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Abstract

We study the computational power of parsing expression grammars (PEGs).
We begin by constructing PEGs with unexpected behaviour, and surprising
new examples of languages with PEGs, including the language of palin-
dromes whose length is a power of two, and a binary-counting language.

We then propose a new computational model, the scaffolding automaton,
and prove that it exactly characterises the computational power of parsing
expression grammars (PEGs).

Several consequences will follow from this characterisation: (1) we show
that PEGs are computationally “universal”, in a certain sense, which implies
the existence of a PEG for a P-complete language; (2) we show that there
can be no pumping lemma for PEGs; and (3) we show that PEGs are strictly
more powerful than online Turing machines which do o(n/(log n)2) steps of
computation per input symbol.
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1. Introduction

Parsing expression grammars are a recognition-based system for parsing
of formal languages. They were defined by Ford [1], who showed equivalence
with earlier parsing systems by Birman and Ullman [2, 3] that are able to
recognise the class of top-down parsing languages (TDPLs, [4]).

As a language formalism, PEGs offer an attractive syntax and an ef-
ficient linear-time parsing algorithm which is nonetheless simple to imple-
ment. This led to a recent trend, which pushes for the adoption of PEGs,
both as a theoretical subject [5, 6, 7, 8, 9, 10, 11, 12], and as a practical tool
for parser generators [13, 14, 15, 16, 17, 18, 19, 20, 21]. See Ford’s webpage
[22] for an extensive bibliography of work around PEGs.

The influence of PEGs is illustrated by the surprising fact that, despite
having been introduced only fifteen years ago, the number of available PEG-
based parser generators already seems to nearly-match or even supersede the
number of parser generators based on any other single parsing method, even
when compared with methods which are many decades older.1 This seems

1We estimate this to be true, based on consulting the Wikipedia page “Comparison of
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to be due to the simplicity of the formalism, which allows for the quick ap-
pearance of many small DIY projects; the situation is reversed if limits one’s
attention to high-quality projects, and there does not yet appear to be any
serious global tendency to replace older technologies by PEGs. Nonetheless,
a few high-quality PEG-based parser generators do exist (e.g. rats! [14],
or the Scala Standard Parser-Combinator Library), and there was at least
one serious, influential attempt at creating a programming language which
intrinsically relied on PEG as a parsing technology — the Fortress program-
ming language [23], which was being developed by Guy Steele’s team at Sun
Microsystems. The project is now defunct, but Fortress was once consid-
ered as a possible next-generation replacement for the Java programming
language [24]!

Despite this enthusiasm for PEGs, we have also started seeing some
objections of a theoretical nature. On one hand, proving the correctness of
a given parsing expression grammar is often more difficult than one would
like, even for simple examples2. This makes PEGs somewhat problematic
as a model of formal languages. On the other hand, there is no natural
example of a language which is proven not to have PEGs. We believe that
the present work will help in understanding why this is the case.

A first naive look at PEGs may suggest that their computational power
should be roughly similar to that of deterministic context-free grammars [1].
Indeed it is known that deterministic context-free languages have PEGs [2].
But already Aho and Ullman [4] had shown that the anbncn language, which
is not context-free, is still a TDPL, and hence has a PEG [1].

One may still hope that the computational power of PEGs can be con-
tained, in some way, akin to how we can use pumping lemmas to separate
the Chomsky hierarchy (e.g. [25, 26, 27, 28, 29]). The following question
appears in [4, 1]:

parser generators”, and searching GitHub for “parser generator X”, and then counting how
many projects appear which use a given method X. Doing so, one obtains the following
numbers (ca. September 2019):

LR LL LALR GLR Earley PEG
Wikipedia 26 33 63 23 7 48

GitHub 62 86 77 10 9 122

2For example, the relatively simple grammar for the anbncn language which appears
in Ford’s original paper [1], has a (fixable) bug, which eluded discovery for over a decade
(including to us, when we read Ford’s paper) until the bug was pointed out by a recent
paper of Garnock-Jones et al. [6].
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Is there a context-free language without a parsing expression grammar?

It is possible to prove that if any such language exists, then Greibach’s
hardest context-free language H [30] also has no PEGs. So the above problem
is equivalent to asking for a proof thatH has no parsing expression grammar.
But no PEG is known, even for the much simpler language of palindromes.
The following questions are both open:

Can a parsing expression grammar recognise the language of palindromes?

Is there any linear-time language without a parsing expression grammar?

In fact, the only method we know to prove that a language has no PEG
is by using the time-hierarchy theorem of complexity theory [31]: using
diagonalisation one may construct some language L2 which is decidable,
say, in time n2 (by a random-access machine), but not in linear time, and
because PEGs can be recognised in linear time using the tabular parsing
algorithm of Birman and Ullman [2] (or packrat parsing [32, 33]), there will
be no parsing expression grammar for L2.

This stands in stark contrast with our understanding of, say, context-free
languages. In that scenario, one may also construct a language L4 which
is decidable in time n4, which cannot be decided in time n3, and hence L4

cannot be context-free (since the CYK algorithm decides any context-free
language in time n3, see, e.g., Hopcroft’s book [34]). But this brings us no
real insight on what it means to be context-free. To understand this, we
make use of pumping lemmas, and using such lemmas we can easily provide,
say, a linear-time-decidable language which is not context-free. A pumping
lemma implies a serious limitation on the computational power of context-
free languages, which does not apply to universal models of computation,
such as Turing machines or random-access machines.

Our current understanding of universal computation, by contrast, is ex-
tremely poor. For example, it is a longstanding open problem, to show that
linear-time random-access machines cannot be simulated by two-tape Tur-
ing machines in linear time, even though it seems intuitive that this should
be true. Indeed this problem is well beyond the current state of the art in
computational complexity, where such lower-bounds are notoriously difficult
to come by. It is also an open problem to provide any context-free language
which cannot be decided by a two-tape Turing machine in linear time — for
one-tape Turing machines such a separation is known3.

3This was first proven for the language of palindromes; see [26], Sections 6.1 and 6.13.
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A principal claim of this article is that the recognition procedure under-
lying parsing expression grammars is, in some sense, “universal”, and so it
will be as difficult to understand as that of a multi-tape Turing machine. A
solution to the above questions, thus, may well require a breakthrough in
our ability to prove computational complexity lower-bounds.

With this in mind, the layout of the article is as follows. In Section 2, we
provide a formal definition of PEGs, and in Section 3 we show a few examples
of PEGs with surprising behaviour, and of languages which, unexpectedly,
have PEGs. This includes the language of palindromes whose length is a
power of two, and it is also shown that PEGs can do a form of counting.

In Section 4, we describe a new computational model, the scaffolding
automaton, and show that it exactly characterises the computational power
of PEGs. This is our main result, and provides what we believe to be the
right machine model for parsing expression grammars. We will make good
use of this characterisation in Section 5, where we show the following results.

• We revisit the example languages of Section 3, and construct scaffold-
ing automata for them, for the sake of becoming familiar with the
model.

• We show that PEGs are computationally “universal”, in the following
sense: take any computable function f : {0, 1}∗ → {0, 1}∗; then there
exists a computable function g : {0, 1}∗ → N such that

{f(x)$g(x)x | x ∈ {0, 1}∗}

has a PEG. This result may be used to construct a PEG language
which is complete for P under logspace reductions. This stands in
contrast to context-free languages, which cannot be P complete under
logspace reductions unless P ⊆ NC2.

• We show that there can be no pumping lemma for PEGs. There is
no total computable function A with the following property: for every
PEG G, there exists n0 such that for every string x ∈ L(G) of size
|x| ≥ n0, the output y = A(G, x) is in L(G) and has |y| > |x|.

• We show that PEGs are strongly non real-time for Turing machines:
There exists a language with a PEG, such that neither it nor its reverse
can be recognised by any multi-tape online Turing machine which is
allowed to do only o(n/(log n)2) steps after reading each input symbol.
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2. Preliminaries

In this section we will cover some notation, and give a formal definition
of parsing expression grammars.

Notation.. For each k ∈ N, let (k)2 ∈ {0, 1}∗ be its shortest binary represen-
tation, and (k)r2 to denote the reversal of its shortest binary representation.
An alphabet Γ is a finite set of symbols such that ∅ /∈ Γ. For a natu-
ral number n ≥ 0, we denote [n] = {0, . . . , n}, [n) = {0, . . . , n − 1}, and
(n] = {1, . . . , n}. We will use λ to denote the empty word, and ε to denote
a parsing expression which accepts the empty word.

Definition 1. Let Σ,NT be two disjoint alphabets; the symbols in Σ are
called terminal symbols, and those in NT are called non-terminal symbols.
Then, the set E(Σ,NT) of parsing-expressions over Σ and NT is defined
inductively.

• At the base of the induction we have Σ ∪ NT ∪ {ε,FAIL} ⊆ E(Σ,NT).

• If e ∈ E(Σ,NT), we will have !e and &e in E(Σ,NT).

• If e1, e2 ∈ E(Σ,NT), we will have e1e2 and e1/e2 in E(Σ,NT).

Definition 2. A parsing expression grammar G is a tuple 〈Σ,NT, R, S〉,
where

• Σ is an alphabet of so-called terminal symbols.

• NT is an alphabet of so-called non-terminal symbols, disjoint from Σ.

• R : NT → E(Σ,NT) is a function defining the rules of G, and associates
a (Σ,NT)-parsing-expression to each non-terminal symbol.

• S ∈ NT is the starting non-terminal.

When writing down a parsing expression grammar, the notation A ← e is
used to signify R(A) = e. The reason one uses the left arrow notation is to
emphasise that PEGs correspond to a recognition procedure, and are not to
be thought of as a generative model.

Ford [1] defines parsing expressions that allow for various operations, such
as the zero-or-more repetitions operator “*”, or the any character symbol
“.”. As explained in Ford’s paper [1], these operators can be expressed by
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using the operators appearing in Definition 1, together with the grammars
of Definition 2. This is similar to how one would define such operators using
context-free grammars, so we will not explicitly include these operators as
part of Definition 1. For the sake of example, the zero-or-more repetitions
operator A*, applied to a non-terminal A, may be replaced by a new non-
terminal Astar together with the rule Astar ← A Astar / ε.

The any character symbol “.”, which we will be using extensively
throughout, may be replaced with (a/b/ . . .) for each terminal symbol a, b, . . .
of Σ. After we define the recognition procedure underlying a parsing ex-
pression grammar, in Definition 3 below, it may be seen that the parsing
expression “!.” recognizes exactly the empty string at the end of the input.

In order to define a rule A ← B/C/ . . ., we will write rules of the form
A ← B, A ← C, etc, and say they are alternatives of the non-terminal
symbol A. So, for example, if we say A ← BA and A ← ε are alternatives
of A, we mean that the rule for A is R(A) = BA / ε. We will only do this
when the order in which the alternatives appear in the rule is indifferent.

Each parsing expression grammar defines an associated recognition proce-
dure. This procedure gives an operational meaning to each PEG.

Definition 3 (Recognition). Let G = 〈Σ,NT, R, S〉 be a parsing expression
grammar. The recognition map is a partial function

RecG : E(Σ,NT)× Σ∗ → Σ∗ ∪ {FAIL};

this map is defined by Algorithm 1 appearing below. If RecG(e, x) = FAIL,
we say that expression e rejects input x; and if RecG(e, x) = x′ outputs
a prefix x′ of x, we say that expression e accepts x, and consumes x′. If
RecG(e, x) = x, i.e. e accepts x and consumes all of x, then we say the
expression e recognises x. Otherwise RecG(e, x) is undefined, which happens
precisely when that the recognition procedure entered an infinite loop. We
say that G is total if its recognition map is total, i.e. if it never enters an
infinite loop, on any input.

The notions rejects, accepts, consumes and recognises will be frequently
used throughout the paper, and the reader may refer to the above definition
to remember what they mean. It is important to understand that a parsing
expression e may accept a string x, without consuming all of it. For example
the expression &(aa) accepts the string aa but consumes no symbol in it.
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Algorithm 1 Recognition Procedure RecG(E, x) :

Input: E ∈ E(Σ,NT), x ∈ Σ∗

Output: RecG(E, x) ∈ Σ∗ ∪ {FAIL}
1: if E = ε then return the empty string λ
2: else if E = FAIL then return FAIL
3: else if E = a ∈ Σ then
4: if x = az for some z then return a else return FAIL
5: else if E = !e then
6: if RecG(e, x) = FAIL then return λ else return FAIL

7: else if E = &e then
8: if RecG(e, x) ∈ Σ∗ then return λ else return FAIL

9: else if E = e1e2 then
10: if RecG(e1, x) = y1 ∈ Σ∗ and x = y1z and RecG(e2, z) = y2 ∈ Σ∗ then
11: return y1y2
12: else return FAIL
13: else if E = e1/e2 then
14: if RecG(e1, x) ∈ Σ∗ then return RecG(e1, x)
15: else return RecG(e2, x)

16: else if E = A ∈ NT then return RecG(R(A), x)

Definition 4. A total PEG G = 〈Σ,NT, R, S〉 is said to recognise the lan-
guage L(G) = {x ∈ Σ∗ | RecG(S, x) = x}.

Then PEG is the class of languages recognised by total PEGs.

One consequence of the results in this paper is that no algorithm can
decide whether a PEG is total. Ford’s original paper [1] defined a notion,
that of well-formed parsing expression grammar, which was inherited from
Birman and Ullman [2]. A well-formed PEG is a PEG which obeys a certain
syntactic restriction; this restriction guarantees that the above recognition
procedure will not enter an infinite loop (but not all total PEGs are well-
formed).

Informally, a PEG is well-formed if it avoids left recursion. To avoid
excessive formalism, in this paper we will not concern ourselves with the
formal definition of well-formed PEGs. All the PEGs appearing in this paper
are total, and, for the readers familiar with the notion of well-formedness,
it will be possible to see that they are also well-formed. Furthermore, every
theorem in this paper referring to “total” PEGs will still hold if one restricts
our attention to “well-formed” PEGs.

Furthermore, there is an algorithm which accepts a PEG G as input, and
outputs a well-formed PEG G′, such that G′ recognises the same language
as G whenever G is total. This is akin to the fact that, despite it being
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undecidable if a given Turing machine runs in time n2, one can take any
Turing machine M and convert it into a (multitape) Turing machine M′

which does run in time n2, and which decides the same language as M if
M also runs in time n2 [see 35, 36].

3. Illustrative Examples

In this section we will study some examples which were instrumental for
us to understand the computational power of the model.

3.1. Power-Length PEGs

Our initial expectations for the computational power of PEGs were that
we should be able to treat them in a similar way as with context-free gram-
mars, by showing a pumping lemma for them.

This owed not so much to what we knew about the computational power
of PEGs — which already Birman and Ullman [2], and Ford [1], had shown
surpasses that of CFGs — but rather to the context in which one studies
PEGs: if PEGs are regarded in the context of formal languages, then we
should be able to prove some kind of pumping lemma. But soon we stumbled
on the following example from the PhD thesis of Birman [3]:

Theorem 5. The unary language of words whose length is a power-of-2

P2 = {a2n | n ≥ 0}

is in PEG.

How does this relate to pumping lemmas? The known pumping lemmas
are able to produce, given a sufficiently large string x in the language, a
strictly larger string y, also in the language, which is not much larger —
|y| ≤ |x|+O(1) is sufficient. But here is a language with a PEG, for which
|y| is always at least 2|x|. And soon after conjecturing that c · |x| might be
sufficient, for some universal constant c, one is disabused of that notion by
the following generalisation of the above:

Theorem 6. For every ℓ ∈ N, the language Pℓ = {aℓn | n ≥ 0} is in PEG.

Proof. Consider the following parsing expression grammar G:

IAmPowerLLength ← a!. / Helper !.

Helper ← aℓ−1 Helper a / aℓ−1(&Helper)a / a((!Helper)a)ℓ−1
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Let us analyse the behaviour of the recognition procedure RecG(Helper, x)
for each x ∈ {a}∗. The shortest x to be accepted will be aℓ; this string
is accepted via the third alternative of the Helper non-terminal, and every
symbol will be consumed, so aℓ is recognised by Helper. Then the second
string to be accepted will be aℓ−1aaℓ−1, via the second alternative — the
first alternative must have failed because it won’t find the last a. So the
second alternative is triggered, but only the first ℓ-many a symbols will
be consumed, leaving aℓ−1 symbols unconsumed (hence the string will be
“accepted”, but it won’t be “recognised”). Then the first alternative will
trigger for each new sequence of ℓ − 1 as, each time consuming a new a
symbol closer to the end of the input. Hence at this point in total we will
have consumed (ℓ − 1)ℓ new symbols, which together with the ℓ symbols
give us ℓ2 consumed symbols, and at this point the non-terminal Helper will
have consumed the entire input. Thus aℓ

2
is accepted by Helper. Then again

the second alternative is triggered, and then the first, until ℓ3 symbols are
consumed.

In the end, we conclude that Helper accepts any string of the form

as(ℓ−1)as z,

where the first position of the as-part is the first position at a power-of-ℓ
distance from the end of the input, and in this case it consumes the first
sℓ-many a symbols.

3.2. PEG for Sometimes-Palindromes

One may get a sense for the limitations of parsing expression grammars
when trying to produce a PEG for recognising palindromes. One quickly
comes to the conjecture that PEGs cannot find the middle bit of the input.
In the case of palindromes, we make the following conjecture:

Conjecture 7. The language of even-length palindromes has no PEG, i.e.

P = {wwr | w ∈ {0, 1}∗} /∈ PEG.

However, the above PEG for P2 is able to find the middle bit of every string
whose length is a power of two. This allows us to prove the following result:

Theorem 8. The language of palindromes of power-of-two length has a
PEG:

SP = {wwr | w ∈ {0, 1}2n , n ≥ 0} ∈ PEG.
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Proof. The following parsing expression grammar will do:

S ← &(IAmPowerTwoLength) Palindrome

Palindrome ← P!. / 00!. / 11!.

P ← 0 !(IAmPowerTwoLength) P 0

/ 1 !(IAmPowerTwoLength) P 1

/ 1 &(IAmPowerTwoLength) 1

/ 0 &(IAmPowerTwoLength) 0

IAmPowerTwoLength ← Helper !.

Helper ← Bit Helper Bit / Bit Bit

Bit ← 0/1

As in the proof of Theorem 6, the non-terminal IAmPowerTwoLength ac-
cepts exactly at the positions whose distance from the end-of-input is a
positive power of two, and consumes the entire input in that case. Hence
the expression (&IAmPowerTwoLength) accepts exactly at positions whose
distance from end-of-input is a positive power of two, and when it ac-
cepts it will not consume any input. On the other hand the expression
(!IAmPowerTwoLength) accepts exactly at positions which are not at positive-
power-of-two distance away from the end-of-input.

The recognition procedure associated with the non-terminal P now be-
haves as follows: one of the first two alternatives will be chosen repeatedly,
until the first position which is a positive power-of-two is reached; then, at
that position, one of the last two alternatives is chosen. (In each case, which
of the two alternatives gets chosen is determined by the next bit.) It follows
that P accepts exactly at those positions i such that the input after (and
including) position i is of the form:

x y z

where x = yr, and the leftmost position after i which is at a positive-power-
of-two distance away from the end-of-input, is the first bit of y. And when
P accepts such a string xyz, P consumes exactly the prefix xy.

Inspection of the rules for Palindrome and S concludes the proof.
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3.3. PEG for a Counting Language

The next example will be crucial in Sections 5.1 and 5.3, for reasons
which we will explain in Section 4.2.

Theorem 9. The following reversed counting language, over the alphabet
{0, 1,#, ◦}, has a parsing expression grammar:

{(n)r2 ◦ (n)2# (n− 1)r2 ◦ (n− 1)2# · · · # (0)r2 ◦ (0)2# | n ≥ 0}.

The characters # and ◦ are part of the input alphabet, and are being used
as separators, with no other special meaning. We will call # the outer
separator, and ◦ the inner separator.

Proof. The proof relies on the intuition built in the previous two proofs.
Roughly speaking, it implements the simple increment-by-one algorithm.

Let us begin by presenting only part of the grammar. We will omit the
rules associated with the non-terminal AddOneBlock, for now. The grammar
begins with the rules:

Sequence ← &(AddOneBlock) InvertedBlock Sequence / 0 ◦ 0#

InvertedBlock ← Inverted#

Inverted ← 1 Inverted 1 / 0 Inverted 0 / ◦

The first thing to notice is that InvertedBlock recognises exactly “inverted
blocks” of the form wr ◦w#, where w ∈ {0, 1}∗. Thus the inputs recognised
by Sequence are exactly sequences of inverted blocks which additionally are
accepted by the AddOneBlock non-terminal; the rules for this non-terminal
are:

AddOneBlock ← Bit+ ◦ AddOneCheck

AddOneCheck ← AddOneDigit AddOneCheck / #

Now AddOneBlock accepts strings of the form x ◦ y#, such that x ∈ {0, 1}∗,
and such that AddOneDigit accepts the input at every position of y. This
will be defined in such a way that, at the i-th bit of y (starting from the
right), AddOneDigit will accept if and only if the i-th bit of (n + 1)2 is yi,
where n is the number encoded in the following block (i.e. after the #).
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To enforce this behaviour, we use the following rules:

AddOneDigit ← &NextIs1 &Carry 0

/ &NextIs0 &Carry 1

/ &NextIs1 !Carry 1

/ &NextIs0 !Carry 0

/ &NextIsCircle &Carry 1

Carry ← . &NextIs1 &Carry / Bit #

The non-terminals NextIs0, NextIs1, and NextIsCircle will verify that the
input symbol in the corresponding position in the next block is a 0, a 1 or
a ◦, respectively. So, for example, if the input after the current position is

yiyi+1 · · · yk#xk · · ·xi−1xi,

then NextIs0 will accept iff xi = 0, NextIs1 will accept iff xi = 1, and
NextIsCircle will accept iff xi = ◦.

It results from this that the non-terminal Carry accepts if and only if
there is a carry at the current position, when we add 1 to the number after
the # separator: we implement the incremented 1 by setting the carry to
1 at the least significant bit, and then the carry propagates as long as the
number after the separator has a 1. Then AddOneDigit successfully checks
a single digit in the increment, in the usual way: a 1 and a carry sum to 0,
a 0 and a carry sum to 1, etcetera.

All we are left to do is defining the auxiliary non-terminals:

NextIs0 ← Bit SameLength 0

NextIs1 ← Bit SameLength 1

NextIsCircle ← Bit SameLength ◦

SameLength ← Bit SameLength Bit / #

Bit+ ← Bit Bit+ / Bit

Bit ← 0 / 1

Let us here make an important remark. The simple increment-by-one
algorithm works by scanning the bits from right to left. However it does
not appear to be possible to implement such a right-to-left scanning using
PEGs, but left-to-right scanning can be done, and this is what the NextIs∗
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non-terminals are doing, and checking inversion is possible, as shown by
the Inverted non-terminal. So we may implement right-to-left scanning by
inverting at each block and then using left-to-right scanning. This trick will
be called “reverse and scan”, and will be used in our simulation of Turing
machines by PEGs (in Section 5.1), as well as in our construction of a non-
real-time PEG language (in Section 5.3).

Conclusion. While carefully considering the examples above, one will get a
sense that the computational power of PEGs is much greater than it seems
at first glance. When considering why and how these examples work, one
is slowly drawn to a generalisation of the above: a computational model
for languages recognised by parsing expression grammars. This is what we
present in the next section.

4. Scaffolding Automata

Let us begin by giving an informal description of a scaffolding automaton.
Such an automaton is a computing machine which constructs a labelled,
directed, acyclic graph of bounded degree, which we call a scaffold. At the
start of the computation, the graph is a single node with a special end-marker
label; this is the base of the scaffold. Then as the computation proceeds new
input symbols are read and new nodes are added; the node which was last
added is called the top of the scaffold. At each step of computation, the
scaffolding automaton sees a new input symbol, and is allowed to look at
a finite-distance neighbourhood of the top; based on the edges which are
present, on the labels it sees, on the input symbol it just read, and on the
current state of its finite control, the automaton adds a new node to the
scaffold (the new top), and chooses the edges of this new node to point to
some nodes in the finite-distance neighbourhood it has just observed. This
is repeated until all input symbols are read.

4.1. Formal Definition

Definition 10 (Scaffold). Let d ≥ 1, t ≥ 0 be natural numbers, and let Γ
be an alphabet. An edge list of degree d is a tuple

e = (e(0), . . . , e(d− 1)) ∈ (N ∪ {∅})d.

A (d,Γ)-scaffold of size t + 1 ∈ N is a labelled multidigraph S = (V,E, L)
with set of nodes V = [t], a set of edge lists E = { ev ∈ (N∪{∅})d | v ∈ [t] }),
where

∀v ∈ [t] ∀i ∈ [d) ev(i) ∈ [v] ∪ {∅}, (“edges point backwards”)
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and a labelling function L : V → Γ ∪ {∅}.
We call t the top of the scaffold S. If ev(i) = ∅, one says that that node

v is missing edge i, otherwise we say that edge i is present at node v. If
L(v) = ∅, one says v is unlabelled. Let S(d,Γ) be set of all (d,Γ)-scaffolds
(of any length).

Given a tuple p ∈ [d)k, and a node v ∈ V in a (d,Γ)-scaffold S =
(V,E, L), we may inductively define the sequence

v0 = v and vj+1 =

!
evj (pj) if vj ∈ V,

∅ if vj = ∅.

If this sequence has vi = ∅ for some i ∈ [k], we say p is an invalid path from
v in S. Otherwise we say p is a (valid) path from v to vk in S.

Definition 11 (Neighbourhood). Given S = (V,E, L) ∈ S(d,Γ), k ≥ 0
and v ∈ V , the k-neighbourhood of v in S, Nk(S, v), is given inductively by
N0(S, v) = L(v) and Nk+1(S, v) = (L(v), Nk(S, ev(0)), . . . , Nk(S, ev(d−1))),
where we set Nk(S,∅) = ∅.

The set of k-neighbourhoods for (d,Γ)-scaffolds, Nk(d,Γ), is the set of
partial, d-ary, Γ-labelled trees. It may be inductively defined by letting
N0(d,Γ) = Γ ∪ {∅} and Nk+1(d,Γ) = (Γ ∪ {∅})× (Nk(d,Γ) ∪ {∅})d.

Definition 12 (Scaffolding automaton). A scaffolding automaton A is a
tuple A = 〈Σ, d,Γ, k,Q, δ, q0, F 〉, where,

• Σ is an alphabet, called the input alphabet,

• d ≥ 1, k ≥ 0 are natural numbers, called degree and distance, respec-
tively,

• Γ is an alphabet, called the working alphabet,

• Q is a finite set of states,

• q0 ∈ Q is the initial state,

• F ⊆ Q gives the accepting states, and

• the transition function is of type

δ : Q× Σ×Nk(d,Γ) → Q× Γ× ([d)≤k ∪ {SELF,∅})d.

A scaffolding automaton builds a scaffold while reading the input. The
initial scaffold is S0 = ({0}, {}, L) where L(0) = ∅. The transition function
δ transforms a scaffold as follows.
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Definition 13 (Single step of computation). Let S = ([t], E, L) ∈ S(d,Γ),
and δ be a transition function. For some q ∈ Q and σ ∈ Σ, let

(q′, γ, p0, . . . , pd−1) = δ(q,σ, Nk(S, t)).

The single-step function is then given by Stepδ,σ(q, S) = (q′, S′), where S′ =
([t + 1], E′, L′) ∈ S(d,Γ), with L′(t + 1) = γ, L′(v) = L(v) for v ∈ [t], and
E′ = E ∪ {et+1}, for the edge list et+1 = (v0, . . . , vd−1), where vi is obtained
by following path pi from t in S (and equals ∅ if pi is an invalid path from t
in S); if pi = ∅, then et+1(i) = ∅ also, and if pi = SELF, then et+1(i) = t+1.

We now formally define how the computation proceeds.

Definition 14. Let A = 〈Σ, d,Γ, k,Q, δ, q0, F 〉 be a scaffolding automaton,
and x = σ1 · · ·σn ∈ Σn. Then the computation of A on x, denoted A(x), is
a sequence

A(x) = ((q0, S0), (q1, S1), . . . , (qn, Sn)) ∈ (Q× S(d,Γ))1+n.

Having defined (qi, Si) up to some i < n — notice that q0 is the initial state
and S0 is the initial scaffold — we let (qi+1, Si+1) = Stepδ,σi+1

(qi, Si).

Definition 15. Let A = 〈Σ, d,Γ, k,Q, δ, q0, F 〉 be a scaffolding automaton,
and x = σ1 · · ·σn ∈ Σn. Let A(x) = ((q0, S0), (q1, S1), . . . , (qn, Sn)) be the
computation of A on x. We say that A(x) is accepting if qn ∈ F ; otherwise
we say it is rejecting. This defines the language decided by A:

L(A) = {x ∈ Σ∗ | A(x) is accepting}.

4.2. Illustrative Examples, Revisited

We will soon prove that a language has a parsing expression grammar
if and only if its reverse is decided by a scaffolding automaton — this is
Theorem 16 of Section 4.3. However, in order to become more familiar with
the model, let us begin by directly constructing scaffolding automata for the
reverse of the languages seen in Section 3.

For each ℓ ∈ N, the power-length language Pr
ℓ = Pℓ = {aℓn | n ≥ 0} is its

own reversal, so let us construct a scaffolding automaton Aℓ which decides
Pℓ. Informally, an automaton for Pℓ behaves as follows. The automaton
makes sure that every node in the scaffold has an edge to the previous node.
It first accepts after reading the first a, and then after reading the first ℓ-
many a’s — so it accepts a and aℓ. From this point onward a second edge
will be maintained that goes backward in the scaffold; we call this edge
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the backtracking edge; the idea is that for each ℓ − 1 new symbols read,
the backtracking edge in the new top node will be moved a single position
backwards (towards the base of the scaffold); once the backtracking edge
reaches the base, the automaton enters an accepting state and again points
the backtracking edge to the new top. This way, the next accepted string
will have ℓ-times as many symbols as the previous accepted string.4

Let us translate this informal description to the formal definitions given
in the previous section. This will be the only scaffolding automaton for
which we will do such a translation.

The scaffolding automaton for Pℓ is given by Aℓ = 〈Σ = {a}, d =
2,Γ = {⊠,□}, k = 2, Q, δ, q0, F = {q1, qℓ, q′′ℓ−1}〉, where Q = {q0, q1, . . . , qℓ,
q′1, . . . , q

′
ℓ−1, q

′′
1 , . . . , q

′′
ℓ−1}. The degree d equals 2, and at each node in the

scaffold edge 0 will always point to the previous node, and edge 1 will be
the backtracking edge. We will use wildcards when describing elements of
Nk(Γ, d), so for example ∗ means any element of Nk(Γ, d) and

□

□

∗ ∗

□

∗ ∗

means any element of Nk(Γ, d) (which consists of trees of depth 2, not trees
of depth 1) whose topmost three nodes are labelled as in the picture above.

The transition function for Aℓ may now be defined. In pages 19 and 20
below, we include the diagrams of the two scaffolds resulting from executing
A2 and A3 on the string a10. It might be helpful to follow those pictures,
to get a sense of how Aℓ works.

• If we are in the initial state and scaffold, the new top will point to the
base, will be labelled by ⊠, and we move to state q1:

δ (q0, a, ∗) = (q1,⊠,λ,∅).

Above, λ denotes the empty path, i.e., it is the path to the top node.
This edge, edge number 0, will always be set in this way, so that we
may always refer to the previous top node by following edge 0. The
label ⊠ will be used to distinguish the first node from the rest.

4Because ℓk = ℓk−1 + ℓk−1(ℓ− 1).
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• We then count ℓ − 1 symbols, as follows: For every i ∈ {1, . . . , ℓ − 1}
we set

δ (qi, a, ∗) = (qi+1,□,λ,∅).

• The state qℓ is accepting. The next symbol — symbol number ℓ + 1
— triggers the beginning of two nested loops, the outer loop and the
inner loop. As we begin the inner loop we point the backtracking edge
to the current node in the scaffold (given by the empty path λ):

δ (qℓ, a, ∗) = (q′1,□,λ,λ).

The inner loop will loop between the states q′1, . . . , q
′
ℓ−1, in such a way

that, for each sequence of ℓ−1 input symbols, the backtracking edge is
moved backwards a single position in the scaffold. This happens until
the backtracking edge reaches the node immediately before the base of
the scaffold, at which point we enter the state q′′1 , which runs the inner
loop one last time until reaching state q′′ℓ−1, which is accepting; at state
q′′ℓ−1, we “reset” the backtracking edge, and we restart the inner loop
at q′1. The outer loop consists of this resetting and restarting of the
inner loop.

Let us implement the inner and outer loops. The inner loop counts
ℓ− 1 symbols, as follows: for every i ∈ {1, . . . , ℓ− 2} we set

δ
"
q′i, a, ∗

#
= (q′i+1,□,λ, (1)).

When we have finished the inner cycle but have still not found the
⊠-marked node, we move the backtracking edge backwards, and loop
the inner cycle:

δ

$

%%&q′ℓ−1, a,

□

□

∗ ∗

□

□ ∗

'

(() = (q′1,□,λ, (1, 0)).

• Eventually the top node sees node 1 of the scaffold at distance 2
through the backtracking edge — which we may detect since node
1 is labelled with ⊠ instead of □. At this point we will finish running
the inner loop using the q′ states, and then run it one last time using
the q′′ states, which behave just like the q′ states, except that q′′ℓ−1 is an
accepting state whereas q′ℓ−1 is not, and q′′ℓ−1 resets the backtracking
edge.
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This is implemented by setting

δ

$

%%&q′ℓ−1, a,

□

□

∗ ∗

□

⊠ ∗

'

(() = (q′′1 ,□,λ, (1, 0)),

and, for each i ∈ {1, . . . , ℓ− 2},

δ
"
q′′i , a, ∗

#
= (q′′i+1,□,λ, (1)),

and finally
δ
"
q′′ℓ−1, a, ∗

#
= (q′1,□,λ,λ).

Compare q′′ℓ−1 with q′ℓ−1: q′′ℓ−1 is an accepting state whereas q′ℓ−1 is
not, and q′′ℓ−1 resets the backtracking edge, whereas q′ℓ−1 moves the
backtracking edge one node backwards.

In the setup above, each run of the outer cycle consumes ℓ − 1-times
as many symbols as the previous run, thus multiplying the total number of
consumed symbols by ℓ. For example, let us picture the run of A2 on the
string a10.

∅

q0

⊠

q1

□

q2

□

q′1

□

q′′1

□

q′1

□

q′1

□

q′1

□

q′′1

□

q′1

□

q′1

In the picture, the upper edge points to the previous node, and the lower
edge is the backtracking edge. The state of the automaton when reading
each node of the scaffold appears above the node, and the node is drawn as a
double circle if this state is an accepting state. As required, the automaton
accepts after seeing 1, 2, 4, and 8 symbols.

For further illustration, let us picture the run of A3 on a10:
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∅

q0

⊠

q1

□

q2

□

q3

□

q′1

□

q′2

□

q′1

□

q′2

□

q′′1

□

q′′2

□

q′1

We started by describing the behaviour for Aℓ in some detail, and then pro-
vided a fully formal specification. We will now limit ourselves to describing
the behaviour in sufficient detail, so that the reader may be convinced that
a fully formal specification may also be done.

Let us now sketch the scaffolding automata for the remaining two examples
of Section 3.

Recognising the language of palindromes of power-two length (which also
is its own reversal) uses the same idea of maintaining a backtracking edge,
and it is similar to the ℓ = 2 case of the implementation just shown. The
backtracking edge is used not only to ensure that the length of the input is
a power of two, but is also used to compare the last read symbol with its
corresponding symbol. The corresponding symbol, as it turns out, is exactly
the symbol under the backtracking edge, as may be verified by the reader
by inspecting the run of A2 on a10, pictured above. In order to make this
comparison, thus, the scaffolding automaton may simply label each node
with the symbol which was read at that position, and then compare the
label of the node under the backtracking edge with the symbol which is now
being read. The automaton remembers any violation of this requirement in
its finite control, and at each power-of-two length, it accepts if and only if
no violation was found.

A scaffolding automaton for recognising the counting language works as
follows. The first item in the sequence is of fixed finite length and thus
may be recognised — #0r ◦ 0. Then noticing that if we have recognised the
sequence up to · · · (n − 1)r2 ◦ (n − 1)2# and have an edge pointing to the
rightmost bit of (n− 1)2, then we may verify, one by one from left-to-right,
the bits of (n)r2 by the usual algorithm for addition. Then we must see a ◦,
and, having kept an edge pointing to the rightmost bit of (n)r2, we may now
recognise a reversal of (n)r2, i.e. (n)2. Then we must see a #. So we have
now recognised · · · (n)r2 ◦ (n)2#, and we repeat.
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This trick, which we have called reverse and scan, will be used in the
proofs of Theorems 18 and 23.

4.3. Equivalence with PEGs

The rest of this section is devoted to proving that scaffolding automata
exactly characterise parsing expression grammars:

Theorem 16. A language L ⊆ Σ∗ is in PEG if and only if its reverse Lr is
decided by some scaffolding automaton.

The question of whether PEG languages are closed under reverse now
arises quite naturally. We conjecture that they are not, but Theorem 18
below suggests it will be very hard to prove such a result.

Proof of Theorem 16, necessary direction. We begin by proving that a pars-
ing expression grammar for a language L ⊆ Σ∗ gives rise to a scaffolding
automaton for Lr. A reader who is familiar with the tabular parsing algo-
rithm of Birman and Ullman [2] for TDPLs should be able to easily see that a
scaffolding automata can simulate this algorithm (the edges will correspond
to entries in the table). Since Ford [1] has shown TDPLs are equivalent to
PEGs, that suffices for obtaining the result.

But Ford’s proof of equivalence between PEGs and TDPLs is complex
and delicate, whereas scaffolding automata are powerful enough to simulate
PEGs directly. So we will prove the result here in full.

Let G = 〈Σ,NT, R, S〉 be a total parsing expression grammar. Without
loss of generality, we may assume that every rule of G, has one of the forms:

• A ← ε, A ← FAIL, or A ← t, with A ∈ NT a non-terminal symbol and
t ∈ Σ a terminal symbol.

• A ← !B, A ← &B with A,B ∈ NT.

• A ← BC, A ← B/C with A,B,C ∈ NT.

Indeed, any grammar may be converted into the form above by replacing
sub-expressions with new non-terminal symbols.5

We then construct a scaffold automaton A = 〈Σ, d,Γ, k,Q, δ, q0, F 〉, where

• d = |NT| and k = |NT|.

5For example, one would convert the rule A ← &BCD/EF/!G to the rules A ← A1/A3,
A1 ← B1A2, B1 ← &B, A2 ← CD, A3 ← A4/A5, A4 ← EF and A5 ← !G.
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• Γ = {□}, as we will use a single label, to distinguish the end of the
input from the remaining nodes.

• Q = {qyes, qno}, as we will use only two states, which will behave
identically except that only one is accepting.

• q0 = qyes if λ ∈ L(G) and q0 = qno otherwise.

• F = {qyes}.

For q ∈ Q, σ ∈ Σ and N = (V,E, L) ∈ Nk(d,Γ), the transition function has

δ(q,σ, N) = (q′,□, p0, . . . , pd−1),

defined as follows. Fix some ordering of NT, and if A is the i-th non-terminal
symbol in NT, let us use pA in place of pi. Then:

• If A ← ε, set pA = SELF, i.e., create a self loop in the new top node.

• If A ← FAIL, or A ← σ′ with σ′ ∕= σ, then set pA = ∅ — the new top
node will be missing edge A.

• If A ← σ, then set pA = λ, i.e., create an edge from the new top to
the previous top node.

• If A ← !B, then we must first compute pB, and then we set pA = SELF
if pB = ∅, and pA = ∅ otherwise.

• If A ← &B, then we must first compute pB, and then we set pA = SELF
if pB ∕= ∅, and pA = ∅ otherwise.

• If A ← BC, then we must first compute pB; if pB = ∅, then we set
pA = ∅ also; otherwise pB is a path to some node vB in N ; this node
will have some edge to vBC = evB (C) in N corresponding to C; we
then let pA be a path to vBC , which is one edge longer than pB. This
is where we require k ≥ |NT|.6

6It may be proven by induction on |NT| that whenever we set an edge of the new top
node, it will be at a distance no greater than |NT| from the previous top node of the
scaffold. Indeed, the only rule which may cause the required distance to increase is the
concatenation rule A ← BC. In this case, when the edge pB points to a node vB which
is a distance i from the previous top node in the scaffold, then pA will point to the same
node vBC as the edge evB (C) of vB corresponding to the non-terminal C. So the distance
from the previous top node to vBC is now the distance to vB plus one, i.e., i + 1. Since,
as we argue later, there are no circular dependencies, the maximum distance is then |NT|.
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• If A ← B/C, then we must first compute pB and pC , and then we set
pA = pB, if pB ∕= ∅, and otherwise we set pA = pC .

In the above procedure, we may assume that pB and pC are computed
before pA, when the rule for A depends on B and C. This is because the
dependencies of the above procedure (when we say “we must first compute
. . . ”) correspond exactly to the subroutine calls of the recognition procedure
RecG . Hence, if we have a cyclic dependency above this will cause RecG to
enter an infinite loop, and our assumption that G is total implies that this
never happens on any input. Hence if at some point a cyclic dependency is
triggered, e.g. “before computing pA we must first compute pB and before
computing pB we must compute pA”, then it may safely be ignored by setting
the edge pA = ∅, since we are guaranteed, by the totality of G, that RecG
will not be called for the non-terminal A at this position, on any input.7

The above definition ensures that the following property always holds:

Claim 17. Let xr = xn · · ·x1 ∈ Σn and consider the scaffold S = (V,E, L)
obtained at the last step of the computation of A on xr. Then the edge of the
top node n ∈ V corresponding to the non-terminal A ∈ NT will be present if
and only if the corresponding parsing expression R(A) accepts x = x1 · · ·xn.
When present, this edge will point to the position of xr corresponding to the
symbol after RecG(R(A), x). I.e., if |RecG(R(A), x)| = ℓ ≥ 0 is the number
of consumed symbols, then en ∈ E has en(A) = n− ℓ.

Having defined how we create the new top node, it suffices to explain
how the new state q′ is chosen. We will set q′ = qyes if the new edge et(S),
where t is the new top node, and et(S) is the edge corresponding to the
starting non-terminal of G, has been set to equal a node with empty label,
i.e. if L(en(S)) = ∅. We set q′ = qno otherwise. Since only the base of
the scaffold has an empty label, we will be in an accepting state if and only
if S consumes the entire input seen thus far. By Claim 17 it follows that
L(A) = L(G).

Proof of Theorem 16, sufficient direction. Now letA = 〈Σ, d,Γ, k,Q, δ, q0, F 〉
be a scaffolding automaton accepting the language L. Assume without loss
of generality (by duplicating states) that A is only in the initial state q0 at
the very beginning of the computation, and never re-enters it after reading
the first symbol.

7Incidentally, it is based on this observation that one may convert a total PEG G into
an equivalent well-formed PEG. See the discussion after Definition 4.
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We construct a parsing expression grammar G = 〈NT,Σ, R, S〉 recognis-
ing Lr . The grammar G will have the following non-terminals:

• For each q ∈ Q, we have a non-terminal State(q).

• For each γ ∈ Γ, we have a non-terminal Label(γ).

• For each N ∈ Nk(d,Γ), we have a non-terminal Neighbourhood(N).

• For each p ∈ [d)≤k, we have a non-terminal Path(p).

• The initial non-terminal of the grammar is AutomatonAccepts.

Now we will define various grammar rules, of the form

N ← N1 / N2 / N3 / . . . ,

where N is one of the non-terminals State(q), Label(γ), etcetera, and
N1, N2, . . . are parsing expressions.
Below, when we say that we “add an alternative N ← E”, we mean
that the rule corresponding to the non-terminal N should have the
parsing expression E appearing as one of the parsing expressions Ni

on the right-hand side. If no alternative was added in this process, for
a given non-terminal N , then the rule corresponding to N is instead
N ← FAIL.
So, for example, if during the proof we add the alternative N ← A,
the alternative M ← B, then the alternative N ← C, and no other
alternatives were added, then the resulting grammar will have the
rules N ← A / C and M ← B, and for every non-terminal O other
than N and M , we will have the rule O ← FAIL.
This allows us to specify how each transition of the scaffolding au-
tomaton affects the different rules appearing in the grammar. If we
had to specify each rule of the grammar completely, then we would
need to define the rules of the grammar in a fixed order with respect
to the non-terminal appearing on the left side, which would obscure
the idea behind the construction.

Let Σ = {σ1,σ2, . . .} give the (finitely-many) symbols of Σ. The rules of
the grammar are defined as follows. We have the rule

State(q0) ← ! (σ1 / σ2 / . . .)
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and if N0 is the trivial neighbourhood containing a single unlabelled node
with no edges (i.e. the neighbourhood of the top node of the initial scaffold),
we also have the rule

Neighbourhood(N0) ← ! (σ1 / σ2 / . . .)

This ensures that the end of the input of the grammar (which is the begin-
ning of the input of the automaton) matches the initial state and neighbour-
hood.

Now for each possible q ∈ Q, σ ∈ Σ, and N ∈ Nk(d,Γ), we have a transition

δ(q,σ, N) = (q′, γ, p0, . . . , pd−1).

Recall that this transition means “if the scaffolding automaton is in state q,
reads input symbol σ, and the neighborhood of the current top node is N ,
then it will move to state q′, and create a new top node with label γ, with
edges given by the paths p0, . . . , pd−1 ∈ [d)≤k ∪ {SELF,∅}.”

Let us write Transition(q,σ, N) as an abbreviation for the parsing expression

&(σ State(q)) &(σ Neighbourhood(N)).

We then add the alternative

State(q′) ← Transition(q,σ, N).

These alternatives will be added for every transition given by δ. It will
follow, by induction on the length of the input string, that State(q) will
accept the string xi · · ·x1 if and only if the computation A(x1 · · ·xi) ends
in state q; even when it accepts, State(q) will never consume any input.
Let F = {f1, f2, . . .} give the (finitely-many) accepting states. We then
naturally have the rule

AutomatonAccepts ← (State(f1) / State(f2) / . . .) .*

Then let λ ∈ [d)0 be the sequence of length 0. We add the alternative

Path(λ) ← ε, i.e., Path(λ) is always accepted and consumes no input. Now
take a sequence ip ∈ [d)1+ℓ of length 1 + ℓ ≥ 1; then if pi /∈ {∅, SELF}, we
add the alternative

Path(ip) ← Transition(q,σ, N) σ Path(pi) Path(p)

25



If pi = ∅, we instead add the alternative:

Path(ip) ← Transition(q,σ, N) FAIL

And if pi = SELF, we instead add the alternative:

Path(ip) ← Transition(q,σ, N) Path(p)

It will follow by induction that the non-terminal Path(p) will accept the
string xi · · ·x1 if and only if path p goes from the top of the scaffold in the
computation A(x1 · · ·xi), i.e. from node i in that scaffold, to some node
j ≤ i. And, if the non-terminal Path(p) accepts xi · · ·x1, it will consume
the input exactly up to (but not including) position j, i.e., it will consume
the string xi · · ·xj+1 (the entire string will be consumed if j = 0, i.e., if the
edge points to the base of the scaffold). Finally, we add the alternative

Label(γ) ← Transition(q,σ, N)

The above alternatives may be added in any order, since the various con-
ditions Transition(q,σ, N) are disjoint. The following observation is crucial
to understand why the above definitions are well-founded: the expression
Transition(q,σ, N) uses State and Neighbourhood non-terminals, but only
after consuming symbol σ; so the accepting/consuming of the various non-
terminals depends on the accepting/consuming of the same non-terminals,
but in prior positions of the input, where this has already been determined.

All we are left to do is explain how each Neighbourhood is defined. But
notice that knowing whether the top of a scaffold has a certain neighbour-
hood consists of checking that certain paths exist, and that the nodes under
these paths have certain labels, and that certain other paths do not exist.
For example, if we wish to check for the neighbourhood N ∈ N2(2, {□,⊠})
where the top node is labelled □, the second edge of the top node leads to a
child labelled □ and that child has itself a child labelled ⊠ on its first edge,
i.e., if N is the neighbourhood:

□

□

⊠
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we then have the rule:

Neighbourhood(N) ←
&Label(□)

!Path(0) &Path(1)

&(Path(1) Label(□))

&Path(1, 0) !Path(1, 1)

&(Path(1, 0) Label(⊠))

With this observation the proof is now complete.

We would like to make the following remark. It may be observed in the
grammar above, which simulates a given scaffolding automaton, that the
different alternatives may all be added in any order, since they cover disjoint
cases. The reader should now suspect that the prioritized choice operator /
may, after all, be replaced by the usual disjunction operator | from context-
free grammars. This is entirely correct, since A / B is equivalent to A |
(!A)B, where ! is the negation operator of PEGs. It is the ! operator
that we cannot do away with: our simulation of scaffolding automaton uses
the ! operator both for detecting the end of the input and for detecting
the absence of a path in the scaffold. Interestingly, it is possible to modify
the above construction to remove the second use case, by adding an extra
family of non-terminal symbols NoPath(p), that accepts the input exactly
when p is not a valid path starting at that position. The result of this is that
any parsing expression grammar may be replaced by a grammar where the
operators appearing in parsing expressions are &, |, and the special symbol
EndOfInput, which accepts only at the end of the input. Details are left to
the reader.

5. Applications

In this section we will use Theorem 16 to prove all of the remaining
results mentioned in the abstract.

5.1. “Universality”

Theorem 18. Let f : {0, 1}∗ → {0, 1}∗ be any computable function. Then
there exists a computable function g : {0, 1}∗ → N such that the language

L = {f(x)$ℓx | x ∈ {0, 1}∗, ℓ ≥ g(x)} ⊆ {0, 1, $}∗

has a parsing expression grammar.
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Proof. We describe a scaffolding automaton for the reverse language Lr,
and then the result follows from Theorem 16. The basic idea is to use
the reverse and scan trick. For this purpose, let M be a one-tape Turing
machine computing f .

The automaton first reads the input xr, copying the symbols of xr to the
labels of the corresponding nodes and adding an edge connecting each node
to the previous one. It then finds the first $ symbol; at this point it continues
reading $ symbols, while successively labelling the corresponding nodes of
the scaffold with the successive configurations of the Turing machine M on
input x. After this it checks that the input matches the output of M on
input x. So, if ci is the configuration of M on input x at time-step i, and
M runs for t time steps on input x, then the labels, when seen from first to
last, form the string:

labels: xr## c0#cr0## c1#cr1## c2#cr2## · · · ct#crt## # . . .#* +, -
input: xr $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ · · · $ $ $ $ $ f(x)

Here # is being used as a separator. Note that $ is also being used as a
separator, but the symbol $ is part of the actual language being recognized,
and the symbol # is part of the alphabet being used to label the scaffold.

One may verify that the above labelling can be produced by a scaffolding
automaton, provided we choose a reasonable encoding for Turing machine
configurations (and for this purpose the working alphabet can be as large
as desired). For example, we may encode a configuration by the sequence of
symbols on the tape, and the position of the tape head will be additionally
marked with some (finite) information containing the current state of the
computation. With such an encoding, the scaffolding automaton can, for
each i, produce the labels in the sequence ci+1, provided that when reaching
the first symbol of ci+1, the top of the scaffold has an edge pointing to the
last symbol of cri (which is easy to ensure), and that each node in the scaffold
has an edge to the previous node; then the labelling ci+1 is produced one
symbol at a time by scanning cri starting with its last symbol, and producing
the symbols of ci+1 according to the transition function of M . Similarly, for
each i, one may produce the labels in the sequence cri , provided that when
reaching the first symbol of cri , the top of the scaffold has an edge pointing
to the last symbol of ci; then the labelling cri is produced by copying one
symbol at a time.

The scaffolding automaton finally accepts if the last $ symbol corre-
sponds exactly to the last position of the (reversal of) last configuration
of the computation of M on x, and the last $ symbol is followed by the
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string y which is the reverse of the output written on the tape, in that final
configuration; i.e. if it is followed by f(x).

We may now show that the recognition procedure underlying parsing expres-
sion grammars is complete for polynomial time, under logspace reductions.
This was previously unknown, and stands in contrast with context-free gram-
mars. In the case of context-free grammars, we may define the complexity
class LOGCFL, to be the class of languages which are reducible to context-
free languages under logspace reductions. It may be proven that this is
exactly the class of languages decidable by log-depth Boolean circuits where
the OR gates have arbitrary fan-in, and the AND gates have fan-in 2 [see
37, p. 137]. In particular, LOGCFL is a sub-class of NC2, which is believed
to be strictly contained in P.

In contrast, if we were to define an analogous complexity class LOGPEG,
containing those languages that are reducible, via logspace reductions, to
PEG-recognizable languages, it turns out that LOGPEG = P. It is easy
to see that LOGPEG ⊆ P, since PEG ⊆ P and P is closed under logspace
reductions. The other direction follows as a corollary of Theorem 18.

Corollary 19. There is a language L ∈ PEG which is complete for P under
logspace reductions.

Proof. Notice in the proof of Theorem 18 that the resulting function g :
{0, 1}∗ → N grows quadratically in the running time of the Turing machine
M . Now consider the function f is such that f(x) = 1 if x encodes a
tripple 〈N, 0t, y〉 where, in turn, N encodes a Turing machine which accepts
input y in t or fewer steps, and t ≥ |N | + |y|. And let f(x) = 0 otherwise.
Then, computing f(x) is a problem which is complete for polynomial time
under logspace reductions. There are machines for computing f in time
O(t2), and hence g(〈N, 0t, y〉) = O(t4) ≤ c · t4 for some sufficiently large
integer constant c. The language L of Theorem 18 is thus also complete for
polynomial time under logspace reductions, since f(〈N, 0t, y〉) = 1 if and
only if 1$c·t

4〈N, 0t, y〉 ∈ L, and the string 1$c·t
4〈N, 0t, y〉 may be computed

from 〈N, 0t, y〉 in logarithmic space.

5.2. Impossibility of a Pumping Lemma

We may define a pumping lemma by the following:
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Definition 20. A pumping lemma for PEGs is a total computable function
A such that, for every total8 PEG G, there exists a length n0 such that for
every string x ∈ L(G) of size |x| ≥ n0, the output y = A(G, x) is in L(G)
and has |y| > |x|.

Some explanation is required as to why this definition is the right one.

• The first observation we may make is that, to our knowledge, every
pumping lemma proven thus far either already is of the above form
(e.g. [25, 28, 29]) or can be made to work in the above form with few
modifications (e.g. considering resource-bounded Kolmogorov com-
plexity in [26]).

• The second observation is that if A is not required to be total, then
the definition trivialises: there exists a pumping lemma for every
recursively-enumerable language. Indeed given any Turing machine
M and input x, A can simply dovetail on all y larger than x until it
finds a larger y accepted by M (if no such y is found, M decides a
finite language, and so the requirement on A is trivially satisfied).

• We mention also that the definition is equivalent to one where A is
required to produce an infinite sequence y(1), y(2), . . . of strings of in-
creasing size, which is what one typically sees in pumping lemmas.

Theorem 21. There is no pumping lemma for PEGs.

We must show that any candidate computable function A must fail on
some grammar. Intuitively one may quickly realise, by way of Theorem
18, that the size of “the next string” in the language decided by a parsing
expression grammar may well grow as high as any computable function of
our choice. Hence given any candidate procedure A meant to serve as a
pumping lemma, we should be able to find a PEG language such that the
gap between consecutive words grows faster than what the existence of A
would allow. The only difficulty in making this argument precise is that we
wish to run algorithm A on a PEG for the very same language we are trying
to define. This is solved much the same way as in the proof of Kleene’s

8Although the totality of a given PEG is undecidable, the results of this section still
hold if “total” is replaced by “well-formed”. (Recall that well-formedness of PEGs is a
decidable syntactic restriction which ensures totality. See remarks after Definition 4.) It
should be understood, hence, that the impossibility of a pumping lemma is not a hidden
consequence of the undecidability of totality.
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second recursion theorem (see [38], §6.1): one shows that it is possible to
construct a scaffolding automaton which has access to its own encoding.

Proof. For any scaffolding automaton X, let 〈X〉 be a binary encoding of
X. Let S ∈ S(d,Γ) be a scaffold and w ∈ Γn. We say that S sees w written
backwards if, for every ℓ ∈ [n), following the first edge once and then the
second edge ℓ times, from the top of S, will place us in a node labelled by
wn−ℓ. Suppose we have a scaffolding automaton C, which accepts an input
of the form $s〈X ′〉, where 〈X ′〉 in turn is the encoding of some scaffolding
automaton X ′. Let 〈C〉 be an encoding of C. We then define a scaffolding
automaton X〈C〉, which recognises a language L(X〈C〉) = {y1, y2, . . . }, via
the following procedure:

• X〈C〉 begins by checking that the input begins with 〈C〉, in such a way
that after this check, the resulting scaffold sees 〈C〉 written backwards;

• X〈C〉 also maintains an edge from the current top node to the previous
top node, at every step of the computation, and always copies the
input into the labels of the scaffold, so it is not forgotten.

• Then X〈C〉 simulates a run of C itself, which by assumption recognises
a string of the form:

$s〈X ′〉

An edge to the last symbol of 〈X ′〉 is preserved by X〈C〉 throughout
the rest of the computation (on every top node henceforth);

• Then X〈C〉 checks that the following input is the sequence #Start#,
and enters an accepting state at this point.

• The scaffold now sees the string y1 = 〈C〉$s〈X ′〉#Start# backwards.

• Then for each j = 1, 2, . . ., the automaton repeatedly:

– Simulates the computation of A(G〈X′〉, y
r
j ), in order to recognise

an input of the form $ajA(G〈X′〉, y
r
j )#, where G〈X′〉 is the gram-

mar recognising the reverse of the language decided by X ′. The
grammar G〈X′〉 is (constructively) given by Theorem 16, and the
automaton can recognise an input of this form by way of Theorem
18. Here we require that A is total.

– After scanning this input (while copying it into the labels of the
scaffold), the automaton enters an accepting state.

– The scaffold now sees backwards: yj+1 = yj$
ajA(G〈X′〉, y

r
j )#.
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Let B be the scaffolding automaton which, under the assumption that the
top of the scaffold sees an encoding 〈C〉 written backwards, accepts a string
of the form

$b〈X〈C〉〉.

Such a scaffolding automaton B exists, by Theorem 18. Let 〈B〉 be the
code for the above scaffolding automaton. Then let us consider the scaf-
folding automaton X〈B〉, which accepts y1, y2, . . . — this sequence is infinite
by our assumption that A is total. Note that setting C = B satisfies the
assumption that X〈C〉 makes on C. The string 〈X ′〉 recognised during execu-
tion of X〈B〉 is exactly 〈X〈B〉〉. Hence G〈X′〉 = G〈X〈B〉〉 is a parsing expression
grammar deciding the same language as X〈B〉, in reverse. i.e. G〈X〈B〉〉 recog-
nises the strings yr1, y

r
2, . . .. Now let n0 be an arbitrary natural number, and

consider yn0 ; clearly |yn0 | ≥ n0; and yet the smallest string larger than yn0

which is accepted by X〈B〉 is yn0+1 = yn0$
an0A(G〈X〈B〉〉, y

r
n0
)# — but its

size is strictly greater than A(G〈X〈B〉〉, y
r
n0
), and so is the size of yn0+k for

any natural k > 1; hence A must fail on the grammar G〈X〈B〉〉.

5.3. PEGs vs. Online Turing Machines

Because scaffolding automata are machines which read a single input
symbol at a time, and which do only a constant number of operations per
symbol read, they can be thought of as a real-time computational model.
This led us to conjecture that the reverse of any language in PEG could be
recognised by a real-time Turing machine. However this conjecture turns
out to be demonstrably false.

Let us begin by the following definition:

Definition 22. An online Turing machine is a Turing machine where the
head of the input tape can only move in one direction. At the beginning of
the computation, an input x ∈ Σ∗ is written on the the input tape, and the
head of the input tape sits over the leftmost symbol of x, and every time the
tape head is moved to the right, we say that another symbol from the input
was read. For convenience, an additional auxiliary tape is provided where
the input size |x| is given in binary.9

9So that one will not think that the lower-bounds we are about to prove result, some-
how, from the fact that the machine does not know the input size. Indeed the reason why
the lower-bound holds is more profound. We may even fill the auxiliary tape with any
content we please (as a function of n), i.e. the lower-bounds here proven will hold even in
the presence of non-uniform advice.
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The class Online(t(n)) is the class of languages X ⊆ Σ∗ which can be
decided by an online Turing machine M , in the following way. If x ∈ Σn,
then M(x) accepts if x ∈ X and rejects otherwise, and furthermore, the
computation M(x) does at most t(n) steps between each input symbol read.

This section is devoted to proving the following:

Theorem 23. There exists a language L ∈ PEG such that neither L nor Lr

is in Online(t(n)), for any t(n) = o(n/(log n)2).

The proof of this theorem uses the method of Rosenberg (see [39], §4.1),
for proving lower-bounds against online Turing machines. We will explain
it here for completeness.

Definition 24. Let L ⊆ Σ∗ and ℓ,m ∈ N. We then say that two strings
y1, y2 ∈ Σℓ are (L, ℓ,m)-equivalent, which we write y1 ≡ℓ,m

L y2, if

∀x ∈ Σm(y1 · x ∈ L ⇐⇒ y2 · x ∈ L)

We may then define the sets EL(ℓ,m) = Σ∗/ ≡ℓ,m
L of (L, ℓ,m)-equivalence

classes. To each L ⊆ Σ∗, then, corresponds a function EL : N × N → N
giving the number of (L, ℓ,m)-equivalence classes:

EL(ℓ,m) = |EL(ℓ,m)|

The framework of Rosenberg then rests on the following crucial observation:

Theorem 25 ([31]). If L ∈ Online(t(n)), then EL(ℓ,m) ≤ 2O(m·t(ℓ+m)).

Proof. Let M be an online Turing machine that decides whether z ∈ L
by making ≤ t(|z|) computation steps per symbol. Let y · x ∈ Σn, where
y ∈ Σℓ, x ∈ Σm and n = ℓ + m. Consider the configuration C of the
computation M(y · x), after M has read all the ℓ symbols in y and done
whichever computation it does on them, and precisely before it reads the
first symbol of x. AsM then proceeds to read them symbols of x, it can only
do t(n) steps per symbol; and thus if one would describe the configuration
C partially, by giving only the state of the finite control, the position of the
tape heads, and the contents of the tape heads at a distance of ≤ m·t(n) from
the position of the tape heads, then one can simulate the entire computation
to its very end.

But since there are only 2O(m·t(n))-many such possible partial descrip-
tions, then this behaviour can only proceed in so-many different ways.
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As a warm-up, we begin by showing the following easy result:

Theorem 26. There is a language K ⊆ {0, 1,#}∗ in PEG, such that

EK((D + 1) · 2D, D) ≥ 22
D

for all D ∈ N. Hence K /∈ Online(t(n)), for
any t(n) = o(n/(log n)2).

Proof. Consider the language:

Kr = {x#w1#w2# · · ·#wN | x ∈ {0, 1}∗, ∀i wi ∈ {0, 1}∗, ∃i xr = wi}.

A scaffolding automaton can easily decide Kr by maintaining an edge point-
ing to the last symbol of x, and then for each wi which it sees, scanning x
in reverse and comparing it with wi. Hence K ∈ PEG by Theorem 16.

But looking carefully at K = {w1#w2# · · ·#wN#x | ∃i xr = wi}, one
sees that if we have N = 2D strings wi each of length D, then the suf-
fixes x that cause acceptance are exactly those x’s in the set {w1, . . . , wN},
and there are 2N − 1 = 22

D − 1 such sets. The empty set may be ob-
tained by a malformed prefix, where none of the wi has length D, but their
concatenation, with # as a separator, still has length (D + 1)2D. Hence

EK((D + 1)2D, D) = 22
D
.

Now, if K were in Online(t(n)) for t(n) = o(n/(log n)2), by Theorem 25

we would have EK((D+1)2D, D) ≤ 2D·t((D+1)2D) = 2o(2
D), a contradiction.

Now we will show the following:

Theorem 27. There is a languageH ⊆ {0, 1,#}∗, decidable by a scaffolding

automaton, such that EH(O(D · 2D), D) ≥ 22
D
.

Hence H /∈ Online(t(n)), for any t(n) = o(n/(log n)2).

The proof of this theorem is significantly more involved, and uses the
reverse and scan trick we have seen before. So let us first observe that from
K and H we may obtain the language L promised by Theorem 23. Let
Lr = {0x0 | x ∈ Kr} ∪ {1x1 | x ∈ H}. It is easy to see that Lr has a
scaffolding automaton, since Kr and H both do, and so L ∈ PEG. But an
online Turing machine for deciding Lr can be easily converted into an online
Turing machine for deciding H, and an online Turing machine for deciding
L can be converted into an online Turing machine for deciding K. Hence
neither Lr nor L are in Online(t(n)) for any t(n) = o(n/(log n)2).
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Proof of Theorem 27. Given (d,Σ)-scaffold G = (V,E, L) (as per Definition
10) with d ≥ 2, and a node v of G, let us define the map PathG,v : {0, 1}∗ →
V ∪ {∅}, so that PathG,v(x1 · · ·xn) = v′ if the sequence of bits x1 · · ·xn ∈
{0, 1}n is a valid path from v to v′ in G (as per Definition 10). If we repeat
Definition 10 here, for explicitness, we get that PathG,v is given inductively
by

• PathG,v(λ) = v; and

• if PathG,v(x1 · · ·xn) = w ∕= ∅ and ew is the edge list corresponding to
node w of G, then PathG,v(x1 · · ·xnxn+1) = ew(xn+1); and

• if PathG,v(x1 · · ·xn) = ∅, then PathG,v(x1 · · ·xnxn+1) = ∅ also.

Then let us define the binary-depth of G with respect to v, BinDepthG(v),
to be the largest D ∈ N such that PathG,v is “total” and injective on
{0, 1}≤D, i.e. ∅ /∈ PathG,v({0, 1}≤D), and |PathG,v({0, 1}≤D)| = 2D+1 − 1.
Intuitively explained: when recursively following the first two edges of v and
its descendants, we will find a complete binary tree of depth D. Note that,
although in general, in a scaffold, we can have two distinct paths leading to
the same node, our notion of binary-depth requires that all 2D+1−1 different
paths in {0, 1}≤D lead to distinct nodes of G. If BinDepthG(v) ≥ D, we will
write BinTreeG(v,D) to denote the complete binary tree of depth D, rooted
at v, obtained by recursively following the first two edges until depth D is
reached.

A scaffolding automaton constructs a scaffold as it processes each new
input symbol. We will devise a scaffolding automaton A as follows. When
A is given any binary string y ∈ {0, 1}ℓ, with

ℓ = D + 1 +

2D+1−1.

n=0

(2 · |n|2 + 2) = O(D · 2D) (1)

where |n|2 is the size of the smallest binary representation of the num-
ber n, then the resulting scaffold will have binary-depth ≥ D, with re-
spect to the first child of the top node. Formally said, the computation
A(y) = ((q0, S0), . . . , (qℓ, Sℓ)) constructs the scaffold Sℓ = ([ℓ], Eℓ, Lℓ) hav-
ing BinDepthSℓ

(eℓ(0)) ≥ D.

Before showing how this is done let us show why it is enough. The
language H will be decided by a scaffolding automaton A′, in the following
way: as long as A′ only sees 0s and 1s, it will run the algorithm of the
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automaton A. Besides the labels which A places at each node, we also
copy the corresponding input bit into that node, i.e. our alphabet will be
the product of A’s alphabet with {0, 1}. Then we see our first separator
symbol #, and we stop running A. Let us call y to the part of the input
which precedes the separator symbol. After the separator, we expect to see
a string x ∈ {0, 1}∗, and we interpret x as if it were a path down the tree
which is embedded in the scaffold. As we read the symbols of x, we thus
maintain some edge following down this path. In this way we will traverse
some bit positions of y, and we can see which bits of y appear in these
positions, since we have copied the bits of y into the labels; then, whenever
y has a 1 at such a position, we enter an accepting state, and whenever y
has a 0, we enter a rejecting state.

When |y| = ℓ as above, we have a full binary tree of depth D, and
thus the strings x ∈ {0, 1}D will point to 2D different positions of y. These
positions are distinct (as required by the definition of binary-depth). Thus

there are 22
D
ways of filling such positions with bits. Each such way of filling

these positions will give a different (H, ℓ, D)-equivalence class. Hence

EH(ℓ, D) ≥ 22
D
.

Now to construct A. The base of the method is similar to how we built a
scaffolding automaton for the counting language, in Section 4.2. The scaffold
constructed by A will be labelled by the sequence

(0)r2 ◦ (0)2# (1)r2 ◦ (1)2# · · · (n− 1)r2 ◦ (n− 1)2# (n)r2 ◦ (n)2# · · ·

where for each natural number k, (k)2 is its binary representation, and (k)r2
is the reverse of its binary representation. The characters # and ◦ are
being used as separators, so # is called the outer separator, and ◦ the inner
separator. It may be worthwhile to actually write it down:

0 ◦ 0# 1 ◦ 1# 01 ◦ 10# 11 ◦ 11# 001 ◦ 100# 101 ◦ 101# 011 ◦ 110# . . . .

It is not hard to see that such a labelling can be obtained by a scaffolding
automaton: the automaton can copy what is before each inner separator
symbol ◦ to appear after it in reverse, and then, after writing an outer
separator symbol #, it can scan the binary representation of the number n,
appearing before the #, from the lowest to highest-order bit, and apply the
usual algorithm for incrementing a binary number by 1, thus writing down
the binary representation of n+ 1 in reverse. The nodes of the scaffold are
thus divided into blocks, and the n-th block is of the form (n)r2 ◦ (n)2#.
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We must now explain how the edges of the tree are added to the scaffold.
The invariant we would like to preserve at the n-th block, is the following.
Suppose xk · · ·x1 = (n)2 is the binary representation of n, so that the n-th
block is labelled by

x1 · · ·xk ◦ xk · · ·x1#

Let v1 · · · vk s v′k · · · v′1 s′ be the nodes of the scaffold that get the labels
above, i.e., the nodes of the scaffold corresponding to the n-th block. We
will preserve the following invariant.

Invariant 1. It will always hold, on every block:

• If xi = 1 for some i ∈ {2, . . . , k}, then we will have evi(0) = ev′i(0),
and BinDepth(evi(0)) ≥ i− 1.

• Furthermore, for distinct i, j ∈ {2, . . . , k} with xi = xj = 1, the trees
BinTree(evi(0), i− 1) and BinTree(evj (0), j − 1) are node-disjoint.

I.e., one should think that if xi = 1, the first edge leaving vi and v′i points
to the root of the same full binary tree of depth i − 1. And that the two
trees corresponding to different vi and vj share no node.

For simplicity, let us momentarily ignore the “Furthermore” part of the
invariant, and later argue that it will be upheld.

Now suppose that this invariant holds for the n-th block, let us show how
the algorithm needs to behave in order to make it hold for the (n + 1)-th
block. Suppose, for simplicity, that n and n+1 are both k-bit numbers (the
case when n is k-bits and n+1 is k+1 bits is similar). Let xk · · ·x1 = (n)2
and yk · · · y1 = (n + 1)2 be their binary representations. The algorithm
constructs the first half of the (n + 1)-th block by scanning backwards the
second half of the n-th block.

So, suppose that the second half of the n-th block has nodes v′k · · · v′1,
which are labelled xk · · ·x1, respectively. Let s be the node which is labeled
by the outer separator # between blocks n and n + 1. Suppose that the
algorithm is about to add the nodes w1 · · ·wk to the first half of the (n+1)-
th block, and intends to write the labels y1 · · · yk into them. This is done by
reading xk · · ·x1 backwards: when the algorithm writes the label y1 into w1,
he has an edge pointing to v′1 where he can read x1, when he writes y2 into
w2 he has an edge pointing to v′2, which is labelled by x2, and so on. Such
“backwards scanning” is easy to do provided we maintain an edge at each
node which points to the previous node. The algorithm will also maintain
an edge pointing to s.
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When incrementing x1 = 0, then we will have y1 = 1, and so we must
make sure that ew1(0) has binary-depth ≥ 0: this is easily ensured by letting
ew1(0) = s, ew1(1) = ∅.

When incrementing x1 = 1, we will have y1 = 0; in this case we set
ew1(0) = v′1, and also set ew1(1) = s. It now holds that BinDepth(w1) ≥ 1,
and we will use this as the base case of an induction on the length of the 1-
prefix of x. This is illustrated in the figure below, for block number n = 39,
so that (n)2 = x6 . . . x1 = 100111. So suppose that xi−1 = 1, . . . , x1 = 1 are
the labels of v′i−1, . . . , v

′
1, and that we have written y1 = 0, . . . , yi−1 = 0 as

the labels of w1, . . . , wi−1. We are about to add the node wi to the first half
of the (n+1)-th block, using our pointer to v′i in the second half of the n-th
block. Suppose by induction that BinDepth(wi−1) ≥ i− 1. Now look at xi.
If we are not finished with the 1-prefix of x, i.e. if xi = 1, then we must set
yi = 0. Our invariant for the previous block tells us that BinDepth(ev′i(0)) =
i − 1, and our induction hypothesis gives us BinDepth(wi−1) = i − 1. So
we create the new top node wi with ewi(0) = ev′i(0) and ewi(1) = wi−1, so
that BinDepth(wi) = i. This satisfies our induction hypothesis. This case
pertains to nodes w2 and w3 of the figure below. If we have reached the
point where the carry stops, i.e., if xi = 0, then we will set yi = 1, and
for this we create the new top wi and set ewi(0) = wi−1, ewi(1) = ∅. This
satisfies our invariant for the first half of (n+ 1)-th block (there is no carry
in this case). This case pertains to node w4 of the figure below. Notice how
BinDepth(w3) = 3, i.e., we have a complete binary tree of depth 3 rooted at
w3, which we have drawn in thicker lines for emphasis.
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0
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1
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#
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0

1

0

w2

0

1

0

w3

0

1

0

w4

1

0w5

0

w6

1

0

y =

Once we find the first xi = 0, we proceed by copying the remaining nodes
and their edges; i.e. we set yi = xi, ewi(0) = ev′i(0), ewi(1) = ev′i(1), until we
find the inner separator ◦. After the inner separator ◦, we simply copy what

38



we have done, i.e. we set y′i = yi, ew′
i
(0) = ewi(0), ew′

i
(1) = ewi(1), until we

find the outer separator #.
To keep things simple we have not considered the “Furthermore” part,

so let us deal with it now. We have y1 = 0, . . . , yi−1 = 0, yi = 1 for
some i, which is the last point reached by the carry. Now notice that
BinTree(wi−1, i− 1) (which is the tree under w3 in the figure above) is made
from fresh nodes, namely w1, . . . , wi−1, s, and v′1, together with the sub-trees
BinTree(ev′j (0), j − 1), for j < i. These subtrees are, by the “furthermore”

part of the invariant, disjoint from any sub-trees BinTree(ev′j (0), j − 1) with

j > i. Hence BinTree(wi−1, i−1) will also be disjoint from BinTree(ewj (0), j−
1), for j > i.

The result of the above is that block number 2D+1 will have the labels

0D1 ◦ 10D#

and if we let v be the node which is labelled by the first 1 appearing in this
block, then we will have BinDepth(v) = D. The expression (1) for ℓ is simply
the position of the input bit corresponding to the node v: we have 2D+1− 1
many blocks before we reach the 2D+1-th block, and the n-th block has size
2|n|2 + 2; then we have the D + 1 symbols 0D1, the last of which is at the
position when the node v is the top of the scaffold.
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