Asymptotically in the size of the expression, and as
the alphabet size grows, the average sizes |α|Σ, |ϕ(α)|, |∂+(α)|, and |δPD(α)| are
‖α‖

2 , the constant 6, ‖α‖4 , and ‖α‖2 , respectively.

3 Strong Star Normal Form and Partial Derivatives

A regular expression is in strong star normal form (ssnf) if for any subexpression
of the form β? or β+ε, β is not nullable. Introducing the operator option,?, with
L(β?) = L(β)∪{ε}, one can define the set Sk of regular expressions in ssnf over
some alphabet Σ = {σ1, . . . , σk} by the following grammar:

β := ε | ∅ | βε | βε,
βε := (βε � βε) | (βε + βε) | (βε + βε) | (βε + βε) | (β?ε) | (β?

ε),

βε := σ1 | · · · | σk | (βε � βε) | (βε � βε) | (βε � βε) | (βε + βε),

(5)

where βε is for (nontrivial) nullable regular expressions, while βε is for the others.
In the remaining of the paper we will use β to denote either of βε and βε.
For β ∈ Sk, the linear form ϕ(β) is defined as in (2) for the base cases and
for the union. For the remaining cases we define: ϕ(βεβ) = ϕ(βε)β ∪ ϕ(β),
ϕ(βεβ) = ϕ(βε)β, ϕ(β?ε) = ϕ(βε)β

?
ε , and ϕ(β?

ε) = ϕ(βε). The set ∂+(β) of all
partial derivatives of β ∈ Sk w.r.t. nonnull words satisfies Proposition 1 except
for the following cases: ∂+(β?ε) = ∂+(βε)β

?
ε and ∂+(β?

ε) = ∂+(βε) [17]. In the
next section, using the analytic combinatorics framework, we derive asymptotic
estimates for the number of new concatenations obtained when computing ∂+(β)
for β ∈ Sk, and thus obtaining an average-case version of Proposition 3.

3.1 The Analytic Tools

Given some measure of the objects of a combinatorial class, A, for each n ∈ N0,
let an be the sum of the values of this measure for all objects of size n. Now,
let A(z) =

∑
n anz

n be the corresponding generating function (cf. [12]). We will
use the notation [zn]A(z) for an. The generating function A(z) can be seen as
a complex analytic function, and when it has a unique dominant singularity ρ,
the study of the behaviour of A(z) around it gives us access to the asymptotic
form of its coefficients. In particular, if A(z) is analytic in some indented disc
neighbourhood of ρ, then one can use the following [12, Corol. VI.1, p. 392]:

APD for Compressed Expressions 5

Theorem 1. The coefficients of the series expansion of the complex function

f(z) ∼
z→ρ

λ
(

1− z
ρ

)ν
, where ν ∈ C \N0, λ ∈ C, have the asymptotic approxima-

tion [zn]f(z) = λ
Γ(−ν) n

−ν−1ρ−n + o
(
n−ν−1ρ−n

)
. Here Γ is the Euler’s gamma

function and the notation f(z) ∼
z→z0

g(z) means that lim
z→z0

f(z)
g(z) = 1.

To use this, one needs to have a way to obtain ρ, ν and λ. Here we only
give a high level description of how this can be done, referring the reader to
Broda et al. [5,4]. First, from an unambiguous generating grammar, one obtains
a set of polynomial equations involving the generating functions for the objects
corresponding to the variables of the grammar, in particular the one whose coef-
ficients we want to asymptotically estimate. Then, either using Gröbner basis or
by other means [5], one gets an algebraic equation for that generating function
w = w(z), i.e., an equation of the form G(z, w) = 0, where G(z, w) ∈ Z[z, w]
of which w(z) is a root. Analysing the form of the curve G, and using its
partial derivatives, one can find an irreducible polynomial for the singularity
ρ, and, when limz→ρ w(z) = a ∈ R+, an irreducible polynomial for a; when
limz→ρ w(z) = +∞, the irreducible polynomial for ρ is a factor of the leading
coefficient of G(z, w) when seen as a polynomial in w [15, Th. 12.2.1]. After mak-
ing the change of variable s = 1− z/ρ, one knows that w = w(s) has a Puiseux
series expansion at the singularity s = 0, i.e., there exists a slit neighbourhood
of that point in which w(s) has a representation as a power series with fractional
powers [15, Chap. 12],

Using the irreducible polynomial for ρ, and the one for a in the first case,
while in the second case one changes variables in order to replace +∞ with 0,
one decides which partial derivatives of G are nonzero, and uses that information
to draw a Newton polygon that yields the values of ν and λ. Then, Theorem 1
yields:

Theorem 2. With the notations and in the conditions above described, one has

[zn]w(z) ∼
n→∞

−bG

Γ(−ν)
ρ−nn−ν−1, if limz→ρ w(z) ∈ R+, (6)

1

cG Γ(ν)
ρ−nnν−1, if limz→ρ w(z) = +∞, (7)

where ρ and ν are as above, setting bG = −λ and cG = λ−1.

Let the generating functions for βε and βε regular expressions be, respectively,
Bk = Bk(z) =

∑
βε
z‖βε‖ =

∑
n bnz

n and Bk = Bk(z) =
∑
βε
z‖βε‖ =

∑
n bnz

n,

where bn and bn are the corresponding numbers of expressions of size n. From

(5), one gets Bk = 2zB2
k + 2zBkBk + 2zBk and Bk = kz + 2zBkBk + 2zB

2

k.

Using Theorem 2, Broda et al. [4] obtained that [zn]Bk(z) ∼
n → ∞

bBk
2
√
π
η−nk n−

3
2

and [zn]Bk(z) ∼
n → ∞

bBk
2
√
π
η−nk n−

3
2 , where ηk is the unique dominant singularity

6 S. Konstantinidis, A. Machiavelo, N. Moreira, R. Reis

of Bk(z), which happens to be the same for Bk(z). It was also shown that
ηk ∼

k → ∞

1√
8k

, bBk ∼
k → ∞

√
8 and bBk ∼

k → ∞

√
k, which yields the asymptotic

behaviour of the size of βε and βε.

3.2 Average Number of New Concatenations in Partial Derivatives

In this section we consider the quantities |∂+(β)| and |∂+(β)|� =
∑
α∈∂+(β) |α|�

which is the number of new concatenations when computing ∂+(β), and we
estimate the average value of |∂+(β)|�. Let `(β) be the function |∂+(β)| and
h(β) be the function of |∂+(β)|�, assuming that all computed partial derivatives
are distinct. Thus, ` and h are upper bounds for those quantities in the general
case. Using the definition of ∂+ for β ∈ Sk, we have that those cost functions
(of the expressions) satisfy

h(ε) = h(σ) = 0,
h(β + β′) = h(β) + h(β′),
h(ββ′) = h(β) + `(β) + h(β′),
h(β?ε) = h(βε) + `(βε),
h(β?

ε) = h(βε),

`(ε) = 0, `(σ) = 1,
`(β + β′) = `(β) + `(β′),
`(ββ′) = `(β) + `(β′),
`(β?ε) = `(βε),
`(β?

ε) = `(βε).

In the computation of h(ββ′), the summand `(β) accounts for the number of
partial derivatives of β. Similarly for h(β?ε). For the special case of βε expressions,
h(σ) = 0, h(βε+β′ε) = h(βε) +h(β′ε), h(βεβε) = h(βε) + `(βε) +h(βε), h(ββε) =
h(β) + `(β) + h(βε) and `(σ) = 1, `(βε + β′ε) = `(βε) + `(β′ε), `(βεβε) = `(βε) +
`(βε), `(ββε) = `(β) + `(βε). Let Hk = Hk(z) and Hk = Hk(z) be the cost
generating function for the measure h associated with the expressions β and βε,
respectively. Analogously, let Lk = Lk(z) and Lk = Lk(z) be the corresponding
ones for `. These coincide with the cost generating functions for the alphabetic
size, and that was calculated in Broda et al. [4]. One has, where Tk = Bk +Bk,

Hk = 4zHkTk + zLkTk + 2zHk + zLk,

Hk = 2zHkBk + 2zHkTk + zLkBk + zLkBk.

Bk = 2zB2
k + 2zBkBk + 2Bkz,

Bk = kz + 2zBkBk + 2zB
2

k,

Lk − Lk = 4zBk(Lk − Lk) + 2zBkLk + 2zBk(Lk − Lk) + 2zLk,

Lk = kz + 2zBkLk + 2zBk(Lk − Lk) + 4zBkLk.

Using Gröbner basis for the equations of Bk and Bk, and with the help of a
symbolic manipulator, one can find a polynomial in Q(z, w) for which w = Hk(z)
is a zero, namely 16z2`k(z)2 w3 + 4k `k(z)p4(z)w2 + p8(z)w + kz2p6(z), where
the dominant singularity of Hk is only root in]0, 1[of

`k(z) = z3 +
9

2k + 27
z2 − 1

4(2k + 27)
z − 1

k(2k + 27)
,

APD for Compressed Expressions 7

and pi denotes a polynomial of degree i. Using the method described in [5], one
sees that this falls in the case (7) of Theorem 2, and computing the respective
constants, ρ, ν, c, one gets the following value for the asymptotic behaviour of
the coefficients of Hk(z):

[zn]Hk(z) ∼
n → ∞

1

cHk
η−nk , (8)

where cHk is a function of k with an expression too cumbersome to write here,

but that satisfies cHk ∼
k → ∞

16
√

2√
k

. From this one now gets

Theorem 3. The average value of the upper bound h considered above, for the
number of new concatenations in all the partial derivatives of a regular expression
in Sk is given by

[zn]Hk(z)

[zn](Bk(z) +Bk(z)) ∼n → ∞
2
√
π

cGk(bBk + bBk)
n

3
2 ∼
k → ∞

√
π

128
n

3
2 . (9)

And also, knowing that [zn]Lk(z) ∼
√
k

4
√
π
η−nk n−1/2 (see [4]), one obtains

Theorem 4. The average value of the upper bound h considered above, for the
number of new concatenations per partial derivative of a regular expression in
Sk is given by

[zn]Hk(z)

[zn]Lk(z) ∼n, k → ∞
√

π

32
n

1
2 . (10)

Note that in the worst case the number of new concatenations is Θ(‖β‖2),
as illustrated by the following example. Let βn = a1a2 · · · an, for n ≥ 1, with
‖βn‖ = 2n− 1. We have ∂+(βn) = { ai · · · an | 2 ≤ i ≤ n } ∪ {ε} and the number
of new concatenations is |∂+(βn)|� =

∑n
i=2(n− i) = (n2 − 3n+ 2)/2.

4 DAG Representation and Partial Derivatives

Consider the (binary) tree representation of β ∈ Sk. Each node v of the tree is
labelled with an operator denoted by lab(v). Let βv be the subexpression rooted
at v. In what follows, we identify a node with its rooted subexpression. A node
v is an op-node if lab(v) = op, op ∈ {+, ?, ?,�} ∪ Σ. Each node, except the
root, has exactly one parent node and can have zero, one or two children. For
β1 = (ab)?a + (ab)?, its tree is depicted in Figure 1(a). One can see that there
are several identical subtrees (subexpressions). The identification of all common
subexpressions of β leads to a directed acyclic graph (DAG) representation of
β. Let s be the number of distinct subexpressions of β. Each node of the DAG
corresponds exactly to a distinct subexpression of β and can be identified by an
index i ∈ {1, . . . , s}. The node with index 0 corresponds to ε.

In Algorithm 1, we present an algorithm to build the DAG for a regular
expression, as well as, to compute its APD. In this section we focus on the con-
struction of the DAG without constructing partial derivatives and thus APD.

8 S. Konstantinidis, A. Machiavelo, N. Moreira, R. Reis

The function getI constructs the DAG for an expression and for each type
of operator calls a function that builds a node, if it does not exist, and returns
its index. This function is inspired by Flajolet et al. [13], which is based on the
more general algorithms presented in Downey et al. [11].

Let IND be a structure that associates each index i with a unique node
(subexpression). Let last be the variable that counts the number of nodes already
in the DAG. The function node(i, op, C) creates a node with index i, label op
and children C, where C is a list of zero to two DAG indexes (which is omitted
if |C| = 0). To construct the DAG one needs to determine if for a node i, the
subtree βi is already there. That can be decided by analysing the parents of node
i and their labels, using the following functions. Let star(i) be the parent of i, in
the case it is a ?-node, or Null, otherwise. Similarly define option(i). To uniquely
identify a �-node one needs to know its left and right children. If dot(i, j) is not
Null then a �-node with left child i and right child j exists. The same occurs for
+-node and plus(i, j). Finally, leaves(σ) is not Null, if the node i is a σ-node.

Depending on the data structures used, the construction of the DAG can be
achieved, in the worst-case, in quadratic time or, respectively, in linear time [11].
Using hash tables the running time is O(n), on average [13, Prop. 1]. Using the
result of Flajolet et al. [13], mentioned in Section 1, the expected size of the

DAG of β is O
(
‖β‖ /

√
log ‖β‖

)
. A DAG for β1 is depicted in Figure 1(b).

When building the DAG, one can also compute for each node i, the functions
ε(i) and ϕ(i). In Algorithm 1, the function ewp is a Boolean function such that
ewp(i) = True if ε(i) = ε, and False otherwise. The computation of ϕ(i) can lead
to the creation of new �-nodes. For these nodes the computation of ϕ is delayed
until the nodes of all subexpressions of a given expression are computed. The final
DAG is shown in Figure 1(c). Note that the indexes (numbers) given to nodes
are different if one computes simultaneously the DAG for β1 with or without the
partial derivatives. In the latter case, the partial derivatives are computed after
the DAG for β1 is constructed (and that is what is assumed in Figure 1). After
constructing the DAG with all partial derivatives (LF), the APD(β) can be easily
obtained. The automaton APD(β1) is shown in Figure 1(d). In the next section,
we detail the algorithm to build the APD(β), as well as the overall complexity
analysis.

5 Algorithm PDDAG

Given a regular expression β, we present an algorithm to compute the partial
derivative automaton APD(β). Although the algorithm also applies to standard
regular expressions, here, we assume expressions in ssnf. In Algorithm 1, the
function PDDAG implements the main procedure that constructs a DAG not
only representing the expression but also all its partial derivatives. For each node,
the corresponding linear form is computed and for ?-nodes or �-nodes special
attention is needed. In both cases, the function concLF can add new �-nodes to
the DAG. For those nodes the computation of their linear forms is delayed, as they
can depend on the linear forms of the nodes that gave them origin. Hence, the

APD for Compressed Expressions 9

+

· ?

? a

·

·

a b

a b

+ 6

· 5

? 4

· 3

a 1 b 2

+6

·5

?4

·3

a1 b2

ε0

· 8

· 7

a b

a

a

a

a

a

a

a

b

b

6

7 8

4 5

0

a

a

ab aa b

a

(a) (b) (c) (d)

Fig. 1. For β1 = (ab)?a+ (ab)? we show (a) a tree representation where the root corre-
sponds to β1, (b) the (minimal) DAG identifying common subexpressions of α1, (c) DAG
with partial derivative nodes (LF), and (d) the resulting APD. In (c), new nodes created
during the computation of ∂+(β1) are presented by a square. The values of ewp(i) are
omitted. A (dark) zigzag directed edge between nodes i and j labelled by σ means that
j ∈ ∂σ(i) (those accessible from the root correspond to the transitions in APD).

function ConcI is called with the delay parameter as True (by default is False).
When the computation of the linear form of the creator node is finished, the
linear forms of the delayed nodes can safely be computed. Function doDelayed
computes the linear forms of the new �-nodes until no more delayed nodes exist.
When all nodes of all partial derivatives have been created, the APD(β) can be
constructed using definition (4), starting with the root node s corresponding to
β. The function makeNFA implements this construction (by space constraints,
we omit its description). In the following, we discuss the complexity of the
algorithm. We show that, on average for β ∈ Sk, the algorithm PDDAG(β)
works in time O

(
‖β‖3/2 4

√
log ‖β‖

)
. We make the ordinary assumption in formal

language algorithms that an integer occupies space O(1) and each basic integer
arithmetic operation takes time O(1) [10].

Lemma 1. Given the DAG of β with partial derivatives, for every node v and
σ ∈ Σ, |∂σ(βv)| ≤ |β|Σ.

Theorem 5. Algorithm PDDAG(β) can be implemented such that

(i) in the average case, it uses time O
(
‖β‖3/2 4

√
log ‖β‖

)
;

(ii) in the worst case, it uses time O
(
|Σβ ||β|2Σ‖β‖ log ‖β‖

)
;

(iii) in the average case, it uses space O
(
‖β‖3/2 / (log ‖β‖)3/4

)
;

(iv) in the worst case, it uses space O
(
|Σβ ||β|2Σ‖β‖

)
.

Proof. As seen in Section 4, making the DAG for β can take time Θ(‖β‖) and
the number s of initial DAG nodes is O(‖β‖/

√
log ‖β‖) in the average case, and

Θ(‖β‖) in the worst case. All finite sets in the algorithm are implemented using

10 S. Konstantinidis, A. Machiavelo, N. Moreira, R. Reis

Algorithm 1 Partial Derivative Automaton with DAG

1: function PDDAG(α)
2: IND[0]←Node(0, ε)
3: last← 1;Delayed← ∅
4: s← getI(α)
5: makeNFA()

6: function getI(α)
7: if α = σ then
8: return AtomI(σ)

9: else if α = α?
1 then

10: return OptionI(getI(α1))
11: else if α = α?1 then
12: return StarI(getI(α1))
13: else if α = α1 + α2 then
14: return PlusI(getI(α1),getI(α2))
15: else if α = α1 � α2 then
16: return ConcI(getI(α1),getI(α2))
17: else return 0
18: function AtomI(σ)
19: if leaves(σ) is Null then
20: i← last; last← last+1
21: IND[i]← Node(i, σ)
22: ewp(i)← False
23: ϕ(i)← (σ, 0)
24: else
25: i← leaves(σ)

26: return i
27: function StarI(i)
28: if star(i) is Null then
29: j ← last; last← last+1
30: IND[j]← Node(j, ?, i)
31: ewp(j)← True
32: ϕ(j)← concLF(i, j)
33: doDelayed()
34: else
35: j ← star(i)

36: return j

37: function OptionI(i)
38: if option(i) is Null then
39: j ← last; last← last+1
40: IND[j]← Node(j, ?, i)
41: ewp(j)← True
42: ϕ(j)← ϕ(i)

43: else
44: j ← option(i)

45: return i
46: function PlusI(i, j)
47: if plus(i, j) is Null then
48: `← last; last← last+1
49: IND[`]← Node(`,+, i, j)
50: ewp(`)← ewp(i) ∨ ewp(j)
51: ϕ(`)← ϕ(i) ∪ ϕ(j)
52: else
53: `← plus(i, j)

54: return `
55: function ConcI(i, j, delay = False)
56: if i = 0 then return j

57: if j = 0 then return i

58: if dot(i, j) is Null then
59: `← last; last← last+1
60: IND[`]← Node(`,�, i, j)
61: ewp(`)← ewp(i) ∧ ewp(j)
62: if delay = True then
63: add ` to Delayed
64: else
65: ϕ(`)← concLF(i, j)
66: if ewp(i) then
67: ϕ(`)← ϕ(`) ∪ ϕ(j)

68: doDelayed()

69: else
70: `← dot(i, j)

71: return `
72: function ConcLF(i, j)
73: F ← ∅
74: for all (σ, `) ∈ ϕ(i) do
75: add (σ,ConcI(`, j,True)) to F

76: return F
77: function doDelayed()
78: while Delayed 6= ∅ do
79: i← Delayed.pop()
80: ϕ(i)← ConcLF(left(i), right(i))
81: if ewp(left(i)) then
82: ϕ(i)← ϕ(i) ∪ ϕ(right(i))

AVL-trees. The structure IND contains pairs (i, p) such that i is an index and p is
the DAG node with index i. The structure DOT contains triples (i, j, `) of integers
such that ` is the index for a �-node with i = left(`) and j = right(`). The search
is based on the pairs (i, j) and works as in single integer comparisons. Function
dot(i, j) returns ` when the triple (i, j, `) is in DOT, and Null otherwise. When
Node(`,�, i, j) is created the triple (i, j, `) is added to DOT. The structure
PLUS is analogous to DOT for +-nodes and used by the function plus. The
structure ∆ contains pairs (`, F) such that F = ϕ(`). Specifically, F is an AVL-
tree containing pairs (σ, S) such that S = ∂σ(`). To access the set ∂σ(`), ∆ is
searched on ` to get the pair (`, F), and then F is searched on σ to get the
set S = ∂σ(`). Let t be the number of new nodes created when computing the
linear forms. Each such node is a partial derivative of β or of a subexpression

APD for Compressed Expressions 11

of β. Let {β`}s`=1 be the set of subexpressions of β, including β = βs. Then
t ≤ |

⋃s
`=1 ∂

+(`)| ≤
∑s
`=1 |β`|Σ ≤ s|β|Σ . By Theorem 3 we have that, on average,

t = O(s3/2). In the worst-case, t = Θ(s|β|Σ). For each node `, the set ϕ(`) is
computed and stored as ∆[`]. Each |∆[`]| is O(|Σβ ||β|Σ) in the worst case (by
Lemma 1), and O(1) in the average case [19,17]. Based on the above observations,
the algorithm’s space complexity is O

(
|Σβ ||β|Σs|β|Σ

)
= O

(
|Σβ ||β|2Σ‖β‖

)
in the

worst case, and O(s3/2) = O
(
‖β‖3/2 / (log ‖β‖)3/4

)
in the average case. We

turn now to the time complexity. The task to compute the set ∆[`], for each
node `, depends on lab(`) and the children of `. We only examine the time for
+-nodes and �-nodes, as the time for the others is not more significant. If `
is a +-node, then ∆[`] = ∆[left(`)] ∪ ∆[right(`)]. Thus, the cost for each +-
node ` is O

(
|∆[`]| log |∆[`]|

)
. If ` is a �-node with children i, j then the time

of ConcLF(i, j) is O
(
|∆[i]| log t+ |∆[`]| log |∆[`]|

)
, where log t accounts for the

cost of accessing DOT and |∆[`]| log |∆[`]| for making the set F (line 75). As
|Σβ |, |β|Σ ≤ ‖β‖, we have that log t = O(log ‖β‖).

Thus, the algorithm’s time complexity isO
(
|Σβ ||β|2Σ‖β‖ log ‖β‖

)
in the worst

case, and O
(
‖β‖3/2 (log ‖β‖)1/4

)
in the average case. �

Fig. 2. Running times (per expression) of the simulation of expressions in ssnf by NFA
using different algorithms: position (APOS), partial derivatives (APD) using, respectively,
PDDAG, KOZ, and a naive implementation, NAIVE.

100 500 1,000 2,000 3,000
0

0.5

1

1.5

n

T
im

e
in

s
e
c
.

Random expressions of Sk, k = 2

APOS

PDDAG

KOZ

NAIVE

100 200 300 400 500
0

0.5

1

1.5

n

T
im

e
in

s
e
c
.

Expressions βn

APOS

PDDAG

KOZ

6 Empirical Results and Conclusions

We implemented the algorithm pddag in Python within FAdo (https://pypi.
org/project/FAdo/). Instead of AVL-trees we used hash tables, as those are
Python’s natural data structures. In the experiments we uniformly random gen-
erated expressions β ∈ Sk, in prefix notation. For each expression size n ∈
{100, 200, 300, 500, 1000, 2000, 3000, 4000}, and alphabet size k ∈ {2, 5, 10, 50},
samples of 10000 expressions were generated. This is sufficient to ensure a 95%
confidence level within a 1% error margin [9, p. 75]. In FAdo there is a naive
implementation of APD that recursively computes the linear forms with some
memoization (NAIVE), as well as implementations of the position automaton
APOS. The algorithm for APD by Khorsi et a. (koz) [16] was implemented using
FAdo methods for acyclic finite automata. The tests were performed in Python
2.7 with a 2.5GHz Quad-Core i7 CPU and 16GB memory. In Figure 2, on the
left, we present the average running times of the algorithms per expression of

https://pypi.org/project/FAdo/
https://pypi.org/project/FAdo/

12 S. Konstantinidis, A. Machiavelo, N. Moreira, R. Reis

size n, and k = 2. On the right, we present the running times for expressions
βn = a?

1 · · · a?
n, over a growing alphabet Σ = {a1, . . . , an}, that attain the worst-

case size of APD. Both results suggest that the algorithm pddag has a good
practical performance.

Future research is the adaptation of the tools used here to the word mem-
bership problem without computing the automaton.

References

1. Antimirov, V.M.: Partial derivatives of regular expressions and finite automaton
constructions. Theoret. Comput. Sci. 155(2), 291–319 (1996)

2. Broda, S., Machiavelo, A., Moreira, N., Reis, R.: On the average
state complexity of partial derivative automata: an analytic combina-
torics approach. Int. J. Found. Comput. Sci. 22(7), 1593–1606 (2011).
https://doi.org/10.1142/S0129054111008908

3. Broda, S., Machiavelo, A., Moreira, N., Reis, R.: On the average size of Glushkov
and partial derivative automata. Int. J. Found. Comput. Sci. 23(5), 969–984 (2012).
https://doi.org/10.1142/S0129054112400400

4. Broda, S., Machiavelo, A., Moreira, N., Reis, R.: On average behaviour of regular
expressions in strong star normal form. Int. J. Found. Comput. Sci. 30(6-7), 899–
920 (2019). https://doi.org/10.1142/S0129054119400227

5. Broda, S., Machiavelo, A., Moreira, N., Reis, R.: Analytic combinatorics and de-
scriptional complexity of regular languages on average. ACM SIGACT News 51(1),
38–56 (March 2020). https://doi.org/10.1145/3388392.3388400

6. Brüggemann-Klein, A.: Regular expressions into finite automata. Theoret. Com-
put. Sci. 48, 197–213 (1993)

7. Champarnaud, J.M., Ziadi, D.: Canonical derivatives, partial derivatives and finite
automaton constructions. Theoret. Comput. Sci. 289, 137–163 (2002)

8. Champarnaud, J., Ziadi, D.: From c-continuations to new quadratic algorithms for
automaton synthesis. Intern. Journ. of Alg. and Comp. 11(6), 707–736 (2001)

9. Cochran, W.G.: Sampling Techniques. John Wiley and Sons, third edn. (1977)
10. Crochemore, M., Hancart, C., Lecroq, T.: Algorithms on strings. CUP (2007)
11. Downey, P.J., Sethi, R., Tarjan, R.E.: Variations on the common subexpression

problem. JACM 27(4), 758–771 (1980). https://doi.org/10.1145/322217.322228
12. Flajolet, P., R.Sedgewick: Analytic Combinatorics. CUP (2008)
13. Flajolet, P., Sipala, P., Steyaert, J.: Analytic variations on the common subexpres-

sion problem. In: Paterson, M. (ed.) Proc. 17th ICALP 90. LNCS, vol. 443, pp.
220–234. Springer (1990). https://doi.org/10.1007/BFb0032034

14. Gruber, H., Gulan, S.: Simplifying regular expressions: A quantitative perspective.
Tech. rep., IFIG Research Report (2009)

15. Hille, E.: Analytic Function Theory, vol. 2. Blaisdell Publishing Company (1962)
16. Khorsi, A., Ouardi, F., Ziadi, D.: Fast equation automaton computation. J. Dis-

crete Algorithms 6(3), 433–448 (2008). https://doi.org/10.1016/j.jda.2007.10.003
17. Konstantinidis, S., Machiavelo, A., Moreira, N., Reis, R.: On the size of partial

derivatives and the word membership problem. Acta Informatica 58, 357–375
(2021). https://doi.org/10.1007/s00236-021-00399-6

18. Mirkin, B.G.: An algorithm for constructing a base in a language of regular ex-
pressions. Eng. Cybernetics 5, 51—57 (1966)

19. Nicaud, C.: On the average size of Glushkov’s automata. In: Dediu, A., Ionescu,
A.M., Vide, C.M. (eds.) Proc. 3rd LATA. LNCS, vol. 5457, pp. 626–637. Springer
(2009)

https://doi.org/10.1142/S0129054111008908
https://doi.org/10.1142/S0129054112400400
https://doi.org/10.1142/S0129054119400227
https://doi.org/10.1145/3388392.3388400
https://doi.org/10.1145/322217.322228
https://doi.org/10.1007/BFb0032034
https://doi.org/10.1016/j.jda.2007.10.003
https://doi.org/10.1007/s00236-021-00399-6

	Partial Derivative Automaton by Compressing Regular Expressions

