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Abstract. 2D regular expressions represent rational relations over two
alphabets. In this paper we study the average state complexity of partial
derivative standard transducers (TPD) that can be defined for (general)
2D expressions where basic terms are pairs of ordinary regular expres-
sions (1D). While in the worst case the number of states of TPD can
be O(n2), where n is the size of the expression, asymptotically and on

average that value is bounded from above by O(n
3
2 ). Moreover, asymp-

totically and on average the alphabetic size of a 2D expression is half of
the size of that expression. All results are obtained in the framework of
analytic combinatorics considering generating functions of parametrised
combinatorial classes defined implicitly by algebraic curves. In particu-
lar, we generalise the methods developed in previous work to a broad
class of analytic functions.

1 Introduction

We consider 2D expressions that represent rational relations over two alpha-
bets. Expressions and transducers with labels over finitely generated monoids
were studied by Konstantinidis et al. [12, 11], and also by Demaille [7]. Partial
derivative methods have become a standard method to manipulate several kinds
of expressions [1, 14, 7, 2, 6, 5], not only because they are in general more succinct
than other equivalent constructions, but for some operators they are easier to
define (e.g. for intersection [2]). For regular languages, the average complexity of
partial derivative automata (APD), considering different sets of operations, has
been studied [3, 2, 5]. Using the framework of analytic combinatorics, for ordinary
(1D) regular expressions of (tree-)size n (with concatenation, union and Kleene
star) it was shown that, asymptotically and on average, the number of states of
APD is 1

4n, (being the worst-case O(n2)) while for expressions with intersection of
(tree-)size n that number is upper bounded by (1.056+ o(1))n (being the worst-
case O(2n)) [3, 4, 2]. In this paper we consider general 2D expressions where
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basic terms are pairs of 1D regular expressions. We define a partial derivative
standard transducer construction (TPD) from these expressions, and study its
average state complexity. The analytic combinatorial methods used for ordinary
1D regular expressions could not be applied for 2D expressions. In particular, to
get explicit expressions for the generating functions involved would be unman-
ageable. So, generating functions implicitly defined by algebraic curves must be
used, and in previous work it was shown how to get the required information
for the asymptotic estimates with an indirect use of the existence of Puiseux
expansions at singularities [6]. In this paper, as the involved algebraic curves are
more intricate, we needed to refine the methods described in the literature, and
use Puiseux expansions together with the Newton’s polygon technique to find
the estimates for the asymptotic behaviours of parametrised families of com-
binatorial classes. This new, more refined, method is introduced in Section 4.
Section 2 reviews the partial derivative construction for ordinary 1D regular
expressions. In Section 3 we define 2D expressions, and present the correspond-
ing construction of partial derivative transducers (TPD). Section 5 presents the
average complexity results obtained using the framework of Section 4. We show
that for general 2D expressions, while in the worst case the number of states
of TPD can be O(n2), where n is the size of the expression, asymptotically and

on average, that value is bounded from above by O(n
3
2 ). Restricting to pairs of

1D expressions, the previous bound is already reached, showing that these kind
of expressions are responsible for the increasing of complexity. Furthermore, the
same bounds apply to sums or concatenations of pairs of 1D expressions, i.e.,
regular relations.

2 Preliminares

A nondeterministic finite automaton (NFA) is a five-tuple A = 〈Q,Σ, δ, I, F 〉
where Q is a finite set of states, Σ is a finite alphabet, I ⊆ Q is the set of initial
states, F ⊆ Q is the set of final states, and δ : Q × Σ → 2Q is the transition
function. The size of an NFA is its number of states. The transition function can
be extended to words and to sets of states in the natural way. When I = {q0}, we
use I = q0. The language accepted by A is L(A) = {w ∈ Σ | δ(I, w) ∩ F ∕= ∅}.
Given an alphabet Σ, the set RE of (1D) regular expressions, r, over Σ contains
∅ and the expressions defined by the following grammar:

r := ε | σ ∈ Σ | (r+ r) | (r · r) | (r), (1)

where the operator · (concatenation) and the outermost parentheses are often
omitted. The language associated to r is denoted by L(r) and defined as usual
(with ε representing the empty word). Two expressions r1 and r2 are equivalent,
r1 ∼ r2 if L(r1) = L(r2). If S ⊆ RE, L(S) = ∪r∈SL(r). The (tree-)size |r| of
r ∈ RE is the number of symbols in r (disregarding parentheses). The alphabetic
size |r|Σ is the number of letters occurring in r. We define the constant part
of r, c(r), by c(r) = ε if ε ∈ L(r), and c(r) = ∅ otherwise. This function is
extended to sets of expressions by c(S) = ε if and only if exists r ∈ S such
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that c(r) = ε. In the case of a singleton {s} we write it simply as s. Given
L ⊆ Σ and σ ∈ Σ, let σ−1L = {w | σw ∈ L}. This notion can be extended to
words and languages. The partial derivative automaton of a regular expression
was introduced independently by Mirkin [15] and Antimirov [1]. For a regular
expression r ∈ RE, let the linear form of r, n : RE → 2Σ×RE, be inductively
defined by

n(∅) = n(ε) = ∅,
n(σ) = {(σ, ε)},

n(r+ r′) = n(r) ∪ n(r′),
n(rr′) = n(r)r′ ∪ c(r) n(r′),
n(r) = n(r)r,

(2)

where for any S ⊆ Σ × RE, we define S∅ = ∅S = ∅, Sε = εS = S, and
Sr′ = { (σ, rr′) | (σ, r) ∈ S ∧ r ∕= ε } ∪ { (σ, r′) | ∃(σ, ε) ∈ S } if r′ ∕= ∅, ε (and
analogously for r′S).

Proposition 1 ([1]). For all r ∈ RE, r ∼


(σ,r′)∈n(r) σr
′ ∪ c(r).

For a regular expression r ∈ RE and a symbol σ ∈ Σ, the set of partial
derivatives of r w.r.t. σ is defined by ∂σ(r) = { r′ | (σ, r′) ∈ n(r) }. We have
L(∂σ(r)) = σ−1L(r). Partial derivatives can be extended w.r.t words and set of
partial derivatives of an expression r can be defined by iterating the linear form.
Let π0(r) = ↓2(n(r)), where ↓2(s, t) = t is the standard second projection on
pairs of objects and naturally extended to sets of pairs. Iteratively applying the
operator π0 we have, πi(r) = π0(πi−1(r)), for i ∈ N, and π(r) =


i∈N0

πi(r).
The set PD(r) = π(r) ∪ {r} is the set of partial derivatives of r and π(r) is the
support 3.

Proposition 2 ([15]). The support π(r) is inductively defined by

π(∅) = ∅,
π(ε) = ∅,
π(σ) = {ε},

π(r+ r′) = π(r) ∪ π(r′),
π(rr′) = π(r)r′ ∪ π(r′),
π(r) = π(r)r,

where, for any S ⊆ RE, we define S∅ = ∅S = ∅, Sε = εS = S, and Sr′ = { rr′ |
r ∈ S ∧ r ∕= ε } ∪ { r′ | ∃ε ∈ S } if r′ ∕= ∅, ε (and analogously for r′S).

Proposition 3 ([1, 15]). |π(r)| ≤ |r|Σ and |PD(r)| ≤ |r|Σ + 1.

The partial derivative automaton of r is APD(r) = 〈PD(r),Σ, δPD, r, F 〉,
where F = { r1 ∈ PD(r) | c(r1) = ε }, and δPD = { (r1,σ, r′) | r1 ∈ PD(r) ∧
(σ, r′) ∈ n(r1) }.

Proposition 4 ([1, 15]). For all r ∈ RE, L(APD(r)) = L(r).

3 Extending partial derivatives w.r.t. words, one could also define PD(r) =
w∈Σ ∂w(r).
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3 2D Expressions

Let Σ and ∆ be two alphabets. A relation R is any subset of Σ × ∆. The
concatenation of two relations R and S is the relation RS = {(u1u2, v1v2) |
(u1, v1) ∈ R ∧ (u2, v2) ∈ S}. The Kleene closure of the relation R is the relation
R =


n≥0 R

n. The monoid Σ ×∆ has the identity (ε, ε), and the following
set of generators {(σ, ε), (ε, τ) | σ ∈ Σ ∧ τ ∈ ∆} with the set of equations

{ (σ, ε)(ε, τ) .
= (σ, τ), (ε, τ)(σ, ε)

.
= (σ, τ) | σ ∈ Σ ∧ τ ∈ ∆ }. (3)

For a relation R ⊆ Σ ×∆, the quotient of R by a symbol is defined as before,
but one needs to take into account the above equations. For instance, for σ ∈ Σ
and τ ∈ ∆, (σ, ε)

−1
R = { (ε, τ)w | (σ, τ)w ∈ R} and (ε, τ)

−1
R = { (σ, ε)w |

(σ, τ)w ∈ R}. The set of rational relations is the smallest set of relations that
contains the finite relations and is closed under union, concatenation and Kleene
closure. Rational relations are accepted by transducers. A finite transducer in
standard-form (SFT) over two alphabets Σ and ∆ is defined as an NFA, except
that the transition function is δ : Q× (Σε ×∆ε) → 2Q, where for a set X, Xε =
X ∪{ε}. The relation realised by an SFT t is denoted by R(t). In this section we
consider 2D expressions that represent rational relations. The notions of linear
form, of partial derivative and of partial derivative transducers are extend to
2D expressions. In Section 5 we study the average state complexity of these
transducers. Recently, Demaille [7] defined derivative automata for multitape
weighted regular expressions. The expressions and transducers studied in this
paper are restrictions of those models to two tapes and the Boolean semiring.

To represent rational relations one could just consider 1D expressions where
basic terms are the generators of Σ×∆. Those expressions are called standard
2D regular expressions (S2D-RE) and are a particular case of the ones considered
in [11]. For standard 2D regular expressions, and using the same methods, it can
be shown that the asymptotic bounds for partial derivative transducers are the
same as for partial derivative automata (for 1D expressions) [3].

A (general) 2D regular expression (2D-RE) over Σ and ∆ , where Σ is the
input alphabet and ∆ the output alphabet, is an expression that is either ∅, or
can be defined by the following grammar

g := r/r′ | (g+ g) | (g · g) | (g), (4)

where r ∈ RE over Σ and r′ ∈ RE over ∆. The relation R(g) ⊆ Σ×∆ realised
by a 2D-RE g is defined inductively as follows R(r/r′) = L(r)×L(r′), R(g·g′) =
R(g)R(g′), andR(g) = (R(g)). Two expressions g,g′ are equivalent, g ∼ g′, if
R(g) = R(g′). A relation is rational if and only if it is represented by a 2D-RE4.
The constant part of a 2D-RE expression g is given by c : 2D-RE −→ {∅, ε/ε}
such that c(g) = ε/ε if (ε, ε) ∈ R(g), and c(g) = ∅, otherwise. For S ⊆ 2D-RE or
S ⊆ (Σε×∆ε)×2D-RE and an expression g, we adopt the same conventions as for
1D expressions regarding gS and Sg. In particular, we let (ε/ε)S = S(ε/ε) = S
(and also Sε = εS = S).

4 This follows from the definition above.
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For the linear form of an expression g ∈ 2D-RE, n : 2D-RE → 2(Σε×∆ε)×2D-RE,
one only needs to extend the definition for expressions of the form r1/r2, being
the remaining cases as in Equation (2), considering expressions g ∈ 2D-RE. We
note that one possibility was to consider n(r1/r2) = {(r1/r2, ε/ε)} (see [11]),
but then one could not construct directly an SFT. Here we define

n(r1/r2) = (n(r1) || n(r2)) ∪ c(r2)(n(r1) ||{(ε, ε)}) (5)

∪ c(r1)({(ε, ε)} || n(r2)),

where for N ⊆ Σε × RE and M ⊆ ∆ε × RE,

N ||M = { ((γ, γ′) , r/r′) | (γ, r) ∈ N ∧ (γ′, r′) ∈ M }.

The correctness of the previous definition is given by the following proposition.

Proposition 5. For all r1, r2 ∈ RE, r1/r2 ∼


((γ,γ′),g′)∈n(r1/r2)

(γ/γ′)g′ ∪ c(r1/r2).

Then, we have

Proposition 6. For all g ∈ 2D-RE, g ∼


((γ,γ′),g′)∈n(g)

(γ/γ′)g′ ∪ c(g).

As before, one can obtain the support of an expression g, π(g), by iterating the
linear form. Only the base case differs from the ones in Proposition 2.

Proposition 7. For all r1, r2 ∈ RE,

π(r1/r2) ⊆ π(r1) ||π(r2) ∪ π(r1) ||{ε} ∪ {ε} ||π(r2),

where for S, T ⊆ RE, S ||T = { r/r′ | r ∈ S ∧ r′ ∈ T }.
Note that the inclusion in Proposition 7 can be strict, as π(ab/abc) = {b/bc, ε/c,
ε/ε}, π(ab) = {ε, b}, π(abc) = {ε, bc, c} and c(ab) = c(abc) = ∅. Proposition 7
and Proposition 2 ensure that for every g ∈ 2D-RE, the support π(g) is finite
and in the worst-case of size O(n2), where n is the size of g. The quadratic
blow-up is achieved if one considers rn = (a)n, n ≥ 1, and the 2D-RE rn/rn.

Corollary 8. For all g ∈ 2D-RE, |π(g)| ≤ (|g|Σ∪∆)2, where |g|Σ∪∆ is the al-
phabetic size of g.

The partial derivative transducer of g is TPD(g) = 〈π(g)∪{g},Σ,∆, δPD,g, F 〉,
where F = {g1 ∈ π(g) ∪ {g} | c(g1) = ε/ε }, and δPD = { (g1, (γ, γ

′) ,g′) | g1 ∈
π(g) ∪ {g} ∧ ((γ, γ′) ,g′) ∈ n(g1) }.
Proposition 9. For all g ∈ 2D-RE, R(TPD(g)) = R(g).

An upper bound of the number of states of TPD(g) is obtained if one assumes
that

π(r1/r2) = π(r1) ||π(r2) ∪ π(r1) ||{ε} ∪ {ε} ||π(r2)
always holds, and as usual π(g + g′) = π(g) ∪ π(g′), π(gg′) = π(g)g′ ∪ π(g′),
and π(g) = π(g)g. These equalities are used in Section 5 to obtain an upper
bound for the average case size of partial derivative transducers. In the next
section we set up the analitic combinatorics framework that allows to obtain
those estimates.
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4 The Analytic Combinatorics Framework

Given some measure of the objects of a combinatorial class,A, for each n ∈ N0 let
an be the sum of the values of this measure for all objects of size n. Let A(z) =

n anz
n be the corresponding generating function (cf. [8]). We will use the

notation [zn]A(z) for an. The generating function A(z) can be seen as a complex
analytic function, and the study of its behaviour around its dominant singularity
ρ, when unique, gives us access to the asymptotic form of its coefficients. In
particular, if A(z) is analytic in some indented disc neighbourhood of ρ, then
one has the following [8, 4]:

Theorem 10. The coefficients of the series expansion of the complex function

f(z) = (1− z)α,

where α ∈ C \ N0, have the following asymptotic approximation:

[zn]f(z) =
n−α−1

Γ(−α)
+ o


n−α−1


.

Here Γ is Euler’s gamma function.

The combinatorial classes that we deal with in the present paper give rise to
generating functions implicitly defined by algebraic curves that are quite a bit
more convoluted than those previously described in the literature. We, therefore,
needed to refine the method to pursue these calculations, and we will expound
that, in some detail, here. Generically, from an unambiguous generating gram-
mar, one obtains a set of polynomial equations involving the generating functions
for the objects corresponding to the variables of the grammar, in particular the
one whose coefficients we want to asymptotically estimate. Computing a Gröbner
basis for the ideal generated by those polynomials, one gets an algebraic equation
for that generating function w = w(z), i.e., an equation of the form

G(z, w) = 0,

where G(z, w) is a polynomial in Z[z][w] of which w(z) is a root.
Since w(z) is the generating function of a combinatorial class, thus a series

with non-negative integer coefficients which is not a polynomial, it must have, by
Pringsheim’s Theorem (cf. [8], Thm IV.6), a real positive singularity, ρ, smaller
than or equal to 1. In all that follows we will assume that there is no other
singularity with that norm, which is the case of all generating functions dealt
with in this paper, as we will see. At this singularity, ρ, two cases may occur:

Case I: limz→ρ w(z) = a, where a is a positive real number.
Case II: limz→ρ w(z) = +∞.

In the first case the curve defined by G has a shape similar to the one depicted
in Fig. 1, on the left, and

∂G

∂w
(ρ, a) = 0. (6)
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a

Fig. 1. Generic shape of G(z, w) near its dominant singularity (cases I and II).

This, together with the fact that G(ρ, a) = 0, shows that ρ is a root of the
resultant, resw(G(z, w), ∂G

∂w (z, w)), of G(z, w) and ∂G
∂w (z, w) with respect to w

(cf. [13, p. 204]). With the help of a numerical solver and drawing the relevant
part of the algebraic curve G(z, w) = 0, one can, by an elimination process, find
out the minimum polynomial, in Q[z], of ρ. We will denote this polynomial by
m(z). Using now the resz(G(z, w), ∂

∂wG(z, w)) one can get, in a similar fashion,
an irreducible polynomial that has a as a root.

In Case II, the irreducible polynomial for ρ is a factor of the leading coefficient
of G(z, w), seen as a polynomial in w (cf [10], Th. 12.2.1).

In Case I, after making the change of variable s = 1 − z/ρ, one knows that
w = w(s) has a Puiseux series expansion at the singularity s = 0, i.e., there
exists a slit neighbourhood of that point in which w(s) has a representation as
a power series with fractional powers (cf. [10], Chap. 12). In particular, w must
have the form

w(s) = a− g(s)sα, (7)

for some α ∈ Q+, the first positive exponent of that expansion, and where g(s)
is such that g(s) = b+ h(s)sβ , h(0) ∕= 0, β ∈ Q+, and b ∈ R.

The value of α can be obtained by looking at the Taylor expansion of G(z, w)
at (ρ, a),

G(z, w) =


i,j≥0

1

i!j!

∂i+jG

∂ziwj

 z=ρ
w=a

(z − ρ)i(w − a)j .

Noticing that z = ρ− ρs, and using Equation (7), one has

G(ρ− ρs, a− g(s)sα) =


i,j≥0

(−1)i+j

i!j!

∂i+jG

∂ziwj

 z=ρ
w=a

ρig(s)jsi+jα. (8)

Using that G(z, w(z)) = 0, G(ρ, a) = 0, and (6), and dividing it through by sα,
one gets

0 =


i,j≥0
(i,j)/∈{(0,0),(0,1)}

(−1)i+j

i!j!

∂i+jG

∂ziwj

 z=ρ
w=a

ρig(s)jsi+(j−1)α. (9)
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One can now compute pij(z) = resw


G(z, w),

∂i+jG

∂ziwj


, and gcd(pij(z),m(z)) to

see which derivatives are non-zero at ρ. Then, one can use the Newton’s polygon
technique to find α [17, 18, 9]. The points of Newton polygon that lead to the
value of α correspond to the terms of (9) with the lowest exponent, that must
cancel out together. This conduces, after setting s = 0, to a polynomial equation
for the value b defined in the sentence containing (7). One then uses this value
in Theorem 10 to get the desired asymptotic approximation. In conclusion, for
the case where limz→ρ w(z) = a, one has

[zn]w(z) ∼ −b

Γ(−α)
ρ−nn−α−1. (10)

In Case II, the one where limz→ρ w(z) = +∞, making v = 1
w one concludes

as above that v = csα − g(s)sα+β , for some 0 < α < 1, β > 0, and for some
Puiseux series g(s), with non-negative exponents. Denoting by m the degree of
G relative to w, the polynomial satisfied by v is then

H(z, v) = vmG


z,

1

v


, (11)

which is the reciprocal polynomial of G(z, w) with respect to the variable w. In
this case the equation that corresponds to equation (8) is:

H(ρ− ρs, csα − g(s)sα+β) =


i,j≥0

(−1)i

i!j!

∂i+jH

∂ziwj

 z=ρ
w=0

ρi(c− g(s)β)jsi+jα. (12)

Using the same procedure as above, one computes ρ, and then the value of
c. Since

w =
1

csα − g(s)sα+β
=

1

c
s−α 1

1− g(s)
c sβ

=
1

c
s−α


1 +

g(s)

c
sβ +

g(s)2

c2
s2β + · · ·


,

one sees, using again Theorem 10, that

[zn]w(z) ∼ 1

cΓ(α)
ρ−nnα−1. (13)

Summing up, we have the following.

Theorem 11. With the notations and in the conditions above described, one
has

[zn]w(z) ∼


−b
Γ(−α)ρ

−nn−α−1, if limz→ρ w(z) = a,
1

cΓ(α)ρ
−nnα−1, if limz→ρ w(z) = +∞,

where b, c, ρ and α can be computed as above described.
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5 Average Descriptional Complexity Results

Using the framework just described, we obtain asymptotic estimates for an upper
bound of the average state complexity of partial derivative transducer for 2D
expressions of size n ≥ 0. Those estimates depend on the size of the alphabets
Σ and ∆, which we assume both to be equal to some integer k > 0. Moreover
we denote by REk the set of 1D expressions over an alphabet of size k.

5.1 Average State Complexity of TPD for 2D-RE

The generating function Gk(z) associated with g ∈ 2D-RE is the following5,
where Rk(z) is the generating function of regular expressions r ∈ REk [4].

Gk(z) = zRk(z)
2 + zGk(z) + 2zGk(z)

2, (14)

Rk(z) = (k + 1)z + zRk(z) + 2zRk(z)
2. (15)

Considering Proposition 2, let p(r) be the size of the support of an expression
r ∈ REk which is defined by p(ε) = 0, p(σ) = 1, p(s+s′) = p(s ·s′) = p(s)+p(s′),
and p(s) = p(s).An upper bound for the size of the support π(g), q(g), is
defined by q(r/r′) = p(r)p(r′) + p(r) + p(r′), q(g+ g′) = q(g · g′) = q(g) + q(g′),
and q(g) = q(g). Thus, the generating function Qk(z) =


g q(g)z

|g| for π(g)
satisfies the following equation,

Qk(z) = zQk(z) + 4zQk(z)Gk(z) + 2zPk(z)Rk(z) + zPk(z)
2, (16)

where Pk(z) is the generating function for the support of regular expressions in
REk, which satisfy

Pk(z) = kz + zPk(z) + 4zRk(z)Pk(z). (17)

From equations (15), (17), (14) and (16), using Gröbner basis, one obtains alge-
braic equations for Gk(z) and Qk(z):

CG(z, w) = 16z3w4 + 16(z3 − z2)w3 − g2(z)w
2 + g1(z)w + (1 + k)2z3 = 0, (18)

where g2(z) = 2z((1 + 4k)z2 + 6z − 3) and g1(z) = (1− z)((3 + 4k)z2 + 2z − 1)
and

CQ(z, w) = p(z)4q4(z)w
4 − k2z2p(z)2q2(z)w

2 + k4z8q0(z)
2 = 0, (19)

where

p(z) = (8k + 7)z2 + 2z − 1

q4(z) = (16k2 + 40k + 23)z4 − 4(4k + 3)z3 + (8k + 2)z2 + 4z − 1

q2(z) = (200k3 + 544k2 + 474k + 133)z6 − (48k2 + 24k − 10)z5+

(24k2 − 44k − 41)z4 + 28(2k + 1)z3 + (3− 14k)z2 − 6z + 1

q0(z) = (25k2 + 37k + 14)z2 + (6k + 4)z − (3k + 2).

For Gk(z), we conclude to be in Case I. The irreducible polynomial that
implicitly defines the singularity ρk of Gk(z) is, computed using the resultant
resw(CG(z, w), ∂CG

∂w (z, w)). In this case we obtain two candidates for the minimal

5 I.e. [zn]Gk(z) gives the number of expressions g of size n.
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Fig. 2. Possible values for (ρk, ak).

polynomial mG(z) of the singularity ρk, each
one having only one root in ]0, 1[. Using a com-
puter algebra system, one can show that those
roots are only equal for k = −1. This implies,
by continuity (in k), that they always keep
their relative position, for all k > −1. Now,
resz(CG(z, w), ∂CG

∂w (z, w)) factors into three ir-
reducible polynomials, one of which has ak as
a root. These three polynomials have, among
them, four positive roots, which a computer
algebra system can find, as a function of k.
Then, one can check which pairs (ρ′k, a

′
k),

where ρ′k is a candidate for ρk, and a′k a can-
didate for ak, belong to the curve CG, and their relative location. By a simple
topological argument, one then can conclude that mG(z) = (8k+ 7)z2 + 2z − 1,

ρk = 1
1+

√
8k+8

, and ak =
√
2−1
2

√
k + 1. One then checks that

∂CG
∂z

(ρk, ak) and

∂2CG
∂w2

(ρk, ak) are both non-zero, for all k, which entails that α = 1
2 . The value

for bk can then be computed, and bk ∼


k
2 . As for Qk(z), one sees that Case

II applies, and that the minimal polynomial is either p(z) or q4(z). It turns out
that each of these polynomials has exactly one positive real root, ρk and ζk. One
can then check that these roots coincide only for k = −1, and so that one of
them is always bigger than the other for all positive values of k, namely ρk. One
then can check that the curve CQ crosses the vertical line z = ζk exactly once
above the z-axis, which makes clear that the singularity for Qk(z) is ρk, thus the
same as for Gk(z). In this case, the Newton polygon analysis shows that α = 1
and that the polynomial satisfied by c, as explained after (9), and noticing that
here we make use of inversion explained in (11), is given by

∂4H

∂v4

 z=ρ
v=0

c4 + 6
∂4H

∂z2v2

 z=ρ
v=0

ρ2 c2 +
∂4H

∂z4

 z=ρ
v=0

ρ4 = 0.

This is a quadratic equation in c2, whose discriminant can be seen to be zero.
One gets

c2k = −3ρ2k


∂4H

∂z2∂v2

 z=ρ
v=0


∂4H

∂v4

 z=ρ
v=0


. (20)

From all this, it follows that

Theorem 12. With the notations above introduced, the ratio of the total number
of states in the partial derivative transducer TPD(g) of expressions of size n to
the total number of expressions of the same size is given by

[zn]Qk(z)

[zn]Gk(z)
∼

−Γ(− 1
2 )

bkck
n

3
2 , for all k, and lim

k→∞

−Γ(− 1
2 )

bkck
=

√
π

8
√
2
.
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5.2 Average State Complexity of TPD for pairs of REs

If we consider only 2D-expressions of the form r/r′, the generating function
for these expressions is G′

k(z) = 2zRk(z) and for the support π is, following
Proposition 7, Q′

k(z) = 2zPk(z)Rk(z)+ zP 2
k (z). From these, one can deduce the

following algebraic equations for G′
k(z) and Q′

k(z):

CG′(z, w) = w2 + (z − 1)w + 2(k + 1)z2 = 0, (21)

and
CQ′(z, w) = p(z)2w2 + kzg′1(z)w + k2z4g′0(z) = 0, (22)

where p(z) is as above, and

g′1(z) = (80k2 + 126k + 49)z4 + 4(9k + 7)z3 − 2(9k + 5)z2 − 4z + 1,

g′0(z) = (25k2 + 37k + 14)z2 + (6k + 4)z − 3k − 2.

Let us first deal with G′
k(z). We easily conclude that we are in Case I. The

irreducible polynomial that implicitly defines the singularity ρk of G′
k(z) is com-

puted using resw(CG′(z, w), ∂CG′
∂w (z, w)). In this case we obtain a single candidate

for the minimal polynomial, mG′(z), of the singularity, ρk, namely

mG′(z) = (8k + 7)z2 + 2z − 1,

and thus ρk = 1
1+

√
8k+8

. One has

resw(CG′(z, w),
∂CG′

∂w
(z, w)) = (7 + 8k)w2 − 8(1 + k)w + 2(1 + k),

from which one gets ak =
4(1+k)−

√
2(1+k)

7+8k , where ak = G′
k(ρk).

Using now the Newton’s polygon method, one gets that α = 1
2 , and

bk =

2ρk
∂CG′
∂z (ρk, ak)

∂2CG′
∂w2 (ρk, ak)

∼ 1√
2
.

As for Q′
k, one sees that one is in Case II, and that the dominant singularity

is the same as for G′
k. Using the methods expounded above, one gets that α = 1,

and that ck is a zero of the equation

∂2H

∂v2
(ρk, 0)c

2
k − 2ρk

∂2H

∂z∂v
(ρk, 0)ck + ρ2k

∂2H

∂z2
(ρk, 0) = 0,

whereH(z, v) = v2GQ′(z, 1
v ). It turns out that this equation has a single solution,

namely ck = 4
k2


8 + 8k + (9 + 8k)

√
2 + 2k


∼ 32


2
k . Therefore, in this case an

upper bound of the average state complexity of TPD(r/r
′) is,

Theorem 13. With the notations above introduced, one has

[zn]Q′
k(z)

[zn]G′
k(z)

∼
−Γ(− 1

2 )

bkck
n

3
2 ∼

√
π

16

√
k n

3
2 .
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6 Conclusions

We defined partial derivative transducers for 2D regular expressions over pairs
of 1D regular expressions. For studying the average state complexity, and given
the intricacy of the resulting generating functions, we refine known methods
In Section 5, we conclude that for 2D expressions of size n, both general and
restricted, asymptotically and on average, the state complexity of the partial
derivative transducers is bounded from above by O(n

3
2 ). For ordinary 1D regular

expressions, the number of letters in an expression is, asymptotically and on
average, 1

2n [16, 3]. The same holds for general 2D expressions.
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10. Hille, E.: Analytic Function Theory, vol. 2. Blaisdell Publishing Company (1962)
11. Konstantinidis, S., Moreira, N., Pires, J., Reis, R.: Partial derivatives of regu-

lar expressions over alphabet-invariant and user-defined labels. In: Hospodár, M.,
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