
Theoretical Computer Science 1016 (2024) 114780

Contents lists available at ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

On the difference set of two transductions ✩,✩✩

Stavros Konstantinidis a,∗, Nelma Moreira b, Rogério Reis b, Juraj Šebej c
a Saint Mary’s University, Mathematics & CS, 923 Robie Str, B3H 3C3, Halifax, Nova Scotia, Canada
b CMUP & DM, DCC, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal
c Institute of Computer Science, Faculty of Science, P. J. Šafárik University, Košice, Slovakia

A R T I C L E I N F O A B S T R A C T

Keywords:
Transducer
Difference set
Equality set
Counter machine
Approximation algorithm
Randomized algorithm
NFA equivalence

The difference set 𝛥𝒔,𝒕 of two (nondeterministic, in general) transducers 𝒔, 𝒕 is the set of all input
words for which the output sets of the two transducers are not equal. When the two transducers
realize homomorphisms, their difference set is the complement of the well known equality set of
the two homomorphisms. However, we show that transducer difference sets result in Chomsky-
like classes of languages that are different than the classes resulting from equality sets. We also
consider the following word problem: given transducers 𝒔, 𝒕 and input 𝑤, tell whether the output
sets 𝒔(𝑤) and 𝒕(𝑤) are different. In general the problem is 𝐏𝐒𝐏𝐀𝐂𝐄-complete, but it becomes
𝐍𝐏-complete when at least one of the given transducers has finite outputs. We also provide a
PRAX (polynomial randomized approximation) algorithm for the word problem as well as for
the NFA (in)equivalence problem. Our presentation of PRAX algorithms improves the original
presentation.

1. Introduction

We are interested in the difference set 𝛥𝑆,𝑇 between two transductions 𝑆 and 𝑇 that have the same domain:

𝛥𝑆,𝑇 = {𝑤 ∈ 𝖽𝗈𝗆𝑆 ∣ 𝑆(𝑤) ≠ 𝑇 (𝑤)};

that is, the set of input words for which the outputs of the two transducers are different. We also write 𝛥𝒔,𝒕, for 𝛥𝑆,𝑇 when 𝒔, 𝒕 are
transducers realizing 𝑆, 𝑇 :

𝛥𝒔,𝒕 = {𝑤 ∈ 𝖽𝗈𝗆𝒔 ∣ 𝒔(𝑤) ≠ 𝒕(𝑤)}.

The theme of this research is analogous to that of [1], in which the authors study the language that distinguishes two states of a
deterministic finite automaton, or more generally the distinguishability language of a given language 𝐿: the set of words 𝑤 such that
𝑥𝑤 ∈𝐿 and 𝑦𝑤 ∉𝐿 for some words 𝑥, 𝑦. The research in [1] is inspired by older studies on word experiments that distinguish certain
aspects of automata states [2]. Although the concepts are similar, the languages obtained in [1] are totally different than the difference
languages obtained here. Here we consider the language that distinguishes the behavior of two transducers. It is not difficult to see

✩ This article belongs to Section A: Algorithms, automata, complexity and games, Edited by Paul Spirakis.
✩✩ Research supported by NSERC (Discovery Grant RGPIN-2020-05996 of S.K.) and by CMUP through FCT project UIDB/00144/2020 (grant of N.M. and R.R.).

* Corresponding author.

E-mail addresses: s.konstantinidis@smu.ca (S. Konstantinidis), nelma.moreira@fc.up.pt (N. Moreira), rogerio.reis@fc.up.pt (R. Reis), juraj.sebej@upjs.sk
Available online 14 August 2024
0304-3975/© 2024 Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies.

(J. Šebej).

https://doi.org/10.1016/j.tcs.2024.114780
Received 5 January 2024; Received in revised form 1 August 2024; Accepted 11 August 2024

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
mailto:s.konstantinidis@smu.ca
mailto:nelma.moreira@fc.up.pt
mailto:rogerio.reis@fc.up.pt
mailto:juraj.sebej@upjs.sk
https://doi.org/10.1016/j.tcs.2024.114780
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2024.114780&domain=pdf
https://doi.org/10.1016/j.tcs.2024.114780

Theoretical Computer Science 1016 (2024) 114780S. Konstantinidis, N. Moreira, R. Reis et al.

that this is equivalent to distinguishing the behavior of two states of one transducer. Here moreover, we deal with transducers that are
nondeterministic in general. When we consider the complementary notion of the equality set of two transductions (or transducers)

𝑆,𝑇 = {𝑤 ∈ 𝖽𝗈𝗆𝑆 ∣ 𝑆(𝑤) = 𝑇 (𝑤)}, 𝒔,𝒕 = {𝑤 ∈ 𝖽𝗈𝗆𝒔 ∣ 𝒔(𝑤) = 𝒕(𝑤)},

then we have a generalization of the classic notion of the equality set of two homomorphisms [3,4], as well as the equality set of two
deterministic generalized sequential machines or functional transducers1 [5–7]. We note that any homomorphism ℎ ∶ Σ⋆ → Γ⋆ is
total on Σ⋆, that is, the domain of ℎ is Σ⋆. Some authors exclude the empty word from the equality set 𝑔,ℎ of two homomorphisms
ℎ, 𝑔, as 𝑔,ℎ is directly connected to the Post correspondence problem. Here, however, we do allow the empty word to be in 𝑔,ℎ
(which is also the approach taken in [3,5]).

Our generalization from deterministic automata, or functional transductions, to transductions comes with a high price: Membership
to the difference (or equality) set of two given transducers 𝒔, 𝒕 can be a hard problem; so we are interested in various ways to get as much
information as possible about the difference set in question, considering also cases where the transducers involved are of a certain type. In
particular, we consider the following questions.

(In all questions, the transductions/transducers involved in a difference set are supposed to have the same domain.)

Deciding the word problem 𝛥: Given two transducers 𝒔, 𝒕 and a word 𝑤, decide whether 𝒔(𝑤) ≠ 𝒕(𝑤), that is, 𝑤 ∈ 𝛥𝒔,𝒕. As stated,
this is the unrestricted word problem. We are also interested in restricted versions of the word problem when we have as a
promise that the two given transducers are of certain types. For example, the word problem for length-preserving transducers
is to decide whether 𝒔(𝑤) ≠ 𝒕(𝑤) when we know that for both 𝒔, 𝒕, the length of any output word is equal to the length
of the word that was used as input. About the word problem, we want to know how hard (or simple) it is: is it decidable
in linear time, is it in the class 𝐍𝐏, is it in the class 𝐏𝐒𝐏𝐀𝐂𝐄? The answer depends on the restrictions on the transducers
involved.

Chomsky-like type of the languages 𝛥𝑆,𝑇 : For any fixed, but arbitrary, transductions 𝑆, 𝑇 , we want to know the type of the
language 𝛥𝑆,𝑇 : is it regular, is it context-free and non-regular, is it non-context-free? The answer depends on the two
transductions involved. And if 𝛥𝑆,𝑇 is a subset of some class , for all transductions 𝑆, 𝑇 of certain types (e.g., when 𝑆, 𝑇
are functional), is every language 𝐿 ∈  equal to the difference set 𝛥𝑆,𝑇 of two transductions 𝑆, 𝑇 of the said types?

When studying the languages 𝛥𝑆,𝑇 , we consider various restrictions on the two transductions 𝑆, 𝑇 . We have the following cases—see
next section for definitions:

• Both 𝑆, 𝑇 are any transductions (the unrestricted case).
• 𝑆 has finite outputs and 𝑇 is any transduction.
• 𝑆 is functional and 𝑇 is any transduction.
• Both 𝑆, 𝑇 are finite valued.
• Both 𝑆, 𝑇 are functional.
• Both 𝑆, 𝑇 are homomorphisms.
• Both 𝑆, 𝑇 are recognizable.

Each of the above restrictions corresponds to a class of languages 𝛥𝑆,𝑇 . For example, the class 𝛥(𝖥𝖴𝖭𝖢, 𝖳𝖱) consists of all languages
𝛥𝑆,𝑇 where 𝑆 is functional. Theorem 4 and Fig. 3 present a hierarchy involving these language classes and some related standard
language classes (context-sensitive, one counter, regular, etc). Some class inclusions are shown to be proper, but for most inclusions
the question of whether they are proper is not solved. In the case of proper inclusions, we use arguments similar to those used in [5].
It seems that new ideas are needed for the rest of the inclusions.

We also consider analogous restrictions of the word problem, by considering instances (𝒔, 𝒕, 𝑤) in which the transducers involved
are of certain types. In the unrestricted case, the problem is 𝐏𝐒𝐏𝐀𝐂𝐄-complete (Theorem 1.1). When the first transducer has finite
outputs the problem is 𝐍𝐏-complete (Theorem 1.2), and remains that hard even when the two transducers involved are finite valued
(Remark 2). On the other hand, if at least one of the transducers is functional, the problem is in the class 𝐏 (Theorem 1.3). As far as
we know, our word problem is not considered in previous research.

Remark 1. The difference set of any two functional transductions is a one-counter language [7], while their equality set is a context-
sensitive language—this follows from the result of [6] that the fixed point language {𝑤 ∈ 𝖽𝗈𝗆𝑆 ∶𝑤 ∈ 𝑆(𝑤)} of any transduction 𝑆
is context-sensitive and the observation that the equality set of any two functional transductions 𝐹 , 𝐺 is equal to the fixed point of
the transduction 𝐺−1◦𝐹 . We also note that there are functional transductions 𝐹 , 𝐺 whose equality set is not context-free [7].

Structure of the paper and main results. The next section contains basic terminology and notation. Section 3 shows a few
examples of difference sets and shows that the word problem can be hard for certain types of transducers and polynomial for others
(Theorem 1). Section 4 shows that there is a PRAX algorithm for the word problem (Theorem 2), as well as for the problem of NFA
2

1 Reference [5] does consider the equality set of two transductions but their definition is different from ours.

Theoretical Computer Science 1016 (2024) 114780S. Konstantinidis, N. Moreira, R. Reis et al.

(in)equivalence. Our presentation of PRAX algorithms improves the original presentation in [8]. Section 5 shows that the difference
set of two recognizable transductions is always regular and can be effectively constructed (Theorem 3). Section 6 shows a Chomsky-
like hierarchy of classes of difference sets related to each other or to known ones (like the context-sensitive languages) (Theorem 4).
Finally Section 7 contains a few concluding remarks.

2. Basic terms and background

We assume the reader to be familiar with basics of formal languages, see e.g., [9–12]. Some notation: 𝜺 denotes the empty word;
Σ, Γ denote arbitrary alphabets; 𝐿̄ denotes the complement of the language 𝐿. We also assume the reader to be familiar with basics
of transductions and transducers, see e.g., [13–15]. A (finite-state) transducer is a 6-tuple 𝒕 = (𝑄, Σ, Γ, 𝐸, 𝑠, 𝐹) such that 𝑄 is the set
of states, 𝑠 ∈𝑄 is the start (initial) state, 𝐹 ⊆ 𝑄 is the set of final states, Σ, Γ are the input and output alphabets, respectively, and
𝐸 is the finite set of transitions (edges). Without mention, we assume that all transducers are in standard form: in each transition
(𝑝, 𝑥∕𝑦, 𝑞) ∈ 𝐸, we have that the input label 𝑥 is either the empty word or a single symbol, and the same for the output label 𝑦. The
set of outputs of 𝒕 on input 𝑤 is denoted by 𝒕(𝑤). The relation (𝒕) realized by 𝒕 is the set {(𝑤, 𝑧) ∶ 𝑧 ∈ 𝒕(𝑤)}. A transduction 𝑇 is any
relation realized by a transducer. We write 𝑇 (𝑤) to denote the set of outputs of 𝑇 on input 𝑤; hence, 𝑇 (𝑤) = 𝒕(𝑤) when 𝑇 =(𝒕).
Some classes of transductions:

• 𝖥𝖨𝖭𝖮𝖴𝖳: transductions 𝑇 having finite outputs: the set 𝑇 (𝑤) is finite for all inputs 𝑤.
• 𝖥𝖨𝖭𝖵𝖠𝖫: finite valued transductions 𝑇 : there is 𝑘 ∈ ℕ0 such that the set 𝑇 (𝑤) has at most 𝑘 elements for all inputs 𝑤.
• 𝖥𝖴𝖭𝖢: functional transductions 𝑇 : the set 𝑇 (𝑤) has at most one element for all inputs 𝑤.
• We have that 𝖥𝖴𝖭𝖢 ⊊ 𝖥𝖨𝖭𝖵𝖠𝖫 ⊊ 𝖥𝖨𝖭𝖮𝖴𝖳.

We use the same terms for transducer types as for transduction classes; e.g., a transducer 𝒕 has finite outputs if the transduction (𝒕)
has finite outputs. We note that the term “𝑇 has finite outputs” is not standard. It is referred to as “𝑇 is simply finitely ambiguous” in
[16] and “𝑇 is finitely ambiguous” in [17]. On the other hand, it is rather standard to use the term “ambiguous” in connection with
the different paths followed by a transducer on a given input word 𝑤, as opposed to the different outputs produced on 𝑤 [18].

Many “natural” (types of) transducers have finite outputs: any transducer for the set of prefixes (or suffixes) of a given input
word; for all 𝑑 ∈ ℕ, any transducer 𝒕𝑑 realizing the up-to-𝑑 Hamming, or Levenshtein, distance (𝑧 ∈ 𝒕𝑑 (𝑤) iff the distance of 𝑤, 𝑧 is
≤ 𝑑); any transducer realizing the strict radix order; any length-preserving transducer; any exponentially ambiguous transducer = a
transducer whose input part (the NFA made if we drop the output labels of the transducer) has 𝑂(2poly|𝑤|) paths for each input word
𝑤. Observe that any exponentially ambiguous transducer has finite outputs. (See, e.g., [19,20] for NFA ambiguity.)

A nondeterministic finite automaton (NFA), is a 5-tuple 𝒏 = (𝑄, Σ, 𝐸, 𝑠, 𝐹), where the components are as in the case of a transducer,
except that a transition of 𝒏 is a tuple (𝑝, 𝑥, 𝑞); that is, it has only an input label 𝑥 ∈ Σ ∪ {𝜺}. As usual, (𝒏) is the language accepted
by 𝒏, i.e., the set of all words formed in the paths of 𝒏 from the start state 𝑠 to a final state in 𝐹 .

A (nondeterministic) one counter automaton (or machine) is a pushdown automaton where the pushdown alphabet has only one
symbol plus a special bottom symbol [13]. We denote by 𝐎𝐂𝐋 the class of languages accepted by one counter automata. As the
pushdown can only store one symbol and can be tested for emptiness via the special stack bottom, the pushdown is called a counter.
A (nondeterministic) counter machine with parameters (𝑐, 𝑟) is an automaton with 𝑐 counters such that each counter can do at most 𝑟
reversals [21]. We denote by 𝐍𝐂𝐌(𝑐, 𝑟) the class of languages accepted by counter machines with parameters (𝑐, 𝑟), and by 𝐍𝐂𝐌 the
union of all 𝐍𝐂𝐌(𝑐, 𝑟). In [22], the author shows that several families of counter machine languages, including 𝐍𝐂𝐌, are not closed
under complementation using the language 𝐿 = {𝑎𝑛𝑏𝑛 ∶ 𝑛 ≥ 1}⋆ as a witness: 𝐿 ∉𝐍𝐂𝐌 but 𝐿̄ ∈𝐍𝐂𝐌(1, 1). As 𝐿 can be accepted by
a one counter automaton, we have that 𝐿 ∈𝐎𝐂𝐋 −𝐍𝐂𝐌. On the other hand, the non context-free language 𝐿2 = {𝑎𝑛𝑏𝑛𝑐𝑛 ∶ 𝑛 ≥ 0}
can be accepted by a machine with two counters using only one reversal per counter; hence, 𝐿2 ∈𝐍𝐂𝐌(2, 1) −𝐎𝐂𝐋.

Probability distributions. Let 𝑋 be a countable nonempty set. A probability distribution on 𝑋 is a function 𝐷 ∶𝑋→ [0, 1] such that ∑
𝑥∈𝑋 𝐷(𝑥) = 1. The domain of 𝐷, denoted by 𝖽𝗈𝗆𝐷, is the subset {𝑥 ∈𝑋 ∶𝐷(𝑥) > 0} of 𝑋. If 𝑋 = {𝑥1, … , 𝑥𝓁}, for some 𝓁 ∈ℕ, then

we write

𝐷 =
(
𝐷(𝑥1),… ,𝐷(𝑥𝓁)

)
.

If 𝑋 ⊆ℕ0 then the distribution 𝐷 is called a length distribution. Following [23], we have the below definition.

Definition 1. Let 𝐷 be a probability distribution on 𝑋. For any subset 𝑆 of 𝑋, we define the quantity

𝐷(𝑆) =
∑
𝑥∈𝑆

𝐷(𝑥) (1)

and refer to it as the probability that a randomly selected element from 𝐷 is in 𝑆 . The notation 𝑥
$

⟵𝐷, borrowed from cryptography,
means that 𝑥 is randomly selected from 𝐷.

The Dirichlet distribution on ℕ0, [24]. For any 𝑡 > 1, the Dirichlet distribution 𝖣𝑡 is defined such that 𝖣𝑡(𝑛) = (1∕𝜁(𝑡))(𝑛 + 1)−𝑡
for 𝑛 ∈ ℕ0, where 𝜁 is the Riemann zeta function. In [24] the author considers the Dirichlet distribution to be the basis where “many
3

heuristic probability arguments based on the fictitious uniform distribution on the positive integers become rigorous statements.”

Theoretical Computer Science 1016 (2024) 114780S. Konstantinidis, N. Moreira, R. Reis et al.

Augmented length distributions, [8]. Selecting from a length distribution 𝐷 could return a very large length 𝓁, which can be
intractable from an algorithmic point of view. For this reason we define the augmented length distribution 𝐷𝑀 whose domain consists
of all lengths 𝓁 ∈ 𝖽𝗈𝗆𝐷 with 𝓁 ≤𝑀 plus a special new symbol ‘⊥’, so the distribution could select the outcome ‘⊥’ instead of a very
large length. We have that

𝐷𝑀 (𝓁) =𝐷(𝓁), if 𝓁 ≤𝑀, 𝐷𝑀 (⊥) =𝐷(ℕ>𝑀). (2)

Word distributions. A word distribution 𝑊 is a probability distribution on Σ⋆, that is, 𝑊 ∶ Σ⋆ → [0, 1] such that
∑
𝑤∈Σ⋆ 𝑊 (𝑤) = 1.

The domain of 𝑊 is 𝖽𝗈𝗆𝑊 = {𝑤 ∈ Σ⋆ ∶𝑊 (𝑤) > 0}.

Definition 2. Let 𝐷 be a length distribution. Then ⟨𝐷⟩ is the word distribution such that

𝖽𝗈𝗆⟨𝐷⟩ = {𝑤 ∈ Σ⋆ ∶ |𝑤| ∈ 𝖽𝗈𝗆𝐷} and ⟨𝐷⟩(𝑤) = 𝐷(|𝑤|)|Σ|−|𝑤|.
Any such word distribution is called a length-based distribution.

For any length distribution 𝐷 and for all 𝓁 ∈ℕ0, we have: ⟨𝐷⟩(Σ𝓁) =𝐷(𝓁) and ⟨𝐷⟩(Σ>𝓁) =𝐷(ℕ>𝓁).

Let 𝑊 be a word distribution and let 𝑀 ∈ ℕ0. The augmented distribution 𝑊𝑀 is defined in a natural way:

𝖽𝗈𝗆(𝑊𝑀) =
(
𝖽𝗈𝗆(𝑊) ∩ Σ≤𝑀

)
∪ {⊥}, or

(
𝖽𝗈𝗆(𝑊) ∩ Σ≤𝑀

)
if 𝑊 (Σ>𝑀) = 0;

𝑊𝑀 (𝑤) =𝑊 (𝑤), for all 𝑤 ∈ 𝖽𝗈𝗆(𝑊) ∩ Σ≤𝑀 ;

𝑊𝑀 (⊥) =𝑊 (Σ>𝑀) = 1 −𝑊 (Σ≤𝑀).

3. Examples and basic results

In this section we first give a few examples that illustrate to some extent the types of the languages 𝛥𝑆,𝑇 . Then we turn to the main
result of this section, Theorem 1, where we show the upper bound 𝐏𝐒𝐏𝐀𝐂𝐄 on the complexity of the (unrestricted) word problem 𝛥
as well as the upper bound 𝐍𝐏 for 𝛥f in = the version of the word problem where the first (at least) transducer has finite outputs. In
fact, not surprisingly, 𝛥 is 𝐏𝐒𝐏𝐀𝐂𝐄-hard, but 𝛥f in is 𝐍𝐏-hard.

Example 1. Let 𝖯𝖷, 𝖲𝖷 be the prefix and suffix transductions—thus, 𝖯𝖷(𝑤) = the set of prefixes of 𝑤. Their difference set is equal to
the set of all words containing at least two distinct letters. This follows when we note that, if a word 𝑤 contains at least two distinct
letters, then there is a prefix of 𝑤 that is not a suffix of 𝑤. Thus, 𝛥𝖯𝖷,𝖲𝖷 is a regular language: 𝛥𝖯𝖷,𝖲𝖷 ∈𝐑𝐄𝐆.

Example 2. Consider the finite valued transductions 𝑆 , 𝑇 with domain 𝑎⋆𝑏⋆𝑎⋆𝑏⋆ such that 𝑆(𝑎𝑛1𝑏𝑚1𝑎𝑚2𝑏𝑛2) = {𝑎𝑛1 , 𝑏𝑚1} and
𝑇 (𝑎𝑛1𝑏𝑚1𝑎𝑚2𝑏𝑛2) = {𝑎𝑛2 , 𝑏𝑚2}. We have that 𝑆,𝑇 = {𝑎𝑛𝑏𝑚𝑎𝑚𝑏𝑛}𝑚,𝑛∈ℕ0

and 𝛥𝑆,𝑇 = 𝑎⋆𝑏⋆𝑎⋆𝑏⋆−𝑆,𝑇 . The language 𝑆,𝑇 is context-free
but not in 𝐎𝐂𝐋 [25]. On the other hand, we have that 𝛥𝑆,𝑇 is in 𝐎𝐂𝐋, using the facts that

• 𝛥𝑆,𝑇 is the union of four languages: one of them consists of all words 𝑎𝑛1𝑏𝑚1𝑎𝑚2𝑏𝑛2 with 𝑛1 > 𝑛2;
• the other three languages correspond to the three constraints 𝑛1 < 𝑛2, 𝑚1 >𝑚2, 𝑚1 <𝑚2;
• all four languages are in 𝐎𝐂𝐋; and 𝐎𝐂𝐋 is closed under union.

Example 3. Consider the functional transductions 𝑆 , 𝑇 with domain (𝑎 + 𝑏)⋆𝑐(𝑎 + 𝑏)⋆ such that 𝑆(𝑤1𝑐𝑤2) = {𝑤1} and 𝑇 (𝑤1𝑐𝑤2) =
{𝑤2}. Then we have that 𝑆,𝑇 = {𝑤𝑐𝑤}𝑤∈(𝑎+𝑏)⋆ and 𝛥𝑆,𝑇 = (𝑎 + 𝑏)⋆𝑐(𝑎 + 𝑏)⋆ − 𝑆,𝑇 . The language 𝑆,𝑇 is not context-free. On the
other hand, we have that 𝛥𝑆,𝑇 is in 𝐎𝐂𝐋 by Remark 1.

Example 4. Consider the finite valued transductions 𝑆 , 𝑇 with domain 𝑎+𝑏+𝑐+𝑑+ such that 𝑆(𝑎𝑛1𝑏𝑚1𝑐𝑛2𝑑𝑚2) = {𝑎𝑛1 , 𝑎𝑚1} and
𝑇 (𝑎𝑛1𝑏𝑚1𝑐𝑛2𝑑𝑚2) = {𝑎𝑛2 , 𝑎𝑚2}. Then,

𝛥𝑆,𝑇 = {𝑎𝑛1𝑏𝑚1𝑐𝑛2𝑑𝑚2 ∣ (𝑛1 ≠ 𝑛2 ∧ 𝑛1 ≠𝑚2) ∨ (𝑚1 ≠ 𝑛2 ∧𝑚1 ≠𝑚2)

∨ (𝑛2 ≠ 𝑛1 ∧ 𝑛2 ≠𝑚1) ∨ (𝑚2 ≠ 𝑛1 ∧𝑚2 ≠𝑚1)},

which is a 𝐍𝐂𝐌 language (shown in Theorem 4). On the other hand, the language is not context-free: this follows from the fact that
the language is bounded (being a subset of 𝑎⋆𝑏⋆𝑐⋆𝑑⋆) and that the Parikh map of the language is not a finite union of stratified
linear sets [26, pg 160].

Example 5. The languages 𝛥𝑆,𝑇 are in 𝐎𝐂𝐋, in both of the following cases

• 𝑆(𝑎𝑛1𝑏𝑚1𝑐𝑛2) = {𝑎𝑛1 , 𝑎𝑚1} and 𝑇 (𝑎𝑛1𝑏𝑚1𝑐𝑛2) = {𝑎𝑛2}.
4

• 𝑆(𝑎𝑛1𝑏𝑚1𝑐𝑛2) = {𝑎𝑛1 , 𝑎𝑚1} and 𝑇 (𝑎𝑛1𝑏𝑚1𝑐𝑛2) = {𝑎𝑛1 , 𝑎𝑛2}.

Theoretical Computer Science 1016 (2024) 114780S. Konstantinidis, N. Moreira, R. Reis et al.

In the first case, 𝛥𝑆,𝑇 = {𝑎𝑛1𝑏𝑚1𝑐𝑛2 ∣ (𝑛1 = 𝑚1 ∧ 𝑛1 ≠ 𝑛2) ∨ (𝑛1 ≠ 𝑚1)} = {𝑎𝑛𝑏𝑛𝑐𝑛 ∣ 𝑛 ≥ 0} ∩ 𝑎⋆𝑏⋆𝑐⋆. The language is in 𝐎𝐂𝐋 because
one of the transductions is functional (see Theorem 4). In the second case, 𝛥𝑆,𝑇 = {𝑎𝑛1𝑏𝑚1𝑐𝑛2 ∣𝑚1 ≠ 𝑛2}.

Next we determine the complexity of the word problem in Theorem 1. In case the two given transducers realize homomorphisms,
the word problem can be decided in deterministic logarithmic space (this is because our word problem is the complement of the word
problem for the equality set of two homomorphisms which is in deterministic logarithmic space [4]). The proof of Theorem 1 uses
the below lemma which is rather folklore, but we include it here for completeness.

Lemma 1. The following statements hold true.

1. For any NFAs 𝒏1, 𝒏2, we have that (𝒏1) ⊆ (𝒏2) iff (𝒏1) ∩Σ≤2𝑠1+𝑠2 ⊆(𝒏2), where 𝑠1, 𝑠2 are the numbers of states of the two NFAs.
2. The problem of deciding whether (𝒏1) ⊆ (𝒏2), for given NFAs 𝒏1, 𝒏2, is in 𝐏𝐒𝐏𝐀𝐂𝐄.

Proof. For the first statement, first note that there are DFAs 𝒅1, 𝒅2 having at most 2𝑠1 , 2𝑠2 states, which are equivalent to 𝒏1, 𝒏2.
Consider the product DFA 𝒅1 ∩𝒅2, which has at most 2𝑠1+𝑠2 states and accepts (𝒏1) ∩(𝒏2). Suppose that (𝒏1) ∩Σ≤2𝑠1+𝑠2 ⊆ (𝒏2),
but there is a minimal length word 𝑤 ∈ (𝒏1) − (𝒏2). Then 𝑤 has length > 2𝑠1+𝑠2 and the accepting path of 𝒅1 ∩ 𝒅2 with label 𝑤
has a cycle. If we remove the cycle, we get a shorter accepting path with some label 𝑤′ ∈(𝒏1) −(𝒏2), which is impossible. Hence,
(𝒏1) ⊆ (𝒏2). The second statement follows by combining the results of [27–30]. However, we can also show it directly using the
first statement and the following polynomial space nondeterministic algorithm that decides whether (𝒏1) ⊈(𝒏2): initialize the set
variables 𝑉1 = {𝑝0} and 𝑉2 = {𝑞0}, where 𝑝0, 𝑞0 are the initial states of 𝒏1, 𝒏2. Guess up to 2𝑠1+𝑠2 alphabet symbols; for each symbol
𝜎𝑖 guessed, compute the next values of 𝑉1 and 𝑉2, which are the next sets of states of 𝒏1, 𝒏2 when the input 𝜎𝑖 is consumed. After
the last symbol 𝜎𝓁 is processed, return Yes iff 𝑉1 contains a final state of 𝒏1 and 𝑉2 contains no final state of 𝒏2—thus, the algorithm
decides whether a word 𝜎1⋯ 𝜎𝓁 ∈ (𝒏1) − (𝒏2). The decidability of (𝒏1) ⊆ (𝒏2) in polynomial space follows from the fact that
𝐏𝐒𝐏𝐀𝐂𝐄 is closed under complementation.

Theorem 1. The following statements hold true.

1. The word problem 𝛥 is 𝐏𝐒𝐏𝐀𝐂𝐄-complete.
2. The word problem 𝛥f in (where the first, at least, transducer has finite outputs) is 𝐍𝐏-complete.
3. The restriction of the word problem to the case where at least one of the transducers involved is functional is in the class 𝐏.

Proof. First statement: The word problem 𝛥 is to decide whether 𝒔(𝑤) ≠ 𝒕(𝑤), given transducers 𝒔, 𝒕 and word 𝑤. The problem
is 𝐏𝐒𝐏𝐀𝐂𝐄-hard because we can reduce to it the NFA universality problem: given NFA 𝒏 over some alphabet Σ, decide whether
(𝒏) = Σ⋆. Indeed, we have that (𝒏) = Σ⋆ iff 𝒔(𝑤) ≠ 𝒕(𝑤), where 𝒔, 𝒕, 𝑤 are constructed in polynomial time as follows: 𝒔 realizes
{(𝑤, 𝑥) ∶ 𝑥 ∈(𝒏)}, 𝒕 realizes {𝑤} ×Σ⋆, and 𝑤 is any chosen word over Σ. Now we show that the word problem is in the class 𝐏𝐒𝐏𝐀𝐂𝐄.
First compute NFAs accepting 𝒔(𝑤) and 𝒕(𝑤). These NFAs are of sizes 𝑂(|𝒔||𝑤|) and 𝑂(|𝒕||𝑤|). Then decide within polynomial space
whether these NFAs are equivalent—see Lemma 1.

Second statement: The word problem 𝛥f in is 𝐍𝐏-hard because we can reduce to it the complement of the following 𝐜𝐨𝐍𝐏-complete
problem: given a block NFA 𝒃, that is an NFA accepting fixed-length words of some length 𝓁, decide whether (𝒃) = Σ𝓁 , [8]. Indeed,
for any block NFA 𝒃, we have that (𝒃) ≠ Σ𝓁 iff 𝒔(𝑤) ≠ 𝒕(𝑤), where 𝒔, 𝒕, 𝑤 are constructed in polynomial time as follows: 𝒔 realizes
{(𝑤, 𝑥) ∶ 𝑥 ∈ (𝒃)}, 𝒕 realizes {𝑤} × Σ𝓁 , and 𝑤 is any chosen word in Σ𝓁 . We now show that 𝛥f in is in 𝐍𝐏. Given instance 𝒔, 𝒕, 𝑤,
where we know that 𝒔 has finite outputs, we describe a nondeterministic polynomial time algorithm deciding whether 𝑤 ∈ 𝛥𝒔,𝒕.

1. construct NFAs 𝒎, 𝒏 accepting 𝒔(𝑤), 𝒕(𝑤);
2. let 𝑛 be the number of states of 𝒎; // any word in (𝒎) has length < 𝑛

3. construct DFA 𝒅 accepting all words of length ≥ 𝑛;
4. construct NFA (𝒏 ∩ 𝒅) accepting all words in 𝒕(𝑤) that are of length ≥ 𝑛;
5. if (𝒏 ∩ 𝒅) accepts at least one word return Yes;

// next test whether there is a word in 𝒔(𝑤) △ 𝒕(𝑤) that is shorter than 𝑛
6. guess a word 𝑧 of length < 𝑛;
7. if

(
𝑧 ∈ 𝒔(𝑤) and 𝑧 ∉ 𝒕(𝑤)

)
or

(
𝑧 ∉ 𝒔(𝑤) and 𝑧 ∈ 𝒕(𝑤)

)
return Yes;

8. return No

All operations in the above algorithm can be done in polynomial time. Any word in 𝒔(𝑤) cannot be longer than 𝑛 − 1, so steps 1–5
decide deterministically whether there is a word in 𝒕(𝑤) that is too long to be in 𝒔(𝑤). Steps 6–8 use nondeterminism to decide
whether 𝒔(𝑤) △ 𝒕(𝑤) ≠ ∅, knowing that any word in 𝒔(𝑤) △ 𝒕(𝑤) must be of length < 𝑛.

Third statement: If we know that 𝒔 is functional, then the instance (𝒔, 𝒕, 𝑤) can be answered in polynomial time as follows: compute
NFAs accepting the sets 𝒔(𝑤) and 𝒕(𝑤) via the standard product construction between a DFA for 𝑤 and the transducer. If both sets are
5

empty return Yes. If only one set is empty return No. If 𝒔(𝑤) has exactly one element 𝑧 then test whether the NFA for 𝒕(𝑤) accepts 𝑧.

Theoretical Computer Science 1016 (2024) 114780S. Konstantinidis, N. Moreira, R. Reis et al.

If 𝑧 ∉ 𝒕(𝑤) return No. Finally, make a DFA 𝒅 accepting all words other than 𝑧 and return whether the intersection of (𝒅) and 𝒕(𝑤)
is empty.

Remark 2. In the proof of the claim that 𝛥f in is 𝐍𝐏-hard, both transducers 𝒔, 𝒕 are length preserving, that is, |𝑧| = |𝑤| for all 𝑧 ∈ 𝒔(𝑤),
and the same for 𝒕. Hence, the restriction of 𝛥f in to length preserving transducers does not make the word problem easier. Furthermore,
also the restriction of 𝛥f in to finite valued transducers remains 𝐍𝐏-hard, as these transducers include the length preserving transducers.

Remark 3. In [31], the author shows that there is a double exponential algorithm that computes, for any given finite valued transducer
𝒔, a set 𝒇 1, … , 𝒇𝑁 of functional transducers such that (𝒔) = ∪(𝒇 𝑖). The time complexity of this problem is reduced to single
exponential in [32]. This result can be used to decide in exponential time the version of the word problem restricted to finite valued
transducers. However, the nondeterministic algorithm in the proof of Theorem 1 is applicable to the proper superclass of transducers
with finite outputs and entails an exponential time deterministic algorithm.

4. PRAX algorithms & the PRAX algorithm for 𝜟

As the word problem 𝛥 is hard, in Theorem 2 of this section we provide a polynomial time randomized approximation (PRAX)
algorithm for 𝛥. We adapt the PRAX method introduced in [8] which applies to hard NFA universality problems. In fact in Lemma 2,
we make more clear the concept of PRAX algorithms so that they also apply to the complements of the problems considered in [8].

The PRAX method of [8]. Let 𝑣 be a [0, 1]-valued function, that is a function that maps each problem instance2 𝑥 to a value in [0, 1].
Define the language

𝐿𝑣 = {𝑥 ∶ 𝑣(𝑥) = 1}.

For the NFA universality problem (whether (𝒏) = Σ⋆ for given NFA 𝒏), we have 𝑣(𝒏) =𝑊 ((𝒏)), where 𝑊 is any word distribution
with domain Σ⋆. Indeed we have that (𝒏) = Σ⋆ iff 𝑊 ((𝒏)) = 1. Each real 𝜀 ∈ (0, 1) defines the approximation language

𝐿𝑣,𝜀 = {𝑥 ∶ 𝑣(𝑥) ≥ 1 − 𝜀}.

The idea here is that, as it is hard to tell whether 𝑣(𝑥) = 1, we might be happy to know that 𝑣(𝑥) ≥ 1 − 𝜀, where 𝜀 is called the
(approximation) tolerance. As 𝐿𝑣,𝜀 can be harder than 𝐿𝑣, [8] defines a PRAX algorithm for 𝐿𝑣 to be a randomized decision algorithm
𝐴(𝑥, 𝜀) satisfying the following conditions:

• if 𝑥 ∈𝐿𝑣 then 𝐴(𝑥, 𝜀) = 𝖳𝗋𝗎𝖾;
• if 𝑥 ∉𝐿𝑣,𝜀 then P[𝐴(𝑥, 𝜀) = 𝖥𝖺𝗅𝗌𝖾] ≥ 3∕4;
• 𝐴(𝑥, 𝜀) works within polynomial time w.r.t. 1∕𝜀 and the size of 𝑥.

When 𝐴(𝑥, 𝜀) gives the answer 𝖥𝖺𝗅𝗌𝖾, this answer is correct: 𝑥 ∉ 𝐿𝑣. If 𝐴(𝑥, 𝜀) returns 𝖳𝗋𝗎𝖾 then probably 𝑥 ∈ 𝐿𝑣,𝜀, in the sense
that 𝑥 ∉ 𝐿𝑣,𝜀 would imply P[𝐴(𝑥, 𝜀) = 𝖥𝖺𝗅𝗌𝖾] ≥ 3∕4. Thus, when the algorithm returns 𝖳𝗋𝗎𝖾, the answer is correct within the tolerance
𝜀 (𝑥 ∈ 𝐿𝑣,𝜀) with probability ≥ 3∕4. The algorithm returns the wrong answer exactly when it returns 𝖳𝗋𝗎𝖾 and 𝑥 ∉ 𝐿𝑣,𝜀, but this
happens with probability ≤ 1∕4.

As stated in [8], the value 1/4 for the probability of wrong answer could be 1/3, or anything ≤ 1∕2, as is the case for randomized
algorithms deciding languages in the classes RP and coRP [33]. Moreover, by running the algorithm 𝑘 times one can reduce the
probability 1/4 to (1∕4)𝑘, for any integer 𝑘 > 1.

The PRAX method for both 0-1 and non-0-1 problems. Let again 𝑣 be a [0, 1]-valued function. We denote by 𝑣̄ the [0, 1]-valued
function with 𝑣̄(𝑥) = 1 − 𝑣(𝑥). While the method of [8] seems to apply only to universality problems, we see that the language 𝐿𝑣
is also equal to {𝑥 ∶ 𝑣̄(𝑥) = 0}. Thus, we call the language 𝐿𝑣 a 0-1 problem. On the other hand, for given 𝑣, we define the non-0-1
problem to be the language

𝐾𝑣 = {𝑥 ∶ 𝑣(𝑥) > 0},

which is also equal to {𝑥 ∶ 𝑣̄(𝑥) < 1}. Our word problem 𝛥 can be written as

𝛥 = {𝒔, 𝒕,𝑤 ∶
(
𝒔(𝑤)△ 𝒕(𝑤)

)
≠ ∅} = 𝐾𝑣 = {𝒔, 𝒕,𝑤 ∶𝑊

(
𝒔(𝑤)△ 𝒕(𝑤)

)
> 0},

where we use the value function 𝑣(𝒔, 𝒕, 𝑤) =𝑊
(
𝒔(𝑤) △ 𝒕(𝑤)

)
. As before, each tolerance 𝜀 ∈ (0, 1) defines an approximation language

𝐾𝑣,𝜀 = {𝑥 ∶ 𝑣(𝑥) > 𝜀}.

Thus, 𝛥𝜀 consists of instances for which the symmetric difference of 𝒔(𝑤) and 𝒕(𝑤) is significant and should be detected by a random-
ized algorithm with high probability.
6

2 Following the presentation style of [33, pg 193] and [8], we refrain from cluttering the notation with the use of a variable for the set of instances.

Theoretical Computer Science 1016 (2024) 114780S. Konstantinidis, N. Moreira, R. Reis et al.

𝖤𝗌𝗍𝖲𝖾𝗍𝖲𝗂𝗓𝖾(𝑥, 𝑛, 𝑀)

cnt := 0;
repeat 𝑛 times:

𝑧
$

⟵ 𝑊𝑀 ;
if (𝑧 ≠ ⊥ and 𝑧 ∈ 𝑆(𝑥)

)
cnt := cnt+1;

return cnt / 𝑛;

Note: If the domain of the word distribution 𝑊 is finite and
its words are of length ≤𝑀 , then we can simply use 𝑧 $

⟵𝑊

instead of 𝑧 $
⟵𝑊𝑀 and we can omit the condition 𝑧 ≠ ⊥.

Fig. 1. This random process refers to a particular word distribution 𝑊 . It is assumed that each input 𝑥 describes a language 𝑆(𝑥) that can be infinite—e.g., 𝑥 can be
an NFA and 𝑆(𝑥) would be the language accepted by 𝑥; or 𝑥 can be an instance (𝒔, 𝒕, 𝑤) of our word problem 𝛥 and 𝑆(𝑥) would be 𝒔(𝑤) △ 𝒕(𝑤). The returned value
is an estimate of the “size” of 𝑆(𝑥) w.r.t. 𝖽𝗈𝗆𝑊 , or mathematically an estimate of the probability that a word selected from 𝑊 is in 𝑆(𝑥)—see Lemma 3.

Definition 3. Let 𝑣 be a [0, 1]-valued function. A PRAX algorithm for 𝐾𝑣 is a randomized decision algorithm 𝐴(𝑥, 𝜀) such that

1. If 𝑥 ∉𝐾𝑣 then 𝐴(𝑥, 𝜀) = 𝖥𝖺𝗅𝗌𝖾.
2. If 𝑥 ∈𝐾𝑣,𝜀 then P[𝐴(𝑥, 𝜀) = 𝖳𝗋𝗎𝖾] ≥ 3∕4.
3. 𝐴(𝑥, 𝜀) works within polynomial time w.r.t. 1∕𝜀 and the size of 𝑥.

A PRAX algorithm is a randomized algorithm which is a PRAX for a 0-1 or a non-0-1 problem.

Explanation. In the above definition, if 𝐴(𝑥, 𝜀) returns 𝖳𝗋𝗎𝖾 then 𝑥 ∈𝐾𝑣. If 𝐴(𝑥, 𝜀) returns 𝖥𝖺𝗅𝗌𝖾 then probably 𝑥 ∉𝐾𝑣,𝜀, in the sense
that 𝑥 ∈ 𝐾𝑣,𝜀 would imply P[𝐴(𝑥, 𝜀) = 𝖳𝗋𝗎𝖾] ≥ 3∕4. Thus, whenever the algorithm returns the answer 𝖳𝗋𝗎𝖾, this answer is correct:
𝑥 ∈𝐾𝑣; when the algorithm returns 𝖥𝖺𝗅𝗌𝖾, the answer is correct within the tolerance 𝜀 (𝑥 ∉𝐾𝑣,𝜀) with probability ≥ 3∕4. The algorithm
returns the wrong answer exactly when it returns 𝖥𝖺𝗅𝗌𝖾 and 𝑥 ∈𝐾𝑣,𝜀, but this happens with probability < 1∕4.

How are PRAX algorithms for 0-1 and for non-0-1 problems related to each other? Their intuitive duality can be formalized in the
following result whose proof follows from the definitions without complications.

Lemma 2. [PRAX duality.] For any decision algorithm 𝐴(⋯) we denote by 𝐴̄(⋯) the algorithm that results by simply negating all decisions
(truth outputs) made by 𝐴. Let 𝑣 be a [0, 1]-valued function. We have that 𝐴(𝑥, 𝜀) is a PRAX algorithm for 𝐾𝑣 iff 𝐴̄(𝑥, 𝜀) is a PRAX algorithm
for 𝐿𝑣̄.

We now turn to the PRAX algorithm for the word problem (Theorem 2). The following lemma is analogous to Lemma 4 of [8].
However, we note that the proof of the present lemma is simpler and the upper bound is smaller than that of [8]. We also recall from
[8] that the application of the Chebyshev inequality to a binomial random variable 𝐵 entails the following inequality for 𝑎 > 0.

P[|𝐵 −𝐸(𝐵)| ≥ 𝑎] ≤ 𝑛∕(4𝑎2). (3)

Lemma 3. Consider the random process in Fig. 1, and let 𝙲𝚗𝚝 be the random variable for the value of cnt when the process returns. Let
𝛿, 𝑞 ∈ [0, 1]. If 𝑞 < 𝛿 and 𝑊 (𝑆(𝑥)) > 𝛿 +𝑊 (Σ>𝑀) then P[𝙲𝚗𝚝∕𝑛 ≤ 𝑞] < 1

4𝑛(𝛿−𝑞)2 .

Proof. Assume 𝑞 < 𝛿 and 𝑊 (𝑆(𝑥)) > 𝛿 +𝑊 (Σ>𝑀). Let 𝑆𝑀 = 𝑆(𝑥) ∩ Σ≤𝑀 . First note that each selection 𝑧 is either a word in 𝖽𝗈𝗆𝑊
of length ≤𝑀 or ⊥. Thus, 𝙲𝚗𝚝 is binomial: the number of successes = “selections in 𝑆𝑀 ” in 𝑛 trials. Hence, 𝐸(𝙲𝚗𝚝) = 𝑛𝑊 (𝑆𝑀).
Thus, we have

P[𝙲𝚗𝚝 ≤ 𝑛𝑞] = P[𝙲𝚗𝚝−𝐸(𝙲𝚗𝚝) ≤ 𝑛𝑞 − 𝑛𝑊 (𝑆𝑀)]

≤ P[|𝙲𝚗𝚝−𝐸(𝙲𝚗𝚝)| ≥ 𝑛𝑊 (𝑆𝑀) − 𝑛𝑞]

≤
1

4𝑛
(
𝑊 (𝑆𝑀) − 𝑞

)2 <
1

4𝑛(𝛿 − 𝑞)2
,

where we note that 𝑊 (𝑆𝑀) =𝑊 (𝑆(𝑥)) −𝑊
(
𝑆(𝑥) ∩ Σ>𝑀

)
≥𝑊 (𝑆(𝑥)) −𝑊 (Σ>𝑀) > 𝛿.

Theorem 2. 𝖣𝗂𝖿𝖿𝖲𝖾𝗍
(
𝒔, 𝒕, 𝑤, 𝜀

)
in Fig. 2 is a PRAX algorithm, with respect to the Dirichlet word distribution, for the word problem 𝛥.

Proof. For brevity, we use 𝐴(𝛼, 𝜀) to refer to 𝖣𝗂𝖿𝖿𝖲𝖾𝗍
(
𝒔, 𝒕, 𝑤, 𝜀

)
. The algorithm constructs NFAs 𝒎, 𝒏 accepting 𝒔(𝑤), 𝒕(𝑤) and selects 𝑛

elements from 𝖣𝑀𝑡 , where 𝑀 is such that 𝖣𝑡(Σ>𝑀) ≤ 𝜀∕2—Lemma 6 of [8] says that 𝖣𝑡(Σ>𝑀) ≤ 𝛿, if 𝑀 ≥ 𝑡−1
√
1∕𝛿. Each selection 𝓁

is either ⊥ (corresponding to a word length that would be too large), or a word length 𝓁 ≤𝑀 . In the latter case, a word of length 𝓁 is
selected uniformly at random. Next we need to verify the three conditions about 𝐴(𝛼, 𝜀) in Definition 3. If 𝛼 ∉ 𝛥 then 𝒔(𝑤) △ 𝒕(𝑤) = ∅,
so the algorithm will return 𝖥𝖺𝗅𝗌𝖾. For the second condition, assume 𝛼 ∈ 𝛥𝜀; then ⟨𝖣𝑡⟩(𝒔(𝑤) △ 𝒕(𝑤)

)
> 𝜀. Consider the random process

in Fig. 1 and assume that it selects exactly the same words 𝑧 as 𝐴(𝛼, 𝜀) does. Using Lemma 3 for 𝛿 = 𝜀∕2 and 𝑞 = 0, we have

1 1
7

P[𝐴(𝛼, 𝜀) = 𝖥𝖺𝗅𝗌𝖾] = P[𝙲𝚗𝚝 = 0] = P[𝙲𝚗𝚝∕𝑛 ≤ 0] <
4𝑛𝛿2

≤
4
.

Theoretical Computer Science 1016 (2024) 114780S. Konstantinidis, N. Moreira, R. Reis et al.

𝖣𝗂𝖿𝖿𝖲𝖾𝗍
(
𝒔, 𝒕, 𝑤, 𝜀)

compute 𝒎 := NFA accepting 𝒔(𝑤);
compute 𝒏 := NFA accepting 𝒕(𝑤);
𝑛 := ⌈4∕𝜀2⌉;

𝑀 := ⌈ 𝑡−1
√
2∕𝜀⌉;

𝐷 := (𝖣𝑡(0), … , 𝖣𝑡(𝑀), 1 −∑𝑀

𝓁=0 𝖣𝑡(𝓁)
)
;

repeat 𝑛 times:
𝓁 := 𝗌𝖾𝗅𝖾𝖼𝗍𝖥𝗂𝗇(𝐷);
if (𝓁 ≠ ⊥) 𝑧 := 𝗌𝖾𝗅𝖾𝖼𝗍𝖴𝗇𝗂𝖿 (Σ, 𝓁);
if (𝓁 ≠ ⊥ and 𝑧 ∈ (𝒎) △(𝒏)

)
return 𝖳𝗋𝗎𝖾;

return 𝖥𝖺𝗅𝗌𝖾;

Fig. 2. This is the PRAX algorithm for the word problem 𝛥—see Theorem 2. The word distribution used is ⟨𝖣𝑡⟩, that is the distribution based on the Dirichlet length
distribution 𝖣𝑡 , for some 𝑡 > 1. The function 𝗌𝖾𝗅𝖾𝖼𝗍𝖥𝗂𝗇(𝐷) selects an element from the finite distribution 𝐷 =𝖣𝑀

𝑡
. The function 𝗌𝖾𝗅𝖾𝖼𝗍𝖴𝗇𝗂𝖿(Σ, 𝓁) selects uniformly a word

of length 𝓁 over Σ.

Hence, P[𝐴(𝛼, 𝜀) = 𝖳𝗋𝗎𝖾] > 3∕4, as required. The third condition requires that 𝐴(𝛼, 𝜀) works in polynomial time. This follows from
standard automata constructions and the fact that 𝗌𝖾𝗅𝖾𝖼𝗍𝖥𝗂𝗇(𝐷) and 𝗌𝖾𝗅𝖾𝖼𝗍𝖴𝗇𝗂𝖿 (Σ, 𝓁) can also be done in polynomial time, [8].

The NFA inequivalence problem is to decide, for given NFAs 𝒎, 𝒏, whether (𝒎) ≠ (𝒏), which is equivalent to
(
(𝒎) △(𝒏)

)
≠ ∅,

and also equivalent to ⟨𝖣𝑡⟩((𝒎) △ (𝒏)
)
> 0. This problem is 𝐏𝐒𝐏𝐀𝐂𝐄-complete. Clearly, if we omit the first two lines from the

PRAX algorithm 𝖣𝗂𝖿𝖿𝖲𝖾𝗍
(
𝒔, 𝒕, 𝑤, 𝜀

)
we get a PRAX algorithm 𝖨𝗇𝖾𝗊𝖭𝖥𝖠(𝒎, 𝒏) for the NFA inequivalence problem. Moreover, by Lemma 2

(PRAX duality) we have that 𝖨𝗇𝖾𝗊𝖭𝖥𝖠(𝒎, 𝒏) is a PRAX algorithm for the NFA equivalence problem.

Corollary 1. There are PRAX algorithms, with respect to the Dirichlet word distribution, for both, the NFA inequivalence and the NFA
equivalence problems.

5. Difference sets of recognizable transductions

A nonempty transduction 𝑇 is called recognizable, if it is a finite union of cross products of regular languages, that is,

𝑇 =
𝑛⋃
𝑖=1
𝐴𝑖 ×𝐵𝑖, (4)

where 𝑛 ≥ 1 and all 𝐴𝑖 ’s and 𝐵𝑖’s are regular languages. We assume that, unless 𝑇 is empty and unless stated otherwise, all 𝐴𝑖’s and all
𝐵𝑗 ’s are nonempty. A natural representation of recognizable transductions is as follows. An NFA pair set is a set

𝑨 = {(𝒂1,𝒃1),… , (𝒂𝑛,𝒃𝑛)}, (5)

where the 𝒂𝑖 ’s and 𝒃𝑖 ’s are NFAs. If 𝐴𝑖 = (𝒂𝑖) and 𝐵𝑖 = (𝒃𝑖), for all 𝑖, then we write (𝑨) = 𝑇 and we say that 𝑨 describes (or
represents) 𝑇 . If for all 𝑖, the languages 𝐴𝑖 = (𝒂𝑖) are nonempty and mutually disjoint and the languages 𝐵𝑖 = (𝒃𝑖) are nonempty
and distinct then the expression in (4) is said to be in disjoint canonical form, in which case any NFA pair set 𝑨 that describes 𝑇
is also said to be in disjoint canonical form. It turns out that every recognizable transduction 𝑇 can be written as in (4) in disjoint
canonical form: [14, Exercise IV.1.22], [34]. Below in Lemma 4, we provide an explicit construction of this fact which shows that
the disjoint canonical form of 𝑇 is unique and how large it can be. The main result here is that the difference set of two recognizable
transductions is a regular language and can be effectively constructed:

Theorem 3. Let 𝑆 =
⋃𝑛
𝑖=1𝐴𝑖 ×𝐵𝑖 and 𝑇 =

⋃𝑚
𝑗=1𝐶𝑗 ×𝐷𝑗 be recognizable transductions with the same domains. The following statements

hold true.

1. The difference set 𝛥𝑆,𝑇 is a regular language.
2. If 𝑆, 𝑇 are given via NFA pair sets then an NFA accepting 𝛥𝑆,𝑇 can be effectively constructed.
3. If 𝑆, 𝑇 are given via NFA pair sets 𝑨= {(𝒂1, 𝒃1), … , (𝒂𝑛, 𝒃𝑛)} and 𝑪 = {(𝒄1, 𝒅1), … , (𝒄𝑚, 𝒅𝑚)} in disjoint canonical form then there is

an NFA of size 𝑂
(∑|𝒂𝑖| ⋅∑|𝒄𝑗 |) accepting 𝛥𝑆,𝑇 . Moreover, there are NFA pair sets 𝑨 and 𝑪 as above such that the constructed NFA

for 𝛥𝑆,𝑇 is of size Θ
(∑|𝒂𝑖| ⋅∑|𝒄𝑗 |).

The proof is shown further below and uses the fact that it is always possible to express a recognizable 𝑇 as in (4) in disjoint
canonical form.

Lemma 4. Let 𝑇 =
⋃𝑛
𝑖=1𝐴𝑖 × 𝐵𝑖 be a recognizable transduction such that none of the languages 𝐴𝑖, 𝐵𝑖 is empty. The following statements
8

hold true.

Theoretical Computer Science 1016 (2024) 114780S. Konstantinidis, N. Moreira, R. Reis et al.

1. There is a recognizable transduction 𝑅 =
⋃𝑚
𝑗=1𝐸𝑗 × 𝐹𝑗 in disjoint canonical form such that 𝑚 ≤ 2𝑛 − 1.

2. If 𝑇 is given by an NFA pair set then we can construct an NFA pair set describing 𝑅.
3. The disjoint canonical form is unique: if 𝑅 =

⋃ℎ
𝓁=1𝐺𝓁 ×𝐻𝓁 in disjoint canonical form then we have that 𝓁 = 𝑚 and the set of pairs

(𝐸𝑗, 𝐹𝑗) is equal to the set of pairs (𝐺𝓁 , 𝐻𝓁).

Proof. We prove each statement in turn.

1. Let 𝑁 = {1, … , 𝑛}. For any word 𝑤 ∈ ∪𝐴𝑖, we have the following mutually exclusive cases:
• 𝑤 belongs to all 𝑛 of the 𝐴𝑖 ’s
• 𝑤 belongs to exactly 𝑛 − 1 of the 𝐴𝑖 ’s:

(𝑛

𝑛−1

)
cases

• ⋯ ⋯
• 𝑤 belongs to exactly 𝑘 of the 𝐴𝑖 ’s:

(𝑛
𝑘

)
cases

• ⋯ ⋯
• 𝑤 belongs to exactly 1 of the 𝐴𝑖 ’s:

(𝑛
1

)
cases.

Based on the above 𝑛 mutually exclusive cases for a 𝑤 ∈ ∪𝐴𝑖, we can now define the required 𝐸𝑗 ’s and 𝐹𝑗 ’s in 𝑛 steps as follows:
In step 1, if ∩𝑖∈𝑁𝐴𝑖 ≠ ∅ then 𝐸1 = ∩𝑖∈𝑁𝐴𝑖 and 𝐹1 = ∪𝑖∈𝑁𝐵𝑖. In the general step 𝑘, the next group of 𝐸𝑗 ’s are the nonempty sets of
the form (∩𝑖∈𝐼𝐴𝑖) −(∪𝓁∈𝑁−𝐼𝐴𝓁), for each choice of an 𝐼 ⊆𝑁 with |𝐼| = 𝑘, and the corresponding 𝐹𝑗 ’s are the languages ∪𝑖∈𝐼𝐵𝑖.
For example, if 𝑛 = 4 then step 3 would define the next nonempty sets 𝐸𝑗 from the list: (𝐴1 ∩𝐴2) −(𝐴3 ∪𝐴4), (𝐴1 ∩𝐴3) −(𝐴2 ∪𝐴4),
(𝐴1 ∩𝐴4) − (𝐴2 ∪𝐴3), (𝐴2 ∩𝐴3) − (𝐴1 ∪𝐴4), (𝐴2 ∩𝐴4) − (𝐴1 ∪𝐴3), (𝐴3 ∩𝐴4) − (𝐴1 ∪𝐴2).

2. If 𝑇 is given by an NFA pair set then also 𝑅 can be described by an NFA pair set, as the above definition of the sets 𝐸𝑗, 𝐹𝑗 involves
regularity preserving operations and the efficient test for emptiness on NFAs.

3. Now suppose that 𝑅 can also be written in disjoint canonical form as 𝑅 =
⋃ℎ

𝓁=1𝐺𝓁 ×𝐻𝓁 such that 𝓁 ≤ 𝑚. If 𝓁 < 𝑚 then there
are disjoint languages 𝐸𝑗1 and 𝐸𝑗2 and two elements 𝑤1 ∈ 𝐸𝑗1 , 𝑤2 ∈ 𝐸𝑗2 that must belong to the same language 𝐺𝓁 . This is
impossible, however, as the languages 𝐹𝑗1 and 𝐹𝑗2 are distinct and they cannot both be equal to 𝐻𝓁 . Hence, 𝓁 =𝑚. Now consider
any pair (𝐸𝑗, 𝐹𝑗). Each 𝑤 ∈𝐸𝑗 belongs to exactly one 𝐺𝓁 and this forces 𝐹𝑗 =𝐻𝓁 =𝑅(𝑤), and also that all elements of 𝐸𝑗 must
belong to 𝐺𝓁 . Moreover, 𝐺𝓁 cannot contain an element 𝑢 outside of 𝐸𝑗 , as otherwise 𝑅(𝑢) ≠ 𝐹𝑗 while also 𝑅(𝑢) =𝑅(𝑤).

Remark 4. Here we show an example of a transduction 𝑇 =
⋃𝑛
𝑖=1𝐴𝑖 × 𝐵𝑖 for which the disjoint canonical form has a number 𝑚 of

cross products that meets the upper bound 2𝑛 − 1. Let 𝑝1, … , 𝑝𝑛 be any distinct primes, let each 𝐴𝑖 = (𝑎𝑝𝑖)⋆, and let each 𝐵𝑖 be any
nonempty language. One verifies that, for each nonempty subset 𝐼 of {1, … , 𝑛}, the language (∩𝑖∈𝐼𝐴𝑖) − (∪𝓁∈𝑁−𝐼𝐴𝓁) is nonempty,
as it contains the word 𝑎𝑛𝐼 with 𝑛𝐼 =Π𝑖∈𝐼 𝑝𝑖

Proof. (Of Theorem 3.) We prove each statement in turn.

1. By Lemma 4, we can assume that all 𝐴𝑖 ’s are mutually disjoint, and the same for all 𝐶𝑗 ’s. First we have the following observation:
Any word 𝑤 in the common domain of 𝑆 and 𝑇 belongs to a unique 𝐴𝑖 and a unique 𝐶𝑗 , so we have that 𝑆(𝑤) ≠ 𝑇 (𝑤) iff 𝐵𝑖 ≠𝐷𝑗 .
Based on this observation, the language 𝛥𝑆,𝑇 is equal to the finite union of the nonempty regular languages (𝐴𝑖 ∩ 𝐶𝑗), where
𝑖 = 1, … , 𝑛 and 𝑗 = 1, … , 𝑚 with 𝐵𝑖 ≠𝐷𝑗 . Hence, 𝛥𝑆,𝑇 is regular.

2. This statement is simply a constructive version of the previous one: using Lemma 4, we can construct NFA pair sets for 𝑆 and 𝑇
in disjoint normal form, and then construct an NFA for 𝛥𝑆,𝑇 using the regular operations in the above paragraph.

3. The construction of the desired NFA 𝒇 mimics the definition of 𝛥𝑆,𝑇 in the proof of the first statement: 𝒇 is the union of NFAs 𝒇 𝑖,𝑗
accepting nonempty languages (𝐴𝑖 ∩𝐶𝑗) with 𝐵𝑖 ≠𝐷𝑗 . An example of two NFA pair sets 𝑨 and 𝑪 describing 𝑆, 𝑇 , respectively,
such that the constructed 𝒇 has the desired size is as follows: Let 𝑝1, … , 𝑝𝑛, 𝑞1, … , 𝑞𝑚 be distinct primes, let each 𝒂𝑖 accept (𝑎𝑝𝑖)⋆
and each 𝒄𝑗 accept (𝑎𝑞𝑗)⋆. Then (𝑎𝑝𝑖)⋆ ∩ (𝑎𝑞𝑗)⋆ ≠ ∅. Moreover, set 𝐵𝑖 = 𝑎𝑝𝑖 and 𝐷𝑗 = 𝑎𝑞𝑗 which implies 𝐵𝑖 ≠ 𝐶𝑗 for all 𝑖, 𝑗.

6. Chomsky-like hierarchy of difference sets

For any transductions 𝑆, 𝑇 of certain types, the languages 𝛥𝑆,𝑇 form a language class. In this section, we investigate how these
classes are related to each other and to known classes (like the classes of context-sensitive languages 𝐂𝐒𝐋 and one counter languages
𝐎𝐂𝐋). We use a notation similar to that of [5]: if 𝚈 is a type of transductions then (𝚈) is the class of all equality sets between
transductions of type 𝚈. For example, (𝖧𝖮𝖬) is the class of languages of the form 𝑔,ℎ , for some homomorphisms 𝑔, ℎ. Similarly
here we write 𝛥(𝚈) for the class of all difference sets between transductions of type 𝚈. We also write 𝛥(𝚈1 , 𝚈2) for the class of all
difference sets between a transduction of type 𝚈1 and one of type 𝚈2. For example, 𝛥(𝖥𝖴𝖭𝖢, 𝖳𝖱) is the class of languages of the form
𝛥𝑆,𝑇 , for some functional transduction 𝑆 and some transduction 𝑇 .

Below we state the main theorem of this section, and further below we present a few lemmata that lead to the proof of the main
theorem.

Theorem 4. The subset relations shown in Fig. 3 are correct.

Unlike the case of recognizable transductions, the difference sets of homomorphic transductions do not include all the regular
9

languages.

Theoretical Computer Science 1016 (2024) 114780S. Konstantinidis, N. Moreira, R. Reis et al.

𝐑𝐄𝐆 = 𝛥(𝖱𝖤𝖢) 𝛥(𝖧𝖮𝖬)

𝛥(𝖥𝖴𝖭𝖢)

𝛥(𝖥𝖨𝖭𝖵𝖠𝖫) 𝛥(𝖥𝖴𝖭𝖢,𝖳𝖱)

𝛥(𝖥𝖨𝖭𝖮𝖴𝖳,𝖳𝖱)

𝛥(𝖳𝖱)

𝐍𝐂𝐌 𝐎𝐂𝐋

𝐂𝐒𝐋

𝐍𝐏

⊊ ⊊

⊆

⊆⊊

⊆⊆
⊆

⊆

⊆ ⊆

⊈

⊉

Fig. 3. Subset relations between various classes of difference sets.

Proposition 1. The difference set of any two homomorphisms is either ∅ or an infinite language. Moreover, the languages 𝑎𝑏𝑅 are not in
𝛥(𝖧𝖮𝖬), for any regular 𝑅 and for any two distinct alphabet letters 𝑎, 𝑏.

Proof. Let 𝑔, ℎ be homomorphisms such that 𝛥𝑔,ℎ is nonempty. If 𝑔,ℎ is finite then 𝛥𝑔,ℎ must be infinite. If 𝑔,ℎ is infinite then also
𝛥𝑔,ℎ must be infinite as 𝑔,ℎ𝛥𝑔,ℎ ⊆ 𝛥𝑔,ℎ.

For the second statement, we use the fact that 𝑔,ℎ is a star language [5]. We argue by contradiction: Assume that 𝑎𝑏𝑅 = 𝛥𝑔,ℎ,
for some homomorphisms ℎ, 𝑔; then Σ⋆ − 𝑎𝑏𝑅 = 𝑔,ℎ and Σ⋆ − 𝑎𝑏𝑅 =𝑋⋆, for some language 𝑋. But then 𝑎, 𝑏𝑥 ∈𝑋⋆, for any 𝑥 ∈𝑅,
which implies that 𝑎𝑏𝑥 ∈𝑋⋆ ∩ 𝑎𝑏𝑅; a contradiction.

Lemma 5. For all functional transductions 𝐹0, 𝐺1, … , 𝐺𝑘, for 𝑘 ≥ 1, we have that

⋂
1≤𝑗≤𝑘

𝛥𝐹0,𝐺𝑗 ∈𝐍𝐂𝐌(2𝑘,1).

Proof. We use the same notation 𝐹0, 𝐺1, … , 𝐺𝑘 to denote transducers realizing the transductions. We adapt the proofs of [18, Theorem
2] and [7]. We construct a (2𝑘, 1)-counter machine 𝑀 accepting all words 𝑤 ∈ 𝖽𝗈𝗆𝐹0 such that 𝐹0(𝑤) is different from all 𝐺𝑗 (𝑤).
𝑀 has 2𝑘 counters and simulates the computations of 𝐹0 on 𝑤 and of 𝐺𝑗 on 𝑤, using 𝑘 counters 𝑏𝑗 for 𝐹0 and one counter 𝑐𝑗 for
each 𝐺𝑗 , for 𝑗 = 1, … , 𝑘. Each pair 𝑏𝑗 , 𝑐𝑗 records the length of the output words during the computation. Each state of 𝑀 records
the current states of 𝐹0, 𝐺1, … , 𝐺𝑘. Nondeterministically, 𝑀 stops incrementing the counters and stores in the finite control the last
symbols of the outputs 𝜎𝑗 and 𝜏𝑗 . At the end of the input, 𝑀 checks, for each 𝑗, whether the proposition 𝑏𝑗 = 𝑐𝑗 ∧ 𝜎𝑗 ≠ 𝜏𝑗 is true—for
the part 𝑏𝑗 = 𝑐𝑗 the counters are decremented and tested if they are both zero. 𝑀 accepts if and only if the propositions are true for
all 𝑗.

Proof. (Of Theorem 4.) To avoid cluttering in Fig. 3, we do not show the previously known class inclusions

𝐎𝐂𝐋 ⊆𝐂𝐒𝐋 and 𝐍𝐂𝐌 ⊆𝐍𝐏,𝐂𝐒𝐋

where the last inclusion follows from [35, Theorem 5]. The following inclusions

𝛥(𝖧𝖮𝖬) ⊆ 𝛥(𝖥𝖴𝖭𝖢) ⊆ 𝛥(𝖥𝖴𝖭𝖢,𝖳𝖱), 𝛥(𝖥𝖨𝖭𝖵𝖠𝖫) ⊆ 𝛥(𝖥𝖨𝖭𝖮𝖴𝖳,𝖳𝖱) ⊆ 𝛥(𝖳𝖱)

follow immediately from the fact that some transduction types are special cases of others, for example 𝖧𝖮𝖬 is a special type of 𝖥𝖴𝖭𝖢,
𝖥𝖨𝖭𝖵𝖠𝖫 is a special type of 𝖥𝖨𝖭𝖮𝖴𝖳, and all are special types of 𝖳𝖱. Next, we consider the rest of the inclusions in turn.

𝛥(𝖱𝖤𝖢) = 𝐑𝐄𝐆: Follows from Theorem 3 and the fact that every regular language 𝑅 is the difference set of the recognizable
10

transductions 𝑅 × {0} and 𝑅 × {1}.

Theoretical Computer Science 1016 (2024) 114780S. Konstantinidis, N. Moreira, R. Reis et al.

𝐑𝐄𝐆 ⊊ 𝛥(𝖥𝖴𝖭𝖢): The subset relation follows from the fact that every regular language 𝑅 is the difference set of the functional
transductions 𝑅 × {0} and 𝑅 × {1}. The transductions 𝑆(𝑎𝑚𝑏𝑛) = 𝑐𝑚 and 𝑇 (𝑎𝑚𝑏𝑛) = 𝑐𝑛, for 𝑚, 𝑛 ∈ ℕ0 and alphabet symbols 𝑎, 𝑏, 𝑐, are
functional and 𝛥𝑆,𝑇 = {𝑎𝑚𝑏𝑛 ∶𝑚 ≠ 𝑛}, which is a non-regular language.

𝐑𝐄𝐆 ⊈ 𝛥(𝖧𝖮𝖬): Follows from Proposition 1.

𝛥(𝖧𝖮𝖬) ⊈ 𝐑𝐄𝐆: Follows from Example 2 of [5] stating that 𝑔,ℎ = {𝑤 ∈ {𝑎, 𝑏}⋆ ∶ |𝑤|𝑎 = |𝑤|𝑏}, for homomorphisms 𝑔, ℎ such
that 𝑔(𝑎) = 0, 𝑔(𝑏) = 𝜺, ℎ(𝑎) = 𝜺, ℎ(𝑏) = 0.

𝛥(𝖧𝖮𝖬) ⊊ 𝛥(𝖥𝖴𝖭𝖢): We already know that 𝛥(𝖧𝖮𝖬) ⊆ 𝛥(𝖥𝖴𝖭𝖢). Example 4 of [5] shows two functional transductions 𝐹 , 𝐺 such
that 𝖽𝗈𝗆𝐹 = 𝖽𝗈𝗆𝐺 = (𝑎+𝑏+)⋆ and 𝐹 ,𝐺 = {𝑎𝑛𝑏𝑛 ∣ 𝑛 ≥ 1}⋆ but 𝐹 ,𝐺 ∉ (𝖧𝖮𝖬). We can extend 𝐹 , 𝐺 such that 𝖽𝗈𝗆𝐹 = 𝖽𝗈𝗆𝐺 = {𝑎, 𝑏}⋆
and 𝐹 (𝑤) = 0, 𝐺(𝑤) = 1, for all 𝑤 ∉ (𝑎+𝑏+)⋆. Then, the extended 𝐹 , 𝐺 are still functional and again 𝐹 ,𝐺 = {𝑎𝑛𝑏𝑛 ∣ 𝑛 ≥ 1}⋆. Moreover,
we have that 𝛥𝐹 ,𝐺 = 𝐹 ,𝐺 and we can verify that 𝛥𝐹 ,𝐺 cannot be equal to 𝛥𝑔,ℎ for any homomorphisms 𝑔, ℎ (else 𝑔,ℎ would be equal
to 𝐹 ,𝐺).

𝛥(𝖥𝖴𝖭𝖢, 𝖳𝖱) ⊆𝐎𝐂𝐋: First we note the fact that 𝛥(𝖥𝖴𝖭𝖢) ⊆𝐎𝐂𝐋, which is essentially a rephrasing of the Corollary of [7] stating
that the complement of the equality set of two functional transductions is a one-counter language. Next we note that, for any two
functional transductions 𝐹 , 𝐺, the Theorem of [7] constructs a one counter automaton that accepts 𝑤 iff 𝐹 (𝑤) is not a prefix of 𝐺(𝑤)
and 𝐺(𝑤) is not a prefix of 𝐹 (𝑤). For a functional transduction 𝑆 and a transduction 𝑇 , one can mimic the proof of the Theorem
of [7] to construct a one-counter automaton accepting 𝛥𝑆,𝑇 in view of the simple fact that, for any word 𝑤, 𝑆(𝑤) ≠ 𝑇 (𝑤) iff 𝑇 (𝑤)
contains a word 𝑧 ≠ 𝑆(𝑤).
𝛥(𝖥𝖨𝖭𝖵𝖠𝖫) ⊆ 𝐍𝐂𝐌: Consider any finite-valued transductions 𝐹 , 𝐺. As stated in Remark 3, references [32,36] imply that 𝐹 =

𝐹1 ∪⋯ ∪ 𝐹𝑘 and 𝐺 =𝐺1 ∪⋯ ∪𝐺𝓁 , for some functional transductions 𝐹𝑖, 𝐺𝑗 . Then we have that

𝛥𝐹 ,𝐺 =
⋃
𝑖

⋂
𝑗

𝛥𝐹𝑖,𝐺𝑗 ∪
⋃
𝑗

⋂
𝑖

𝛥𝐹𝑖,𝐺𝑗

The claim follows when we note that each set
⋂
𝑗 𝛥𝐹𝑖,𝐺𝑗 (and also each set

⋂
𝑖 𝛥𝐹𝑖,𝐺𝑗) is in 𝐍𝐂𝐌, by Lemma 5, and the fact that the

class 𝐍𝐂𝐌 is closed under intersection and union [21].

𝛥(𝖳𝖱) ⊆ 𝐂𝐒𝐋: First note that 𝐂𝐒𝐋 = 𝐍𝐏𝐒𝐏𝐀𝐂𝐄[𝑛] (see e.g., [9]). For any fixed, but arbitrary, transductions 𝑆, 𝑇 we show that
deciding whether a given word 𝑤 is in 𝛥𝑆,𝑇 can be done nondeterministically in space 𝑂(|𝑤|). Consider any transducers 𝒔, 𝒕 realizing
𝑆, 𝑇 . We construct NFAs 𝒄, 𝒅 accepting the languages 𝒔(𝑤) and 𝒕(𝑤). These NFAs are of size 𝑂(|𝑤|), as 𝒔, 𝒕 are fixed. Using the
nondeterministic algorithm in the proof of Lemma 1, we can decide whether (𝒄) ⊈ (𝒅) or (𝒅) ⊈ (𝒄) using space 𝑂(|𝒄| + |𝒅|) =
𝑂(|𝑤|). Hence, we can also decide whether (𝒄) = (𝒅) in nondeterministic space 𝑂(|𝑤|).
𝛥(𝖥𝖨𝖭𝖮𝖴𝖳, 𝖳𝖱) ⊆𝐍𝐏: For any fixed, but arbitrary, transductions 𝑆, 𝑇 with 𝑆 ∈ 𝖥𝖨𝖭𝖮𝖴𝖳, there are transducers 𝒔 and 𝒕 realizing

𝑆, 𝑇 . These transducers can be used to decide whether 𝑤 ∈ 𝛥𝒔,𝒕, for any given word 𝑤, exactly as in the proof of Theorem 1, where
now the time complexity is only in terms of |𝑤|, as 𝒔, 𝒕 are fixed.

𝛥(𝖥𝖴𝖭𝖢) ⊊ 𝛥(𝖥𝖨𝖭𝖵𝖠𝖫): As mentioned already, 𝛥(𝖥𝖴𝖭𝖢) ⊆ 𝛥(𝖥𝖨𝖭𝖵𝖠𝖫). The proper inclusion follows from Example 4 and the fact
that the class 𝐎𝐂𝐋 is a subset of the context-free languages.

Remark 5. Due to the closure of the class 𝐂𝐒𝐋 under complementation, the above result 𝛥(𝖳𝖱) ⊆ 𝐂𝐒𝐋 implies that (𝖳𝖱) ⊆ 𝐂𝐒𝐋,
which strengthens the earlier known fact (𝖥𝖴𝖭𝖢) ⊆𝐂𝐒𝐋 mentioned in Remark 1.

7. Concluding remarks

We introduced the concept of difference set of two transductions, which is complementary to the concept of equality set of
transductions. While the word problems of the two concepts are essentially the same, the language classes resulting from the two
concepts are different. We have also expressed in clear terms the concept of a PRAX algorithm that is now applicable to a language
and its complement. Hence, there are PRAX algorithms for the word problem pertaining to either of the difference and equality sets.

The class hierarchy in Fig. 3 is incomplete. As future research we propose to investigate whether some of the inclusions are proper.
For example, is there a one counter language that is not in 𝛥(𝖥𝖴𝖭𝖢)?

The PRAX algorithm in Theorem 2 is a “tail-cutting” algorithm, that is, for the given approximation tolerance 𝜀, the algorithm
determines via the length 𝑀 the tail of the probability distribution that can be safely ignored when testing the amount of difference
of the output sets of the two transducers. However, if we know that transducer 𝒔 (at least) has finite outputs then the algorithm can be
modified to sample words from the uniform distribution on the finite set 𝒔(𝑤). Details of this and possibly other similar improvements
can be investigated in future research.

CRediT authorship contribution statement

Stavros Konstantinidis: Methodology, Investigation, Funding acquisition, Formal analysis, Data curation, Conceptualization.
Nelma Moreira: Methodology, Investigation, Funding acquisition, Formal analysis, Data curation, Conceptualization. Rogério Reis:
Methodology, Investigation, Funding acquisition, Formal analysis, Data curation, Conceptualization. Juraj Šebej: Methodology, In-
11

vestigation, Funding acquisition, Data curation, Conceptualization.

Theoretical Computer Science 1016 (2024) 114780S. Konstantinidis, N. Moreira, R. Reis et al.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgement

We thank Professors Tero Harju (Turku University, Finland) and Ian McQuillan (University of Saskatchewan, Canada) for suggest-
ing some key references used in this paper.

References

[1] C. Câmpeanu, N. Moreira, R. Reis, Distinguishability operations and closures, Fundam. Inform. 148 (3–4) (2016) 243–266, https://doi .org /10 .3233 /FI -2016 -
1434.

[2] S. Ginsburg, On the length of the smallest uniform experiment which distinguishes the terminal states of a machine, J. ACM 5 (3) (1958) 266–280.
[3] A. Salomaa, Equality sets for homomorphisms of free monoids, Acta Cybern. 4 (1) (1978) 127–139, https://cyber .bibl .u -szeged .hu /index .php /actcybern /article /

view /3172.
[4] T. Harju, J. Karhumäki, Morphisms, in: Rozenberg and Salomaa [11], pp. 439–510.
[5] J. Engelfriet, G. Rozenberg, Fixed point languages, equality languages, and representation of recursively enumerable languages, J. ACM 27 (3) (1980) 499–518,

https://doi .org /10 .1145 /322203 .322211.
[6] W. Foryś, Fixed point languages of rational transductions, Semigroup Forum 34 (1986) 177–183.
[7] J. Engelfriet, H.J. Hoogeboom, Prefix and equality languages of rational functions are co-context-free, Inf. Process. Lett. 28 (2) (1988) 77–79, https://doi .org /

10 .1016 /0020 -0190(88)90167 -6.
[8] S. Konstantinidis, M. Mastnak, N. Moreira, R. Reis, Approximate NFA universality and related problems motivated by information theory, Theor. Comput. Sci.

972 (2023) 114076, https://doi .org /10 .1016 /j .tcs .2023 .114076.
[9] J.E. Hopcroft, J.D. Ullman, Introduction to Automata Theory, Languages, and Computation, Addison-Wesley, 1979.

[10] A. Mateescu, A. Salomaa, Formal languages: an introduction and a synopsis, in: Rozenberg and Salomaa [11], pp. 1–39.
[11] G. Rozenberg, A. Salomaa (Eds.), Handbook of Formal Languages, vol. I, Springer-Verlag, Berlin, 1997.
[12] A. Salomaa, Formal Languages, Academic Press, New York, 1973.
[13] J. Berstel, Transductions and Context-Free Languages, B.G. Teubner, Stuttgart, 1979.
[14] J. Sakarovitch, Elements of Automata Theory, Cambridge University Press, Berlin, 2009.
[15] S. Yu, Regular languages, in: Rozenberg and Salomaa [11], pp. 41–110.
[16] E. Roche, Y. Schabes, Introduction to finite-state devices in natural language processing, Report TR-96-13, Mitsubishi Electric Research Laboratories, June 1996.
[17] N. Santean, S. Yu, On weakly ambiguous finite transducers, in: O.H. Ibarra, Z. Dang (Eds.), Developments in Language Theory, 10th International Conference,

DLT 2006, Santa Barbara, CA, USA, June 26-29, 2006, Proceedings, in: Lecture Notes in Computer Science, vol. 4036, Springer, 2006, pp. 156–167.
[18] E.M. Gurari, O.H. Ibarra, A note on finitely-valued and finitely ambiguous transducers, Math. Syst. Theory 16 (1) (1983) 61–66, https://doi .org /10 .1007 /

BF01744569.
[19] Y. Han, A. Salomaa, K. Salomaa, Ambiguity, nondeterminism and state complexity of finite automata, Acta Cybern. 23 (1) (2017) 141–157, https://doi .org /10 .

14232 /actacyb .23 .1 .2017 .9.
[20] H. Leung, Separating exponentially ambiguous finite automata from polynomially ambiguous finite automata, SIAM J. Comput. 27 (4) (1998) 1073–1082,

https://doi .org /10 .1137 /S0097539793252092.
[21] O.H. Ibarra, Reversal-bounded multicounter machines and their decision problems, J. ACM 25 (1) (1978) 116–133, https://doi .org /10 .1145 /322047 .322058.
[22] J. Hromkovic, Reversal-bounded nondeterministic multicounter machines and complementation, Theor. Comput. Sci. 51 (1987) 325–330, https://doi .org /10 .

1016 /0304 -3975(87)90040 -5.
[23] S.W. Golomb, Probability, information theory, and prime number theory, Discrete Math. 106/107 (1992) 219–229.
[24] S.W. Golomb, A class of probability distributions on the integers, J. Number Theory 2 (1970) 189–192.
[25] D. Wood, Theory of Computation, Harper & Row, New York, 1987.
[26] S. Ginsburg, The Mathematical Theory of Context-Free Languages, McGraw-Hill, Inc., 1966.
[27] L. Stockmeyer, A. Meyer, Word problems requiring exponential time (preliminary report), in: Proceedings of the 5th Annual ACM Symposium on Theory of

Computing, ACM, 1973, pp. 1–9.
[28] W.J. Savitch, Relationships between nondeterministic and deterministic tape complexities, J. Comput. Syst. Sci. 4 (2) (1970) 177–192, https://doi .org /10 .1016 /

S0022 -0000(70)80006 -X.
[29] R. Szelepcsényi, The method of forcing for nondeterministic automata, Bull. Eur. Assoc. Theor. Comput. Sci. 33 (1987) 96–99.
[30] N. Immerman, Nondeterministic space is closed under complementation, SIAM J. Comput. 17 (5) (1988) 935–938, https://doi .org /10 .1137 /0217058.
[31] A. Weber, Decomposing finite-valued transducers and deciding their equivalence, SIAM J. Comput. 22 (1) (1993) 175–202, https://doi .org /10 .1137 /0222014.
[32] J. Sakarovitch, R. de Souza, On the decomposition of k-valued rational relations, in: S. Albers, P. Weil (Eds.), STACS 2008, 25th Annual Symposium on Theoretical

Aspects of Computer Science, Bordeaux, France, February 21-23, 2008, Proceedings, in: LIPIcs, vol. 1, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany,
2008, pp. 621–632.

[33] O. Goldreich, Computational Complexity - a Conceptual Perspective, Cambridge University Press, 2008.
[34] S. Konstantinidis, N. Santean, S. Yu, On implementing recognizable transductions, Int. J. Comput. Math. 87 (2) (2010) 260–277, https://doi .org /10 .1080 /

00207160801968754, Journal version of “Recognizable Transductions, Saturated Transducers and Edit Languages,” Technical Report 2005-02, Department of
Mathematics and Computing Science, Saint Mary’s University, May 2005.

[35] B.S. Baker, R.V. Book, Reversal-bounded multipushdown machines, J. Comput. Syst. Sci. 8 (3) (1974) 315–332, https://doi .org /10 .1016 /S0022 -0000(74)80027 -
9.
12

[36] A. Weber, On the valuedness of finite transducers, Acta Inform. 27 (8) (1990) 749–780, https://doi .org /10 .1007 /BF00264285.

https://doi.org/10.3233/FI-2016-1434
https://doi.org/10.3233/FI-2016-1434
http://refhub.elsevier.com/S0304-3975(24)00397-9/bib3D5FBE23B199E92DE52E05FDFB18101Ds1
https://cyber.bibl.u-szeged.hu/index.php/actcybern/article/view/3172
https://cyber.bibl.u-szeged.hu/index.php/actcybern/article/view/3172
https://doi.org/10.1145/322203.322211
http://refhub.elsevier.com/S0304-3975(24)00397-9/bib476D345C19C3EB6E56DB1910E841E57Fs1
https://doi.org/10.1016/0020-0190(88)90167-6
https://doi.org/10.1016/0020-0190(88)90167-6
https://doi.org/10.1016/j.tcs.2023.114076
http://refhub.elsevier.com/S0304-3975(24)00397-9/bibF6EE37F6CFE1D4E386ECE645FA1FE0BBs1
http://refhub.elsevier.com/S0304-3975(24)00397-9/bibE1D51F4D010F8D9E2ACA489ACEDB4A52s1
http://refhub.elsevier.com/S0304-3975(24)00397-9/bibFB8DA4D7D290E0E7E1446D60F410FE39s1
http://refhub.elsevier.com/S0304-3975(24)00397-9/bib9DC9C2BD3CA3D1DDAD3B0275EB1CB24Es1
http://refhub.elsevier.com/S0304-3975(24)00397-9/bib2C0FAC03A6CB40CEE51D9F57E45350A0s1
http://refhub.elsevier.com/S0304-3975(24)00397-9/bib61C2CECFA3F1834626D8920FE238EAC0s1
http://refhub.elsevier.com/S0304-3975(24)00397-9/bib4C772062DE18B34487B52B7BA2EA1B0Ds1
http://refhub.elsevier.com/S0304-3975(24)00397-9/bib4C772062DE18B34487B52B7BA2EA1B0Ds1
https://doi.org/10.1007/BF01744569
https://doi.org/10.1007/BF01744569
https://doi.org/10.14232/actacyb.23.1.2017.9
https://doi.org/10.14232/actacyb.23.1.2017.9
https://doi.org/10.1137/S0097539793252092
https://doi.org/10.1145/322047.322058
https://doi.org/10.1016/0304-3975(87)90040-5
https://doi.org/10.1016/0304-3975(87)90040-5
http://refhub.elsevier.com/S0304-3975(24)00397-9/bib8951F8E933407D73147B934976B15D3Cs1
http://refhub.elsevier.com/S0304-3975(24)00397-9/bib1B6895E9A5164E174AA9AB2534EE623Ds1
http://refhub.elsevier.com/S0304-3975(24)00397-9/bib46351D2D3CC413DB49AB4E70B1212E74s1
http://refhub.elsevier.com/S0304-3975(24)00397-9/bib6BA7F1E75332CDCAC55787BA8D507ACAs1
http://refhub.elsevier.com/S0304-3975(24)00397-9/bibF8F2B32A51F8357C300B3AF966564F25s1
http://refhub.elsevier.com/S0304-3975(24)00397-9/bibF8F2B32A51F8357C300B3AF966564F25s1
https://doi.org/10.1016/S0022-0000(70)80006-X
https://doi.org/10.1016/S0022-0000(70)80006-X
http://refhub.elsevier.com/S0304-3975(24)00397-9/bibED9CF2523DBBFB403E6EDBE8E6C8A603s1
https://doi.org/10.1137/0217058
https://doi.org/10.1137/0222014
http://refhub.elsevier.com/S0304-3975(24)00397-9/bib687D7894EC33BC655F66F808DDA6CFBDs1
http://refhub.elsevier.com/S0304-3975(24)00397-9/bib687D7894EC33BC655F66F808DDA6CFBDs1
http://refhub.elsevier.com/S0304-3975(24)00397-9/bib687D7894EC33BC655F66F808DDA6CFBDs1
http://refhub.elsevier.com/S0304-3975(24)00397-9/bib0FE046943212783AAB2C71EB78B11B9Ds1
https://doi.org/10.1080/00207160801968754
https://doi.org/10.1080/00207160801968754
https://doi.org/10.1016/S0022-0000(74)80027-9
https://doi.org/10.1016/S0022-0000(74)80027-9
https://doi.org/10.1007/BF00264285

	On the difference set of two transductions
	1 Introduction
	2 Basic terms and background
	3 Examples and basic results
	4 PRAX algorithms & the PRAX algorithm for Δ
	5 Difference sets of recognizable transductions
	6 Chomsky-like hierarchy of difference sets
	7 Concluding remarks
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgement
	References

