
David Pereira

Towards certified program logics
for the verification of imperative

programs

Departamento de Ciência de Computadores
Faculdade de Ciências da Universidade do Porto

2012

ii

David Pereira

Towards certified program logics
for the verification of imperative

programs

Tese submetida à Faculdade de Ciências da Universidade do Porto

para a obtenção do grau de Doutor em Ciência de Computadores

Departamento de Ciência de Computadores
Faculdade de Ciências da Universidade do Porto

2012

Nelma Moreira

Nelma Moreira
verificar se não será MApi!

iv

Abstract

Modern proof assistants are mature tools with which several important mathematical prob-
lems were proved correct, and wich are also being used as a support for the development of
program logics libraries that can be used to certify software developments.

Using the COQ proof assistant we have formalised a library for regular languages, which
contains a sound and complete procedure for deciding the equivalence of regular expres-
sions. We also formalised a library for the language theoretical model of Kleene algebra
with tests, the algebraic system that considers regular expressions extended with Boolean
tests and that is particulary suited to the verification of imperative programs.

Also using the COQ proof assistant, we have developed a library for reasoning about shared-
variable parallel programs in the context of Rely-Guarantee reasoning. This library includes
a sound proof system, and can be used to prove the partial correctness of simple parallel
programs.

The goal of the work presented in this dissertation is to contribute to the set of available
libraries that help performing program verification tasks relying in the trusted base provided
by the safety of the COQ proof system.

v

Nelma Moreira

Nelma Moreira

Nelma Moreira

Nelma Moreira
h

Nelma Moreira

Nelma Moreira

vi

Resumo

Os assistentes de prova modernos são agora ferramentas maduras de uma considerável com-
plexidade nas quais foram formalizados e provados correctos vários problemas matemáticos.
São também usados como ferramentas de suporta nas quais é possível codificar lógicas de
programas e usar essas codificações para tarefas de certificação de programs.

Utilizando o assistente de prova COQ, foramlizamos uma biblioteca de linguagens regu-
lares que contém um procedimento de decisão integro e completo para a equivalência de
expressões regulares. Formalizamos também uma biblioteca do modelo de linguagens da
álgebra de Kleene com testes, que se trata de um sistema algébrico que considera como
termos expressões regulares estendidas com testes e que é particularmente adequado para a
verificação de programas imperativos.

Utilizando também o assisten de prova COQ, desenvolvemos uma biblioteca que contém
uma formalização que permite raciocinar acerca da correcção parcial de programas par-
alelos dotados de arquitecturas com variáveis partilhadas. Esta formalização enquadra-se
no contexo do Rely-Guarantee. A biblioteca desenvolvida contém um sistema de inferência
integro que pode ser usado para a demonstração da correcção parcial de programas paralelos
simples.

O objectivo das formalizações que descrevemos ao longo desta dissertação é o de contribuir
para o conjunto de bibliotecas formais disponíveis que permitem a verificação de programs
e cujo nível de confiança é reforçado dado o uso das mesmas num ambiente seguro, provi-
denciado pelo assistente de prova COQ.

vii

Nelma Moreira

Nelma Moreira

Nelma Moreira

Nelma Moreira

viii

Para os meus pais David e Maria Clara e para a Ana,
que sempre acreditaram.

ix

x

Acknowledgments

I would like to thank my supervisors Nelma Moreira and Simão Sousa for their guidance,
the fruitfully discussions related to the topic of this Ph.D. thesis proposal, and mainly for
their friendship and encouragement.

I am also particularly in depth to José Carlos Bacelar Almeida who showed himself always
available to discuss with me the biggest problems that I had while doing proofs with COQ.
Besides its knowledge and entusiasm, its encouragement helped me to go along with the
PhD work. I thank also Ricardo Almeida, whom I get to know close to the end of this thesis,
but whose discussions about Kleene algebra with tests were very fruitful and interesting.

Obviously, the work environment was also of great help. I wish to thank to André, Andreia,
Bruno, Besik, Cláudio, Marco and Vitor for the fun moments that we have passed in the
office.

In terms of financial support, I thank Fundação para a Ciência e Tecnologia, and the MAP-i
organization for accepting my appliance to a Ph.D. scholarship. Without it, this work would
never be possible.

Towards the end of the PhD work a set of people was also of great importance, as they
received me in their laboratory, in order to start new research in the area of real-time systems.
In particular I would like to thank Luís Miguel Pinho, Luís Nogueira, and the new colleges
I made there, namely, André, Cláudio and José.

Finally, I would like to thank my family, and close friends, for all their flawless support
in this stressing adventure. My parents always believed that I could end this, and always
supported me by any means possible into it. My little nephews, Carolina and Rodrigo, were
always able to make smile, even in the days where proof construction made me one of the
worst people to be nearby.

Obviously, I could not end without thanking my girlfriend Ana, who was always by my side
and that bared with me until the very end and always unconditionally believing in me and
supporting me in all the ways one can image. Literally, without her I would have never had
the change to write this dissertation.

xi

Nelma Moreira

Nelma Moreira

Nelma Moreira
his

Nelma Moreira
me

Nelma Moreira
?

Nelma Moreira

Nelma Moreira
imagine ?

xii

Contents

Abstract v

Resumo vii

Acknowledgments xi

List of Tables xv

List of Figures xix

1 Introduction 1

1.1 Contributions . 3

1.2 Structure of the Thesis . 5

2 Preliminaries 7

2.1 The COQ Proof Assistant . 7

2.1.1 The Calculus of Inductive Constructions 7

2.1.2 Inductive Definitions and Programming in COQ. 9

2.1.3 Proof Construction . 11

2.1.4 Well-founded Recursion . 14

2.1.5 Other Features of COQ . 17

2.1.6 Sets in COQ . 18

xiii

2.2 Hoare Logic . 21

3 Equivalence of Regular Expressions 27

3.1 Elements of language theory . 27

3.1.1 Alphabets, Words and Languages 28

3.1.2 Finite automata . 31

3.1.3 Regular expressions . 33

3.1.4 Kleene Algebra . 37

3.2 Derivatives of Regular Expressions . 37

3.3 A Procedure for Regular Expression Equivalence 47

3.3.1 The Procedure EQUIVP . 47

3.3.2 Implementation . 50

3.3.3 Correctness and Completeness . 57

3.3.4 Tactics and Automation . 61

3.3.5 Performance . 69

3.4 Related Work . 70

3.5 Conclusions . 72

4 Equivalence of KAT Terms 75

4.1 Kleene Algebra with Tests . 76

4.2 The Language Model of KAT . 76

4.3 Partial Derivatives of Kleene algebra with tests (KAT) Terms 84

4.4 A Procedure for KAT Terms Equivalence 90

4.4.1 The Procedure EQUIVKAT . 90

4.4.2 Implementation, Correctness and Completeness 92

4.5 Application to Program Verification . 98

xiv

4.6 Related Work . 104

4.7 Conclusions . 105

5 Mechanised Rely-Guarantee in Coq 107

5.1 Rely-Guarantee Reasoning . 108

5.2 The IMPp Programming Language . 110

5.3 Operational Semantics of IMPp . 111

5.3.1 Reductions Under Interference . 115

5.4 A Proof System for Rely-Guarantee . 117

5.4.1 Inference Rules . 119

5.5 Soundness of RG-HL . 123

5.6 Related Work . 132

5.6.1 Discussion and Conclusion . 133

5.7 Conclusions . 134

6 Conclusions 137

6.1 Future Research Directions . 138

References 140

xv

xvi

List of Tables

3.1 Performance results of the tactic dec_re. 70

3.2 Comparison of the performances. 72

xvii

xviii

List of Figures

3.1 The transition diagram of the DFA D. 31

3.2 NFA accepting sequences of 0’s and 1’ that end with an 1. 33

5.1 Rely and guarantee vs. preconditions and postconditions. 109

xix

xx

Chapter 1

Introduction

The growth in complexity of computer systems over the past decade, and the ever-more
critical role that they assume in our daily lives, has led to a great research interest in formal
verification. Using formal systems, designers and developers have access to a framework
where they can rigorously specify the properties that a system has to meet, and it may
serve also as a guide to further development. Usually, these formal systems also provide
a proof system, which grants the possibility of proving the correctness of the behaviour of
the system with respect to its specification. Using this approach, the number of design and
implementation errors may decrease drastically, and the trust of the users of the systems will
increase.

The origins of formal verification date back from the 19th century with Frege, who in-
troduced first-order logic formally, which in turn resulted in the notion of what now is
understood by formal proof. A formal proof is a sequence of derivation steps, such that
each of those steps can be checked to be well-formed in the underlying formal system.
Formal proofs are the key element of formal verification since they represent evidence that
can be effectively checked for validity. This validity naturally implies the correctness of a
property with respect to the specification of the system under consideration.

The process of constructing a formal proof in some formal system usually turns out to be a
non-trivial task. The first incompleteness theorem of Gödel showed that not formal system
exists that allows to deduce all true statements, as soon as it considers a certain fragment of
the arithmetic of natural numbers. Later, Church and Turing proved that, in particular, first-
order logic is undecidable, in the sense that no procedure can be constructed that asserts
the validity of all true first-order formulas. Nevertheless, this inherent problem of first-
order logic impelled researchers to find fragments that were expressive enough, and also

1

Nelma Moreira

Nelma Moreira
no

Nelma Moreira
includes

Nelma Moreira

2 CHAPTER 1. INTRODUCTION

decidable. This effort resulted in the advent of automated theorem proving, whose main
representatives are satisfiability of Boolean formulas (SAT) [] and satisfiability modulo
theory (SMT) [].

Parallel to the development of automated theorem proving, great evolutions were also reg-
istered in the development of proof assistants, also known as interactive theorem provers.
A proof assistant is a piece of software that enables the user to encode mathematics on
a computer, and that assists him in checking that each of the proof’s derivation steps are
indeed correct with respect to the underlying formal system supporting the prover. The
first project that addressed a primitive notion of proof assistant was Automath [22], led
by De Brujin, and whose objective was to provide a mechanical verification system for
mathematics. The results of this effort was a language where mathematical statements could
be written rigorously, as well as a set of implementations of proof-checkers responsible for
verifying all the derivations contained in those proofs. These proofs are usually referred
to as proof scripts, as they usually do not correspond to the exact same language of the
formal system underlying the proof assistant: a proof script is made of a set of definitions,
statements of theorems, and sequences of instructions that convince the prover that these
statements are indeed true.

De Brujin also made another important contribution to the development of proof assistant,
by bringing the notion of proof-as-objects into this field, which is tantamount to the notion
of the Curry-Howard isomorphism [55] that states that a proof P of a theorem �, in a
constructive logic, can be regarded as the �-term P whose type is � in a type system.
Hence, proof-checking can be reduced to type-checking. As more powerful type theories
were conceived, such as the one of Martin-Löf [78] that lie type theory as a foundation of
mathematics, more complex and powerful the proof assistants became. As a consequence,
type checking tools also become more complex, but they are still tractable problems and can
be implemented and checked by humans, thus imposing a high-level of trust in the core of
proof assistants. These small type-checkers that support the proof construction are usually
developed under the De Brujin principle: every proof can be written completely using just
the set of rules of a small kernel, which corresponds exactly to the set of inference rules of
the underlying formal system. Most modern proof assistants employ the De Brujin principle
in their design.

Yet another motivating feature of some proof assistants is the proof-as-programs criteria:
in constructive logic, a statement of the form 8x, 9y, R(x, y) means that there is a total
function f such that 8x, R(x, f(x)). Hence, the functionf is built in the proof and it can be
extracted as a standard functional program. This process is known as program extraction.
Rephrasing in the context of type theory, given a specification 8x : A, 9y : B.R(x, y), its

Nelma Moreira

Nelma Moreira
? tirava o main

Nelma Moreira

1.1. CONTRIBUTIONS 3

realisation will produce a functional program f : A ! B. This has important implications
in the construction of programs: the proof checking system can be encoded in the prover
and then extracted and serve as a correct proof checking kernel for future versions of the
prover; a core component of a bigger software can be developed in this way, ensuring the
correct behaviour of the programs, despite errors that may appear in the development of the
rest of the program.

In the actual state-of-the-art, the role of proof assistants cannot be overlooked, being it on
the certification of mathematics, or for the formal verification and development of computer
systems. The mechanised proofs of the four-color theorem by Gonthier and Werner [43], the
Feit-Thomson theorem [44] by Gonthier et. al., the certified compiler CompCert by Xavier
Leroy [72], the certification of microkernel seL4 (Secure Embedded L4)[61] in HOL, and
the certification of automated theorem prover ALT-ERGO in COQ [76] are among the main
achievements of the usage of proof assistants.

1.1 Contributions

We have already seen that proof assistants are powerful and reliable tools with which one
can specify mathematical theories and programs, and also verify their correctness. Usually,
these tasks ends up being tedious and, very often, difficult. However, the advantage of using
proof assistants it is that we define and certify the concepts once and for all, and we can
incorporate them in other developments with full trust.

The subject of this thesis follows the lines of the usage of proof assistants to encode the-
ories that can be used to conduct program verification tasks. We address both sequential
programs, and parallel ones. For sequential programs, we formalise regular expressions
and one of its extensions with Boolean values, where deductive reasoning is replaced by
equational reasoning. Moreover, both theories are able to capture choice and iteration and
are decidable which allows for some formulae to be proved automatically. For handling
parallel programs, we formalise an extension of Hoare logic that is able to express properties
of parallel execution in a compositional way.

Summing up, our thesis aims at contributing with the following three formalisations:

A decision procedure for regular expression equivalence. Regular expressions are amongst
the most common, yet important concepts that are present, in some way or another, in any
sub-area of computer science. They are most recognised as a tool for matching patterns in
languages, hence they are present in strength in the world-wide-web, compilers, text editors,

4 CHAPTER 1. INTRODUCTION

etc. They were first introduced in the seminal work of Kleene [60] as a specification lan-
guages for automata. Their compactness, flexibility and expressiveness lead to applications
outside language processing, and have been applied with success, for instance, as run-time
monitors for programs [95, 94]. They can indeed be seen as a program logics that allow to
express non-deterministic choice, sequence, and finite iteration of programs. Moreover, they
were extended to address imperative programs [59, 64] and realtime systems [1, 92]. Hence,
it is important to provide formalised theories about regular expressions, so that we can apply
them to program verification. A particular and interesting property of regular expressions,
is that their equivalence and containment are decidable properties. This means that we can
also formalise the decision procedure and extract it as a functional program. This is the
goal of our first contribution, where we devise and prove correct a decision procedure for
regular expression equivalence, following along the lines of partial derivatives of Antimirov
and Mosses [11, 10]. Since regular expressions coincide with relational algebra, we also
developed a proof tactic to decide relational equivalence using the previously developed
decision procedure for regular expressions.

A decision procedure for the equivalence of terms of Kleene algebra with tests. Regular
expressions can be enriched with Boolean tests and, in this way, provide expressivity that
captures the conditional and while-loop constructions of imperative languages. These ex-
pressions are terms of Kleene algebra with tests, introduced by Dexter Kozen [64]. We
have formalised the language model of Kleene algebra with tests, and as with regular
expressions, we follow the partial derivative approach. Moreover, we have implemented
a decision procedure for the equivalence of terms. Some examples are presented which
show the applicability of Kleene algebra with tests in program verification tasks.

A sound inference system for rely/guarantee. Our final contribution focus the formal
aspects and verification of parallel programs. We have chosen to specify and prove sound
an inference system for proving the correctness of programs of simple imperative parallel
programming language. The target programs are shared memory parallel programs. The
semantics of the language follows the principle of Rely-Guarantee introduced by Cliff
Jones [57], and latter described [28, 82, 104] by a small-step reduction semantics that
considers a fine-grained notion of interference caused by the environment. The source of
the interference is modelled by the rely relation. The effect that the computation of the
individual programs imposes in the environment is constrained by a guarantee relation. Its
inference system is an extension of Hoare logic, whose triples are enriched with the rely and
guarantee relations.

1.2. STRUCTURE OF THE THESIS 5

Publications List

• "KAT and PHL in COQ ". David Pereira and Nelma Moreira. Computer Science and
Information Systems, 05(02), December 2008.

• "Partial derivative automata formalized in COQ ". José Bacelar Almeida, Nelma
Moreira, David Pereira, and Simão Melo de Sousa. In Michael Domaratzki and Kai
Salomaa, editors, Proceedings of the 15th International Conference on Implemen-
tation and Application of Automata (CIAA 2010), Winnipeg, MA, Canada, August,
2010, volume 6482 of Lecture Notes in Computer Science, pages 59-68, Springer-
Verlag, 2011.

• "Deciding regular expressions (in-)equivalence in COQ”. David Pereira, Nelma Mor-
eira and Simão Melo de Sousa. In T. G. Griffin and W. Kahl, editors, Proceedings of
the 13th International Conference on Relational and Algebraic Methods in Computer
Science (RAMiCS 13), Cambridge, United Kingdom, September, 2012, volume 7560
of Lecture Notes in Computer Science, 2012.

• "Mechanisation of KAT terms equivalence”. David Pereira, Nelma Moreira and Simão
Melo de Sousa. Submitted.

1.2 Structure of the Thesis

This dissertation is organized as follows:

Chapter 2 introduces the COQ proof assistant, our tool of choice for the formalisations
developed, and also describes Hoare logic, the program logic that is central to the
application of these same formalisations to program verification.

Chapter 3 describes the mechanisation of a decision procedure for regular expression equiv-
alence. It also includes the formalisation of a relevant fragment of regular language
theory. We present experimental performance tests and compare the development with
other formalizations that address the same goal, but that use different approaches.

Chapter 4 describes the extension of the development presented in Chapter 3 to Kleene
algebra with tests. This extension includes a mechanisation of the language theoretic
model of Kleene algebra with tests, and also a decision procedure for the equivalence
of terms of Kleene algebra with tests. We present some examples that show that this

Nelma Moreira

Nelma Moreira

Nelma Moreira

6 CHAPTER 1. INTRODUCTION

algebraic system can effectively be used to handle proofs about program equivalence
and partial correctness.

Chapter 5 describes the formalisation of an extended Hoare inference system for proving
the partial correctness of shared-memory parallel programs, based on the notion of
rely/guarentee.

Chapter 6 reviews the contributions given in the previous three chapters and establishes
possible research lines that aim at solidifying the application of our contributions to
more effective ways of applying them to the verification of more complex imperative
programs.

Chapter 2

Preliminaries

In this chapter we introduce the COQ proof assistant [100], our tool of choice for the
developments that are described along this dissertation. We also introduce Hoare logic [50],
the well known program logic that has became the standard logic for addressing correctness
of imperative computer programs.

2.1 The COQ Proof Assistant

In this section we provide the reader with a brief overview of the COQ proof assistant.
In particular, we will look into the definition of (dependent) (co-)inductive types, to the
implementation of terminating recursive functions, and to the proof construction process in
COQ’s environment. A detailed description of these topics and other COQ related subjects
can be found in the textbooks of Bertot and Casterán [15], of Pierce et.al. [89], and of
Chlipala [26].

2.1.1 The Calculus of Inductive Constructions

The COQ proof assistant is an implementation of Paulin-Mohring’s Calculus of Inductive
Constructions (CIC) [15], an extension of Coquand and Huet’s Calculus of Constructions
(COC) [29] with (dependent) inductive definitions. In rigor, since version 8.0, COQ is an
implementation of a weaker version of CIC, named the predicative Calculus of Inductive
Constructions (pCIC), whose rules are described in detail in the official COQ manual [35].

7

8 CHAPTER 2. PRELIMINARIES

COQ is supported by a rich typed �-calculus that features polymorphism, dependent types
and very expressive (co-)inductive types, which is built on the Curry-Howard Isomorphism
(CHI) programs-as-proofs principle [55]. In CHI, a typing relation t : A can either be seen
as a term t of type A, or as t being a proof of the proposition A. A classical example of the
CHI is the correspondence between the implication elimination rule (or modus ponens)

A! B A

B
,

and the function application rule of �-calculus

f : A! B x : A

f x : B
,

from where it is immediate to see that the second rule is the same as the first, if we erase the
typing information. Moreover, interpreting the typing relation x : A as the logical statement
"x proves A", and interpreting f : A ! B as "the function f transforms a proof of A into
a proof of B", then we conclude that the function application of the term x to f yields the
conclusion "f x proves B". Under this perspective of looking at logical formulae and types,
CIC becomes both a functional programming language with a very expressive type system
and, simultaneously, a higher-order logic where users can define specifications about the
developed programs, and build proofs that show that such programs are correct with respect
to the specifications defined.

In the CIC there exists no distinction between terms and types. Therefore, all types also
have their own type, called a sort. The set of sorts supported by CIC is the set

S = {Prop, Set,Type(i) | i 2 N}.

The sorts Prop and Set ensure a strict separation between logical types and informative
types: the former is the type of propositions and proofs, whereas the latter accommodates
data types and functions defined over those data types. An immediate effect of the non-
existing distinction between types and terms in CIC is that computation occur both in
programs and in proofs.

In CIC, terms are equipped with a built-in notion of reduction. A reduction is an elementary
transformation defined over terms, and computation is simply a series reductions over a
term. The set of all reductions form a confluent and strong normalising system, i.e., all
terms have a unique normal form. The expression

E,� ` t =��⇣◆ t0

2.1. THE COQ PROOF ASSISTANT 9

means that the terms t and t0 are convertible under the set of reduction rules of the CIC, in a
context � and in an environment E. In this case, we say that t and t0 are ��⇣◆-convertible, or
simply convertible. The reduction rules considered have the following roles, respectively:
the reduction �, pronounced beta reduction, transforms a �-redex (�x : A.e1)e02 into a
term e1{x/e2}; the reduction �, pronounced delta reduction, replaces an identifier with
its definition; the reduction ⇣ , pronounced zeta-reduction, transforms a local definition of
the form let x := e1 in e2 into the term e2{x/e1}; finally, the reduction ◆, pronounced iota
reduction, is responsible for computation with recursive functions.

A fundamental feature of COQ’s underlying type system is the support for dependent prod-
uct types ⇧x : A.B, which extends functional types A ! B in the sense that the type of
⇧x : A.B is the type of functions that map each instance of x of type A to a type of B where
x may occur in it. If x does not occur in B then the dependent product corresponds to the
function type A! B.

2.1.2 Inductive Definitions and Programming in COQ.

Inductive definitions are another key ingredient of COQ. An inductive type is introduced
by a collection of constructors, each with its own arity. A value of an inductive type is a
composition of such constructors. If T is the type under consideration, then its constructors
are functions whose final type is T , or an application of T to arguments. Moreover, the
constructors must satisfy strictly positivity constraints [87] for the shake of preserving the
termination of the type checking algorithm. One of the simplest examples is the classical
definition of Peano numbers:

Inductive nat : Set :=

| 0 : nat

| S : nat ! nat.

The definition of nat is not written in pure CIC, but rather in the specification language
Gallina. In fact, this definition yields four different definitions: the definition of the type
nat in the sort Set, two constructors O and S, and an automatically generated induction
principle nat_ind defined as follows.

8 P:nat ! Prop, P 0 ! (8 n:nat, P n ! P (S n)) ! 8 n:nat, P n.

The induction principle expresses the standard way of proving properties about Peano num-
bers, and it enforces the fact that these numbers are built as a finite application of the two
constructors O and S. By means of pattern matching, we can implement recursive functions

10 CHAPTER 2. PRELIMINARIES

by deconstructing the given term and producing new terms for each constructor. An example
is the following function that adds two natural numbers:

Fixpoint plus (n m:nat) : nat :=

match n with

| O) m

| S p) S (p + m)

end

where "n + m" := (plus n m).

The where clause, in this case, allows users to bind notations to definitions, thus making the
code easier to read. The definition of plus is possible since it corresponds to an exhaustive
pattern-matching, i.e., all the constructors of nat are considered, and because recursive calls
are performed on terms that are structurally smaller than the given recursive argument. This
is a strong requirement of CIC that forces all functions to be terminating. We will see
ahead that non-structurally recursive functions can still be programmed within COQ via a
translation into equivalent structurally decreasing ones.

More complex inductive types can be defined, namely inductive definitions which depend
on values. A classic example is the family of vectors of length n 2 N, whose elements have
a type A:

Inductive vect (A : Type) : nat ! Type :=

| vnil : vect A 0

| vcons : 8 n : nat, A ! vect A n ! vect A (S n)

As an example, the code below shows how to create the terms representing the vectors [a,b]
and [c] of length 2 and 1, whose elements are the constructors of another inductively defined
type A.

Inductive A:Type := a | b | c.

Definition v1 : vect A 2 := vcons A 1 a (vcons A 0 b (vnil A)).

Definition v2 : vect A 1 := vcons A 0 c (vnil A).

A natural definition over values of type vect is the concatenation of vectors, defined as
follows:

Fixpoint app(n:nat)(l1:vect A n)(n0:nat)(l2:vect A n0){struct l1} :

vect (n+n0) :=

match l1 in (vect _ m0) return (vect A (m0 + n0)) with

| vnil) l2

| vcons n0 v l01) vcons A (n0 + n0) v (app n0 l01 n0 l2)

end.

2.1. THE COQ PROOF ASSISTANT 11

Note that there is a difference between the pattern-matching construction match used in the
addition of two natural numbers, and the one used in the concatenation of vectors: in the
latter, the returning type depends on the sizes of the vectors given as arguments. Therefore,
the extended match construction in app has to bind the dependent argument m0 to ensure
that the final return type is a vector of size n + n0. The computation of app with arguments
v1 and v2 yields the expected result, that is, the vector [a,b,c] of size 3 (since the value 2+1

is convertible to the value 3):

Coq < Eval vm_compute in app A 2 v1 1 v2.

= vcons 2 a (vcons 1 b (vcons 0 c (vnil A)))
: vect (2 + 1)

The vm_compute command performs the reductions within a virtual machine [45] ensuring
a more efficient computation within COQ’s environment.

2.1.3 Proof Construction

As we have seen, the type system behind COQ is an extended �-calculus that does not
provide built-in logical constructions, besides universal quantification and the Prop sort.
Logical constructions are encoded using inductive definitions and the available primitive
quantification. For instance, the conjunction of two propositions A ^ B is encoded through
the inductive type and, defined as follows:

Inductive and (A B : Prop) : Prop :=

| conj : A ! B ! and A B

where "A ^ B’’ := (and A B).

The induction principle associated to and, and automatically generated by COQ, is the
expected one:

and_ind : 8 A B P : Prop, (A ! B ! P) ! A ^ B ! P

Disjunction is encoded in a similar way, with two constructors, each corresponding to a each
of the branches of the disjunction. Negation is defined as a function mapping a proposition
A into the constant False, which in turn is defined as the inductive type with no inhabitants.
The constant True is encoded as an inductive type with a single constructor I. Finally, the
existential quantifier 9 x :T, P(x) is defined through the following inductive definition:

Inductive ex (A:Type) (P : A ! Prop) : Prop :=

| ex_intro : 8 x:A, P x ! ex P

12 CHAPTER 2. PRELIMINARIES

The inductive definition ex enforces that we have to provide a witness that the predicate
P verifies the property expected on the term x, in the spirit of constructive logic, where
connectives are seen as functions taking proofs and producing new proofs.

The primitive way of the COQ proof construction process is to explicitly build CIC terms.
However, proofs can be built more conveniently and interactively in a backward fashion
through a language of commands called tactics. Although tactics are commonly used
when a user is in the proof mode of COQ, activated by the Theorem command (and similar
commands), they can also be used to interactively construct programs. However, that must
be done carefully, since tactics may produce undesirably large terms. Lets take a look at
an example of constructing a simple proof of the commutativity of the conjunction of two
propositions A and B. First, we need to tell COQ that we are going to enter in the proof
mode, by using the Theorem command.

Coq < Theorem and_comm :

Coq < forall A B:Prop,

Coq < A /\ B -> B /\ A.

1 subgoal

============================
forall A B : Prop, A /\ B -> B /\ A

The first of the proof is to move the universally quantified propositions A and B to the context,
together with the hypothesis A ^ B:

Coq < intros A B H.

1 subgoal

A : Prop
B : Prop
H : A /\ B
============================
B /\ A

Next, we deconstruct the hypothesis H and obtain isolated terms A and B holding in the
current proof context. This is achieved by the destruct tactic:

Coq < destruct H.

2.1. THE COQ PROOF ASSISTANT 13

1 subgoal

A : Prop
B : Prop
H : A
H0 : B
============================
B /\ A

Now that we know that both A and B hold, we have to deconstruct the goal in order to isolate
each of the components of the conjunction. This is done by using the tactic constructor

that applies, in this case, the unique constructor and, yielding two new sub-goals, one for
proving A, and another to prove B.

Coq < constructor.

2 subgoals

A : Prop
B : Prop
H : A
H0 : B
============================
B

subgoal 2 is:
A

To finish the proof it is enough to apply the tactic assumption, that looks into the context
and notices that both A and B are known to be true.

Coq < assumption.

1 subgoal

A : Prop
B : Prop
H : A
H0 : B
============================
A

14 CHAPTER 2. PRELIMINARIES

Coq < assumption.

Proof completed.

Coq < Qed.

Coq < and_comm is defined

The command Qed marks the end of the proof. This command has a very important role:
it checks that the term that was progressively constructed using the tactics is in fact an
inhabitant of the type of the theorem that we have allegedly just proved. This allows one
to develop new tactics without formal restrictions and prevents possible bugs existing in
the tactics from generating wrong proof terms, since they are checked once more at the
end of the proof. When using Qed the proof term becomes opaque and cannot be unfolded
and subjected to reductions. In order to have the contrary behaviour, the user must use the
command Defined instead of Qed to terminate the proof.

2.1.4 Well-founded Recursion

As pointed out earlier, all the functions defined in COQ must be terminating. The usual
approach is to implement functions through the Fixpoint command and using one of the ar-
guments as the structurally recursive argument. However, this is not possible to be employed
in the implementation of all terminating functions. The usual way to tackle this problem is
via an encoding of the original formulation of the function into an equivalent structurally
decreasing function. There are several techniques available to address the development of
non-structurally decreasing functions in COQ, which are clearly documented in [15]. Here
we will consider the particular technique for translating a general recursive functions into a
equivalent well-founded recursive function.

A given binary relation R over a set S is said to be well-founded if for all element x 2 S,
there exists no strictly infinite descendent sequence (x, x0, x1, x2, . . .) of elements of S such
that (xi+1, xi) 2 R. Well-founded relations are available in COQ through the definition of
the inductive predicate Acc and the predicate well_founded :

Inductive Acc (A : Type) (R : A ! A ! Prop) (x : A) : Prop :=

Acc_intro : (8 y : A, R y x ! Acc A R y) ! Acc A R x

Definition well_founded (A:Type)(R:A ! A ! Prop) := 8 a:A, Acc A R a.

First, let us concentrate in the inductive predicate Acc. The inductive definition of Acc

contemplates a single constructor, Acc_intro, whose arguments ensures the inexistence of

2.1. THE COQ PROOF ASSISTANT 15

infinite R-related sequences, that is, all the elements y that are related to x must lead to a
finite descending sequence, since y satisfies Acc, which in turn is necessarily finite. The
definition of well_founded universally quantifies over all the elements of type A that are
related by R.

The definition of Acc is inductively defined, and so it can be used as the structurally recursive
argument in the definition of functions. Current versions of COQ provides two high level
commands that ease the burden of manually constructing a recursive function over Acc

predicates: the command Program [96, 97] and the command Function [14]. The command
Function allows the user to explicitly specify what is the recursive measure for the function
being implemented. In order to give an insight on how we can use Function to program non-
structurally recursive functions, we will present different implementations of the function
that adds two natural numbers. A first way of implementing such a function is as follows:

Function sum(x:nat)(y:nat){measure id x}:nat :=

match x with

| 0) y

| m) S (sum (m-1) y)

end.

Proof.

abstract(auto with arith).

Defined.

The annotation measure id x indicates the Function command that the measure to be
considered is the function id over the recursive argument x. A proof obligation is generated
by the operation of Function, and discharged by the given tactic. This obligation requires a
proof that x used in the recursive branch of sum is smaller than the original x under the less-
than order the natural numbers. The abstract tactic takes as argument another tactic that
can solve the current goal, and saves this goal as a separate lemma. The usage of abstract
can be very useful, namely when the �-term proving the goal is of considerable size, which
can have severe implications during computation or type-checking.

Another way of implementing sum is by instructing Function to consider explicitly the
recursive argument as being a term that proves that the relation < is well founded.

Function sum1(x:nat)(y:nat){wf lt x}:nat :=

match x with

| 0) y

| m) S (sum1 (m-1) y)

end.

Proof.

abstract(auto with arith).

exact lt_wf.

16 CHAPTER 2. PRELIMINARIES

Defined.

The implementation of sum is identical to the implementation of sim1, except for the an-
notation wf. In this case, Function yields two proof obligations: the first one is similar to
the one of sum, and the second asks for a proof that the relation < is well founded. Both
obligations are discharged automatically due to auto tactics, with the help of know lemmas
and theorems from the database arith. The third and final way of building functions using
Function is by using the struct annotation. In this case, the definition will be carried out
as structurally recursive function, like if it was defined using Fixpoint.

Function sum2(x:nat)(y:nat){struct x}:nat :=

match x with

| 0) y

| S m) S (sum2 m y)

end.

Proof.

abstract(auto with arith).

exact lt_wf.

Defined.

Besides allowing more general definitions of recursive functions than the usage of Fixpoint
allows, the command Function also automatically generates a fixpoint equation and an

induction principle to reason about the recursive behaviour of the implemented function.

Performing reductions that involve proofs of well-founded induction with a given relation
is usually an issue in COQ. Such computations may take too much time to compute due
to the complexity of the proof term involved. One way to get around is to use a technique
proposed by Barras, whose idea is to add sufficient Acc_intro constructors, in a lazy way,
on top a Acc term, so that this term is never reached during computation. The beauty of this
technique is that the resulting term is logically equivalent to the original proof of the well
founded relation. The general structure of the the function is the following:

Variable A : Type.

Variable R : relation A.

Hypothesis R_wf : well_founded R.

Fixpoint guard (n : nat)(wf : well_founded R) : well_founded R :=

match n with

| O) wf

| S m) fun x) Acc_intro x (fun y _) guard m (guard m wf) y)

end.

In each recursive call, when matching a term Acc x H constructed by the guard function,

2.1. THE COQ PROOF ASSISTANT 17

the reduction mechanisms will find only Acc_intro terms, instead of a complex proof term.
This increases computation considerably and yields better performance for the implemented
function. For exemplifying how the function guard can be used when using the vernacular
Function, we present a re-implementation of sum1 where we discharge the second proof
obligation by providing the type-checker with the result of guard:

Function sum1(x:nat)(y:nat){wf lt x}:nat :=

match x with

| 0) y

| m) S (sum1 (m-1) y)

end.

Proof.

abstract(auto with arith).

exact(guard 100 _ lt_wf).

Defined.

2.1.5 Other Features of COQ

There are many other features of COQ that are very useful when conducting formalisations
of mathematical theories, or certified program development. Here we enumerate only the
features that are more relevant to the work presented in this thesis:

• an extraction mechanism, first introduced by Paulin-Morhing [86], by Paulin-Morhing
and Werner [88], and also by Letouzey [77]. This mechanism allows users to extract
functional programs in OCaml, in Haskell or in Scheme directly from COQ devel-
opments. Based on the distinction between informative and logical types, extraction
erases the logical contents and translates the informational ones into the functional
languages mentioned above;

• it supports type classes, which extends the concept of type class as seen in standard
functional programming languages in the sense that it allows proofs and dependent
arguments in the type class definition. Type classes were developed by Sozeau and
Orly [99] without extending the underlying COQ type system, by relying on dependent
records;

• a module system developed by Chrzaszcz [27] which allows users to conduct struc-
tured developments in a similar fashion to the one available in OCaml;

• a coercion mechanism that automatically provides a notion of sub-typing;

18 CHAPTER 2. PRELIMINARIES

• a new general rewriting mechanism implemented by Sozeau [98] that allows users to
perform rewriting steps on terms, where the underlying equality relation is not the one
primitively available in COQ.

2.1.6 Sets in COQ

The COQ developments to be described in Chapters 4 and 5 make intensive use of sets. In
this section we provide an overview of the available formalisations of sets in COQ that we
have used. These formalisations are the Ensembles package of COQ’s standard library, and
the Containers package, available in COQ’s community contributions [74] and described
in detail by Lescuyer in [75].

Sets as Predicates

A set is a collection of elements chosen from some universe. A set S can be determined
extensionally, where a given predicate dictates which elements belong to S, and which do
not. In this setting, such predicates are called characteristic functions mapping elements of
universe into Boolean values. In the particular case of COQ, such notion of set is provided by
the package Ensembles, where the characteristic functions are implemented as predicates,
i.e., functions mapping values of a given type into propositions.

We do not use the package Ensembles directly in our development for the following reason:
this package contains the specification of the axiom of set extensionality and therefore,
whenever our development is subject to an extraction process, the extraction mechanism
alerts the user for the existence of axioms that may lead to non-terminating functions and
inconsistency, even when not using them at all. In order to avoid this kind of warning, we
have incorporated in our development only the definitions present in Ensembles that we
need. These definitions are the following:

Section Sets.

Variable U : Type.

Definition Ensemble := U ! Prop.

Definition In (A:Ensemble) (x:U) : Prop := A x.

Definition Included (B C:Ensemble) : Prop := 8 x:U, In B x ! In C x.

2.1. THE COQ PROOF ASSISTANT 19

Inductive Empty_set : Ensemble :=.

Inductive Singleton (x:U) : Ensemble :=

|In_singleton : In (Singleton x) x.

Inductive Union (B C:Ensemble) : Ensemble :=

| Union_introl : 8 x:U, In B x ! In (Union B C) x

| Union_intror : 8 x:U, In C x ! In (Union B C) x.

Definition Same_set (B C:Ensemble) : Prop := Included B C ^ Included C B

.

End Sets.

Finite Sets and the Containers Library

Finite sets are provided in COQ’s standard library by the packages FSets and MSets, with
MSets being an evolution of FSets. Both libraries are implemented in a structured way
using modules and functors. A detailed description of the FSets library is given in [40].
The main reason for not using any of these two libraries is the lack of flexibility that they
have for our purposes: anytime we need a new kind of finite set, we have to instantiate a
module signature and them apply it into an adequate functor. But, if we need, for instance,
sets of sets, we need to build a new signature and then instantiate it with a functor once
again. The same happens if we need, for instance, sets of pairs whose components are of
the type of an already existing set. Using the Containers package, these variations are
obtained automatically, that is, once we define an instance of an ordered type, we can use
sets of values of this type, and also sets of sets of this type, or sets of pairs of sets of this type,
and so on. Summing up, the usage of the Containers library has the following advantages:

• finite sets are first-class values, an so they can be used like any other value, such like
natural numbers;

• the development contains a plugin that provides a new vernacular command, Generate
OrderedType, that automatically tries to construct all operations and proofs required

to register an instance that the type under consideration is an ordered type. This
command usually succeeds with any inductively defined type with no dependent ar-
guments;

• sets of sets of a given type are always available for free due to the way the specification
of finite sets is conceived since it contains a component guaranteeing that the set under

20 CHAPTER 2. PRELIMINARIES

consideration itself is an ordered type.

The type class defining an ordered type is defined by the class OrderedType, containing
the following parameters: a type A; an equality _eq and an order and _lt; proofs that _eq
is an equivalence relation and that _lt is a strict order; a computable comparison function
over values of A; finally, the soundness of the comparison function with respect to the order
relation _lt. A particular instance of the class OrderedType is the class of ordered types
where the considered equality relation is COQ’s primitive equality. This class is named
UsualOrderedType. Both these classes are defined as follows.

Class OrderedType (A : Type) := {

_eq : relation A;

_lt : relation A;

OT_Equivalence :> Equivalence _eq;

OT_StrictOrder :> StrictOrder _lt _eq;

_cmp : A ! A ! comparison;

_compare_spec : 8 x y, compare_spec _eq _lt x y (_cmp x y)

}.

Class SpecificOrderedType

(A : Type) (eqA : relation A) := {

SOT_Equivalence :> Equivalence eqA ;

SOT_lt : relation A;

SOT_StrictOrder : StrictOrder SOT_lt eqA;

SOT_cmp : A ! A ! comparison;

SOT_compare_spec : 8 x y, compare_spec eqA SOT_lt x y (SOT_cmp x y)

}.

Notation "’UsualOrderedType’ A" := (SpecificOrderedType A (@eq A)).

As an example, let us look at an excerpt of the COQ code that is needed to be able to use
finite sets of values of nat. The equality relation considered is COQ’s primitive equality. The
comparison function is given by the fixpoint nat_compare. The last function of the code
presented below is the function all_smaller whose goal is to build a finite set of natural
numbers lower than the argument n.The COQ code below presents such instantiation and the
construction of the set containing all the numbers smaller than a given natural number n.

Instance nat_StrictOrder : StrictOrder lt (@eq nat) := {

StrictOrder_Transitive := lt_trans

}.

Fixpoint nat_compare (n m : nat) :=

match n, m with

| O, O) Eq

2.2. HOARE LOGIC 21

| _, O) Gt

| O, _) Lt

| S n, S m) nat_compare n m

end.

Program Instance nat_OrderedType : UsualOrderedType nat := {

SOT_lt := lt;

SOT_cmp := nat_compare;

SOT_StrictOrder := nat_StrictOrder

}.

Fixpoint all_smaller(n:nat) : set nat :=

match n with

| 0) singleton 0

| S m) add (S m) (all_smaller m)

end.

2.2 Hoare Logic

The contributions described in Chapters 3 and 4 target program verification of sequential
and parallel programs, respectively. Both the works are closely related to the well known
Floyd-Hoare logic, usually called solely Hoare logic, which resulted from the works of
Floyd [41] and Hoare [51]. Using Hoare logic we are able to prove a program correct by
applying a finite set of inference rules to an initial program specification of the form

{P}C {Q}, (2.1)

such that P and Q are logical assertions and C is a program. The intuition behind such
a specification, widely known as Hoare triple or as partial correctness assertion (PCA),
is that if the program C starts executing in a state where the assertion P is true, then if
C terminates, it will obligatorily terminate in a state where the assertion Q holds. The
assertions P and Q are usually called preconditions and postconditions, respectively.

A Simple Imperative Programming Language and its Semantics

The set of inference rules of Hoare logic is tightly connected to the inductive syntax of the
target programming language, in the sense that each program construction is captured by

22 CHAPTER 2. PRELIMINARIES

an inference rule. Here we consider a typical imperative language with assignments, two-
branched conditional instructions, and while loops. We will denote this language by IMP.
The syntax of IMP programs is inductively defined by

C,C1, C2 ::= skip

| x := e

| C1 ; C2

| if b then C1 else C2

| while b do C1 end,

where x is a variable of the language, and e is an arithmetic expression. For the simplicity of
the presentation, here we omit the language of expressions and assume that variables of IMP
can have only one of two types: integers and Booleans. Programs of IMP are interpreted
in a standard small-step structural operational semantics [90], where there exists the notion
of state (a set of variables and corresponding assign values) and programs are executed by
means of a evaluation function that take configurations hC, si into new configurations The
expression

hC, si =)? hskip, s0i (2.2)

intuitively states that operationally evaluating the program p in the state s leads to the
termination of the program, in the state s0, in a finite number of individual evaluation steps,
guided by the syntactical structure of p. The individual evaluation rules for IMP programs
are the following:

h x := e, s i =) h skip, s[e/x] i
(SKIP)

hC1, s i =) hC 0
1, s

0 i

hC1;C2, s i =) hC 0
1;C2, s

0 i
(ASSGN)

h skip;C2, s i =) hC2, s i
(SEQSKIP)

JbK(s) = true

h if b then C1 else C2, s i =) hC1, s i
(SEQSTEP)

Nelma Moreira

Nelma Moreira

Nelma Moreira

Nelma Moreira

2.2. HOARE LOGIC 23

JbK(s) = false

h if b then C1 else C2, s i =) h q, s i
(IF)

hwhile b do C end, s i =) h if b then (C ; while b do C end) else skip, s i
(WHILE)

The function JbK is a function that denotationaly evaluates Boolean expressions in states, and
returns the corresponding Boolean value. This kind of semantics, and alternative ones can
be seen in standard textbooks about programming language semantics such as [81, 102, 48].

Hoare Logic’s Proof System

Hoare logic is a proof system made up of a set of inference rules that correspond to funda-
mental laws about programs. Each inference rules consists of zero or more premisses and a
unique conclusion.

A deduction assumes the form of a tree whose nodes are labeled by specifications, and whose
sub-trees are deductions of the premisses of the inference rules applied to the nodes.The
leafs of deduction trees are nodes to which no more inference rules can be applied, and the
root of the tree is the specification of the correctness of the program under consideration.
These trees are usually named as proof trees, or derivation trees and represent a correctness
proof of a program.

The Hoare logic inference rules for proving the partial correctness of IMP programs are the
following:

Skip. the following rule simply states that the pre- and post-conditions of a skip program
must be the same, since this command does not change the state of computation.

{P} skip {P}
(HL-SKIP)

Assignment. if we want to show that b holds after the assignment of e to x, we must show
that b[x/e] (the substitution of the free occurrences of x by e, in b) holds before the
assignment. We will apply this rule backwards. We know b and we wish to find a

Nelma Moreira
`

24 CHAPTER 2. PRELIMINARIES

pre-condition that makes b true after the assignment x := e.

{P [e/x]}x := e {P}
(HL-ASSGN)

Composition. if C1 brings a state satisfying P into a state satisfying Q0, and that if C2

brings a state satisfying Q0 into a state satisfying Q, then if P is true, the execution of
C1 followed by C2, brings the program into a state satisfying the post-condition Q.

{P} C1 {Q0} {Q0} C2 {Q}

{P} C1;C2 {Q}
(HL-SEQ)

Conditional. if b is true in the starting state, then C1 is executed and Q becomes true;
alternatively, if b is false, then C2 is executed. The preconditions are enforced de-
pending on whether b is true or false. This additional information is often crucial for
completing the respective sub-proofs.

{b ^ P} C1 {Q} {b ^ ¬P} C2 {Q}

{P} if b thenC1 elseC2 {Q}
(HL-IF)

While. given an invariant P which must be true in each iteration of the while loop, then
when b is false, that is, when the loop condition fails, the invariant must be true, no
matter how many times the loop has been repeated before.

{b ^ P} C {P}

{P} while b doC {¬b ^ P}
(HL-WHILE)

Weakening. if we have proved that {P 0}C {Q0}, and if we have a well-formed-formula P

that implies P 0, and also we have a well-formed-formula Q0 such that Q0 implies Q,
then we can strengthen the pre-condition and weaken the post-condition.

P ! P 0 {P 0} C {Q0} Q0 ! Q

{P} C {Q}
(HL-WEAK)

We denote this proof system by HL. We say that a Hoare triple {P}C {Q} is derivable in
HL, and write `HL {P}C {Q} if we can build a proof tree for the triple {P}C {Q} using
the previous rules. We may also have a derivation in the presence of a set of assumption
A and we write A `HL {P}C {Q}. Side conditions are introduced by the usage of the
(HL-WEAK) rule in the derivation process. This rule allows to relate external first-order
assertions with the local specifications.

2.2. HOARE LOGIC 25

Proof trees can be constructed by a special purpose algorithm called verification condition
generator (VCGEN) [36], which uses specific heuristics to infer the side conditions from
one particular derivation. The input for a VCGEN algorithm is a Hoare triple, an the output
is a set of first-order proof obligations. For this to happen, the inference rules of the proof
system must be changed so that the following conditions always hold:

1. assertions occurring in the premisses must be sub-formulas of the conclusion, so that
discovering intermediate assertions is required;

2. the set of inference rules must be unambiguous in order for the derivation tree con-
struction process can be syntax-oriented.

Instead of HL, we can consider an alternative Hoare proof system that is syntax directed
and that enjoys the sub-formula property. We consider a version of IMP with annotated
commands, defined by following grammar:

C,C1, C2 ::= skip

| x := e

| C1 ; {P} C2

| if b then C1 else C2

| while b do {I} C end.

The set of rules of the considered proof system, which we denote by HLa, is the following:

P ! Q

{P} skip {Q}
(HL-ANNSKIP)

P ! Q[e/x]

{P [x/e]}x := e {Q}
(HL-ANNASSGN)

{P} C1 {Q0} {Q0} C2 {Q}

{P} C1; {Q0} C2 {Q}
(HL-ANNSEQ)

{b ^ P} C1 {Q} {¬b ^ P} C2 {Q}

{P} if c thenC1 elseC2 {Q}
(HL-ANNIF)

26 CHAPTER 2. PRELIMINARIES

b! I {I ^ b} C {I} I ^ ¬b! Q

{P} while b do {I} C {Q}
(HL-ANNWHILE)

The system HLa can be proved to infer the same proof trees as the system HL. Such proof
is available in the work of Frade and Pinto [42], as well as the treatment of extensions to the
underlying programming language and the formal treatment of such extensions at the level
of the corresponding proof systems.

The concepts of Hoare logic presented until now are the ones that we require as a base for
the contributions described in Chapter 4 and Chapter 5. There exists, however, much more
to say about Hoare logic. In recent years, the particular subject of program verification by
means of Hoare logic and related concepts has evolved considerably, mainly in terms of tool
support, such as the Why system [17, 16] and the Boogie system [31, 32].

Chapter 3

Equivalence of Regular Expressions

Formal languages are one of the pillars of Computer Science. Amongst the computational
models of formal languages, that of regular expression is one of the most used, having
applications in many areas. The notion of regular expressions has its origins in the seminal
work of Kleene [60], where he introduced them as a specification language for deterministic
finite automata.

Regular expressions are certainly very famous due to their capability of matching patterns,
and they abound in the technologies deriving from the World Wide Web, in text processors,
in structured languages such as XML, in the design of programming languages like Perl and
Esterel. More recently, regular expressions found also applications in run-time monitoring
of programs [94, 95].

In this chapter we describe the mechanisation, in the proof assistant COQ, of a considerable
fragment of regular language theory and also present the implementation and correctness
of a decision procedure for regular expressions using the notion of derivative of a regular
expression, an alternative to the construction of automata.

3.1 Elements of language theory

In this section we introduce some classic concepts of formal languages that we will need in
the work we are about to describe. These concepts can be found in the introductory chapters
of classical textbooks such as the one from Hopcroft and Ullman [54], or the one of Kozen
[63]. Along the section, the most relevant definitions are accompanied by the corresponding
COQ code fragment.

27

28 CHAPTER 3. EQUIVALENCE OF REGULAR EXPRESSIONS

3.1.1 Alphabets, Words and Languages

Alphabet

An alphabet ⌃ is a non-empty set of objects usually called symbols (or letters). Standard
examples of alphabets are the sets ⌃1 = {0, 1} and ⌃2 = {a, b, c}. An alphabet is specified
by the following module signature:
Module Type Alphabet.

Parameter A : Type.

Declare Instance AOrd : UsualOrderedType A.

End Alphabet.

The type A is the type of symbols, and is an ordered type as specified by the type class
instance AOrd. The equality relation over A is COQ’s primitive equality, as imposed by the
definition of the UsualOrderedType type class.

Example 1. Consider the following alphabet ⌃ = {a, b, c}. This alphabet is encoded in
COQ by developing the corresponding COQ module, as follows:
Module Alph : Alphabet.

Inductive alph : Type := a | b | c.

Definition A := alph.

Generate OrderedType alph.

Program Instance AOrd : UsualOrderedType A := {

SOT_lt := A_lt ;

SOT_cmp := A_cmp

}.

End Alph.

The previous example makes use of the COQ command Generate OrderedType to generate
the definitions and proofs that are required to establish the type A as an ordered type,
considering COQ’s primitive equality.

Words

A word (or string) over an alphabet ⌃ is a finite sequence of symbols from ⌃. The natural
way of defining words in COQ is by using the already available type of polymorphic list
list, and instantiating it with the type of the symbols that are used in ⌃. We name this type
word. We refer to words by the lower-letter letters w, u, v, and so on. Naturally, the empty
word ✏ is the term @nil A. The concatenation of two words w and u over ⌃, denoted by
w · u, or simply by wu, is the same as standard list concatenation w ++ u.

3.1. ELEMENTS OF LANGUAGE THEORY 29

Example 2. Let ⌃ = {a, b, c} be the alphabet under consideration. The set of words defined
on ⌃ is the set

{✏, a, b, c, aa, ab, ac, ba, bb, bc, ca, cb, cc, aaa, aab, aac, aba, . . .}

Languages

A language is any finite or infinite set of words over an alphabet ⌃. The type of languages
is the type of predicates over values type word. Hence, we define predicates through the
instantiation of the predicate Ensemble, introduced in Section 2.1.6, with the type word.

Definition language := Ensemble word.

Given an alphabet ⌃, the set of all words over ⌃, denoted by ⌃?, is inductively defined as
follows: the empty word ✏ is an element of ⌃? and, if w 2 ⌃? and a 2 ⌃, then aw is also a
member of ⌃?. The set ⌃? is defined in COQ by the following inductive predicate:

Inductive sigma_star : language :=

| in_sigma_star_nil : [] 2 sigma_star

| in_sigma_star : 8 w:word, w 2 sigma_star ! 8 a:A, a::w 2 sigma_star.

The empty language, the language containing only ✏, and the language containing only a
symbol a 2 ⌃ are denoted, respectively, by ;, by {✏}, and by {a}. They are defined in the
following way:

Definition empty_l := (Empty_set word).

Notation ";" := empty_l.

Definition eps_l := (Singleton word []).

Notation "{✏}" := eps_l.

Inductive symb_l (a:A) : language := in_sing : [a] 2 symb_l a.

Notation "{{x}}" := (symb_l x)(at level 0).

The operations over languages include the usual Boolean set operations (union, intersection,
and complement), plus concatenation, power and Kleene star. The concatenation of two
language L1 and L2 is defined by

L1L2
def
= {wu |w 2 L1 ^ u 2 L2}. (3.1)

The power of a language L, denoted by Ln, with 2 N, is inductively defined by

L0 def
= {✏},

Ln+1 def
= LLn.

(3.2)

30 CHAPTER 3. EQUIVALENCE OF REGULAR EXPRESSIONS

considering that n 2 N. The Kleene star of a language L is the union of all the finite powers
of L, that is,

L? def
=
[

i�0

Li. (3.3)

The operations (3.1-3.3) are defined in COQ through the next three inductive definitions.

Inductive conc_l (L1 L2:language) : language :=

|conc_l_app : 8 w1 w2:word,

w1 2 L1 ! w2 2 L2 ! (w1 ++ w2) 2 (conc_l L1 L2)

Notation "x • y" := (conc_l x y).

Fixpoint conc_ln (L:language)(n:nat) : language :=

match n with

| 0) eps_l

| S m) L • (conc_ln L m)

Notation "x •• n" := (conc_ln x n).

Inductive star_l (L:language) : language :=

| starL_n : 8 (n:nat)(w:word), w 2 (L •• n) ! w 2 (star_l L)

Notation "x ⇤" := (star_l x).

A language L over the alphabet ⌃ is a regular language if it is inductively defined as follows:

• the languages ; and {✏} are regular languages;

• for all a 2 ⌃, the language {a} is a regular language;

• if L1 and L2 are regular languages, then L1 [L2, L1L2 and L?
1 are regular languages.

The predicate that determines wether or not a given language is regular is formalised in COQ

as follows:

Inductive rl : language ! Prop :=

| rl0 : rl ;
| rl1 : rl {✏}
| rlsy : 8 a, rl {{a}}
| rlp : 8 l1 l2, rl l1 ! rl l2 ! rl (l1 [l2)

| rlc : 8 l1 l2, rl l1 ! rl l2 ! rl (l1 • l2)

| rlst : 8 l, rl l ! rl (l ⇤).

Two languages L1 and L2 are equal if the sets of words that they represent are the same. We
denote language equality by L1 = L2.

Definition leq (L1 L2:language) := L1 ✓ L2 ^ L2 ✓ L1.

Notation "x == y" := (leq x y).

Notation "x != y" := (¬(x == y)).

3.1. ELEMENTS OF LANGUAGE THEORY 31

Finally, we introduce the concept of the left-quotient of a language L with respect to a word
w 2 ⌃?, and which we denote by a new Dw(L). The left-quotient is defined as follows:

Dw(L)
def
= {v |wv 2 L}. (3.4)

Naturally, definition (3.4) can be specialised to words w = a, with a 2 ⌃. In this case,
we refer to the left-quotient with respect a symbol a. The COQ definitions of LQ and LQw

given below are, respectively, the notions of left-quotient with respect to a symbol, and with
respect to a word.

Inductive LQ (L:language) : A ! language :=

| in_quo : 8 (x:word)(a:A), (a::x) 2 L ! x 2 (LQ L a)

Notation "x %Lq y" := (LQ x y).

Inductive LQw (L:language) : word ! language :=

| in_quow : 8 (w1 w2:word), (w1 ++ w2) 2 L ! w2 2 (LQw L w1)

Notation "x %Lqw y" := (LQw x y).

3.1.2 Finite automata

A deterministic finite automata (DFA) is a 5-tuple D = (Q,⌃, �, q0, F) such that Q is the
set of states, ⌃ is the alphabet, � : Q ⇥ ⌃ ! Q is the transition function, q0 is the initial
state, and F is the set of accepting states (or final states).

A DFA D can be described graphically by a transition diagram, that is, is a digraph such
that each node is a state of D, each arc is labeled by a symbol a 2 ⌃ and represents a
transition between two states, the initial state is marked by an unlabelled input arrow, and
all the accepting states are marked by a double circle. Figure 3.1 presents the transition
diagram of the following DFA D:

D = ({q0, q1},⌃1, {(q0, 0, q0), (q0, 1, q1), (q1, 0, q0), (q1, 1, q1), q0, {q1}).

Figure 3.1 The transition diagram of the DFA D.

q0 q1
1

0 1

0

32 CHAPTER 3. EQUIVALENCE OF REGULAR EXPRESSIONS

A DFA D processes an input word w through the extended transition function �̂, which is
inductively defined as follows:

�̂(q, ✏)
def
= q,

�̂(q, aw)
def
= �̂(�(q, a), w).

(3.5)

Considering (3.5), we define the notion of the language accepted (or recognised) by a DFA.
Let D = (Q,⌃, �, q0, F) be the automaton under consideration. The language of D, denoted
L(D), is the set of all words that take D from its initial state into one of its final states, i.e.,

L(D)
def
= {w | �̂(q0, w) 2 F}.

The language recognised by any DFA is always a regular language [60]. The next example
shows how DFAs process words given as input, using the extended transition function.

Example 3. Let D be the DFA presented in Figure 3.1. This automaton processes the word
w = 101 in the following way:

�̂(q0, 101) = �̂(�(q0, 1), 01)

= �̂(q1, 01)

= �̂(�(q1, 0), 1)

= �̂(q0, 1)

= �̂(�(q0, 1), ✏)

= �̂(q1, ✏)

= q1

Two DFAs D1 and D2 are equivalent if the languages they recognise are the same, that is,
whenever L(D1) = L(D2). We denote DFA equivalence by D1 ⇠ D2. A DFA D is minimal
if all the DFAs D0 such that D ⇠ D0 have no less states than D. Furthermore, any minimal
DFA is unique up to isomorphism.

A non-deterministic finite automata (NFA) is a 5-tuple N = (Q,⌃, �, q0, F) such that Q is
the finite set of states, ⌃ is the alphabet, q0 is the initial state, � : Q⇥⌃! 2Q is the transition
function, and F is the set of accepting states. Like DFAs, a NFA can be represented by a
transition diagram. Figure 3.2 presents the transition diagram of an NFA that recognises all
the sequences of 0’s and 1’s that end with an 1.

Note that the main difference between the definition of DFA and that of NFA is their
transition function: while the transition function of a DFA is a function from a state into
another state, in a NFA the transition function returns a set of accessible states. For NFA,
the extended transition function is inductively as follows:

�̂(q, ✏)
def
= {q},

�̂(q, aw)
def
=

S
q02�(q,a) �̂(q

0, w).

3.1. ELEMENTS OF LANGUAGE THEORY 33

Figure 3.2 NFA accepting sequences of 0’s and 1’ that end with an 1.

q0 q1
1

0, 1

Next, we present an example on how NFAs process words using the previous definition.

Example 4. Given the NFA presented in Figure 3.2, and the given the word w = 101, the
computation of �̂(q0, 101) goes as follows:

�̂(q0, 101) = �̂(�(q0, 1), 01)

= �̂(q0, 01) [�̂(q1, 01)

= �̂(�(q0, 0), 1) [�̂(�(q1, 0), 1)

= �̂(q0, 1) [;
= �̂(�(q0, 1), ✏)

= �̂(q0, ✏) [�̂(q1, ✏)

= {q0, q1}

As with DFAs, the language recognised by a NFA N is the language

L(N)
def
= {w | �̂(q0, w) \ F 6= ;},

which is also a regular language. If the languages recognised by two NFAs N1 and N2

coincide, that is, if L(N1) = L(N2), then N1 and N2 are equivalent NFAs, and we write
N1 ⇠ N2.

Our development does not consider formalisation of automata. Details on the formalisation
of this particular subject in proof assistants can be found in the works of Filliâtre [39], of
Briais [20], and of Braibant and Pous [18, 19].

3.1.3 Regular expressions

Let ⌃ be an alphabet. A regular expression ↵, �,↵1, �1, . . . , over ⌃ is inductively defined
as follows: the constants 0 and 1 are regular expressions; all symbols a 2 ⌃ are regular
expressions; if ↵ and � are regular expressions, then the union ↵+ � and the concatenation
↵�; finally, if ↵ is a regular expression, then so is its Kleene star ↵?. The set of all
regular expressions over an alphabet ⌃ is denoted by RE⌃. In COQ, regular expressions
are inhabitants of the following inductive type:

34 CHAPTER 3. EQUIVALENCE OF REGULAR EXPRESSIONS

Inductive re : Type :=

| re0 : re

| re1 : re

| re_sy : A ! re

| re_union : re ! re ! re

| re_conc : re ! re ! re

| re_star : re ! re.

Notation "0" := re0.

Notation "1" := re1.

Notation "‘ a" := (re_sy a).

Infix "+" := re_union.

Infix "·" := re_conc.

Notation "x *" := (re_star x).

Language of Regular Expressions

Regular expressions denote regular languages. The language denoted by a regular expres-
sion ↵, L(↵), is inductively defined in the expected way: L(0) def

= ; and L(1) def
= {✏};

if ↵ and � are regular expressions, then the expressions L(↵ + �)
def
= L(↵) [L(�) and

L(↵�) def
= L(↵)L(�); finally, if ↵ is a regular expression, then L(↵?)

def
= L(↵)?. In the code

below, the language L(↵) is given by the definition of the recursive function re_rel.

Fixpoint re_rel (↵:re) : language :=

match ↵ with

| re0) ;
| re1) {✏}
| re_sy a) {{a}}
| re_union ↵1 ↵2) (re_rel ↵1) [(re_rel ↵2)

| re_conc ↵1 ↵2) (re_rel ↵1) • (re_rel ↵2)

| re_star ↵1) (re_rel ↵1)?

end.

Notation "L(↵)" := (re_rel ↵).

Coercion re2rel : re ⇢ language.

Besides defining re_rel, we also mark it as a coercion from the type of regular expressions
to the type of languages. This allows us to refer to the language of a regular expression,
L(↵), simply by ↵, since the term re_rel(↵) is automatically inferred by COQ, if possible.
For reasons of completeness of the formalisation, we prove that the result of re_rel is
always a regular language.

Theorem re2rel_rl : 8 ↵:re, rl (↵).

Measures and Nullability

The length of a regular expression ↵, denoted |↵|, is the total number of constants, symbols
and operators of ↵. The alphabetic length of a regular expression ↵, denoted |↵|⌃, is the

3.1. ELEMENTS OF LANGUAGE THEORY 35

total number of symbols from the alphabet ⌃ that occur in ↵ (repeated symbols included).
We say that a regular expression ↵ is nullable if ✏ 2 L(↵), and non-nullable otherwise. We
say that the regular expressions ↵ and � are equi-nullable if "(↵) = "(�). The following
function1 recursively determines if a given regular expression is nullable or not:

Fixpoint nullable(↵:re) : bool :=

match ↵ with

| re0) false

| re1) true

| re_sy _) false

| re_star _) true

| re_union ↵1 ↵2) nullable ↵1 || nullable ↵2

| re_conc ↵1 ↵2) nullable ↵1 && nullable ↵2

end.

Notation ""(y)" := (nullable y).

The soundness and completeness of the nullability of regular expressions is given by the two
next theorems, both of which are proved by induction on the structure of the given regular
expression, and using simple properties of the membership of the empty word in languages.

Theorem null_correct_true : 8 ↵:re, "(↵) = true $ ✏ 2 ↵.

Theorem null_correct_false : 8 ↵:re, "(↵) = false $ ✏ 62 ↵.

Finite Sets of Regular Expressions

Finite sets of regular expressions are defined by the type set re. The language of a finite
set of regular expressions S is

L(S) def
=
[

↵i2S

L(↵i). (3.6)

Naturally, two sets of regular expressions S1 and S2 are equivalent if L(S1) = L(S2), which
we denote by S1 ⇠ S2. Equation (3.6) is defined in COQ through the predicate SreL, defined
below.

Inductive SreL : set re ! language :=

| in_sre_lang : 8 (S:set re) (w:word) (↵:re),

↵ 2 S ! w 2 ↵ ! w 2 (SreL S).

Notation "L(s)" := (SreL s).

The sum of a set of regular expressions S = {↵1,↵2, . . . ,↵n} is defined by
X

S
def
= ↵1 + ↵2 + . . .+ ↵n.

1nullable is a Boolean function; therefore, the binary operators || and && correspond to the usual
Boolean operations of disjunction and conjunction, respectively.

36 CHAPTER 3. EQUIVALENCE OF REGULAR EXPRESSIONS

Naturally, the language of such a sum of elements of S is trivially equivalent to L(S), and
is defined by

L(
X

S)
def
= L(↵1) [L(↵2) [· · · L(↵n).

Nullability extends to sets of regular expressions in a straightforward way: a set S is nullable
if "(↵) evaluates positively, that is, "(↵) = true at least one ↵ 2 S. We denote the nullability
of a set of regular expressions S by "(S). Two sets of regular expressions S1 and S2 are
equi-nullable if "(S1) = "(S2). Nullability of sets of regular expressions is expressed in our
development by next definition.

Definition null_set (S:set re) := fold (fun ↵:re) orb ("(↵))) S false.

Notation ""(S)’’ := (null_set S).

We also consider the right-concatenation ↵ � S of a regular expressions ↵ with a set of
regular expressions S, defined as follows:

S � ↵ =

8
><

>:

; if↵ = 0,

S if↵ = 1,

{�↵ | � 2 S} otherwise.
(3.7)

We usually omit the operator � whenever it is clear from the context, and write S↵ instead.
The definition Equation (3.7) is defined in COQ in the obvious way:

Definition fold_conc(S:set re)(↵:re) := map (fun �) �↵) S.

Definition dsr (↵:re) (S:set re) : set re :=

match ↵ with

| 0) ;
| 1) S

| _) fold_conc S ↵

end.

Notation "↵ � S" := (dsr ↵ S).

3.2. DERIVATIVES OF REGULAR EXPRESSIONS 37

3.1.4 Kleene Algebra

An idempotent semiring is an algebraic structure (K,+, ·, 0, 1), satisfying the following set
of axioms:

x+ x = x (3.8)

x+ 0 = 0 (3.9)

x+ y = y + x (3.10)

x+ (y + z) = (x+ y) + z (3.11)

0x = 0 (3.12)

1x = x (3.13)

x(yz) = (xy)z (3.14)

x(y + z) = xy + xz (3.15)

(x+ y)z = xz + yz. (3.16)

The natural partial ordering on such a semiring is x y , x + y = y. A Kleene algebra
(KA) is an algebraic structure (K,+, ·,? , 0, 1) such that the sub-algebra (K,+, ·, 0, 1) is an
idempotent semiring, and that the operator ? is characterised by the following set of axioms:

1 + pp? p? (3.17)

1 + p?p p? (3.18)

q + pr r ! p?q r (3.19)

q + rp r ! qp? r (3.20)

The algebraic structure (RE⌃ ,+, ·,? , 0, 1) is a KA, namely, the free KA on the gen-
erator ⌃ (the alphabet under consideration). The standard model of KA is the model
(RL⌃,[, ·,? , ;, {✏}), where RL⌃ is the set of all regular languages over ⌃. Kozen proved
[62] the completeness of KA with respect to this model through an algebraic treatment
of the classical approach to decide regular expression equivalence using automata. Other
models of KA include the model of binary relations, the model of matrices over a KA, and
the model of tropical semirings.

3.2 Derivatives of Regular Expressions

The notion of derivative [23] of a regular expression ↵ was introduced by Brzozowski in
the 60’s, and was motived by the construction of sequential circuits directly from regular

38 CHAPTER 3. EQUIVALENCE OF REGULAR EXPRESSIONS

expressions extended with intersection and complement. In the same decade, Mirkin [80]
introduced the notion of prebase and base of a regular expression as a method to construct
a NFAs recognising the language denoted by a given regular expression. His definition is a
generalisation of Brzozowski’s derivatives for NFAs and was independently re-discovered
almost thirty years later by Antimirov [10], which coined it as partial derivative of a regular
expression.

Brzozowski’s Derivatives

Let ⌃ be an alphabet, let ↵ be a regular expression over ⌃, and let a 2 ⌃. The Brzozowski
derivate of ↵ with respect to a, or simply derivative of ↵ with respect to a, is recursively
defined as follows:

a�1(0)
def
= 0

a�1(1)
def
= 0

a�1(b)
def
=

(
1 if a ⌘ b,

0 otherwise.

a�1(↵ + �)
def
= a�1(↵) + a�1(�)

a�1(↵�)
def
= a�1(↵)� + "(↵)a�1(�)

a�1(↵?)
def
= a�1(↵)↵?

The intuition behind the derivation function is that it acts as a residual operation on L(↵),
since it removes, from each word of L(↵) the symbol a 2 ⌃ that is in the beginning of those
words.

The notion of derivative can be naturally extended to words in the following way:

✏�1(↵)
def
= ↵,

(ua)�1(↵)
def
= a�1(u�1(↵)).

The language recognised by a�1(↵) is the left-quotient of L(↵) with respect to to a, and for
words w 2 ⌃?, is tantamount to equation (3.4). An important property of derivatives is their
tight connection to word membership: in order to determine if a word w 2 ⌃? is a member
of the language denoted by a regular expression ↵ it is enough to prove that

"(w�1(↵)) = true. (3.21)

Symmetrically, we can conclude that

"(w�1(↵)) = false. (3.22)

3.2. DERIVATIVES OF REGULAR EXPRESSIONS 39

implies that w 62 L(↵). The proof of equations (3.21) and (3.22) are obtained by induction
on the length of the word w and some simple properties of the membership of the empty
word. The next example, borrowed from [84], shows how matching of strings is easily
computed using derivatives.

Example 5. Let ⌃ = {a, b}, let ↵ def
= ab?, and let w = abb. The word w is accepted by the

regular expressions ↵, as shown by the following computation of Brzozowski’s derivative:

(abb)�1(↵) = (abb)�1(ab?)

= b�1((ab)�1(ab?))

= b�1(b�1(a�1(ab?)))

= b�1(b�1(a�1(a)b? + "(a)a�1(b?)))

= b�1(b�1(a�1(a)b?)

= b�1(b�1(b?)

= b�1(b�1(b)b?)

= b�1(b?)

= b?

Now, by testing the nullability of the resulting regular expression b?, we obtain "(b?) =

true. Hence w 2 L(↵).

Similarly, it is also very easy to prove that a word does not belong to the language denoted
by some regular expression.

Example 6. Let ⌃ = {a, b}, let ↵ def
= ab?, and let w = aab. The word w is not accepted by

the regular expressions ↵, since the computation of Brzozowski’s derivative leads to

(aab)�1(↵) = (aab)�1(ab?)

= b�1((aa)�1(ab?))

= b�1(a�1(a�1(ab?)))

= b�1(a�1(a�1(a)b? + "(a)a�1(b?)))

= b�1(a�1(a�1(a)b?)

= b�1(a�1(b?)

= b�1(a�1(b)b?)

= b�1(0)

= 0,

and, by testing the nullability of the resulting regular expression 0, we obtain "(0) = false.
Thus, by (3.22), w 62 L(↵).

40 CHAPTER 3. EQUIVALENCE OF REGULAR EXPRESSIONS

In its seminal work, Brzozowski proved that the set of all derivatives of a regular expression
↵, when closed under the associativity, the commutativity and the idempotence of the oper-
ator +, is finite. The set D(↵) of all the derivatives of ↵, modulo the previous properties, is
the set defined by

D(↵)
def
= {� | 9w 2 ⌃?, w�1(↵) = �}.

Example 7. Let ⌃ = {a, b}, and let ↵ def
= ab?. The set D(↵), of all the derivatives of ↵,

is D(↵) = {ab?, b?}. A first round of derivation gives: ✏�1(ab?) = ab?, a�1(ab?) = b?,
and b�1(ab?) = 0. Next, we derive the values just calculated, obtaining a�1(b?) = 0 and
b�1(b?) = b?, which renders the total of derivatives for ↵.

We can use D(↵) to build a DFA that accepts the language denoted by ↵. The derivative
automaton of ↵, denoted by D(↵), is the DFA defined as follows:

D(↵)
def
= (D(↵),⌃, a�1,↵, {q | q 2 D(↵), "(q) = true}).

Example 8. Consider the regular expression ↵ = 1 + aa? defined over the alphabet ⌃ =

{a}. The corresponding derivative automata is the DFA

D(↵) = ({1 + aa?, a?},⌃, a�1, 1 + aa?, {1 + aa?, a?}),

represented by the following transition diagram:

1 + aa? a?
a

a

Partial Derivatives

Partial derivatives were introduced by Antimirov [10] and are a generalisation of Brzo-
zowski’s derivatives to NFAs. In fact, this notion was first introduced by Mirkin in [80], but
only latter was proved by Champarnaud and Ziadi [25] that both notions coincide. Let ↵
be a regular expression and let a 2 ⌃. The set @a(↵) of partial derivatives of the regular

3.2. DERIVATIVES OF REGULAR EXPRESSIONS 41

expression ↵ with respect to a is inductively defined as follows:

@a(;)
def
= ;

@a(")
def
= ;

@a(b)
def
=

(
{"} if a ⌘ b,

; otherwise.

@a(↵ + �)
def
= @a(↵) [@a(�)

@a(↵�)
def
=

(
@a(↵)� [@a(�) if "(↵) = true,

@a(↵)� otherwise.

@a(↵
?)

def
= @a(↵)↵

?.

The operation of partial derivation is naturally extended to sets of regular expressions, as
follows. Let S be a set of regular expressions, and let a 2 ⌃. The derivative with respect to
a for the set S is defined by

@a(S)
def
=
[

↵2S

@a(↵).

Similarly to derivatives, the language of a partial derivative is the corresponding left-quotient

L(@a(↵)) = Da(L(↵)). (3.23)

Partial derivatives are implemented in COQ by the recursive function pdrv presented be-
low. Lemma pdrv_correct proves the property (3.23). Finally, the extension of partial
derivatives to finite sets of regular expressions is obtained in the expected way, as given by
definition pdrv_set.

Fixpoint pdrv (↵:re)(a:A) :=

match ↵ with

| 0) ;
| 1) ;
| ‘b) match _cmp a b with

| Eq) {1}
| _) ;
end

| x + y) (pdrv x s) [(pdrv y s)

| x · y) match "(x) with

| false) (pdrv x s) � y

| true) (pdrv x s) � y [(pdrv y s)

end

| x?) (pdrv x s) � x?

end

Notation "@a(↵)" := (pdrv ↵ a).

42 CHAPTER 3. EQUIVALENCE OF REGULAR EXPRESSIONS

Lemma pdrv_correct : 8 ↵:re, 8 a:A, L(@a(↵)) == LQ ↵ a.

Definition pdrv_set(s:set re)(a:A) := fold (fun x:re) union (@a(x))) s ;.
Notation "x %dS y" := (pdrv_set x y)(at level 60).

Given a regular expression ↵ and a word w 2 ⌃?, the partial derivative of ↵ with respect to
to w is defined inductively by

@"(↵)
def
= {↵},

@wa(↵)
def
= @a(@w(↵)).

(3.24)

As with Brzozowski’s, checking if a word belongs to L(↵) is syntactically obtained by
applying nullability of sets to the set resulting from the derivation process, that is,

"(@w(↵)) = true$ w 2 L(↵), (3.25)

"(@w(↵)) = false$ w 62 L(↵). (3.26)

In the examples that follow, we reconstruct the results we have provided as examples to
Brzozowski’s derivatives, but now using partial derivatives.

Example 9. Let ⌃ = {a, b}, let ↵ def
= ab?, and let w = abb. The word derivative of ↵ with

respect to w corresponds to the following computation:

@abb(↵) = @abb(ab
?)

= @b(@ab(ab
?))

= @b(@b(@a(ab
?)))

= @b(@b(@a(a)b
? ["(a)@a(b

?)))

= @b(@b(@a(a)b
?)) [@b(@b("(a)@a(b

?))

= @b(@b(@a(a)b
?))

= @b(@b({b?})
= @b(@b(b)b

?)

= @b({b?})
= {b?}

Now, by testing the nullability of the resulting set of regular expression {b?}, we conclude
that "(b?) = true. Thus, by (3.25), w 2 L(↵).

Example 10. Let ⌃ = {a, b}, let ↵ def
= ab?, and let w = aab. The word derivative of ↵ with

3.2. DERIVATIVES OF REGULAR EXPRESSIONS 43

respect to w corresponds to the following computation:

@aab(↵) = @aab(ab
?)

= @b(@aa(ab
?))

= @b(@a(@a(ab
?)))

= @b(@a(@a(a)b
? ["(a)@a(b

?)))

= @b(@a(@a(a)b
?)) [@b(@a("(a)@a(b

?)))

= @b(@a(@a(a)b
?))

= @b(@a(b
?))

= @b(@a(b)b
?)

= @b(;)
= ;,

and, by testing the nullability on the empty set resulting from the derivation, by (3.26), leads
to the conclusion that w 62 L(↵).

The implementation in COQ of (3.24) is presented below. To ease its construction, we have
defined the type ilist that represents lists defined from right to left.

Inductive ilist : Type :=

| inil : ilist

| icons : ilist ! A ! ilist.

Notation "<[]" := inil.

Infix "<::" := icons (at level 60, right associativity).

Therefore the derivation with respect to words takes as arguments a regular expression and
a word of type ilist. In this way, (3.24) is implemented as a structurally recursive function
as follows:

Reserved Notation "x %dw y" (at level 60).

Fixpoint pdrv_iw (sre:set re)(w:ilist) : set re :=

match w with

| <[]) sre

| xs <:: x) (sre %dw xs) %dS x

end

where "x %dw y" := (pdrv_iw x y).

Definition wpdrv (r:re)(w:list A) :=

pdrv_iw ({r}%set) (list_to_ilist w).

Notation "x %dW y" := (wpdrv x y)(at level 60).

44 CHAPTER 3. EQUIVALENCE OF REGULAR EXPRESSIONS

Definition wpdrv_set (s:set re)(w:list A) :=

s %dw (<@ w).

Notation "x %dWS y" := (wpdrv_set x y)(at level 60).

The definition wpdrv_set corresponds to the derivation of a set of regular expressions by a
word, that is,

@w(S)
def
=
[

↵2S

@w(↵),

such that S is a set of regular expressions, and w 2 ⌃?. The function wpdrv is just a wrapper
to wpdrv_iw, and its role is to transform a given word in its equivalent of type ilist.

Finally, we present the set of partial derivatives of a given regular expression ↵, which is
defined by

PD(↵)
def
=
[

w2⌃?

(@w(↵)). (3.27)

Antimirov proved [10] that, given a regular expression ↵, the set PD(↵) is always finite and
its cardinality has an upper bound of |↵|⌃ + 1, that is, |PD(↵)| |↵|⌃ + 1.

Mirkin’s Construction

Regular languages can be associated to sets of languages equations. Let N be a NFA
such that N = (Q,⌃, �, q0, F), with |Q| = n + 1 and such that Q = {0, . . . , n} with
|⌃| = k and n 2 N. Also, let q0 = 0 and let Li be the language recognised by the
automaton ({0, . . . , n},⌃, �, i, F), for i 2 {0, . . . , n}, with L(N) = L0. Under the previous
assumptions the following system of language equations is satisfied.

Li =
⇣Sk

j=1 {aj}Lij

⌘
[
(

{✏} if ✏ 2 Li,

; otherwise.
Lij =

S
m2Iij Lm,

(3.28)

with i 2 {0, . . . , n} and Iij = �(i, aj) ✓ {0, . . . , n}. Conversely any set of languages
{L0, . . . , Ln} that satisfies the set of equations (3.28) defines an NFA with initial state L0.
In particular if L0, . . . , Ln are denoted by the regular expressions ↵0, . . . ,↵n, respectively,
then the following holds.

↵ ⌘ ↵0

↵i ⇠ a1↵i1 + . . .+ ak↵ik +

(
1 if "(↵) = true,

0 otherwise.
↵ij ⇠

P
m2Iij ↵m,

(3.29)

3.2. DERIVATIVES OF REGULAR EXPRESSIONS 45

with i 2 {0, . . . , n} and Iij ✓ {0, . . . , n}. Given a regular expression ↵, the task of finding
a set of regular expressions that satisfies (3.29) is tantamount to find a NFA whose language
it recognises is the language of ↵. Mirkin [80] denoted by support any set of regular
expressions that satisfies (3.29), provided an algorithm for calculating it, and proved that
such solution’s size is always bounded by |↵|⌃. If S is a support for the regular expression
↵ then the set {↵} [S is a prebase of ↵.

Champarnaud and Ziadi [25] introduced an elegant definition of calculating 2 a support for
a given regular expression ↵. Such function, denoted by ⇡(↵), is recursively defined as
follows.

⇡(;) def
= ;

⇡(")
def
= ;

⇡(�)
def
= {"}

⇡(↵ + �)
def
= ⇡(↵) [⇡(�)

⇡(↵�)
def
= ⇡(↵)� [⇡(�)

⇡(↵?)
def
= ⇡(↵)↵?.

(3.30)

Considering the previous definition, the set ⇡(↵)[{↵} forms a prebase of ↵. Champarnaud
and Ziadi proved that prebases and the set of partial derivatives coincide, that is, PD(↵) =

{↵} [⇡(↵), from were we can conclude that |PD(↵)| |↵|⌃ + 1.

Example 11. Let ⌃ = {a, b}, and let ↵ def
= ab?. The set PD(↵) of all partial derivatives of

↵ is calculated as follows:

PD(↵) = PD(ab?)

= {ab?} [⇡(ab?)

= {ab?} [⇡(a)b? [⇡(b?)

= {ab?} [{b?} [⇡(b)b?)

= {ab?, b?} [{b?}
= {ab?, b?}.

The cardinality argument also holds, since

|PD(↵)| = |{ab?, b?}| = 2 |ab?|⌃ + 1 = 3.

The equation system (3.29), the function ⇡ and the theorem proving that the function ⇡ is a
support are given below.

Inductive Support (↵:re)(s:set re) : language :=

| mb_empty : 8 w:word, w 2 "(↵) ! w 2 (Support ↵ s)

| mb : 8 (w:word) (a:A), s != ; !
(9 �:re, 9 s0:set re,

2This definition was corrected by Broda et al. [21].

46 CHAPTER 3. EQUIVALENCE OF REGULAR EXPRESSIONS

� 2 s ^ w 2 L(a�) ^
a� ✓ L(↵) ^ s0 ✓ s ^
� == L(s0)) ! w 2 (Support ↵ s).

Fixpoint PI (↵:re) : set re :=

match ↵ with

| 0) ;
| 1) ;
| _) {1}
| x + y) (PI x) [(PI y)

| x · y) ((PI x)�y) [(PI y)

| x?) (PI x)�(x?)

end.

Notation "⇡(x)" := (PI x).

Theorem lang_eq_Support : 8 ↵:re, ↵ == Support ↵ (⇡(↵)).

Definition PD(↵:re) := {↵} [(⇡(↵)).

The proofs of the finiteness of the set of partial derivatives and of its upper bound is given
by the lemmas that follow.

Theorem all_pdrv_in_PI : 8 (↵:re)(a:A), @a(↵) ✓ ⇡(↵).

Theorem PI_upper_bound : 8 ↵:re, cardinal (⇡(↵)) |↵|⌃.

Lemma all_wpdrv_in_PD : 8 (w:word)(↵�:re), � 2 @w(↵) ! � 2 PD(↵).

Theorem PD_upper_bound : 8 ↵:re, cardinal (PD(↵)) |↵|⌃ + 1.

The proofs of the previous lemmas an theorems are all performed by induction on the
structure of the given regular expressions, and follow along the lines of the proofs originally
conceived by the authors [10, 25].

Partial Derivatives and Regular Expression Equivalence

We now turn to the properties that allow us to use partial derivatives for deciding wether
or not two given regular expressions are equivalent. A first property is that given a regular
expression ↵, it holds that

↵ ⇠ "(↵) [
[

a2⌃

a
�X

@a(↵)
�
, (3.31)

by induction on ↵ and the properties of partial derivatives. We overload the notation "(↵),
in the sense in the current context, "(↵) = {1} if ↵ is nullable, and "(↵) = ;, otherwise.

3.3. A PROCEDURE FOR REGULAR EXPRESSION EQUIVALENCE 47

Following the equivalence (3.31), checking if ↵ ⇠ � is tantamount to check the equivalence

"(↵) [
[

a2⌃

a
�X

@a(↵)
�
⇠ "(�) [

[

a2⌃

a
�X

@a(�)
�
. (3.32)

This will be an essential ingredient to our decision method because deciding if ↵ ⇠ �

resumes to check if "(↵) = "(�) and if @a(↵) ⇠ @a(�), for each a 2 ⌃. Moreover, since
partial derivatives are finite, and since testing if a word w 2 ⌃? belongs to L(↵) is equivalent
to check syntactically that "(@w(↵)) is nullable, we obtain the following equivalence:

(8w 2 ⌃?, "(@w(↵)) = "(@w(�)))$ ↵ ⇠ �. (3.33)

In the opposite situation, we can prove that ↵ and � are not equivalente by showing that

"(@w(↵)) 6= "(@w(�))! ↵ 6⇠ �. (3.34)

Equation (3.33) can be seen as an iterative process of testing regular expression equivalence
by testing the equivalence of their derivatives. Equation (3.34) can be seen as a point where
we find a counter example of two derivatives during the same iterative process. In the
next section we will describe a decision procedure that constructs a bisimulation that leads
to equation (3.33), and that finds a counter-example like in (3.34) that shows that such
bisimulation does not exist.

3.3 A Procedure for Regular Expression Equivalence

In this section we present the decision procedure EQUIVP, for deciding regular expression
equivalence, and describe its implementation in COQ. The base concepts for this mecha-
nisation were already presented in the previous sections. The procedure EQUIVP follows
along the lines of the work of Almeida et. al. [5], which has its roots in a rewrite system
proposed by Antimirov and Mosses [11] to decide regular expression equivalence using
Brzozowski’s derivatives. In the next sections we describe the implementation choices that
we have made in order to obtain a terminating, correct and complete decision procedure
that is also efficient from the point of view of determining if two regular expressions are
equivalent using COQ’s built-in computation, which is known to be slower than computation
of mainstream functional programming language.

3.3.1 The Procedure EQUIVP

Recall from the previous section that a proof of the equivalence of regular expressions can be
obtained by an iterated process of checking the equivalence of their partial derivatives. Such

48 CHAPTER 3. EQUIVALENCE OF REGULAR EXPRESSIONS

an iterated process is given in Algorithm 1 presented below. Given two regular expressions ↵
and � the procedure EQUIVP corresponds to the iterated process of deciding the equivalence
of their derivatives, in the way noted in equation (3.33). The procedure works over pairs of
regular expressions (S↵, S�) such that S↵ = @w(↵) and S� = @w(�), for some word w 2 ⌃?.
From now on we will refer to these pairs of partial derivatives simply by derivatives.

Algorithm 1 The procedure EQUIVP.
Require: S = {({↵}, {�})}, H = ;
Ensure: true or false

1: procedure EQUIVP(S, H)
2: while S 6= ; do
3: (S↵, S�) POP (S)

4: if "(S↵) 6= "(S�) then
5: return false

6: end if
7: H H [{(S↵, S�)}
8: for a 2 ⌃ do
9: (S 0

↵, S
0
�) @a(S↵, S�)

10: if (S 0
↵, S

0
�) 62 H then

11: S S [{(S 0
↵, S

0
�)}

12: end if
13: end for
14: end while
15: return true

16: end procedure

EQUIVP requires two arguments: a set H that serves as an accumulator for the derivatives
(S↵, S�) already processed; and a set S that serves as a working set that gathers new
derivatives (S 0

↵, S
0
�) yet to be processed. The set H ensures the termination of EQUIVP

due to the finiteness derivatives. The set S has no influence in the termination argument.
When EQUIVP terminates, then it must do so in one of two possible configurations: either
the set H contains all the derivatives of ↵ and � and all of them are equi-nullable; or a
counter-example (S↵, S�) such that "(S↵) 6= "(S�) was found. By equation (3.33), we
conclude that we have ↵ ⇠ � in the first case, whereas in the second case we must conclude
that ↵ 6⇠ �.

This procedure follows along the lines of the work of Almeida et. al. [6, 4, 7], where the

3.3. A PROCEDURE FOR REGULAR EXPRESSION EQUIVALENCE 49

authors propose a functional algorithm that decides regular expression equivalence based on
partial derivatives. This procedure is a functional formulation of the rewrite system proposed
that Antimirov and Mosses proposed [11], but whose goal was to decide regular expression
equivalence using Brzozowski’s derivatives. The main difference between EQUIVP and the
one proposed by the cited authors relies on the underlying representation of derivatives:
their algorithm uses a notion of linearisation of regular expressions that include derivation
and a notion of linear regular expression; we simply use finite sets of regular expressions
and the derivation previously introduced. We will get back to this and other diferences in
Section 3.5. To finish the current section we give below two examples that illustrate how
EQUIVP computes. The first example considers the equivalence of regular expressions, and
the second one considers in-equivalence.

Example 12. Suppose we want to prove that ↵ = (ab)?a and � = a(ba)? are equivalent.
Considering s0 = ({(ab)?a}, {a(ba)?}), it is enough to show that

EQUIVP({s0}, ;) = true.

The computation of EQUIVP for these particular ↵ and � involves the construction of the
new derivatives s1 = ({1, b(ab)?a}, {(ba)?}) and s2 = (;, ;). We can trace the computation
by the following table

i Si Hi drvs.
0 {s0} ; @a(s0) = s1, @b(s0) = s2

1 {s1, s2} {s0} @a(s1) = s2, @b(s1) = s0

2 {s2} {s0, s1} @a(s2) = s2, @b(s2) = s2

3 ; {s0, s1, s2} true

where i is the iteration number, and Si and Hi are the arguments of EQUIVP in that same
iteration. The trace terminates with S2 = ; and thus we can conclude that ↵ ⇠ �.

Example 13. Suppose we want to check if ↵ = b?a and � = b?ba are not equivalent.
Considering s0 = ({b?a}, {b?ba}), to prove so it is enough to check if

EQUIVP({s0}, ;) = false.

In this case, the computation of EQUIVP creates the new derivatives , s1 = ({1}, ;) and
s2 = ({b?a}, {a, b?ba}), and takes two iterations to halt and return false. The counter
example found is the pair s1, as it is easy to see in the trace of computation presented in the
table below.

50 CHAPTER 3. EQUIVALENCE OF REGULAR EXPRESSIONS

i Si Hi drvs.
0 {s0} ; @a(s0) = s1, @b(s0) = s2

1 {s1, s2} {s0} "(s1) = false

3.3.2 Implementation

Representation of Derivatives

The main data type used in EQUIVP is the type of pairs of sets of regular expressions. Each
pair (S↵, S�) represents a word derivative (@w(↵), @w(�)), where w 2 ⌃?. The type of
derivatives is given by the definition of Drv as follows:

Record Drv (↵ �:re) := mkDrv {

dp :> set re * set re ;

w : word ;

cw : dp = (@w(↵),@w(�))

}.

The type Drv is a dependent record composed of three parameters: a pair of sets of regular
expressions dp that corresponds to the actual pair (S↵, S�); a word w ; a proof term cw

that ensures that (S↵, S�) = (@w(↵), @w(�)). Using the type Drv instead of a pair of sets of
regular expressions is necessary because EQUIVP’s domain is the set of pairs resulting from
derivations, and not arbitrary pairs of sets of regular expressions on ⌃. The next example
shows how to construct a value of type Drv representing the derivative of the original regular
expressions ↵ and �, by the empty word ✏.

Example 14. The function Drv_1st that returns the value of type Drv ↵ �, and which
represents the pair ({↵}, {�}) or, equivalently, the pair (@✏(↵), @✏(�)) is defined in our
development as follows:

Program Definition Drv_1st (↵ �:re) : Drv ↵ �.

refine(Build_Drv ({↵},{�}) ✏ _).

abstract(reflexivity).

Defined.

The equality relation defined over Drv terms considers only the projection dp, that is, two
terms d1 and d2 of type Drv ↵ � are equal if (dp d1) = (dp d2). This implies that each
derivative will be considered only once along the execution of EQUIVP. If the derivative d1

is already in the accumulator set, then all derivatives d2 that are computed afterwards will
fail the membership of line 10 of Algorithm 1. This directly implies the impossibility of the
eventual non-terminating computations due to the repetition of derivatives.

3.3. A PROCEDURE FOR REGULAR EXPRESSION EQUIVALENCE 51

As a final remark, the type Drv also provides an straightforward way to relate the result of
the computation of EQUIVP with the (in-)equivalence of ↵ and �: on one hand, if H is the set
returned by EQUIVP, then checking the nullability its elements of H is tantamount to prove
the equivalence of the corresponding regular expressions, since we expect H to contain all
the derivatives; on the other hand, if EQUIVP returns a term t:Drv ↵ �, then "(t) = false,
which implies that the word w t is a witness of in-equivalence, and can be presented to the
user.

Extended Derivation and Nullability

The definition of derivative with respect to a symbol and with respect to a word are also
extended to the type Drv. The derivation of a value of type Drv↵� representing the pair
(S↵, S�) is obtained by calculating the derivative @a(S↵, S�), updating the word w, and also
by automatically building the associated proof term for the parameter cw. The function
implementing the derivation of Drv terms, and its extension to set of Drv terms, and to
the derivation with regard to a word, are given below. They are the definitions Drv_pdrv,
Drv_pdrv_set, and Drv_wpdrv, respectively. These definition are presented below. Note
that @a(S↵, S�)

def
= (@a(S↵), @a(S�)), and therefore @a(@w(↵), @w(�)) = (@wa(↵), @wa(�)).

Definition Drv_pdrv(↵ �:re)(x:Drv ↵ �)(a:A) : Drv ↵ �.

refine(match x with

| mkDrv ↵ � K w P) mkDrv ↵ � (pdrvp K a) (w++[a]) _

end).

abstract((* Proof that @a(@w(↵), @w(�)) = (@wa(↵), @wa(�)) *)).

Defined.

Definition Drv_pdrv_set(x:Drv ↵ �)(s:set A) : set (Drv ↵ �) :=

fold (fun y:A) add (Drv_pdrv x y)) s ;.

Definition Drv_wpdrv (↵ �:re)(w:word) : Drv ↵ �.

refine(mkDrv ↵ � (@w(↵), @w(�)) w _).

abstract((* Proof that (@w(↵), @w(�)) = (@w(↵), @w(�)) *)).

Defined.

We also extend the notion of nullable regular expression to terms of type Drv, and set of
values of Drv. Checking the nullability of Drv term denoting the pair (S↵, S�) is tantamount
to check that "(S↵) = "(S�).

Definition c_of_rep(x:set re * set re) :=

Bool.eqb (c_of_re_set (fst x)) (c_of_re_set (snd x)).

Definition c_of_Drv(x:Drv ↵ �) := c_of_rep (dp x).

52 CHAPTER 3. EQUIVALENCE OF REGULAR EXPRESSIONS

Definition c_of_Drv_set (s:set (Drv ↵ �)) : bool :=

fold (fun x) andb (c_of_Drv x)) s true.

All the previous functions were implemented using the proof mode of COQ instead of trying
a direct definition. In this way we are able to wrap the proofs in the tactic abstract, which
dramatically improves the performance of the computation.

Computation of New Derivatives

The while-loop of EQUIVP – lines 2 to 14 of Algorithm 1 – describes the process of testing
the equivalence of the derivatives of two given regular expressions ↵ and �. In each iteration,
either a witness of in-equivalence if found, or new derivatives (S↵, S�) are computed and
the sets S and H are updated accordingly. The expected behaviour of each iteration of the
loop is implemented by the function step, presented below, and which also corresponds to
the for-loop from lines 8 to 12 of Algorithm 1.

Definition step (H S:set (Drv ↵ �))(sig:set A) :

((set (Drv ↵�) * set (Drv ↵ �)) * step_case ↵ �) :=

match choose s with

|None) ((H,S),termtrue ↵ � H)

|Some (S↵, S�))
if c_of_Drv _ _ (S↵, S�) then

let H 0 := add (S↵, S�) H in

let S0 := remove (S↵, S�) S in

let ns := Drv_pdrv_set_filtered ↵ � (S↵, S�) H 0 sig in

((H 0,ns [S0),proceed ↵ �)

else

((H,S),termfalse ↵ � (S↵, S�))

end.

The step function proceeds as follows: it obtains a pair (S↵, S�) from the set S, and
tests it for equi-nullability. If S↵ and S� are not equi-nullable, then step returns a triple
((H ,S),termfalse ↵ � (S↵, S�)), that serves as a witness of ↵ 6⇠ �. If, on the contrary,
S↵ and S� are equi-nullable, then step generates a new set of derivatives by the symbols
a 2 ⌃, (S 0

↵, S
0
�) = (@a(S↵), @a(S�)), such that (S 0

↵, S
0
�) are not elements of {(S↵, S�)}[H .

These new derivatives are added S, and (S↵, S�) is added to H . The computation of new
derivatives is performed by the function Drv_pdrv_set_filtered, defined as follows.

Definition Drv_pdrv_set_filtered(x:Drv ↵ �)(H:set (Drv ↵ �))

(sig:set A) : set (Drv ↵ �) :=

filter (fun y) negb (y 2 H)) (Drv_pdrv_set x sig).

3.3. A PROCEDURE FOR REGULAR EXPRESSION EQUIVALENCE 53

Note that this is precisely what prevents the whole process from entering potential infinite
loops, since each derivative is considered only once during the execution of EQUIVP and
because the number of derivatives is always finite.

Finally, we present the type step_case below. This type is built from three constructors:
the constructor proceed represents the fact that there is not yet information that allows to
decide if the regular expressions under consideration are equivalent or not; the constructor
termtrue indicates that no more elements exist in S, and that H should contain all the
derivatives; finally, the constructor termfalse indicates that step has found a proof of in-
equivalence of the regular expressions under consideration.

Inductive step_case (↵ �:re) : Type :=

|proceed : step_case ↵ �

|termtrue : set (Drv ↵ �) ! step_case ↵ �

|termfalse : Drv ↵ � ! step_case ↵ �.

Termination

Clearly, the procedure EQUIVP is general recursive rather than structural recursive. This im-
plies that the procedure’s iterative process cannot be directly encoded in COQ’s type system.
Therefore, we have devised a well-founded relation establishing a recursive measure that
defines the course-of-values that makes EQUIVP terminate. This well-founded relation will
be the structural recursive argument for our encoding of EQUIVP, using the methodology
introduced in Section 2.1.4.

The decreasing measure (of the recursive calls) for EQUIVP is defined as follows: in each
recursive call, the cardinality of the accumulator set H increases by one unit due to the
computation of step. The maximum size that H can reach is bounded by

2(|↵|⌃+1) ⇥ 2(|�|⌃+1) + 1 (3.35)

due to the upper bounds of the cardinalities of both PD(↵) and of PD(�), the cardinality
of the cartesian product, and the cardinality of the powerset. Therefore, if

stepH S _ = (H 0, _, _),

then the following relation

(2(|↵|⌃+1) ⇥ 2(|�|⌃+1) + 1)� |H 0| < (2(|↵|⌃+1) ⇥ 2(|�|⌃+1) + 1)� |H|, (3.36)

holds. In terms of its implementation in COQ, we first define and prove the following:

54 CHAPTER 3. EQUIVALENCE OF REGULAR EXPRESSIONS

Definition lim_cardN (z:N) : relation (set A) :=

fun x y:set A) nat_of_N z - (cardinal x) < nat_of_N z - (cardinal y).

Lemma lim_cardN_wf : 8 z, well_founded (lim_cardN z).

The relation lim_cardN is a generic version of (3.36). It is proved by first showing that

8z, n, a, (z � |a|) < n! Acc (lim_card z) a, (3.37)

such that Acc is the definition, in COQ’s type theory, of the notion of accessibility. The
relation lim_card is the same as lim_cardN, but that uses Peano natural numbers, instead
of the binary encoding of natural numbers of the type N. We use N as the main datatype
here, because it is very efficient when compared to nat. The proof that (3.37) follows from
straightforward induction on n.

Next, we establish the upper bound of the number of derivatives, and define the relation
LLim that is the relation that actually implements (3.36). The encoding in COQ goes as
follows:

Definition MAX_fst(↵:re) := |↵|⌃ + 1.

Definition MAX_snd(�:re) := |�|⌃ + 1.

Definition MAX(↵ �:re) := (2MAX_fst(↵) ⇥ 2MAX_snd(�)) + 1.

Definition LLim(↵ �:re) := lim_cardN (Drv ↵ �) (MAX ↵ �).

Theorem LLim_wf(↵ �:re) : well_founded (LLim ↵ �).

We note that there is still a missing peace in order to LLim to be used as the recursive
argument for the main function: the sets S and H of EQUIVP must be proved to remain
disjoint along the execution; otherwise, there is no guarantee that H actually increases in
each recursive call, rendering LLim as not adequate for its purpose. However, the proof of
this property will be needed only when we implement EQUIVP, as we shall see very soon.

The Iterator

We now present the development of a recursive function that implements the main loop
of Algorithm 1. This recursive function is an iterator that calls the function step a finite
number of times starting with two initial sets S and H . This iterator, named iterate, is
defined as follows:

Function iterate(↵ �:re)(H S:set (Drv ↵ �))(sig:set A)(D:DP ↵ � h s)

{wf (LLim ↵ �) H}: term_cases ↵ � :=

let ((H 0,S0,next) := step H S in

match next with

3.3. A PROCEDURE FOR REGULAR EXPRESSION EQUIVALENCE 55

|termfalse x) NotOk ↵ � x

|termtrue h) Ok ↵ � h

|progress) iterate ↵ � H 0 S0 sig (DP_upd ↵ � H S sig D)

end.

Proof.

abstract(apply DP_wf).

exact(guard r1 r2 100 (LLim_wf r1 r2)).

Defined.

The output of iterate is a value of type term_cases, which is defined as follows:

Inductive term_cases ↵ � : Type :=

|Ok : set (Drv ↵ �) ! term_cases ↵ �

|NotOk : Drv ↵ � ! term_cases ↵ �.

The type term_cases is made of two constructors that determine what possible outcome
we can obtain from computing iterate: either it returns a set S of derivatives, packed in
the constructor Ok, or it returns a sole pair (S↵, S�), packed in the constructor NotOk. The
first should be used to prove equivalence, whereas the second should be used for exhibiting
a witness of in-equivalence.

The function iterate is recursively decreasing on a proof that LLim is well-founded. The
type annotation wf LLim ↵ � adds this information to the inner mechanisms of Function,
so that iterate is constructed in such a way that COQ’s type-checker accepts it. As we
have noted earlier, using LLim is not enough: we must also provide evidence that the sets S
and H remain disjoint in all the recursive calls of iterate in order for LLim is true in all
such calls. This is way iterate has the parameter D of type DP. The type DP packs together
a proof that H and S are disjoint (in all recursive calls), and that all the elements in H are
equi-nullable. The definition of type DP is the following:

Inductive DP (↵ �:re)(H S: set (Drv ↵ �)) : Prop :=

| is_dp : H \ S = ; ! c_of_Drv_set ↵ � H = true ! DP ↵ � H S.

In the definition of the recursive branch of iterate, the function DP_upd is used to build a
new term of type DP that proves that the updated sets H and S remain disjoint, and that all
the elements in H remain equi-nullable.

Lemma DP_upd : 8 (h s : set (Drv ↵ �)) (sig : set A), DP ↵ � h s !
DP ↵ � (fst (fst (step ↵ � h s sig))) (snd (fst (step ↵ � h s sig))).

As explained in Section 2.1.4, the Function vernacular produces proof obligations that we
need to discharge in order to COQ’s type checker to accept if. One of the proof obligations
generated by iterate is that, when performing a recursive call, the new cardinalities of

56 CHAPTER 3. EQUIVALENCE OF REGULAR EXPRESSIONS

H and S still satisfy the underlying well-founded relation. The lemma DP_wf serves this
purpose and is defined as follows:

Lemma DP_wf : 8 (h s : set (Drv r1 r2)) (sig : set A),

DP _ _ h s ! snd (step _ _ h s sig) = Process’ _ _ !
LLim _ _ (fst (fst (step _ _ h s sig))) h.

The second proof obligation generated by the Function command is just the exact accessi-
bility term that allows for iterate to compute efficiently, as described in Section 2.1.4.

In the code below we give the complete definition of EQUIVP. The function equivP is simply
a wrapper defined over iterate: it establishes the correct input for the arguments H and
S, and pattern matches over the result of iterate, returning instead the expected Boolean
value.

Definition equivP_aux(↵ �:re)(H S:set(Drv ↵ �))(sig:set A)(D:DP ↵ � H S

):=

let H 0 := iterate ↵ � H S sig D in

match H 0 with

| Ok _) true

| NotOk _) false

end.

Definition mkDP_ini : DP ↵ � ; {Drv_1st ↵ �}.

abstract(constructor;[split;intros;try(inversion H)|vm_compute];

reflexivity).

Defined.

Definition equivP (↵ �:re) :=

equivP_aux ↵ � ; {Drv_1st ↵ �} (setSy ↵ [setSy �) (mkDP_ini ↵ �).

The function mkDP_ini builds the term of type DP that ensures that {({↵}, {�})}\; = ; and
"(;) = false hold. The final decision procedure, equivP, calls the function equivP_aux

with the adequate arguments, and the function equivP_aux simply pattern matches over a
term of term_cases and returns a Boolean value accordingly.

We note that in the definition of equivP we instantiate the parameter representing the input
alphabet by the union of two sets, both computed by the function setSy. This function
returns the set of all symbols that exist in a given regular expression. It turns out that for
deciding regular expression (in-)equivalence we need not to consider a fixed alphabet ⌃,
since only the derivations by symbols that exist in the regular expressions being tested is
important. The input alphabet can even be infinite.

3.3. A PROCEDURE FOR REGULAR EXPRESSION EQUIVALENCE 57

3.3.3 Correctness and Completeness

We now give the proofs of the soundness and of the completeness of EQUIVP with respect
to language equivalence.

Correctness

The correctness of equiv with respect to language (in-)equivalence follows the same ideas
of the proof that we have devised to ensure that from proving two statements: if equivP
↵ � returns true, then ↵ ⇠ �; otherwise, equivP ↵ � implies ↵ 6⇠ �. If we unfold the
definitions of equivP and equivP_aux, the previous statements can be rephrased in terms
of the function iterate. Thus, and considering the alphabet ⌃ = (sySet ↵ [sySet �),
and the value D = (DP_1st ↵ �), if it holds

iterate ↵ � ; (Drv_1st ↵ �) ⌃ D = Ok ↵ � H, (3.38)

then ↵ ⇠ � must be true. The returned value H is a set Drv ↵ �. On the contrary, if we
obtain

iterate ↵ � ; (Drv_1st ↵ �) ⌃ D = NotOk ↵ � �, (3.39)

then ↵ 6⇠ � must hold, with � of type Drv ↵ �. In what follows, we describe the way we
proved the previous two statements, in a separate way.

Correctness wrt in-equivalence. To prove that (3.39) implies non equivalence of two given
regular expressions ↵ and �, we must prove that the value � in the returned term NotOk ↵ �

� is a witness that there is a word w 2 ⌃? such that w 2 L(↵) and w 62 L(�), or the other
way around. This leads us to the following lemma about iterate.

Lemma 1. Let ↵ and � be regular expressions, let S and H be set of values of type Drv ↵ �,
let ⌃ be an alphabet, and let D be a values of type DP ↵ � S H . If

iterate ↵ � S H ⌃ D = NotOk ↵ � �,

then "(fst �) 6= "(snd �).

Next, we just need to prove that the pair in the value returned by iterate does imply in-
equivalence.

Lemma 2. Let ↵ and � be regular expressions, let S and H be set of values of type Drv ↵ �,
let ⌃ be an alphabet, and let D be a values of type DP ↵ � S H . Hence,

iterate ↵ � S H ⌃ D = NotOk ↵ � � ! ↵ 6⇠ �.

58 CHAPTER 3. EQUIVALENCE OF REGULAR EXPRESSIONS

The previous two lemmas allow us to conclude that equivP is correct with respect to the
in-equivalence of regular expressions.

Theorem 1. Let ↵ and � be two regular expressions. It holds that

equivP ↵ � = false ! ↵ 6⇠ �.

Correctness wrt equivalence. In order to prove the correctness of equivP with respect
to language equivalence, we proceed as follows. Suppose that equivP ↵ � = true. To
prove that this implies regular expression equivalence we must prove that the set of all the
derivatives is computed by the function iterate, and also that all the elements of that set
are equi-nullable. This leads to (3.33), which in turn implies language equivalence.

To prove that iterate computes the desired set of derivatives we must show that, in each of
its recursive calls, the accumulator set H keeps a set of values whose derivatives have been
already computed (they are also in H), or that such derivatives are still in the working set
S, waiting to be selecte for further processing. This property is formally defined in COQ as
follows:

Definition invP (↵ �:re)(H S:set (Drv ↵ �))(sig:set A) :=

8 x:Drv ↵ �, x 2 H ! 8 a:A, a 2 sig ! (Drv_pdrv ↵ � x a) 2 (H [S).

Now, we must prove that invP is an invariant of iterate. For that, we must first prove that
invP is satisfied by the computation of step.

Lemma 3. Let ↵ and � be two regular expressions. Let S,S 0,H , and H 0 be finite sets of
values of type Drv ↵ �. Moreover, let ⌃ be an alphabet. If invP H S holds, and

step ↵ � H S ⌃ = ((H 0,S 0),proceed ↵ �),

then invP H 0 S 0 also holds.

The next step is to prove that invP is an invariant of iterate. This proof indeed shows that
of invP is satisfied in all the recursive calls of iterate, then this function must return a
value Ok ↵ � H 0, and invP H 0 ; must be satisfied, as stated by the lemma that follows.

Lemma 4. Let ↵ and � be two regular expressions. Let S,H , and H 0 be finite sets of values
of type Drv ↵ �, and let ⌃ be an alphabet. If invP H S holds, and if

iterate ↵ � H S ⌃ D = Ok ↵ � H 0,

then invP H 0 ; also holds.

3.3. A PROCEDURE FOR REGULAR EXPRESSION EQUIVALENCE 59

In COQ, the two previous lemmas are defined as follows:

Lemma invP_step : 8 H S ⌃,

invP ↵ � H S ⌃ ! invP (fst (fst (step ↵ � H S ⌃)))

(snd (fst (step ↵ � H S ⌃))) ⌃.

Lemma invP_iterate : 8 ↵ � H S ⌃ D x,

invP ↵ � H S ⌃ !
iterate ↵ � H S ⌃ D = Ok ↵ � x !
invP ↵ � x ;

The lemmas 3 and 4 are still not enough to prove the correctness of equivP with respect
to language equivalence. We must prove that these derivatives are all equi-nullable, and
that the pair containing the regular expressions being tested for equivalence are in the set
of derivatives returned by iterate. For that, we strengthen the invariant invP with this
property, as follows:

Definition invP_final(H S:set (Drv ↵ �))(s:set A) :=

(Drv_1st ↵ �) 2 (H [S) ^
(8 x:Drv ↵ �, x 2 (H [S) ! c_of_Drv ↵ � x = true) ^

invP ↵ � H S s.

We start by proving that, if we are testing ↵ ⇠ �, then the pair {({↵}, {�})} is an element
of the set returned by iterate. For that, we must first show two generic lemmas that will
allow us to conclude that.

Lemma 5. Let ↵ and � be two regular expressions. Let H , H 0, and S 0 be set of values of
type Drv ↵ �. Finally, let ⌃ be an alphabet, and let D be a value of type DP ↵ � H S. If it
holds that iterate ↵ � H S ⌃ D = Ok ↵ � H 0, then is also holds that H ✓ H 0.

Corollary 1. Let ↵ and � be two regular expressions. Let � be a value of type Drv ↵ �. Let
H , H 0, and S 0 be set of values of type Drv ↵ �. Finally, let ⌃ be an alphabet, and let D be
a value of type DP ↵ � H S. If it holds that iterate ↵ � H S ⌃ D = Ok ↵ � H 0 and that
choose S = Some �, then it also holds that {�} [H ✓ H 0.

From lemma 5 and corollary 1 we are able to prove that the original pair is always returned
by the iterate function, whenever it returns a value Ok ↵ � H .

Lemma 6. Let ↵ and � be two regular expressions, let H 0 be a finite set of values of type
Drv ↵ �, let ⌃ an alphabet, and let D be a value of type DP ↵ � ; {({↵}, {�})}. Hence,

iterate ↵ � ; {({↵}, {�})} ⌃ D = Ok ↵ � H 0 ! ({↵}, {�}) 2 H 0.

60 CHAPTER 3. EQUIVALENCE OF REGULAR EXPRESSIONS

Now, we proceed in the proof by showing that all the elements of the set packed in a value Ok
↵ � H 0 enjoy equi-nullability. This is straightforward, due to the last parameter of iterate.
Recall that a value of type DP always contains a proof of that fact.

Lemma 7. Let ↵ and � be two regular expressions. Let H , H 0, and S 0 be set of values of
type Drv ↵ �. Finally, let ⌃ be an alphabet, and let D be a value of type DP ↵ � H S. If it
holds that iterate ↵ � H S ⌃ D = Ok ↵ � H 0, then is holds that 8� 2 H 0, "(�) = true.

Using lemmas 6 and 8 we can establish the intermediate result that will take us to prove the
correctness of equivP with respect to language equivalence.

Lemma 8. Let ↵ and � be two regular expressions. Let H , H 0, and S 0 be set of values of
type Drv ↵ �. Finally, let ⌃ be an alphabet, and let D be a value of type DP ↵ � H S. If it
holds that iterate ↵ � H S ⌃ D = Ok ↵ � H 0, then invP_final ↵ � H 0 ;.

The last intermediate logical condition that we need to establish to finish the proof of
correctness is that invP_final implies language equivalence, when instantiated with the
correct parameters. The following lemma gives exactly that.

Lemma 9. Let ↵ and � be two regular expressions. Let H 0 be a set of values of type Drv ↵

�. If it holds that invP_final ↵ � H 0 ; (sySet ↵ [sySet �), then it is true that ↵ ⇠ �.

Finally, we can state the theorem that ensures that if equivP returns true, then we have the
equivalence of the regular expressions under consideration.

Theorem 2. Let ↵ and � be two regular expressions. Thus, if equivP ↵ � = true, then
↵ ⇠ �.

Completeness

As in the case of the correctness of equivP, we have to prove two statements to ensure
that equivP is complete with respect to language equivalence. Considering two regular
expressions ↵ and �, the statements that we need to show that are valid are that if ↵ ⇠ �

then equivP return true, and that if ↵ 6⇠ � then iterate must return false.

In order to obtain the proofs for the two aforementioned statements, it is enough to reason by
contradiction. To prove the first one, we pattern match over the results of equivP, which is
a Boolean value and therefore leads to two cases: if equivP returns true, then by theorem ??
this implies ↵ ⇠ �, which trivially solves the goal; if equivP returns false, then by theorem
??, this implies ↵ 6⇠ �, but this is a contradiction since ↵ ⇠ �, thus trivially proving the
second case. The proof for the second statement follows a similar reasoning.

3.3. A PROCEDURE FOR REGULAR EXPRESSION EQUIVALENCE 61

Theorem 3. Let ↵ and � be regular expressions. Hence, if ↵ ⇠ � then equivP ↵ � = true.

Theorem 4. Let ↵ and � be regular expressions. Hence, if ↵ 6⇠ � then equivP ↵ � =

false.

3.3.4 Tactics and Automation

In this section we describe two COQ proof tactics that are able to automatically prove the
(in-)equivalence of regular expressions, as well as relational algebra equations.

Tactic for Deciding Regular Expression Equivalence

The expected way to prove the equivalence of two regular expressions ↵ and �, using our
development, can be summarised as follows: first we look into the goal, which must be of
the form ↵ ⇠ � or ↵ 6⇠ �; secondly, we transform such goal into the equivalent one that is
formulated using equivp, on which we can perform computation. The COQ code for this
tactic is the following:

Ltac re_inequiv :=

apply equiv_re_false;vm_compute;

first [reflexivity | fail 2 "Regular expressions not inequivalent"].

Ltac re_equiv :=

apply equiv_re_true;vm_compute;

first [reflexivity | fail 2 "Regular expressions are not equivalent"].

Ltac dec_re :=

match goal with

| |- re2rel (?R1) ⇠ re2rel (?R2)) re_equiv

| |- re2rel (?R1) !⇠ re2rel (?R2)) re_inequiv

| |- re2rel (?R1) re2rel (?R2))
unfold lleq;change (R1 [R2) with (re2rel (R1 + R2));

re_equiv

| |- _) fail 2 "Not a regular expression (in�)equivalence equation."
end.

The main tactic, dec_re, pattern matches on the goal and decides whether the goal is
an equivalence, an in-equivalence, or a subset relation. In the former two cases, dec_re
applies the corresponding auxiliary tactics, re_inequiv or re_equiv, and reduces the (in-
)equivalence into a call to equivP, and then performs computation in order to try to solve
the goal by reflexivity. In the case of the goal representing a subset relation, dec_re first

62 CHAPTER 3. EQUIVALENCE OF REGULAR EXPRESSIONS

changes it into an equivalence (since we know that ↵ �
def
= ↵ + � ⇠ �) and, after that,

call the auxiliary tactic re_equiv to prove the goal.

The tactic dec_re is straightforward, and in the next section we will comment on its usua-
bility within COQ’s environment for deciding regular expression (in-)equivalence.

Tactic for Deciding Relational Algebra Equations

One application of our development is the automation of proof of equations of relational
algebra. The idea of using regular expression equivalence to decide relational equations,
based on derivatives, was first pointed out by Nipkow and Krass [71]. In this section we
adapt their ideia to our development by providing a reflexive tactic that reduces relational
equivalence to regular expression equivalence, and then apply the tactic for deciding regular
expression to finish the proof.

A formalisation of relations is already provided in COQ’s standard library, but no support
for automation is given. Here, we consider the following encoding of binary relations:

Parameter B : Type.

Definition EmpRel : relation B := fun _ _:B) False.

Definition IdRel : relation B := fun x y :B) x = y.

Definition UnionRel (x y:relation B) : relation B := union _ x y.

Definition CompRel (R S: relation B): relation B :=

fun i k) 9 j, R i j ^ S j k.

Inductive TransRefl (R:relation B) : relation B :=

| trr : 8 x, TransRefl R x x

| trt : 8 x y, R x y ! 8 z, TransRefl R y z ! TransRefl R x z.

Definition rel_eq (R S:relation B) : Prop :=

same_relation B R S.

The definitions EmpRel, IdRel, UnionRel, CompRel and TransRefl represent, respectively,
the empty relation, the identity relation, the union of relation, the composition of relations,
and the transitive and reflexive closure of a relation. If R1 and R2 are relations, denote
the previous constants and operations on relations, by ;, I, R1 [R2, R1 � R2, and R?,
respectively. The definition rel_eq corresponds to the equivalence of relations, and is
denoted by R1 ⇠R R2.

3.3. A PROCEDURE FOR REGULAR EXPRESSION EQUIVALENCE 63

Regular expressions can be easily transformed into binary relations. For that, we need to
consider a function v such that maps each symbols of the alphabet under consideration into
a relation. With this function, we can define another recursive function that, by structural
recursion on a given regular expression ↵, computes the corresponding relation. Such a
function is defined in COQ as follows:

Fixpoint reRel(v:nat! relation B)(↵:re) : relation B :=

match r with

| 0) EmpRel

| 1) IdRel

| ‘a) v a

| x + y) UnionRel (reRel v x) (reRel v y)

| x · y) CompRel (reRel v x) (reRel v y)

| x?) TransRefl (reRel v x)

end.

The following example shows how reRel is, in fact, a function that generates a relation
considering a particular definition of the function v.

Example 15. Let ⌃ = {a, b}, let Ra and Rb be two binary relations over a set of values
of type B, and let ↵ = a(b + 1) be a regular expression. Moreover, let v be a function that
maps the symbols a to the relation Ra, and that maps b to the relation Rb. The computation
of reRel ↵ v gives the relation Ra � (Rb [I), and can be described as follows:

reRel ↵ v = reRel (a(b+ 1)) v

= CompRel (reRel a v) (reRel (b+ 1) v)

= CompRel Ra (reRel (b+ 1) v)

= CompRel Ra (UnionRel (reRel b v) (reRel 1 v))

= CompRel Ra (UnionRel Rb (reRel 1 v))

= CompRel Ra (UnionRel Rb IdRel)

Naturally, a word w = a1a2 . . . an can also be interpreted as a relation, namely, the compo-
sition of the relations v(ai), where v is the function that maps a symbol ai to a relation Rai ,
with 1 i n. Such interpretation of words as relations is implemented as follows:

Fixpoint reRelW (v:A ! relation B)(w:word) : relation B :=

match w with

| nil) IdRel

| x::xs) CompRel (v x) (reRelW v xs)

end.

64 CHAPTER 3. EQUIVALENCE OF REGULAR EXPRESSIONS

Example 16. Let ⌃ = {a, b}, let Ra and Rb be two binary relations over a set of values of
type B. Let w be a word defined by w = abba. Moreover, let v be a function that maps the
symbols a to the relation Ra, and that maps b to the relation Rb. The function reRelW v w

yields the relation Ra �Rb �Rb �Ra � I, and its computation is summarised as

reRelW v w = reRelW v abba

= Ra � (reRelW v bba)

= Ra �Rb � (reRelW v ba)

= Ra �Rb �Rb � (reRelW v a)

= Ra �Rb �Rb �Ra � (reRelW v ✏)

= Ra �Rb �Rb �Ra � I,

Now we connect the previous interpretations to regular expression equivalence and rela-
tional equivalence. First we present the following inductive predicate, ReL, which defines a
relation that contains all the pairs (a, b) such that a and b are related by the interpretation of
reRelW over the elements of the language denoted by some regular expression ↵.

Inductive ReL (v:A ! relation B) : re ! relation B :=

| mkRel : 8 ↵:re, 8 w:word,

w 2 re2rel ↵ ! 8 a b, (reRelW v w) a b ! ReL ↵ a b.

If two regular expressions ↵ and � are equivalent, then the interpretations of reRelW of their
words must necessarily be the same. This means that the pairs (a, b) in ReL v ↵ and in ReL

v � must also be the same. This takes us to the main property that is necessary to establish
to rely on regular expression equivalence to decide equations involving relations.

Lemma 10. Let ↵ and � be regular expressions. Let v be a function that maps symbols to
relation. Hence,

↵ ⇠ � ! ReL v ↵ ⇠R ReL v �.

In order to use theorem 10 to decide relational equivalence, we must relate ReL and reRel.
But, as the next lemma show, both these notion end up being equivalent relations.

Lemma 11. Let ↵ be a regular expression, and let v be a function mapping symbols of the
alphabet to relations. Thus,

reRel v ↵ ⇠R ReL v ↵.

Together, lemma 10 and 11 allow us to prove that if two regular expressions are equivalente,
then so are their interpretation on binary relations.

3.3. A PROCEDURE FOR REGULAR EXPRESSION EQUIVALENCE 65

Theorem 5. Let ↵ and � be regular expressions. Let v be a function that maps symbols to
relation. Hence,

↵ ⇠ � ! reRel v ↵ ⇠R reRel v �.

The last lemmas and theorem are defined in our development as follows:
Lemma Main : 8 ↵:re,

rel_eq (reRel v ↵) (ReL ↵).

Lemma Rel_red_Leq_aux : 8 ↵ �:re,

↵ ⇠ � ! rel_eq (ReL v ↵) (ReL v �).

Theorem Rel_red_Leq_final : 8 ↵ �:re,

↵ ⇠ � ! rel_eq (reRel v ↵) (reRel v �).

We will now describe the details of the tactic construction. The first step is to construct
the function that maps symbols of the alphabet into relations. We consider the underlying
alphabet the set of natural numbers, i.e., the values of type nat. This function is obtained
directly from the individual in the equations that our tactic is intended to solve. For obtaining
such function, we need the following definitions that are responsible for building and finding
representatives of relations.
Definition STD(T:Type) : relation T := IdRel T.

Definition emp_m(T:Type) : Map[nat,relation T] :=

@empty nat _ _ (relation T).

Definition add_mm(T:Type)(x:nat)(r:relation T)(m:Map[nat,relation T]) :=

@add nat _ _ (relation T) x r m.

Definition find_mm(T:Type)(x:nat)(m:Map[nat,relation T]) :=

match @find nat _ _ (relation T) x m with

| None) STD T

| Some y) y

end.

Definition f(T:Type)(v:Map[nat,relation T])(x:nat) :=

find_mm T x v.

The functions add_mm and find_mm are responsible for adding and a map from a natural
number to a relation, respectively. The next tactics construct a map Map[nat,relation
T] by following the structure of the goal representing the relational equation. The type Map
is provided by the Containers library [75], and its usage is similar to the usage of finite
sets.

66 CHAPTER 3. EQUIVALENCE OF REGULAR EXPRESSIONS

Ltac in_there t n m v max :=

let ev := eval vm_compute in (beq_nat n max) in

match ev with

| true) constr:max

| _) let k := eval vm_compute in (find_mm t n m) in

match constr:(k=v) with

| ?X = ?X) constr:n

| _) in_there t (S n) m v max

end

end.

Ltac mk_reif_map t m n v :=

match v with

| UnionRel t ?A1 ?A2)
let R1 := mk_reif_map t m n A1 in

let m1 := eval simpl in (fst R1) in

let m2 := eval simpl in (snd R1) in

let R2 := mk_reif_map t m1 m2 A2 in

let m1’ := eval simpl in (fst R2) in

let m2’ := eval simpl in (snd R2) in

constr:(m1’,m2’)

(* ... *)

| IdRel t) constr:(m,n)

| EmpRel t) constr:(m,n)

| ?H)
let y := in_there t 0 m H n in

let r := eval vm_compute in (beq_nat n y) in

match r with

| false) constr:(m,n)

| _) constr:(add_mm t n H m,S n)

end

end.

Ltac reif_rel t n m v max :=

let x := in_there t n m v max in

let b := eval vm_compute in (beq_nat x max) in

match b with

| false) constr:(reRel t (f t m) (‘x))

| _) constr:(reRel t (f t m) 0)

end.

The tactic in_there checks for the next natural number to be associated with a relation.
The tactic mk_reif_map is responsible for following the structure of a given relation and
updating the map from natural numbers into relations. Finally, the tactic reif_rel is

3.3. A PROCEDURE FOR REGULAR EXPRESSION EQUIVALENCE 67

responsible constructing a term reRel considering the map already available (represented
by the variable m).

Now, we present the tactic that reifies the original goal:

Ltac reif t v m mx :=

match v with

| EmpRel t) constr:(reRel t (f t m) 0)

| IdRel t) constr: (reRel t (f t m) 1)

| UnionRel t ?A1 ?A2)
let l1 := reif t A1 m mx with l2 := reif t A2 m mx in

constr:(UnionRel t l1 l2)

| CompRel t ?A1 ?A2)
let l1 := reif t A1 m mx with l2 := reif t A2 m mx in

constr:(CompRel t l1 l2)

| trans_refl t ?A1)
let l1 := reif t A1 m mx in

constr:(trans_refl t l1)

| ?H) let l := reif_rel t 0 m v mx in

constr:l

end.

Ltac reify :=

match goal with

| |- rel_eq ?K ?V1 ?V2)
let v := set_reif_env K V1 V2 in

let m := eval simpl in (fst v) with mx := eval simpl in (snd v) in

let x := fresh "Map_v" with y := fresh "MAX" in

set(x:=m) ; set(y:=mx) ;

let t1 := reif K V1 m mx with t2 := reif K V2 m mx in

change V1 with t1 ; change V2 with t2

end.

The previous tactic transforms a goal of the form R1 = R2 into an equivalent goal where the
relations involved are changed to their respective interpretations. For example, if the goal is
R1 [R1 = R1, then the tactic reify changes it into the goal

(reRel v ‘0) [(reRel v ‘0) = reRel v ‘0,

provided that v is a function that maps the regular expression !0 into the relation R1. Now,
a final intermediate tactic is need to reify the operations over relations.

Ltac normalize v :=

match v with

| reRel ?T ?F 1) constr:1

| reRel ?T ?F 0) constr:0

68 CHAPTER 3. EQUIVALENCE OF REGULAR EXPRESSIONS

| reRel ?T ?F (‘X)) constr:(‘X)

| UnionRel ?T ?X ?Y)
let x := normalize X with y := normalize Y in

constr:(x + y)

| CompRel ?T ?X ?Y)
let x := normalize X with y := normalize Y in

constr:(x · y)

| trans_refl ?T ?X)
let x := normalize X in

constr:(x?)

end.

Considering the previous example, the goal we would obtain after applying the tactic normalize
is the expected one, that is, reRel v (‘0 + ‘0) = reRel v ‘0. The final tactic, solve_rel
, is defined as follows and integrates all the previous intermediate tactics in order to auto-
matically prove regular equations.

Ltac solve_rel :=

let x := fresh "Map_v" with

y := fresh "Max" with

h := fresh "hash" with

n1 := fresh "norm1" with

n2 := fresh "norm2" in

match goal with

| |- rel_eq ?K ?V1 ?V2)
let v := set_reif_env K V1 V2 in

let m := eval simpl in (fst v) with mx := eval simpl in (snd v) in

set(x:=m) ; set(y:=mx) ; fold x ;

let t1 := reif K V1 m mx with t2 := reif K V2 m mx in

change V1 with t1 ; change V2 with t2 ; set(h:=f K m) ;

let k1 := normalize t1 with k2 := normalize t2 in

set(n1:=reRel K h k1);set(n2:=reRel K h k2)

end; match goal with

| |- rel_eq ?T ?V1 ?V2)
change V1 with n1 ; change V2 with n2 ; unfold n1,n2 ; clear

n1 n2

end ; apply Rel_red_Leq_final ; dec_re.

The version of the tactic solve_rel that we have described here uses solely COQ tactical
language. More recently, we have developed a new version of the tactic described, but using
OCAML and COQ’s API. The new tactic is shorter and more efficient, since it relies on
general purpose data structures, such as hash tables, provided by OCAML. However, the
usage of the tactic requires an OCAML compiler available, and was not tested enough, thus
we have decided to present this first version in the thesis. We now present a simple example

3.3. A PROCEDURE FOR REGULAR EXPRESSION EQUIVALENCE 69

of the usage of the tactic solve_rel in the automatic generation of a proof of equivalence
between two relations.

Example 17. Let R be a binary relation over a set of values of type T . In what follows, we
show the proof of the equation R1 �R?

1 ⇠R R?
1 �R1 in COQ, using our developed tactic.

Lemma example_1 :

8 T:Type, 8 R1:relation T, rel_eq T (R1 �R?
1) (R?

1 �R1).

Proof.

intros;solve_rel.

Qed.

3.3.5 Performance

Although the main goal of our development was to provide a certified evidence that the
decision algorithm suggested by Almeida et. al. [] is correct, it is of obvious interest to
understand the usability and efficiency of equivP and of the corresponding tactic while
being computed within COQ’s interactive environment. For that, we have experimented our
tactic with several data sets of randomly generated regular expressions, in a uniform way.
These data sets were generated by the FAdo tool [3], and each such data set is composed of
10000 pairs of regular expressions, so that the results are statistically relevant. The experi-
ments were conducted on a Virtual Box environment with 8 Gb of RAM, using coq-8.3pl4.
The virtual environment executes on a dual six-core processor AMD Opteron(tm) 2435
processor with 2.60 GHz, and with 16 Gb of RAM. Table 3.1 provides the results obtained
from our experiments. Each entry in the table is the average time that was required to
compute the decision procedure over 10000 pairs of regular expressions. The tests consider
both equivalent – denoted by the rows labeled eq – and inequivalent regular expressions
– denoted by the rows labeled ineq. The variable k ranges over the sizes of the sets of
symbols from which the regular expressions are built. The variable n ranges over the sizes
of the regular expressions generated, that is, the total number of constants, symbols and
operators of the regular expression. All the timings presented in Table 3.1 are in seconds.

The results presented in Table 3.1 allows us to conclude that the procedure is efficient, since
it is able to decide the equivalence of regular expressions considerably large in less that 1
minute. However, the procedure has its pitfalls: whenever the size of the alphabet is small
an the size of the regular expressions is considerably large, e.g., for configurations where
k = 10 and the size of the regular expressions is 1000, or when k = 2 and the size of
the regular expressions in 250, the decision procedure – and therefore, the tactic – take a
long time to give a result. This is due to the fact that the derivations computed along the

70 CHAPTER 3. EQUIVALENCE OF REGULAR EXPRESSIONS

k n = 25 n = 50 n = 100

eq ineq eq ineq eq ineq
10 0.151 0.026 0.416 0.032 1.266 0.044
20 0.176 0.042 0.442 0.058 1.394 0.072
30 0.183 0.050 0.478 0.074 1.338 0.097
40 0.167 0.058 0.509 0.088 1.212 0.108
50 0.167 0.065 0.521 0.097 1.457 0.141
k n = 250 n = 500 n = 1000

eq ineq eq ineq eq ineq
10 12.049 0.058 38.402 0.081 - 0.125
20 5.972 0.083 24.674 0.105 58.904 0.181
30 5.511 0.128 17.408 0.157 43.793 0.226
40 5.142 0.147 19.961 0.181 43.724 0.271
50 5.968 0.198 17.805 0.203 46.037 0.280

Table 3.1: Performance results of the tactic dec_re.

execution of the procedure tend to produce few derivatives resulting in the pair (;, ;) and
so, more recursive calls are needed.

When testing inequivalences, our decision procedure is very efficient, even for the larger
families of regular expressions considered. This can bring advantages when using our tactic,
for instance, as an argument for the try tactic. In the next section we present a comparison
of the performances exhibited by our procedure with other developments available.

3.4 Related Work

The subject of developing certified algorithms for deciding regular expression equivalence
within theorem provers is not new. In recent years, much attention was directed to this par-
ticular subject, resulting in several formalizations, some of which are based on derivatives,
and that spawn along three different interactive theorem provers, namely COQ, ISABELLE

[83] and MATITA [13].

The most complete of the developments is the one of Braibant and Pous [18]: the authors
formalised Kozens’ completeness theorem for Kleene algebra [], and have developed effi-
cient tactics to decide Kleene algebra equalities by reflection. Their construction is based

3.4. RELATED WORK 71

on the classical automata process for deciding regular expressions equivalence without
minimisation of the involved automata. Moreover, they use a variant of Illie and Yu’s method
[56] for constructing automata from regular expressions, and the comparison is performed
using Karp’s [53] direct comparison of automata. The resulting development is quite general
(it is able to prove (in-)equivalence of expression of several models of Kleene algebra) and
is also quite efficient due to a careful choice of the data structures involved.

The works that are more close to ours are the works of Coquand and Siles [30], and Nip-
kow and Krauss [71]. Coquand and Siles implemented a procedure for regular expression
equivalence based on Brzozowski’s derivative method, supported by a new construction
of finite sets in type theory. They prove their algorithm correct and complete. Nipkow
and Krauss’ development is also based in Brzozowski’s derivative, and it is a compact and
elegant development carried out in the ISABELLE theorem prover. However, the authors
did not formalised the termination and completeness of the algorithm. In particular, the
termination is far from being a trivial subject, as demonstrated by the work presented in this
thesis, and in the work of Coquand and Siles.

More recently, Asperti presented a development [12] of an algorithm based on pointed regu-
lar expressions, which are regular expressions containing internal points. These points serve
as indicators of the part of the regular expression that was already processed (transformed
into a DFA) and therefore which part of the regular expression remains to be processed. The
development is also quite short and elegant, and provides an alternative to the algorithms
based on Brzozowski’s derivatives, since it does not require normalisation modulo a suitable
set of axioms to prove the finiteness of the number of the states of the corresponding DFA.

In table 3.2 we provide results about a comparison between our development and the one
of Braibant and Pous, since the other two COQ developments clearly exhibit worst perfor-
mances. For technical reasons, we were not able to test the development of Asperti. In these
experiments we have used dataset of 1000 randomly generated regular expressions, and they
were conducted in a Macbook Pro 15”, with a 2.3 GHz Intel Core i7 processor, with 4 GB
of RAM memory.

It is clear from table 3.2 that the work of Braibant and Pous scales better than ours for larger
families of regular expression but it is drastically slower than ours with respect to regular
expression in-equivalence. For smaller families of regular expressions, our procedure is also
faster than theirs. The values k and n in table 3.2 are the same measures that were used in
table 3.1, presented in the previous section for analysing the performance of equivP.

72 CHAPTER 3. EQUIVALENCE OF REGULAR EXPRESSIONS

alg./(k, n) (2, 5) (2, 10) (2, 20)

eq ineq eq ineq eq ineq
equivP 0.003 0.002 0.008 0.003 0.020 0.004
ATBR 0.059 0.016 0.080 0.042 0.258 0.099

(4, 20) (4, 50) (10, 100)

eq ineq eq ineq eq ineq
equivP 0.035 0.004 0.172 0.010 0.776 0.016
ATBR 0.261 0.029 0.436 0.358 1.525 0.874

(20, 200) (50, 500) (50, 1000)

eq ineq eq ineq eq ineq
equivP 2.211 0.048 9.957 0.121 0.149
ATBR 3.001 1.654 5.876 2.724 12.448

Table 3.2: Comparison of the performances.

3.5 Conclusions

In this chapter we have described the mechanisation, within the COQ proof assistant, of
the procedure EQUIVP for deciding regular expression equivalence based in the notion of
partial derivatives. This procedure decides the (in-)equivalence of regular expression by an
iterated method of comparing the equivalence of the respective partial derivatives. The main
advantage of our method, when compared to the ones based on Brzozowski’s derivatives,
is that it does not requires normalisation modulo ACI in order to prove the finiteness of
the number of derivatives and of the termination of the corresponding algorithms. The
performances exhibited by our algorithm are satisfying. Nevertheless, there exists always
space for improvement. A main point of improvement is the development of intermediate
tactics that are able to automate common proof steps.

An interesting continuation of our development is its extension to support extended regular
expressions, that is, regular expressions containing intersection and complement. The recent
work of Paron, Champarnaud and Mignot [24] extend the notion of partial derivative to
handle these extended regular expressions and its addition to our formalisation will not, in
principle, carry any major difficulty.

Another point that we wish to address is the representation of partial derivatives similarly
to the work of Almeida et. al., where partial derivatives are represented in a linear way.
This representation has the advantage of reducing the number of symbols involved in the

3.5. CONCLUSIONS 73

derivation process whenever some of the symbols lead to derivatives whose result is the
empty set.

74 CHAPTER 3. EQUIVALENCE OF REGULAR EXPRESSIONS

Chapter 4

Equivalence of KAT Terms

KAT [64, 68] is an algebraic system that extends Kleene algebra [60], the algebra of regular
expressions, by considering a subset of tests whose elements satisfy the axioms of Boolean
algebra. The addition of tests brings a new level of expressivity in the sense that in KAT
we are able to express imperative program constructions, rather than just non-deterministic
choice, sequential composition and iteration on a set of actions, as it happens with of regular
expressions.

KAT is specially fitted to capture and verify properties of simple imperative programs since
it provides an equational way to deal with partial correctness and program equivalence. In
particular KAT subsumes propositional Hoare logic (PHL) [70, 65] in the sense that PHL’s
deductive rules become theorems of KAT. Consequently, proving that a given program p is
partially correct using the deductive system of PHL is tantamount to check if p is partially
correct by equational reasoning in KAT. Moreover, some Horn formulas [46, 47] of KAT
can be reduced into standard equalities which can then be decided automatically using one
of the available methods [103, 69, 67].

In this chapter we present a mechanically verified implementation of a procedure to decide
KAT terms equivalence using partial derivatives. The decision procedure is a extension of
the procedure already introduced and described in the previous chapter.

75

76 CHAPTER 4. EQUIVALENCE OF KAT TERMS

4.1 Kleene Algebra with Tests

A KAT is a KA extended with an embedded Boolean algebra (BA). Formally, a KAT is an
algebraic structure

(K,T,+, ·,? ,� , 0, 1),

such that (K,+, ·,? , 0, 1) is a KA, (T,+, ·,� , 0, 1) is a Boolean algebra, and T ✓ K.
Therefore, KAT satisfies the axioms of KA and the axioms of Boolean algebra, that is,
the set of axioms (3.8–3.20) and the following ones, for b, c, d 2 T :

bc = cb (4.1)

b+ (cd) = (b+ c)(b+ d) (4.2)

b+ c = bc (4.3)

b+ b = 1 (4.4)

bb = b (4.5)

b+ 1 = 1 (4.6)

bc = b+ c (4.7)

bb = 0 (4.8)

b = b (4.9)

4.2 The Language Model of KAT

Primitive Tests, Primitive Actions, and Atoms

Let B = {b1, . . . , bn} be a non-empty whose elements are called primitive tests. Let B =

{b | b 2 B} be the set such that each element l 2 B [B is called a literal. An atom is a
finite sequence of literals l1l2 . . . ln, such that each li is either bi or bi, for 1 i n, where
n = |B|. We will refer to atoms by ↵,↵1,↵2, . . ., and the set of all atoms on B by B. The set
At can be regarded as the set of all truth assignments to elements of B. Consequently, there
are exactly 2|B| atoms.

Example 18. Let B = {b1b2}. The set of all atoms over B is At = {b1b2, b1b2, b1b2, b1b2}.

Given an atom ↵ 2 At and a primitive test b 2 B, we write ↵ b if ↵! b is a propositional
tautology. For each primitive test b 2 B and for each atom ↵ 2 At we always have ↵ b or
↵ b.

4.2. THE LANGUAGE MODEL OF KAT 77

Example 19. Let B = {b1b2}. The subset of At formed by those atoms ↵ such that ↵ b1
is the set B = {b1b2, b1b2}.

Besides primitive tests we have also to consider a finite set of symbols representing atomic
programs, whose role is the same of an alphabet in regular expressions. Such a set in KAT
is called the set of primitive actions ⌃ = {p1, . . . , pm}.

In terms of the COQ development, we define a module signature KAT_Alph where we specify
the type of primitive tests bv, of primitive actions sy, and of atoms atom. In this same
module type, we specify the sets B, ⌃ and At through the parameters sigmaB, sigmaP, and
atset, respectively. Moreover, we assume the existence of the function eval_atom whose
objective is to evaluate primitive tests with respect to atoms as defined by ↵ b.

Module Type KAT_Alph.

Parameter sy bv atom : Type.

Declare Instance atom_ord : UsualOrderedType sy.

Declare Instance atom_ord : UsualOrderedType bv.

Declare Instance atom_ord : UsualOrderedType atom.

Parameter sigmaP : set sy.

Parameter sigmaB : set bv.

Parameter atset : set atom.

Parameter eval_atom_bv : atom ! bv ! bool.

End KAT_Alph.

In addition to the sets of primitive tests and primitive actions, we have decided to incorporate
in the definition of KAT_Alph an abstract notion of atom and of the set of all atoms by the
parameter atset. In this configuration, we are able to encode the theory of KAT without
having to provide a concrete structure to atoms, except when instantiating KAT_Alph to test
with concrete examples. The parameter eval_atom_bv specifies the function responsible
for deciding if ↵ b.

Tests and Terms

The syntax of KAT terms extends the syntax of regular expressions – or the syntax of KA –
with elements called tests, which can be regarded as Boolean expressions on the underlying
Boolean algebra of any KAT. A test is inductively defined as follows:

• the constants 0 and 1 are tests;

78 CHAPTER 4. EQUIVALENCE OF KAT TERMS

• if b 2 B then b is a test;

• if t1 and t2 are tests, then t1 + t2, t1 · t2, and t1 are tests.

We denote the set of tests on B by T. In this setting, the operators ·, + and � are interpreted
as Boolean operations of conjuntion, disjunction and negation, respectively. The operators ·
and + are naturally overloaded with respect to their interpretation as operators over elements
of the underlying KA, where they correspond to non-deterministic choice and sequence,
respectively.

A KAT term e is inductively defined as follows:

• if t is a test then t is a KAT term;

• if p 2 ⌃, the p is a KAT term;

• if e1 and e2 are KAT terms, then so are their union e1 + e2, their concatenation e1e2,
and their Kleene star e?1.

The set of all KAT terms is denoted by KB,⌃, and we denote syntactical equality between
e1, e2 2 KB,⌃ by e1 ⌘ e2. In COQ, the type of KAT terms and the type of tests is defined as
expected by

Inductive test : Type :=

| ba0 : test

| ba1 : test

| baV : bv ! test

| baN : test ! test

| baAnd : test ! test ! test

| baOr : test ! test ! test.

Inductive kat : Type :=

| kats : sy! kat

| katb : test ! kat

| katu : kat ! kat ! kat

| katc : kat ! kat ! kat

| katst : kat ! kat.

Like primitive tests, tests are evaluated with respect to atoms for validity. The function
evalT below implements this evaluation following the inductive structure of tests. For t 2 T

and ↵ 2 At, we denote evaluation of tests with respect to atoms by ↵ t.
Fixpoint evalT(↵:atom)(t:test){struct t} : bool :=

match ↵ with

| ba0) false

| ba1) true

| baV b) eval_atom_bv ↵ b

| baN t1) negb (evalT ↵ t1)

| baAnd ↵1 ↵2) (evalT ↵ ↵1) && (evalT ↵ ↵2)

| baOr ↵1 ↵2) (evalT ↵ ↵1) || (evalT ↵ ↵2)

end.

4.2. THE LANGUAGE MODEL OF KAT 79

Example 20. Let B = {b1b2}, and let t = b1 + b2. The evaluation b1b2 t holds since

b1b2 t = evalT (b1b2) (b1 + b2)

= evalT (b1b2) (b1) || evalT (b1b2) (b2)

= evalT (b1b2) (b1) || negb (evalT (b1b2) (b2))

= true || negb (true) = true

Guarded Strings and Fusion Products

There are various models for KAT but, as in the case of KA, its standard model is the one of
sets of regular languages, whose elements in the case of KAT are guarded strings [59, 66].
A guarded string is a sequence

x = ↵0p0↵1p1 . . . p(n�1)↵n,

with ↵i 2 At and pi 2 ⌃. Guarded strings start and end with an atom. When n = 0 is true,
then the guarded string is a single atom ↵0 2 At. We use x, y, x0, y0, . . . to refer to guarded
strings. The set of all guarded strings over the sets B and ⌃ is denoted by GSB,⌃. Guarded
strings are defined in COQ by the the following inductive type.

Inductive gs : Type :=

|gs_end : atom ! gs

|gs_conc : atom ! sy ! gs ! gs.

For guarded string x we define first(x)
def
= ↵0 and last(x)

def
= ↵n. We say that two guarded

strings x and y are compatible if last(x) = first(y). Obviously, if n = 0 then last(x) =

first(x) always hold. Both operations and the notion of compatibility between guarded
strings are defined in COQ as follows.

Definition first(x:gs) : atom :=

match x with

| gs_end k) k

| gs_conc k _ _) k

end.

Fixpoint last(x:gs) : atom :=

match x with

| gs_end k) k

| gs_conc _ _ k) last k

end.

Definition compatible (x y:gs) := last x = first y.

80 CHAPTER 4. EQUIVALENCE OF KAT TERMS

If two guarded strings x and y are compatible, then the fusion product x ⇧ y, or simply
xy, is the standard word concatenation but omitting one of the common atoms last(x), or
first(y). The fusion product of two guarded strings x and y is a partial function since it is
only defined when x and y are compatible.

Example 21. Let B = {b1, b2} and let ⌃ = {p, q}. Let x = b1b2pb1b2 and y = b1b2qb1b2.
The fusion product x ⇧ y is the guarded string b1b2pb1b2qb1b2. On the contrary, the fusion
product y ⇧ x is not defined since last(y) = b1b2 6= b1b2 = first(x).

In COQ we have implemented the fusion product of two guarded strings x and y not as a
partial function, but rather as a total function containing an explicit proof of the compatibility
of x and y, i.e., a term of type compatible x y. The function fusion_prod implements the
fusion product based on this criteria.
Lemma compatible_tl:

8 (x y x0:gs)(↵:atom)(p:sy),

8 (h:compatible x y)(l:x = gs_conc x p x0), compatible x0 y.

Fixpoint fusion_prod x y (h:compatible x y) : gs :=

match x as x0 return x = x0 ! gs with

|gs_end _) fun (_:(x = gs_end _))) y

|gs_conc k s t) fun (h0:(x = gs_conc k s t)))
let h0 := compatible_tl x y h k s t h0 in

gs_conc k s (fusion_prod t y h0)

end (refl_equal x).

Since the parameter h depends on the KAT terms e1 and e2, it must recursively decrease
accordingly. The lemma compatible_tl states that if two guarded strings x and y are
compatible, and if x = ↵p :: x0, for some ↵p 2 (At · ⌃) and x0 2 GSB,⌃, then x0 and
y remain compatible. The main properties of the fusion product over compatible guarded
strings are the following: if x, y, z 2 GSB,⌃ then the fusion product is associative, i.e.,
(xy)z = x(yz); the fusion product of a guarded string x with a compatible atom ↵ is an
absorbing operation on the left or right of ↵, i.e., ↵x = x and x↵ = x; the operations
first and last are not affected by the fusion product of guarded strings, i.e. x and y, i.e.,
last(xy) = last(y) and first(xy) = first(x).

Languages of Guarded Strings

In language theoretic model of KAT, a language is a set of guarded strings over the sets B
and ⌃, i.e., a subset of GSB,⌃. The constant languages are the empty language ; and the
language containing all atoms. These notion are formalised in COQ as follows:

4.2. THE LANGUAGE MODEL OF KAT 81

Definition gl := gs ! Prop.

Inductive gl_emp : gl := ;
Notation ";" := gl_emp.

Inductive gl_eps : gl :=

| in_gl_eps : 8 ↵:atom, ↵ 2 gl_eps.

Notation "At" := gl_eps.

The language of a primitive test b is the set of all atoms ↵ 2 At such that ↵ b, and the
language of a test t is the set of all the atoms ↵ such that ↵ t. The language containing a
single guarded string x is also defined.

Inductive g_bv : bv ! gl :=

| in_g_bv : 8 (b:bv)(↵:atom), ↵ b ! b 2 gl_bv b.

Inductive gl_test : gl : test ! gl :=

| in_gl_test : 8 (↵:atom)(t:test), ↵ t ! ↵ 2 gl_test t.

Inductive gl_at_only (a:atom) : gl :=

| mk_gl_atom_only : (gs_end a) 2 gl_at_only a.

The language of a symbol p 2 ⌃ is the set of all guarded strings x such that x = ↵p�, with
↵, � 2 At.

Inductive gl_sy : sy ! gl :=

| in_gl_sy : 8 (p:sy)(↵ �:atom), ↵p� 2 gl_sy p.

The union of two languages L1 and L2 is defined as the usual union of sets. Given two
languages L1 and L2 we define the set L1L2 as the set of all the fusion products xy such that
x 2 L1 and y 2 L2.

Inductive gl_conc(L1 L2:gl) : gl :=

|mkg_gl_conc : 8 (x y:gl)(T:compatible x y),

x 2 L1 ! y 2 L2 ! (fusion_prod x y T) 2 (gl_conc L1 L2).

Example 22. Let B = {b1, b2} and ⌃ = {p, q}. Let L1 = {b1b2pb1b2, b1b2, b1b2qb1b2} and
L2 = {b1b2pb1b2, b1b2, b1b2qb1b2}. The fusion concatenation of the languages of guarded
strings L1 and L2 is the language

L1L2 = {b1b2pb1b2pb1b2, b1b2pb1b2, b1b2pb1b2, b1b2, b1b2qb1b2qb1b2}.

The power of and the Kleene star of a language L, denoted respectively by Ln and L?, are
defined as expected.

82 CHAPTER 4. EQUIVALENCE OF KAT TERMS

Inductive gl_conc(L1 L2:gl) : gl :=

|mkg_gl_conc : 8 (x y:gl)(T:compatible x y),

x 2 L1 ! y 2 L2 ! (fusion_prod x y T) 2 (gl_conc L1 L2).

Notation "x ⇧ y" := (gl_conc x y).

Fixpoint conc_gln(L:gl)(n:nat) : gl :=

match n with

| O) {1}
| S m) L ⇧ (conc_gln L m)

end.

Inductive gl_star(L:gl) : gl :=

|mk_gl_star : 8 (n:nat)(x:gs), x 2 (conc_gln L n) ! x 2 (gl_star L).

Notation "x?" := (gl_star x).

As in regular expressions, the equality of languages of guarded strings is set equality and is
defined in COQ as follows:

Definition gl_eq (L1 L2:gl) := Same_set _ L1 L2.

Notation "x == y" := (gl_eq x y).

Notation "x != y" := (¬(x == y)).

KAT terms are syntactical expressions that denote languages of guarded string. Thus, given
a KAT term e, the language that e denotes, G(e), is recursively defined on the structure of e
as follows:

G(p)
def
= {↵p� |↵, � 2 At} , p 2 ⌃

G(t)
def
= {↵ 2 At |↵ t} , t 2 T

G(e1 + e2)
def
= G(e1) [G(e2)

G(e1e2)
def
= G(e1)G(e2)

G(e?)
def
= [n�0G(e)

n.

From the previous definition it is easy to conclude that G(1) = At and that G(0) = ;. If
x 2 GSB,⌃, then the language is G(x) = {x}. If e1 and e2 are two KAT terms, we say that
e1 and e2 are equivalent, and write e1 ⇠ e2, if and only if G(e1) = G(e2).

Example 23. Let B = {b1, b2} and ⌃ = {p, q}. Let e = b1p + qb2. The language denoted

4.2. THE LANGUAGE MODEL OF KAT 83

by the KAT term e is the following:

G(e) = G(b1p+ qb2)

= G(b1p) [G(qb2)

= G(b1)G(p) [G(q)G(b2)

= {↵|↵ b1} ⇧ {↵p�|↵, � 2 At} [{↵q�|↵, � 2 At} ⇧ {↵|↵ b2}
= {↵p�|↵ b1, � 2 At} [{↵q�|↵ 2 At, � b2}.

We naturally extend the function G to sets S of KAT terms by G(S)
def
= [e2SG(e). If S1 and

S2 are sets of KAT terms then S1 ⇠ S2 if and only if G(S1) = G(S2). Moreover, if e is a
KAT term and S is a set of KAT terms then e ⇠ S if and only if G(e) = G(S).

We also have to consider the left-quotient of languages L ✓ GSB,⌃. Quotients are defined
with respect to words w 2 (At · ⌃)? by

Dw(L)
def
= {x |wx 2 L}, (4.10)

and are specialised to elements w 2 (At · ⌃) by

D↵p(L)
def
= {x |↵px 2 L}. (4.11)

In COQ we have the function kat2gl that implements the function G, and the inductive
predicates LQ and LQw that implement, respectively, the left-quotients of a language with
respect to words and elements of (At · ⌃).

Fixpoint kat2gl(e:kat) : gl :=

match e with

| kats x) gl_sy x

| katb b) gl_atom b

| katu e1 e2) gl_union (kat2gl e1) (kat2gl e2)

| katc e1 e2) gl_conc (kat2gl e1) (kat2gl e2)

| katst e0) gl_star (kat2gl e0)

end. llowin

Inductive LQ (l:gl) : atom ! sy ! gl :=

|in_quo : 8 (a:atom)(p:sy)(y:gs), (gs_conc a p y) 2 l ! y 2 LQ l a p.

Inductive LQw (l:gl) : gstring ! gl :=

|in_quow : 8 (x w:gs)(T:compatible w x), (fusion_prod w x T) 2 l ! x 2
LQw l w.

84 CHAPTER 4. EQUIVALENCE OF KAT TERMS

4.3 Partial Derivatives of KAT Terms

The notion of derivative of a KAT term was introduced by Dexter Kozen in [67] as an
extension of Brzozowski’s derivatives. In the same work, Kozen also introduces the notion
of set derivative, to which we will call partial derivative of a KAT term.

Before formally introducing partial derivatives, we have to introduce the notion of nullable
KAT term. Given an atom ↵ and a KAT term e, the function in inductively defined by

"↵(p)
def
= false

"↵(t)
def
=

(
1 if ↵ t,

0 if ↵ 6 t.

"↵(e1 + e2)
def
= "↵(e1) || "↵(e2)

"↵(e1e2)
def
= "↵(e1) && "↵(e2)

"↵(e
?)

def
= true

determines if e is nullable. The function " is extended to the set of all atoms At by

E(e)
def
= {↵ 2 At | "↵(e) = true}.

As with the notion of nullable regular expression, we can relate the results of "↵(e) with
language membership by

"↵(e) = true! ↵ 2 G(e),

and, symmetrically, by

"↵(e) = false! ↵ 62 G(e).

For KAT terms e1 and e2, if it holds "↵(e1) = "↵(e2) for all ↵ 2 At, then we say that e1 and
e2 are equi-nullable.

Example 24. Let B = {b1, b2}, let ⌃ = {p, q}, and let e = b1p + qb2. The computation of
"b1b2(↵) goes as follows:

"b1b2(↵) = "b1b2(b1p+ qb2)

= "b1b2(b1p) || "b1b2(qb2)
= ("b1b2(b1) && "b1b2(p)) || ("b1b2(q) && "b1b2(b2))

= (b1b2 b1 && false) || (false && b1b2 b2)

= (true && false) || (false && false) = false.

4.3. PARTIAL DERIVATIVES OF KAT TERMS 85

However, if we conside e = b1+b2, we obtain a positive results. The computation of "b1b2(e)
goes as follows:

"b1b2(↵) = "b1b2(b1 + b2)

= "b1b2(b1) || "b1b2(b2)
= b1b2 b1 || b1b2 b2

= true || false = true.

Nullability is extended to sets in the following way:

"↵(S)
def
=

8
<

:
true if 9e 2 S, "↵(e) = true;

false otherwise.

Two sets S1 and S2 of KAT terms are equi-nullable if "↵(S1) = "↵(S2). For sets of KAT
terms we also define the concatenation of a set with a KAT term by

S � e
def
=

8
>>><

>>>:

; if e = 0,

S if e = 1,

{e0e | e0 2 S} otherwise.

As usual, we omit the operator � whenever possible.

Let ↵p 2 (At · ⌃) and let e be a KAT term. The set @↵p(e) of partial derivatives of e with
respect to ↵p is inductively defined by

@↵p(t)
def
= ;

@↵p(q)
def
=

8
<

:
{1} if p ⌘ q,

; otherwise.

@↵p(e1 + e2)
def
= @↵p(e1) [@↵p(e2)

@↵p(e1e2)
def
=

8
<

:
@↵p(e1)e2 [@↵p(e2) if "↵(e1) = true,

@↵p(e1)e2, otherwise.

@↵p(e
?)

def
= @↵p(e)e

?

Example 25. Let B = {b1, b2}, let ⌃ = {p, q}, and let e = b1p+ qb2. The partial derivative

86 CHAPTER 4. EQUIVALENCE OF KAT TERMS

of e with respect to b1b2p is the following:

@b1b2p(e) = @b1b2p(b1p+ qb2)

= @b1b2p(b1p) [@b1b2p(qb2)

= @b1b2p(b1)p [@b1b2p(p) [@b1b2(q)b2

= @b1b2p(b1)p [@b1b2p(p)

= @b1b2p(p)

= {1}.

Partial derivatives of KAT terms can be inductively extended to sequences w 2 (At · ⌃)? in
the following way:

@✏(e)
def
= {e}

@w↵p(e)
def
= @↵p(@w(e)),

where ✏ is the empty sequence . The set of all partial derivatives is the set

@(At·⌃)?(e)
def
=

[

w2(At·⌃)?

{e0 | e0 2 @w(e)}.

Example 26. Let B = {b1, b2}, let ⌃ = {p, q}, and let e = b1p(b1 + b2)q. The partial
derivative of e with respect to the sequence b1b2pb1b2q is the following:

@b1b2pb1b2q(e) = @b1b2pb1b2q(b1p(b1 + b2)q)

= @b1b2q(@b1b2p(b1p(b1 + b2)q))

= @b1b2q(@b1b2p(b1)p(b1 + b2)q [@b1b2p(p(b1 + b2)q))

= @b1b2q(@b1b2p(b1)p(b1 + b2)q) [@b1b2q(@b1b2p(p(b1 + b2)q))

= @b1b2q(p(b1 + b2)q) [@b1b2q(@b1b2p(p)(b1 + b2)q [@b1b2p((b1 + b2)q))

= @b1b2q(p)(b1 + b2)q [@b1b2q(@b1b2p(p)(b1 + b2)q) [@b1b2q(@b1b2p((b1 + b2)q))

= @b1b2q(@b1b2p(p)(b1 + b2)q) [@b1b2q(@b1b2p((b1 + b2)q))

= @b1b2q((b1 + b2)q) [@b1b2q(@b1b2p(b1 + b2)q [@b1b2p(q))

= {1} [@b1b2q(@b1b2p(b1 + b2)q) [@b1b2q(@b1b2p(q))

= {1} [@b1b2q(@b1b2p(q))

= {1}.

Similarly to partial derivatives of regular expressions, the language of partial derivatives of
KAT are the left-quotients, that is, for w 2 (At · ⌃)? and for ↵p 2 (At · ⌃), the following
equalities G(@w(e)) = Dw(G(e)) and G(@↵p(e)) = D↵p(G(e)) hold.

4.3. PARTIAL DERIVATIVES OF KAT TERMS 87

The next excerpt of the COQ development shows the previous definitions and theorems.

Fixpoint ewp(e:kat)(↵:atom) : bool :=

match e with

| kats p) false

| katb b) evalT ↵ b

| katu e1 e2) ewp e1 ↵ || ewp e2 ↵

| katc e1 e2) ewp e1 ↵ && ewp t2 ↵

| katst e1) true

end.

Definition ewp_set(s:set kat)(a:atom) :=

fold (fun x) orb (ewp x a)) s false.

Fixpoint pdrv(e:kat)(↵:atom)(p:sy) : set kat :=

match e with

| kats p0) match compare p0 p with

| Eq) {1}
| _) ;
end

| katb b) ;
| katu e1 e2) pdrv e1 ↵ p [pdrv e2 ↵ p

| katc e1 e2) if ewp e1 ↵ then

(pdrv e1 ↵ p) � e2 [pdrv e2 ↵ p

else

(pdrv e1 ↵ p) � e2

| katst e1) (pdrv e1 ↵ p) � (katst e1)

end.

Theorem pdrv_correct : 8 e ↵ p, G(pdrv e ↵ p) ⇠ LQ (G(e)) ↵ p.

Theorem wpdrv_correct : 8 e w, G(wpdrv e w) ⇠ LQw (G(e)) w.

Finiteness of Partial Derivatives

Kozen showed [67] that the set of partial derivatives is finite by means of the closure
properties of a sub-term relation over KAT terms. As we have seen in the previous chapter,
in the case of regular expressions the same problem can be solved using Mirkin’s pre-bases
[80]. Here we extend this method to KAT terms. We obtain an upper bound on the number
of partial derivatives that is bounded by the number of primitive programs of ⌃, and not the
number of sub-terms as in [67].

Definition 1. Let e be a KAT term. The function ⇡(e) from KAT terms to sets of KAT terms

88 CHAPTER 4. EQUIVALENCE OF KAT TERMS

is recursively defined as follows:

⇡(t)
def
= ;

⇡(p)
def
= {1}

⇡(e1 + e2)
def
= ⇡(e1) [⇡(e2)

⇡(e1e2)
def
= ⇡(e1)e2 [⇡(e2)

⇡(e?)
def
= ⇡(e)e?.

Example 27. Let B = {b1, b2}, let ⌃ = {p, q}, and let e = b1p(b1 + b2)q. The set of KAT
terms computed by ⇡(e) is the following:

⇡(e) = ⇡(b1p(b1 + b2)q)

= ⇡(b1)p(b1 + b2)q [⇡(p(b1 + b2)q)

= ⇡(p(b1 + b2)q)

= ⇡(p)(b1 + b2)q [⇡((b1 + b2)q)

= {(b1 + b2)q} [⇡(b1 + b2)q [⇡(q)

= {(b1 + b2)q} [⇡(q)

= {1, (b1 + b2)q}

Let |e|⌃ be the measure that gives us the number of primitive programs in e, which is
recursively defined as follows:

|t|⌃
def
= 0, t 2 T

|p|⌃
def
= 1, p 2 ⌃

|e1 + e2|⌃
def
= |e1|⌃ + |e2|⌃

|e1e2|⌃
def
= |e1|⌃ + |e2|⌃

|e?1|⌃
def
= |e1|⌃.

We now show that this is an upper bound for ⇡(e), which requires a lemma stating that ⇡ is
a closed operation on KAT terms.

Lemma 12. Let e be a KAT term over the set of primitive tests B and the set of primitive
programs ⌃. Hence, it holds that

8e e0, e0 2 ⇡(e)! 8e00, e00 2 ⇡(e0)! e00 2 ⇡(e).

Lemma 13. Let e be a KAT term over the set of primitive tests B and the set of primitive
programs ⌃. Hence, |⇡(e)| |e|⌃.

4.3. PARTIAL DERIVATIVES OF KAT TERMS 89

Now let KD(e) def
= {e} [⇡(e), with e being a KAT term. It is easy to see that |KD(e)|

|e|⌃+1, since |⇡(e)|⌃ |e|⌃. We will now show that KD(e) established an upper bound on
the number of partial derivatives of e. For that, we prove that KD(e) contains all the partial
derivatives of e. First prove that the partial derivative @↵p(e) is a subset of ⇡(e). Next, we
prove that if e0 2 @↵p(e) then ⇡(e0) is a subset of ⇡(e), which allow us to prove, by induction
on the length of a sequence w 2 (At ·⌃)? that all the derivatives of e are members of KD(e).

Lemma 14. Let e be a KAT term, and let ↵p 2 (At · ⌃). Hence, if the KAT term e0 is a
member of ⇡(e), then @↵p(e0) ✓ ⇡(e).

Theorem 6. Let e be a KAT term, and let w 2 (At · ⌃)?. Thus, @w(e) ✓ KD(e).

In the code excerpt below we present the definition of ⇡ and of KD, as well as the proof of
the finiteness and cardinality of the set of all the partial derivatives of a KAT term.

Fixpoint PI (e:kat) : set kat :=

match e with

| katb b) ;
| kats _) {katb ba1}

| katu x y) (PI x) [(PI y)

| katc x y) (PI x)� y [(PI y)

| katst x) (PI x) � (katst x)

end.

Notation "⇡(x)" := (PI x).

Definition KD(r:kat) := {r} [(XI r).

Fixpoint sylen (e:kat) : nat :=

match e with

| katb _) 0

| kats _) 1

| katu x y) sylen x + sylen y

| katc x y) sylen x + sylen y

| katst x) sylen x

end.

Notation "|e|⌃" := (sylen e).

Theorem KD_upper_bound : 8 e, cardinal (KD e) (sylen e) + 1.

Theorem all_wpdrv_in_KD : 8 w x r, x 2 (wpdrv e w) ! x 2 KD(r).

90 CHAPTER 4. EQUIVALENCE OF KAT TERMS

4.4 A Procedure for KAT Terms Equivalence

In this section we introduce a procedure for deciding KAT term equivalence that is based
on the notion of partial derivative. This procedure is the natural extension of the procedure
EQUIVP described in the last chapter. Most of the structures of both the development on
regular expressions and this one overlap and, for this reason, we will mainly focus on the
details where the diference between the two development is most notorious.

4.4.1 The Procedure EQUIVKAT

The kind of reasoning that takes us from partial derivatives of KAT terms into solving their
(in)equivalence is very similar to the one we have followed with respect to regular expresion
(in)equivalence. Given a KAT term e we know that

e ⇠ E(e) [

[

↵p2(At·⌃)

↵p@↵p(e)

!
.

Therefore, if e1 and e2 are KAT terms, we can reformulate the equivalence e1 ⇠ e2 as

E(e1) [

[

↵p2(At·⌃)

↵p@↵p(e1)

!
⇠ E(e2) [

[

↵p2(At·⌃)

↵p@↵p(e2)

!
,

which is tantamount at checking if

8↵ 2 At, "↵(e1) = "↵(e2)

and
8↵p 2 (At · ⌃), @↵p(e1) ⇠ @↵p(e2).

Since we know that to check if a guarded string x is a member of the language denoted
by some KAT term e we need to prove that the derivative of e with respect to x must be
nullable, we can finitely iterate over the previous equations and reduce the (in-)equivalence
of e1 and e2 to one of the next equivalences:

e1 ⇠ e2 $ 8↵ 2 At, 8w 2 (At · ⌃)?, "↵(@w(e1)) = "↵(@w(e2)) (4.12)

and
(9w 9↵, "↵(@w(e1)) 6= "↵(@w(e2)))$ e1 6⇠ e2. (4.13)

The terminating decision procedure EQUIVKAT, presented in Algorithm 2, describes the
computational interpretation of the equivalences (4.12) and (4.13). This procedure corre-
sponds to the iterated process of deciding the equivalence of their partial derivatives.

4.4. A PROCEDURE FOR KAT TERMS EQUIVALENCE 91

Algorithm 2 The procedure EQUIVKAT.
Require: S = {({e1}, {e2})}, H = ;
Ensure: true or false

1: procedure EQUIVKAT(S, H)
2: while s 6= ; do
3: (�,�) POP (s)

4: for ↵ 2 At do
5: if "↵(�) 6= "↵(�) then
6: return false

7: end if
8: end for
9: H H [{(�,�)}

10: for ↵p 2 (At · ⌃) do
11: (⇤,⇥) @↵p(�,�)

12: if (⇤,⇥) 62 H then
13: S S [{(⇤,⇥)}
14: end if
15: end for
16: end while
17: return true

18: end procedure

The computational behaviour of EQUIVKAT is very similar to the behaviour of EQUIVP,
described in the previous chapter. Both are iterative processes that decide (in)equivalences
by testing the (in)equivalence of the corresponding partial derivates.

Clearly, EQUIVKAT is computationally more requiring than EQUIVP : the code in lines
4 to 8 performs 2|B| comparisons to determine if the components of the derivative (�,�)

are equi-nullable or not, whereas EQUIVP performs one single operation to determine equi-
nullability; the code in lines 10 to 15 performs 2|B||⌃| derivations, while in the case of
EQUIVP only |⌃| derivations are calculated. In the next section we describe the implemen-
tation of EQUIVKAT in COQ.

We finish this section by providing two examples that describe the course of values produced
by EQUIVKAT, one for the equivalence of KAT terms, and another to the case of in-
equivalence.

Example 28. Let B = {b} and let ⌃ = {p, q}. Suppose we want to prove that e1 = (bp)?q

92 CHAPTER 4. EQUIVALENCE OF KAT TERMS

and e2 = b(pq)? are not equivalent. Considering s0 = ({(ab)?a}, {a(ba)?}), it is enough to
show that

EQUIVP({s0}, ;) = true.

The computation of EQUIVP for these particular ↵ and � involves the construction of the
new derivatives s1 = ({1, b(ab)?a}, {(ba)?}) and s2 = (;, ;). We can trace the computation
by the following table

i Si Hi drvs.
0 {s0} ; @a(s0) = s1, @b(s0) = s2

1 {s1, s2} {s0} @a(s1) = s2, @b(s1) = s0

2 {s2} {s0, s1} @a(s2) = s2, @b(s2) = s2

3 ; {s0, s1, s2} true

where i is the iteration number, and Si and Hi are the arguments of EQUIVP in that same
iteration. The trace terminates with S2 = ; and thus we can conclude that ↵ ⇠ �.

Example 29. Suppose we want to check if ↵ = b?a and � = b?ba are not equivalent.
Considering s0 = ({b?a}, {b?ba}), to prove so it is enough to check if

EQUIVP({s0}, ;) = false.

In this case, the computation of EQUIVP creates the new derivatives , s1 = ({1}, ;) and
s2 = ({b?a}, {a, b?ba}), and takes two iterations to halt and return false. The counter
example found is the pair s1, as it is easy to see in the trace of computation presented in the
table below.

i Si Hi drvs.
0 {s0} ; @a(s0) = s1, @b(s0) = s2

1 {s1, s2} {s0} "(s1) = false

4.4.2 Implementation, Correctness and Completeness

In this section we provide the details of the implementation of EQUIVKAT in the COQ proof
assistant. This implementation follows along the lines of the implementation of the decision
procedure for deciding regular expression equivalence presented along Section 3.3.2.

4.4. A PROCEDURE FOR KAT TERMS EQUIVALENCE 93

Pairs of KAT Derivatives

As in the case of regular expressions, the main data structure used in EQUIVKAT is the one
of pairs of derivatives of KAT terms, and we define a similar dependent record to implement
them. The differences are the expected ones: in the case of EQUIVKAT, the derivative dp

is now a pair of set of KAT terms, w is a sequence from (At · ⌃)?, and cw is a parameter
holding a proof that dp = (@w(�), @w(�)).

Record KDrv (e1 e2:kat) := mkKDrv {

dp :> set kat * set kat ;

w : list AtSy ;

cw : dp = (@w(e1),@w(e2))

}.

The derivation and nullability functions were also changed to accomodate the new type KDrv
. As an example, we present the extended derivation functions below. The type AtSy used
in the definition of KDrv_pdrv_set represents values ↵p 2 (At · ⌃).

Definition KDrv_pdrv (x:KDrv e1 e2)(↵:atom)(p:sy) : KDrv e1 e2.

Proof.

refine(match x with Build_ReW k w p)
Build_KDrv e1 e2 (pdrvp k a s) (w++[(↵,p)]) _

end).

(* ... *)

Defined.

Definition KDrv_wpdrv (w:list AtSy) : ReW e1 e2.

Proof.

refine(Build_KDrv e1 e2 (wpdrvp ({e1},{e2}) w) w _).

(* ... *)

Defined.

Definition KDrv_pdrv_set(s:KDrv e1 e2)(sig:set AtSy) : set (KDrv e1 e2) :=

fold (fun x:AtSy) add (KDrv_pdrv s (fst x) (snd x))) sig ;.

Implementation of EQUIVKAT in Coq

Like in the case of the definitions of the derivation operations on KDrv terms, the extended
nullability functions are were enriched with atoms.

Definition ewp_p(x:set kat * set kat)(a:atom) := eqb (ewp_set (fst x) a)

(ewp_set (snd x) a).

94 CHAPTER 4. EQUIVALENCE OF KAT TERMS

Definition ewp_at_set(x:set kat * set kat)(ats:set atom) := fold (fun p

) andb (ewp_p x p)) ats true.

Definition ewpKDrv(x:KDrv e1 e2)(a:set atom) := ewp_at_set x a.

Definition newKDrvSet(x:KDrv e1 e2)(h:set (KDrv e1 e2))(sig:set AtSy) : set

(KDrv e1 e2) :=

filter (fun x) negb (x 2 h)) (KDrv_pdrv_set x sig).

We now describe the implementation of Algorithm 2. First, we encode the function step,
presented below, that implements one step of the loop of the algorithm. This function makes
2|B| checks for equi-nullability of the derivative taken from the working set S. The function
step returns a value of type step_case that indicates how the whole decision procedure
must proceed. The function step corresponds to the code from lines 3 to 14 of Algorithm
2.

Inductive step_case (e1 e2:kat) : Type :=

|proceed : step_case e1 e2

|termtrue : set (KDrv e1 e2) ! step_case e1 e2

|termfalse : KDrv e1 e2 ! step_case e1 e2.

Definition step(h s:set (KDrv e1 e2))(sig:set sy)(ats:set atom) :

((set (KDrv e1 e2) * set (KDrv e1 e2)) * step_case e1 e2) :=

match choose s with

|None) ((h,s),termtrue e2 e1 h)

|Some (de1 , de2))
if ewpKDrv e1 e2 (de1 , de2) ats then

let h0 := add (de1 , de2) h in

let rsd0 := in

let s0 := newKDrvSet e1 e2 (de1 , de2) H 0 sig ats in

(h0,s0 [(s \ {(de1 , de2)}),proceed e1 e2)

else

((h,s),termfalse e1 e2 (de1 , de2))

end.

Next we encode the iterator representing the main loop of Algorithm 2. We use a modified
version of the type DP presented in Section 3.3.2, page 54, to accomodate a proof that all
the derivatives considered in the accumulator set are equi-nullable. The function iterate

recursively calls the function step until a termination state is reached. Moreover, iterate
is implemented using the well-founded relation LLim that was the one used in the last chapter
to implement the iterator for the decision procedure for regular expression (in-)equivalence.

Inductive term_cases e1 e2 : Type :=

|Equiv : set (KDrv e1 e2) ! term_cases e1 e2

4.4. A PROCEDURE FOR KAT TERMS EQUIVALENCE 95

|NotEquiv : KDrv e1 e2 ! term_cases e1 e2.

Inductive DP (h s:set (KDrv e1 e2))(ats:set atom) : Prop :=

|is_dp : h \ s === ; ! (8 x:atom, x 2 ats) ! ewpKDrv_set e1 e2 h ats =

true ! DP h s ats.

Function iterate(e1 e2:kat)(h s:set (KDrv e1 e2))(sig:set A)(d:DP e1 e2 h s)

{wf (LLim e1 e2) h}: term_cases e1 e2 :=

let ((h0,s0),next) := step h s in

match next with

|termfalse x) NotEquiv e1 e2 x

|termtrue h) Equiv e1 e2 h

|progress) iterate e1 e2 h0 s0 sig (DP_upd e1 e2 h s sig D)

end.

Proof.

(* Proof obligation 1 : proof that LLim is a decreasing measure for iterate *)

abstract(apply DP_wf).

(* Proof obligation 2: proof that LLim is a well founded relation. *)

exact(guard e1 e2 100 (LLim_wf e1 e2)).

Defined.

The function equivkat_aux that we present below lifts the result of iterate to Boolean
values. The function equivkat finishes the encoding of the full EQUIVKAT procedure,
and is simply a call to equivkat_aux with the correct values for the working set S and the
accumulator set H , as described in Algorithm 2.

Definition equivkat_aux(e1 e2:kat)(h s:set (KDrv e1 e2))(sig:set sy)(d:DP e1

e2 h s):=

let h0 := iterate e1 e2 h s sig D in

match h0 with

| Ok _) true

| NotOk _) false

end.

Definition mkDP_1st : DP e1 e2 ; {KDrv_1st e1 e2}.

Definition equivkat(e1 e2:kat) := equivkat_aux e1 e2 ; {KDrv_1st e1 e2}

sigmaP (mkDP_1st e1 e2).

Correctness and Completeness

The correctness and completeness proofs for equivkat follow the same steps of the proofs
that we have devised for equivP. Here we recall these ideas for equivkat and establish

96 CHAPTER 4. EQUIVALENCE OF KAT TERMS

their formal definitions, and give the corresponding theorems. In what follows, we will
be assuming the following: the variables e1 and e2 denote the KAT terms that are under
consideration for (in-)equivalence; the variables de1 and de2 denote a derivative of {e1}
and {e2}, respectively; the variables S,S 0,H ,H 0 denote sets of pairs of sets of KDrv e1 e2
terms; finally, B and ⌃ denote the set of primitive tests, and the set of primitive programs,
respectively.

For the case of the correctness of equivkat, we divide the proof in two cases. In the first
case, we prove e1 6⇠ e2 whenever equivkat returns false. In the second case, we define an
invariant on kiterate which gives the properties that allows us to conclude e1 ⇠ e2.

For the first case, we show that if equivkat finds a term d of type KDrv e1 e2 such that "↵(d)
is false for some atom ↵ 2 At, then there exists a guarded string x that is not simultaneously
a member of G(e1) and of G(e2). Naturally, this conclusion implies e1 6⇠ e2.

Proposition 1. Let D be a term of type KDP e1 e2 S H . If

kiterate e1 e2 S H B ⌃ D = NotOk e1 e2 (de1 , de2)

holds, then "↵(de1) 6= "↵(de2) also holds for some ↵ 2 At.

Proposition 2. Let D be a term of type KDP e1 e2 S H . Hence, it holds that

kiterate e1 e2 S H B ⌃ D = NotOk e1 e2 (de1 , de2)! e1 6⇠ e2.

Lemma 15. If equivkat returns with the value of false then e1 and e2 are in-equivalent
KAT terms, i.e.,

equivkat e1 e2 = false ! e1 6⇠ e2.

For the second case, we proceed by defining an invariant over kiterate that allow us to
conclude KAT term equivalence by proving that all the partial derivatives are computed and
also they are equi-nullable. This invariant is given by the definition of invK_final below.
Definition invK(H S:set (KDrv e1 e2))(B:set atom)(⌃:set sy) :=

8 d, d 2 H ! 8 p, p 2 ⌃ ! 8 ↵, ↵ 2 B !
(KDrv_pdrv e1 e2 d ↵ p) 2 (H [S).

Definition invK_final(H S:set (KDrv e1 e2))(B:set atom)(⌃:set sy) :=

(KDrv_1st e1 e2) 2 (H [S) ^
(8 d, d 2 (H [S) ! ewp_KDrv e1 e2 d B = true) ^
invK H S B ⌃.

By the recursive behaviour of kiterate, and by the definition of kstep we prove that
invK_final leads to KAT term equivalence. First we prove that a successful computation
of kiterate yields a set containing all the partial derivatives of e1 and e2.

4.4. A PROCEDURE FOR KAT TERMS EQUIVALENCE 97

Proposition 3. If invK H S holds, and if

kstep e1 e2 H S ⌃ = ((H 0,S 0),proceed e1 e2)

also holds, then invK H 0 S 0.

Proposition 4. Let D be a term of type KDP e1 e2 S H . If invK H S holds, and if

kiterate e1 e2 H S ⌃ D = Ok e1 e2 H
0,

then invP H 0 ; also holds.

Proposition 5. Let D be a value of type KDP e1 e2 H S. If it the case that kiterate e1 e2
H S B ⌃ D = Ok e1 e2 H 0 hold, then H ✓ H 0.

Corollary 2. Let D be a value of type KDP e1 e2 H S. If

kiterate e1 e2 H S B ⌃ D = Ok e1 e2 H
0,

and if choose S = Some (de1 , de2) holds, then it is the case that {(de1 , de2)} [H ✓ H 0.

Proposition 6. Let D be a value of type KDP e1 e2 ; {({e1}, {e2})}. Hence,

kiterate e1 e2 ; {({e1}, {e2})} B ⌃ D = Ok e1 e2 H
0 ! ({e1}, {e2}) 2 H 0.

We proceed by showing that all the elements of the H 0 in the value Ok e1 e2 H 0 enjoy equi-
nullability. This is straightforward, due to the parameter D in the definition of iterate.
Recall that the definition of D explicitly contains a proof that all the elements in the given
set are equi-nullable.

Proposition 7. Let D be a value of type KDP e1 e2 H S. If kiterate e1 e2 H S B ⌃D = Ok

e1 e2 H 0, then 8↵ 2 At, 8� 2 H 0, "↵(�) = true holds.

Using lemmas 6 and 8 we can establish the intermediate result that will take us to prove the
correctness of equivP with respect to language equivalence.

Proposition 8. Let D be a value of type KDP e1 e2 H S. If kiterate e1 e2 H S B ⌃D = Ok

e1 e2 H 0, then invK_final e1 e2 H 0 ; holds.

The last intermediate logical condition that we need to establish is that invK_final implies
KAT terms equivalence, considering that it is instantiated with the correct parameters. The
following lemma gives us exactly that.

Lemma 16. If invK_final e1 e2 H 0 ; B ⌃ holds, then it is true that e1 ⇠ e2.

Finally, we can state the theorem that ensures that if equivP returns true, then we have the
equivalence of the regular expressions under consideration.

Theorem 7. Let e1 and e2 be two KAT terms. Hence, equivkat e1 e2 = true iff e1 ⇠ e2.

98 CHAPTER 4. EQUIVALENCE OF KAT TERMS

Performance and Usability of EQUIVKAT

As pointed out earlier, the performance of the implementation of EQUIVKAT is not expected
to show the performances exhibited by EQUIVP. The algorithm contains two exponential
computations, one for checking if a derivative is equi-nullable, and another to compute new
derivatives. In the setting of partial derivatives, and to the best of our knowledge, we are
unable to avoid computing with the set of all atoms. There exists an alternative [?] to this
problem, but it relies on matrices of KAT terms for transforming KAT terms into KA terms.
Matrices are not addressed and where purposely set aside from our development.

In its current state of development, our procedure can be used to automatically decide
(in)equivalence involving small KAT terms. Such small terms occur very frequently in
proofs of KAT equations and our procedure can be used to help on finishing such proofs, by
automatically solving eventual sub-goals. Moreover, and due to the capability of extraction
of COQ, we can obtain a correct by construction program that can be used outside COQ’s
environment and exhibit better performances.

4.5 Application to Program Verification

As we have said earlier, KAT is suited to several verification tasks, as proved by several
reported experiments. In this section we try to motivate the reader to the motives that lead
us to formalise KAT in COQ: to have a completely correct development which can serve as a
certified environment to build proofs of the correctness and equivalence of simple imperative
programs. Having a correct decision procedures is an extra tool for such verification tasks.

We begin this section by introducing some examples borrowed from [64] that show how
KAT can be useful to prove the equivalence between certain classes of simple imperative
programs. We will consider the imperative language introduced in Section 2.2. Afterwards,
we show how KAT and Hoare logic are related, namely, with respect to the weaker PHL
and how reasoning in PHL can be reduced to reasoning in KAT. We also present some
motivating examples about the usefulness of KAT to the partial correctness of programs.

Equivalence of Programs through KAT

Recall from Sections 4.1 and 4.2 that the terms of KAT are regular expressions enriched with
Boolean tests. The addition of tests gives extra expressivity to KAT terms when compared
to regular expressions because they allow us to represent imperative program constructions

4.5. APPLICATION TO PROGRAM VERIFICATION 99

such as conditionals and While loops. Since KAT is propositional, it does not allow to
express assignments or other first order constructions. Nevertheless, and under an adequate
encoding of the first order constructions at the propositional level, we can encode programs
as KAT terms.

Recall the simple imperative programs IMP, introduced in Chapter 2. If e1 and e2 are
terms encoding the IMP programs C1 and C2, then we can encode sequence, conditional
instructions and while loops in KAT as follows.

C1;C2
def
=e1e2,

if b then C1 else C2
def
=(be1 + be2),

while b do C1 done
def
=(be1)

?b.

We now present a set of examples that illustrate how we can address program equivalence in
KAT. We begin by an example that we can show that While-loops and do-loops for certain
programs using these constructions. A do-loop is defined in KAT as the term p(bp)?b,
that is, it always begin with a computation of the body of the do-loop. We also consider
skip

def
= 1.

Example 30. Let B = {b} and ⌃ = {p} be the set of primitive tests and set of primitive
programs, respectively, and let P1 and P2 be the following two programs:

P1 : do {

if b then:

C;

else:

skip;

} while b

P2 : while b do :

C;

end

Considering that the Boolean guard b is denoted by the same primitive symbol in B, and
assuming that the IMP program C is denoted by the primitive program p, then the programs
P1 and P2 are encoded as KAT terms by

e1 = (bp+ b1)(b(bp+ b1))?b

and
e2 = (bp)?b,

respectively. The procedure equivkat decides the equivalence e1 ⇠ e2 in 0.028 seconds.

100 CHAPTER 4. EQUIVALENCE OF KAT TERMS

The next example shows how we can use extra variables and commutativity assumption in
KAT to prove the equivalence of programs. The original program of the example is first
rewritten manually and then automatically solved by equivkat.

Example 31. Let B = {b} and ⌃ = {p, q, r} be the set of primitive tests and set of primitive
programs, respectively, and let P3 and P4 be the following two programs:

P3 : if b then:

p;q;

else:

p;r;

P4 : p;

if b then:

q;

else:

r;

These programs are encoded in KAT as

e3 = (bpq + bpr)

and
e4 = p(bq + br),

respectively. Program P4 is expected to be equivalent to program P3 if the value of b is
preserved by the program p. Since we do not know that, we must introduce extra information
on both programs, but preserving their meaning. We introduce a new test c that remembers
the effect of p in c and replace the test b in P4 with c. Then we add at the top of both
programs the two possible interactions between the tests b and c, which corresponds to the
term bc+ bc. The resulting modified programs are the following:

P3 : bc + bc;

if b then:

p;q;

else:

p;r;

P4 : bc + bc;

p;

if c then:

q;

else:

r;

These new programs are encoded as the KAT terms

e03 = (bc+ bc)(bpq + bpr)

and
e04 = (bc+ bc)p(cq + cr),

4.5. APPLICATION TO PROGRAM VERIFICATION 101

respectively. Using equivkat to try to solve the equivalence e03 ⇠ e04 does not work yet. The
solution is to first propagate the program p in e04 and then use the commutativity condition
pc = cp to obtain

e004 = s(bc+ bc)(cpq + cpr).

The procedure now proves the equivalence e03 ⇠ e004 in 0.06 seconds.

The final example concerns with proving that programs with While loops have an equivalent
program with just a single While loop.

Example 32. Let B = {b, c} and ⌃ = {p, q} be the set of primitive tests and set of primitive
programs, respectively, and let P5 and P6 be the following two programs:

P5 : while b do:

p;

while c do:

q;

end

end

q;

P6 : if b then:

p;

while b+ c do:

if c then:

q;

else:

p;

end

Programs P5 and P6 are encoded in KAT as

e5 = (bp((cq)?c))?b

and
e6 = bp((b+ c)(cq + cp))?(b+ c) + b,

respectively. The procedure equivkat decides the equivalence e5 ⇠ e6 in 0.053 seconds.

Hoare Logic and KAT

Hoare logic was already introduced in Section 2.2. There we have seen that Hoare logic
uses triples of the form {b}p{c}, where b is the pre-condition and c is the post-condition of
the program p. The meaning of these triples, called Hoare triples or PCAs, is the following:
if b holds when p starts executing then c will necessarily hold when p terminates, if that is
the case. Hoare logic consists of a set of inference rules which we can successively apply to
triles in order to prove the partial correctness of the underlying program.

102 CHAPTER 4. EQUIVALENCE OF KAT TERMS

PHL is a waker Hoare logic that does not come equipped with the assignment inference
rule, since it is a propositional logic. KAT subsumes PHL and therefore the inference rules
of PHL can be encoded as KAT theorems. This implies that deductive reasoning within
PHL proof system reduces to equational reasoning in KAT. In KAT Hoare triples {b}p{c}
are expressed by the equation bp = bpc, or equivalently by bpc = 0, or by bp c. The
inference rules of PHL are encoded as follows: the program sequence rule os encoded as

bp = bcp ^ cq = cqd! bpq = bpqd, (4.14)

the conditional rule as

bcp = bcpd ^ b̄cq = b̄cqd! c(bp+ b̄q) = c(bp+ b̄q)d, (4.15)

and, finally, the while loop rule as

bpc = bcpc! c(bp)⇤b̄ = c(bp)⇤b̄b̄c. (4.16)

The equations (4.14–4.16) thus correspond to the deductive rules (??–??) – the assignment
rule (??) is not accounted since PHL is propositional – and were mechanically checked
during our development. Our decision procedure may be of few or no help here, since we
need to reason under sets of equational hypothesis, and we need to used them in a way that
cannot fully automated [64]. There exists however a fragment of Horn formulas of KAT that
can be reduced to equalities where our procedure can be applied. These are of the family of
formulas

b1p1b01 = 0 ^ . . . ^ bnpnb0n = 0 ^ . . . ^ c1 c01 ^ . . . cm c0m ! bpb0 = 0. (4.17)

It has been showed in [46, 47] that for all KAT terms r1, . . . , rn, e1, e2 over a set of primitive
programs ⌃ = {p1, . . . , pm}, the equations of the form

r1 = 0 ^ . . . ^ rn ! e1 = e2

is a theorem of KAT if and only if

e1 + uru = e2 + uru, (4.18)

where u def
= (p1+ . . .+pm)? and r

def
= r1+ . . .+ rn. At this point our decision procedure can

be used to decide (4.18). In order to infer the set of hypothesis that is required to obtain the
previous equation, we need annotated programs whose language was introduced in Section
2.2. The corresponding encoding of such programs in KAT is the following:

p; {b}q def
=e1be2

if b then p else q
def
=(be1 + be2)

while b do {i} p
def
=(bip)?b

4.5. APPLICATION TO PROGRAM VERIFICATION 103

Given a program P we can obtain its annotated counterpart using a VCGEN algorithm such
as the one presented by Frade and Pinto [42] or, at the level of KAT only, using the algorithm
proposed by Almeida et. al. [8].

We will now present two examples that show the usage of KAT in verifying the partial
correctness of simple imperative programs. Once more, the abstraction of the first order
program constructs is performed manually, by mapping assignments to primitive programs,
and Boolean assertion to primitive tests.

Example 33. Consider the program Sum3 given below. This program calculates the triple
of a number.

Sum3 Encoding
{true} t0
y := x p1
{x+ x+ y = 3x} t1
y := x + x + y ; p2
{y = 3x} t2

To prove the partial correctness of Sum3 e must infer the corresponding set of hypotheses
of the form bpb0 = 0 so that we can produce the KAT equivalence to which we can apply
our decision procedure. Such set of hypothesis is the following:

� = {t0 t3, t3p1t1 = 0, t1p2t2 = 0}.

The triple {true}{Sum3}{y = 3x} is encoded as a KAT equation as follows:

t0t3p1t1p2t2 = 0,

from where we can define u = (p1 + p2)? and r = t0t3 + t3p1t1 + t1p2t2. We can now apply
the decision procedure to the term

t0t3p1t1p2t2 + uru = 0 + uru

and obtain a positive answer in 0.912 seconds.

Example 34. Lets consider the program implementing the factorial of a number, presented
in the table presented below, together with its pre- and post-conditions.

104 CHAPTER 4. EQUIVALENCE OF KAT TERMS

Fact Encoding
{true} t0
y := 1 p1
{y = 0!} t1
z := 0 ; p2
{y = z!} t2
while ¬(z=x) do t3
{

{y = z!} t2
z := z + 1 ; p3
{y ⇥ z = z!} t4
y := y * z ; p4

}
{y = x!} t5

The Hoare triple {true}Fact{y = x!} is encoded as the equality

t0p1t1p2t2(t3t2p3t4p4)
?t3t5 = 0. (4.19)

To prove (4.19) we need to obtain a set of hypotesis, that can be obtained in a backward
fashion [8] using a weakest pre-condition generator. The set of hypothesis for (4.19) is the
following:

� = {t0p1t1 = 0, t1p2t2 = 0, t3t2p3t4 = 0, t4p2t2 = 0, t2t3t5 = 0}.

With � and ⌃ = {p1, p2, p3, p4}, we know that

• u = (p1 + p2 + p3 + p4)? and;

• r = t0p1t1 + t1p2t2 + t3t2p3t4 + t4p2t2 + t2t3t5.

The equation
t0p1t1p2t2(t3t2p3t4p4)

?t3t5 + uru = 0 + uru

is now provable by equivkat, which shows that Fact is correct. The procedure answered
positively in 22 seconds.

4.6 Related Work

Although KAT can be applied to several verification tasks, there exist few tool support for it.
Kozen and Aboul-Hosn [2] developed the KAT-ML proof assistant. KAT-ML allows one to

4.7. CONCLUSIONS 105

reason about KAT terms, ant it also provides support to reason with assignments and other
first-order programming constructs, since the underlying theory of KAT-ML is Schematic
Kleene algebra with tests (SKAT), an extension of KAT with a notion of assignment,
characterised by an additional set of axioms. However, KAT-ML provides no automation.

Recently, Almeida et. al. [9, 8] presented a new development of a decision procedure for
KAT equivalence. The implementation was made using the Ocaml programming language,
is not mechanically certified, but includes a new method for proving the partial correctness
of programs that dispenses the burden of constructing the terms r and u introduced in the
previous section.

4.7 Conclusions

In this chapter we have presented a decision procedure for KAT terms equivalence. We have
described its implementation in COQ, as well has its proofs of correctness and completeness
with respect to the language theoretic model of KAT. The decision procedure is based on
the notion of partial derivative of KAT terms, and a new way of calculating their finiteness
based on the method introduced by Mirkin is presented.

Although KAT works at the propositional level, it still can be used as a framework to
perform several verifications tasks, namely, program equivalence and partial correctness of
programs. However, in such approaches, we must provide the necessary abstractions of the
first order constructions as new tests and primitive actions and, some times, consider extra
commutativity conditions over these abstractions. Moreover, verification tasks of this kind
must still rely on external tools that must ensure that the first order constructions considered
are valid.

In terms of future work, we consider the mechanisation of a new algorithm that decides KAT
terms introduced by Almeida et. at. [9, 8]. This new method refines the one presented in the
previous section, in the sense that it dispenses the creation of the KAT terms r and u that
are required to automate the proof of partial correctness of imperative programs encoded
as KAT terms. Moreover, we are also interested in extending our development in order
to support SKAT, which we believe that it will approximate the usage of KAT to a more
realistic notion of program verification, since at the level of SKAT we have access to first
order constructions in programs.

106 CHAPTER 4. EQUIVALENCE OF KAT TERMS

Chapter 5

Mechanised Rely-Guarantee in Coq

In the previous two chapters we have addressed the mechanisation of terminating and correct
decision procedures for regular expressions and KAT terms. Both theories and decision
procedures can effectively be used to perform formal verification of sequential programs.
The next step in this line of research is to consider further extensions of regular expressions
and KAT terms to address other programming paradigms such as concurrent programming,
parallel programming, or event real-time system programming. Of particular interest is par-
allel programming, since new advances in computer technology is pushing this paradigm as
a future standard (consider, for instance, the efforts being done to mature cloud computing).

The most recent development of the family of regular expressions with respect to concurrent
and parallel programming is Hoare’s et. al. concurrent Kleene algebra (CKA) [49, 52].
This algebraic system is based in modal Kleene algebra (MKA) [34, 79, 33], an extension of
KA with domain operators. CKA provides a language with operators that are able to specify
concurrent composition with or without dependencies between the involved programs, as
well as the operators for sequential programming as in regular expressions. Extensions to
tests are not considered in the current stage of CKA. The underlying model of CKA is
the one of execution traces on which dependencies can be specified. In terms of decidable
decision procedures, no results have been presented so far.

In order to be able to mechanise CKA in COQ in the future, possibly with new models,
as well as decision procedures based on extensions of the results presented in Chapter 3
and Chapter 4, we have decided before that, the best option to go into concurrency and
parallelism was to understand and mechanise one of targets of CKA, namely, Jones’ rely-
guarantee (RG) [57]. RG is one of the well established formal approaches to the verification
of shared-variable parallel programs. In particular, our study and mechanisation follows

107

108 CHAPTER 5. MECHANISED RELY-GUARANTEE IN COQ

very closely the work described by Coleman and Jones in [28]. We note that RG was already
addressed in terms of its encoding within a proof-assistant through the work of Nieto [82],
who mechanised a parametric version of RG, and whose proofs follow the ones previously
introduced by Xu et. al. [105].

Therefore, in this chapter we describe what we believe to be the first effort to provide a
complete formalisation of RG for the COQ proof assistant. We encode the programming
language, its small-step operational semantics, a Hoare-like inference system, and a mech-
anised proof of its soundness for the later system.

It is also important to stress that RG is the base for more recent formal system, namely those
that extend RG with Reynolds’ separation logic [93]. Recent formal systems resulting from
this synergy between RG and separation logic are RGSEP by Vafeiadis et. al. [101], local
rely-guarantee reasoning by Feng et. al. [?], and also deny-guarantee byDodds et. al [37].
Although none of the cited works are addressed in this thesis, it is our conviction that the
contribution we give with our mechanisation can be a guide for the mechanisation of the
cited formal systems in the future, within the COQ proof assistant.

5.1 Rely-Guarantee Reasoning

The first formal system that addressed the specification and verification of parallel programs
was the one developed by Owiki and Gries [85]. In their approach, a sequential proof had
to be carried out for each parallel process, which also had to incorporate information that
established that each sequential proof does not interfere with the other sequential proofs.
This makes the whole proof system non-compositional, as it depends on the information of
the actual implementation details of the sequential processes. The inference rule for this
approach is summarised as follows:

{P1}C1{Q1} {P2}C2{Q2}
C1 does not interfere with C2

C2 does not interfere with C1

{P1 ^ P2}parC1 withC2 end{Q1 ^Q2}

Based on the previous system, Jones introduced RG in his PhD thesis [58], which resulted in
a formal approach to shared-variable parallelism that brings the details of interference into
specification, in an explicit way. In RG, besides preconditions and postconditions, specifi-
cations are enriched with rely conditions and guarantee conditions: a rely condition models
steps of execution of the environment; a guarantee condition describes steps of execution
of the program. Therefore, in the context of parallel program specification and design,

Nelma Moreira

5.1. RELY-GUARANTEE REASONING 109

the rely conditions describes the level of interference that the program is able to tolerate
from the environment, while the guarantee conditions describes the level of interference
that the program imposes on the environment. From the specification point-of-view, the rely
condition can be seen as a way of requiring the developer to make the necessary assumptions
about the environment in which the program is going to execute. From the user point-of-
view, it is the responsibility of the user itself to ensure that the environment complies with
the previous assumptions.

As a final remark, not that when the program’s computation is described by rely and guaran-
tee conditions, which are to be decomposed during the proof construction process, the result
of such decomposition can only have at least the same level of interference as their parent
conditions, that is, they cannot produce more interference. Still, and from the logical point
of view, these decompositions may be weakened or strengthen, but they still must comply
with the conditions from which they have originated. The point here is that weakening or
strengthening decomposed rely and guarantee conditions may allow to establish a larger
number of environments where the complete parallel program may be deployed.

Preconditions and Postconditions v.s. Rely and Guarantee Conditions

The difference between rely and guarantee conditions and preconditions and postconditions
can be stated in the following way: preconditions and postconditions view the complete ex-
ecution of the underlying program as whole, whereas rely and guarantee conditions analyse
each possible step of the execution, either resulting from the interference of the environment,
or by a step of computation of the program. This is captured graphically in Figure 5.1,
borrowed from Coleman and Jones [28].

Figure 5.1 Rely and guarantee vs. preconditions and postconditions.

P Q

(a) Preconditions and postconditions

P Q
R R R R

G G G

(b) Rely and guarantee conditions.

Nelma Moreira

Nelma Moreira
note

110 CHAPTER 5. MECHANISED RELY-GUARANTEE IN COQ

5.2 The IMPp Programming Language

IMPp is a simple parallel imperative programming language that extends IMP, which was
already introduced in Chapter 2. The IMPp language extends IMP by introducing an instruc-
tion for the atomic execution of programs, and also one instruction for parallel execution of
programs. Moreover, it also considers lists of natural numbers as part of the datatypes
primitively supported.

As in IMP, the language IMPp considers a language of arithmetic expressions and a lan-
guage of Boolean expressions. We denote these languages of expressions by AExp and
BExp, respectively, and we inductively defined them by the following grammars:

AExp 3 e, e1, e2 ::= x | n 2 N | e1 + e2 | e1 � e2 | e1 ⇤ e2 | [] | n :: l | hd l | tl l,

BExp 3 b, b1, b2 ::= true | false | ¬b | b1 ^ b2 | e1 = e2 | e1 < e2 | is_cons l,

where x is a variable identifier and l is a list of natural numbers. The operators hd and
tl correspond to the head and the tail of a given list l, respectively. The Boolean operator
is_cons has the goal of checking if the input list l is empty or not. The language of IMPp
programs is inductively defined by

IMPp 3 C,C1, C2 ::= skip

| x ::= e

| atomic(C 0)

| C1;C2

| if b then C1 else C2 fi

| while b do C done

| par C1 with C2 end,

where x is a variable, e 2 AExp, and b 2 BExpr. The program C 0 that is the argument of the
atomic instruction must be a sequential program built using the grammar of IMP programs.
Given the following definition of variable identifiers (borrowed from Pierce’s et. al [89]),

Inductive id : Type := Id : nat ! id.

the syntax of IMPp is defined in COQ as follows:

Inductive aexp : Type :=

| ANum : nat ! aexp

| AId : id ! aexp

| APlus : aexp ! aexp ! aexp

| AMinus : aexp ! aexp ! aexp

| AMult : aexp ! aexp ! aexp

Nelma Moreira

Nelma Moreira

Nelma Moreira
não sei se isto está bem?
misturar listas com exps.

5.3. OPERATIONAL SEMANTICS OF IMPP 111

| AHead : aexp ! aexp

| ATail : aexp ! aexp

| ACons : aexp ! aexp ! aexp

| ANil : aexp.

Inductive bexp : Type :=

| BTrue : bexp

| BFalse : bexp

| BEq : aexp ! aexp ! bexp

| BLt : aexp ! aexp ! bexp

| BNot : bexp ! bexp

| BAnd : bexp ! bexp ! bexp

| BIsCons : aexp ! bexp.

Inductive stmt : Type :=

| Stmt_Skip : stmt

| Stmt_Ass : id ! aexp ! stmt

| Stmt_Seq : stmt ! stmt ! stmt

| Stmt_If : bexp ! stmt ! stmt ! stmt

| Stmt_While : bexp ! stmt ! stmt

| Stmt_Atom : stmt ! stmt

| Stmt_Par : stmt ! stmt ! stmt.

Notation "’skip’" := Stmt_Skip.

Notation "x ’:=’ e" := (Stmt_Ass x e).

Notation "C1 ; C2" := (Stmt_Seq C1 C2).

Notation "’while’ b ’do’ C ’end’" := (Stmt_While b C).

Notation "’if’ b ’then’ C1 ’else’ C2 ’fi’" := (Stmt_If b C1 C2).

Notation "’par’ C1 ’with’ C2 ’end’" := (Stmt_Par C1 C2).

Notation "’atomic(’ C ’)’" := (Stmt_Atom C).

5.3 Operational Semantics of IMPp

IMPp programs are evaluated by means of a small-step operational semantics, in the style of
Plotkin’s structural operational semantics [90]. The semantic must be small-step in order to
capture a fine-grained interleaving between the computation of the program under consid-
eration, and the interference caused by other parallel processes running in the environment.
Formally, the semantics of IMPp is a relation

c
=) : hIMPp,⌃i ! hIMPp,⌃i (5.1)

between pairs hC, si, called configurations, such that C is a IMPp program, and s is a state

112 CHAPTER 5. MECHANISED RELY-GUARANTEE IN COQ

(set o mappings of variables to values). The set of all states is denoted by ⌃. The type of
values that are supported by the semantics, and the notion of state (and the particular case
of the empty state) are defined in COQ as follows:

Inductive val : Type :=

| VNat : nat ! val

| VList : list nat ! val.

Definition st := id ! val.

Definition empty_st : st := fun _) VNat 0.

Moreover, we defined the update of a variable in a state in the following way:

Definition upd (s : st) (x:id) (e : val) : st :=

fun x0:id) if beq_id x x0 then x else s x0.

Before giving the structure of the relation c
=) we describe the interpretation of arithmetic

and Boolean expressions. First we define some auxiliary functions that evaluate terms of
type AExp into natural numbers or lists of natural numbers, depending on the result of the
pattern matching over the structure of those terms.

Definition asnat (e : val) : nat :=

match v with

| VNat n) n

| VList _) 0

end.

Definition aslist (e : val) : list nat :=

match v with

| VNat n) []

| VList xs) xs

end.

Definition tail (l : list nat) :=

match l with

| x::xs) xs

| []) []

end.

Definition head (l : list nat) :=

match l with

| x::xs) x

| []) 0

end.

5.3. OPERATIONAL SEMANTICS OF IMPP 113

With the help of the previous definitions, we can define a recursive function that evaluates
arithmetic expressions into their final result in type val. Such a function is defined as
follows:

Function aeval (s : st) (e : aexp) {struct e} : val :=

match e with

| ANum n) VNat n

| AId x) s x

| APlus e1 e2) VNat ((asnat (aeval s e1)) + (asnat (aeval s e2)))

| AMinus e1 e2) VNat ((asnat (aeval s e1)) - (asnat (aeval s e2)))

| AMult e1 e2) VNat ((asnat (aeval s e1)) * (asnat (aeval s e2)))

| ATail l) VList (tail (aslist (aeval s l)))

| AHead l) VNat (head (aslist (aeval s l)))

| ACons e1 l) VList (asnat (aeval s e1) :: aslist (aeval s l))

| ANil) VList []

end.

Notation "JeKE(s)" := (aeval s e).

The same approach is taken for Boolean expressions.

Function beval (s : st) (b : bexp){struct b} : bool :=

match b with

| BTrue) true

| BFalse) false

| BEq e1 e2)
if beq_nat (asnat (aeval s e1)) (asnat (aeval s e2)) then true else

false

| BLt e1 e2)
if blt_nat (asnat (aeval s e1)) (asnat (aeval s e2)) then true else

false

| BNot b1) negb (beval s b1)

| BAnd b1 b2) andb (beval s b1) (beval s b2)

| BIsCons l)
match aslist (aeval s l) with

| _::_) true

| []) false

end

end.

Notation "JbKB(s)" := (beval s b).

Given the interpretation functions for arithmetic and Boolean expressions, we can now
describe the relation that captures the computation of an IMPp program, C starting in some

114 CHAPTER 5. MECHANISED RELY-GUARANTEE IN COQ

state s. The relation c
=) is inductively as follows:

hx ::= e, si c
=) hskip, s[e/x]i

(ASSGN)

hC, si ?
=) hskip, s0i

hatomic(C), si c
=) hskip, s0i

(ATOMIC)

hskip;C, si c
=) hC, si

(SEQ-1)

hC1, si
c

=) hC 0
1, s

0i

hC1;C2, si
c

=) hC 0
1;C2, s0i

(SEQ-2)

JbKB(s) = true

hif b then C1 else C2 fi, si
c

=) hC1, si
(IF-TRUE)

JbKB(s) = false

hif b then C1 else C2 fi, si
c

=) hC2, si
(IF-FALSE)

hwhile b do C done, si c
=) hif b then C; (while b do C done) else skip fi, si

(WHILE)

hc1, si
c

=) hC 0
1, s

0i

hpar C1 with C2 end, si
c

=) hpar C 0
1 with C2 end, s

0i
(PAR-1)

hC2, si
c

=) hC 0
2, s

0i

hpar C1 with C2 end, si
c

=) hpar C1 with C 0
2 end, s

0i
(PAR-2)

hpar skip with skip end, si c
=) hskip, si

(PAR-END)

The above set of rules is encoded in COQ through the following inductive predicate, consid-
ering that the definition (stmt*st) stands for the type of configurations:

Inductive cstep : (stmt * st) ! (stmt * st) ! Prop :=

|CS_Ass: 8 s x e,

cstep ((x ::= e),s) (skip,s [aeval s e/x])

|CS_Atom : 8 C s s0,

star _ (step) (C,s) (skip,s0) ! cstep (atomic(C),s) (skip,s0)

|CS_SeqStep : 8 s C1 C 0
1 s0 C2,

cstep (C1,s) (C 0
1,s

0) ! cstep ((C1;C2),s) ((C 0
1;C2),s0)

5.3. OPERATIONAL SEMANTICS OF IMPP 115

|CS_SeqFinish : 8 s C2,

cstep ((skip;C2),s) (C2,s)

|CS_IfFalse : 8 s C1 C2 b,

¬b2assrt b s ! cstep (if b then C1 else C2 fi,s) (C2,s)

|CS_IfTrue : 8 s c1 c2 b,

b2assrt b s ! cstep (if b then C1 else C2 fi,s) (C1,s)

|CS_While : 8 s b C ,

cstep (while b do C end,s) (if b then (C;while b do C end) else skip fi,s)

|CS_Par1 : 8 s C1 C 0
1 C2 s0 ,

cstep (C1,s) (C 0
1,s

0) ! cstep (par C1 with C2 end,s) (par C 0
1 with C2 end,s0)

|CS_Par2 : 8 s C1 C2 C 0
2 s0,

cstep (C2,s) (C 0
2,s

0) ! cstep (par C1 with C2 end,s) (par C1 with C 0
2 end,s0)

|CS_Par_end : 8 s,

cstep (par skip with skip end,s) (skip,s).

Infix " c
=)" := cstep.

The constructors that form the cstep correspond to the reduction rules presented before,
in the exact same order of occurrence. In the example that follows, we show a reduction
performed by applying the relation c

=).

Example 35. Let x1 and x2 be two variables. Let s be the state such that the values of x1

and x2 are 0. Let C be the IMPp program defined as follows:

par { x1 := 1 } with { x2 := 2 } end

Two reductions may occur from hC, s i: either it reduces by the rule (PAR-1) and updates
s by mapping the value 1 to the variable x1, that is,

h par{x1 := 1}with{x2 := 2}end, s i c
=) h par { skip } with { x2 := 2 } end, s[1/x1] i,

or it reduces by rule (PAR-2) and updates s by mapping 2 to the variable x2, that is,

h par{x1 := 1}with{x2 := 2}end, s i c
=) h par { x1 := 1 } with { skip } end, s[2/x2] i.

5.3.1 Reductions Under Interference

The semantics of the relation c
=) is not enough to capture possible interference between

parallel programs. In order to capture it adequately, we need an extended notion of transition
between configurations hC, s i that takes into account a possible preemption of C by an ex-
ternal program. If this is the case, then the resulting configuration must keep C unchanged,
but the state s may be subject to an update, caused exactly by the interference of that

116 CHAPTER 5. MECHANISED RELY-GUARANTEE IN COQ

external program’s operation. Formally, we consider a new relation between configurations
as follows:

hC, si R
=) hC 0, s0i def= (hC, si c

=) hC 0, s0i) _ (C = C 0 ^ (s, s0) 2 R). (5.2)

The relation (5.2) is encoded in COQ as follows:

Definition interf R :=

fun cf cf 0:stmt*st) (fst cf) = (fst cf 0) ^ R (snd cf) (snd cf 0).

Definition prog_red R :=

fun cf cf 0:stmt*st) cf
c

=) cf 0 _ interf R cf cf 0.

Example 36. Let s be a state such that the variable x1 has the value 1 and the variable x2

has de value 1 also. Let R be the rely condition defined by (x, x+ 1) 2 R, and let C be the
IMPp program defined as follows:

x1 := 1;x2 := 2

The following are the two possible reductions of the configuration hC, s i, considering
interference:

hx1 := 1;x2 := 2, si =) hskip; x2 := 2, s[1/x1]i

or
hx1 := 1;x2 := 2, si =) hx1 := 1;x2 := 2, s[2/x2]i.

Now that we already have a definition for one step of computation of program under in-
terference, we extend it to a finite number of reductions, thus capturing the behaviour of
computations. This is tantamount to the reflexive and transitive closure of R

=), that is,

hC, si R?

=) hC 0, s0i. (5.3)

Obviously, we may also consider a predetermined number of computations, in order to
analyse just a fixed number of steps of reduction under interference, instead of considering
all the possible computations. In COQ we have the following definitions for fixed number
of reductions, and also for any finite number of reductions:

Inductive starn (A:Type)(R:relation A) : nat ! A ! A ! Prop :=

|starn_refl : 8 x:A,

starn A R 0 x x

|starn_tran : 8 x y:A,

R x y ! 8 (n:nat)(z:A), starn A R n y z ! starn A R (S n) x z.

Definition prog_red_n R n :=

5.4. A PROOF SYSTEM FOR RELY-GUARANTEE 117

fun cf cf 0) starn (stmt*st) (prog_red R) n cf cf 0.

Notation "cf Rn

=) cf 0" := (prog_red_n R n cf cf 0).

Inductive star (A:Type)(R:relation A) : A ! A ! Prop :=

| star_refl : 8 x:A, star A R x x

| star_trans : 8 x y:A, R x y ! 8 z:A, star A R y z ! star A R x z.

Definition prog_red_star R := fun cf cf 0) star (stmt*st) (prog_red R) cf

cf 0.

Notation "cf R?

=) cf 0" := (prog_red_star R cf cf 0).

Example 37. Let us consider the same initial state and program as in the previous example.
We are able to prove that, after four reductions, the computation of C leads to a state
where the variable x1 contains the value 2. This property is obtained by first performing
three reductions leading the configuration hC, s i c3

=) h skip, s[1/x1][2/x2] i. With one
more reduction, and because the relation R is defined as R 2 (x, x + 1), we can prove
h skip, s[1/x1][2/x2] i

R
=) h skip, s[1/x1][2/x2][2/x1] i.

5.4 A Proof System for Rely-Guarantee

In this section we introduce an inference system for proving the partial correctness of IMPp
programs along the lines of RG. This system, which we name HL-RG, extends sequential
Hoare logic with a notion of interference that is explicit at the specification level. Let R be
a relation establishing the rely condition, and let G be a relation establishing the guarantee
condition. A triple in HL-RG has the form of

{R,P} C {Q,G},

and we shall write
` {R,P} C {Q,G}

if we can prove from the set of inference rules of HL-RG that the program C is partially
correct with respect to its rely and guarantee conditions, and also with respect to its precon-
ditions and postconditions.

Before presenting the inference system HL-HG, we must introduce the notion of stability. In
RG, we say that an assertion P is stable with respect to the interference of the environment,
captured by a relation R, if P is not changed due to the actions caused by R, that is

stable R P
def
= 8s, s0 2 ⌃, P (s)! (s, s0) 2 R! P (s0). (5.4)

118 CHAPTER 5. MECHANISED RELY-GUARANTEE IN COQ

The particular effect of stability conditions on preconditions and postconditions can be
described as follows: if P is a precondition of the program C that is satisfied, and if the
environment R acts upon P , then P remains satisfied, allowing in this way to "move" the
satisfiability of P into the state where the actual execution of C starts; the same applies to a
postcondition Q, that is, if Q is stable with respect to R, then Q can me moved into the state
where the program C has finished its execution. We now present the definition of stability
in COQ. But for that, we introduce first the definitions of assertions.

Definition assrt := st ! Prop.

Definition b2assrt (b:bexp) : assrt :=

fun s:st) beval s b = true.

Definition assg_subs (x:id) (e:aexp) (Q:assrt) : assrt :=

fun s:st) Q (s [(aeval s e)/x]).

Definition assrtT (b: bexp) : assrt :=

fun s:st) b2assrt b s.

Definition assrtF (b: bexp) : assrt :=

fun s:st) ¬b2assrt b s.

Definition assrtAnd (P Q:assrt) : assrt :=

fun s:st) P s ^ Q s.

Definition assrtOr (P Q: assrt) : assrt :=

fun s:st) P s _ Q s.

Definition assrtImp (P Q: assrt) : Prop :=

8 s:st, P s ! Q s.

With the previous definitions, we can define the notion of stability in COQ, as follows:

Definition stable (R:relation st)(P:assrt) :=

8 x y:st, P x ^ R x y ! P y.

Lemma stable_starn :

8 n:nat, 8 R P, stable R P ! stable (starn _ R n) P.

Lemma stable_star :

8 R P, stable R P ! stable (star _ R) P.

Lemma stable_and :

8 R1 R2 P, stable R1 P ! stable R2 P ! stable (rstAnd R1 R2) P.

5.4. A PROOF SYSTEM FOR RELY-GUARANTEE 119

Lemma stable_impl :

8 R1 R2 P, stable R2 P ! rstImp R1 R2 ! stable R1 P.

We now give a simple example that shows an assertion being stable with respect to a possible
rely condition.

Example 38. Let R be a relation defined by R = {(x, x+k) | k > 0}, and let P (s) = s > 0.
It is easy to see that the assertion P is stable with respect to R since if we know that P (x)

holds, then x must be a positive number, and due to the action of R, we obtain P (x + k)

which is also true.

5.4.1 Inference Rules

We will now describe each of the inference rules of the HL-RG inference system. This sys-
tem extends sequential Hoare logic by adding two new rules, one for each of the commands
that extends IMPp with respect to IMP. Moreover, the rules for the sequential part, as well
as the rules for atomic execution and parallel execution of commands are enriched with the
stability conditions required for the rules to be sound. In Coleman and Jone’s presentation,
such stability rules are implicit, but when conducting the development in a proof system like
COQ, the stability conditions must be made explicit. We now introduce the inference rules
of the HL-RG proof system.

Skip. In the case of the skip command, there exists no program reductions. Thus, only the
environment R can change the underlying state, and so, the precondition P and the postcon-
dition Q, the hypotheses must establish their stability with respect to R. The inference rule
for skip is defined as follows:

stable R P stable R Q P ! Q

{R,P} skip {Q,G}
(HG-SKIP)

Assignment. In the case of assignment, the environment R may cause interference in the
precondition P or the postcondition Q, but it does not affect the execution of the assignment.
Moreover, it must be known in advance that the change in the state due the assignment
must satisfy the guarantee condition G. The inference rule for the assignment is defined as
follows:

120 CHAPTER 5. MECHANISED RELY-GUARANTEE IN COQ

stable R P

stable R Q (8s 2 ⌃, (s, s[e/x]) 2 G) P ! Q[a/x]

{R,P} x ::= e {Q,G}
(HG-ASSGN)

Sequence. In the case of the sequential composition of programs C1 and C2, we need to
prove that C1 behaves correctly with respect to its specification and, if that is the case, we
have to prove that C2 respects the same condition, considering that the postcondition of C1

becomes the precondition of C2. The inference rule for the composition of programs is
defined as follows:

{R,P} C1 {Q0, G} {R,Q0} C2 {Q,G}

{R,P} C1;C2 {Q,G}
(HG-SEQ)

Conditional choice. In the case of the conditional statement, as long as the specifications
for the statements of the branches are given, we can prove the correct specification of the
whole conditional. Still, the assertion stating the result of evaluating the Boolean guard must
be immune to the interference of the environment. With the stability ensured, there is no
risk that the interference of the environment breaks the expected flow of the execution of the
program. The inference rule for the conditional choice command is defined as follows:

stable R JbK
stable R JbK stable R P

{R,P ^ JbKB} C1 {Q,G}
{R,P ^ JbKB} C2 {Q,G}

{R,P} if b then C1 else C2 fi {Q,G}
(HG-IF)

Loops. In the case of while loops, the classic inference rule of Hoare logic is extended
with stability conditions, in a similar way as in the conditional rule. The environment may
interfere with the Boolean guard, and so stability must be ensured in order to preserve
the correct evaluation of loops. Moreover, stability must also apply to the invariant. The
inference rule for the while loop is defined as follows:

stable R JbKB stable R JbKB {R, JbKB ^ P} C {Q,G}

{R,P} while b doC done {JbKB ^ P,G}
(HG-WHILE)

Atomic execution. Atomic statement execution ensures that a given program executes with
no interference of the environment whatsoever. Hence, the rely condition in this case is
the identity relation, here denoted by ID. Moreover, the command C that is going to be

5.4. A PROOF SYSTEM FOR RELY-GUARANTEE 121

executed atomically must be a valid sequential program, and the precondition and postcon-
dition can still suffer interference from the environment, hence they must be proved stable
with respect to the global rely condition R. The inference rule for the atomic execution of
programs is defined as follows:

stable R P

stable R Q {ID, P} C {Q}

{R,P} atomic(C) {Q,G}
(HG-ATOMIC)

Consequence. The consequence rule is just a simple extension of the consequence rule in
sequential Hoare logic, where the rely and guarantee conditions R and G can be strength-
ened or weakened. The inference rule for the consequence is defined as follows:

P ! P 0

Q0 ! Q

R! R0

G0 ! G {R0, P 0} C {Q0, G0}

{R,P} C {Q,G}
(HG-CONSEQ)

Parallel composition. In the case of parallel composition of two programs C1 and C2

assumes that the specifications of the individual programs ensure that they not interfere with
each. Hence, the hypotheses must contain evidences that the guarantee condition of one of
the component programs becomes part of the environment of the other component program,
and vice versa. The adequate stability conditions for both the component programs are also
required. The inference rule for the parallel composition of programs is defined as follows:

(Gl [Gr)! G

(Rl [Gl)! Rr

(Rr [Gr)! Rl

(Rl ^Rr)! R

(Ql ^Qr)! Q

stable (Rr [Gr)Q1

stable (Rl [Gl)Q2

stable (Rr [Gr)P

stable (Rl [Gl)P

{Rl, P}C1 {Q1, Gl}
{Rr, P}C2 {Q2, Gr}

{R,P} parC1 withC2 end {Q,G}
(HG-PAR)

In COQ, we define the inference system RG-HL by the following inductive predicate:

Inductive triple_rg (R G:StR) : assrt ! stmt ! assrt ! Prop :=

| RSkip: 8 (P Q:assrt),

Reflexive G ! stable R P ! stable R Q ! P[!]Q !
triple_rg R G P skip Q

| RAsgn : 8 v a P Q,

stable R P ! stable R Q ! (8 s, G s (upd s v (aeval s a))) !
(8 s, P s ! Q (upd s v (aeval s a))) ! triple_rg R G P (v ::= a) Q

Nelma Moreira

122 CHAPTER 5. MECHANISED RELY-GUARANTEE IN COQ

| RAtom : 8 (P Q:assrt) c b,

(8 x y, star _ G x y ! G x y) !
stable R P ! stable R Q ! triple G P c Q !
triple_rg R G P (wait b do c end) Q

| RIf: 8 P c1 c2 Q b,

Reflexive G !
stable R (assrtT b) ! stable R (assrtF b) !
stable R P !
triple_rg R G (([>]b)[^]P) c1 Q !
triple_rg R G (([?]b)[^]P) c2 Q !
triple_rg R G P (ifb b then c1 else c2 fi) Q

| RSequence: 8 c1 c2 P K Q,

Reflexive G ! triple_rg R G P c1 K ! triple_rg R G K c2 Q !
triple_rg R G P (c1;c2) Q

| RConseq:

8 (R’ G’:Env) P P’ Q Q’ c,

triple_rg R’ G’ P’ c Q’ !
assrtImp P P’ ! assrtImp Q’ Q !
rstImp R R’ ! rstImp G’ G !
triple_rg R G P c Q

| RLoop :

8 P b c,

Reflexive G ! stable R P !
stable R (assrtT b) ! stable R (assrtF b) !
triple_rg R G (([>]b)[^](P)) c P !
triple_rg R G P (while b do c end) (([?]b)[^]P)

| RConcur :

8 (Rl Rr Gl Gr:StR) P Q1 Q2 Q cr cl,

Reflexive Gl ! Reflexive Gr !
rstImp R (rstAnd Rl Rr) !
rstImp (rstOr Gl Gr) G !
rstImp (rstOr Rl Gl) Rr !
rstImp (rstOr Rr Gr) Rl !
(assrtAnd Q1 Q2)[!]Q !
stable (rstOr Rr Gr) Q1 !
stable (rstOr Rl Gl) Q2 !
stable (rstOr Rr Gr) P !
stable (rstOr Rl Gl) P !
triple_rg Rl Gl P cl Q1 !
triple_rg Rr Gr P cr Q2 !
triple_rg R G P (par cl with cr end) Q.

In the specification of the RAtom constructor, we use as premise the term triple. This
represents a valid deduction tree using the sequential Hoare proof system, which we proved

5.5. SOUNDNESS OF RG-HL 123

correct with respect to the sequential fragment of IMPp, but that we do not present in
this dissertation. The proof of the soudness of sequential Hoare logic captured by triple

follows along the lines of the works of Leroy [73] and Pierce at al. [89], and is based also
in a small-step reduction semantics.

5.5 Soundness of RG-HL

We will now proceed with the proof of soundness of HL-RG in the COQ proof assistant.
Following along the lines of our reference work, Coleman and Jones [28], we prove the
soundness of the system with respect to its functional correctness, i.e., that preconditions
and postconditions are ensured, and we also prove that it satisfies the constraints imposed by
the guarantee condition. Together, these lead to the correctness of the whole proof system.

Here we do not present the actual COQ scripts required to build the proofs. Instead, we give
proof sketches for each of the cases of the proof, that give an overview on how the actual
proofs were mechanised. The actual COQ code is available in [].

Respecting Guarantees

In RG, the role of the guarantee condition is to bound the amount of interference that a
program may impose in the environment. In particular, the guarantee condition of a program
is part of the rely condition of all the other programs running in parallel with it. Therefore,
if the configuration hC, s i reduces to a configuration hC 0, s0 i after some finite number of
steps, and if hC 0, s0 i c

=) hC 00, s00 i holds, then we must show that (s0, s00) 2 G, where G

is the established guarantee condition. Proving that all such reductions that occur along the
execution of C ensures that the complete computation of C satisfies the constraints imposed
by G. The satisfaction of this property was introduced by Coleman and Jones in [28], and is
formally defined by

within(R,G,C, s)
def
=

8C 0s0, (hC, si R?

=) hC 0, s0i)! 8C 00s00, hC 0, s0i c
=) hC 00, s00i ! (s0, s00) 2 G.

(5.5)

An important consequence of the previous definition is that given two programs C and C 0,
we can prove the states resulting from their parallel computation are members of the set of
states that result from the reflexive and transitive closure of the rely and guarantee conditions

124 CHAPTER 5. MECHANISED RELY-GUARANTEE IN COQ

of each other. Formally, we have

8C1 C2 C
0
1 s

0, h parC1 withC2 end, s i
R?

=) h parC 0
1 withC2 end, s

0 i ! (s, s0) 2 (R [Gl)
?

(5.6)

8C1 C2 C
0
2 s

0, h parC1 withC2 end, s i
R?

=) h parC 0
1 withC

0
2 end, s

0 i ! (s, s0) 2 (R [Gr)
?,

(5.7)

where Gl and Gr are, respectively, the guarantee conditions of the programs C1 and C2.
This properties will be fundamental for proving the soundness of the parallel computation
inference rule for the RG proof system that we will introduce briefly. Other properties of
within are the following: if a reduction of the program exists, or one step of interference
occurs, then the within still holds, that is,

8s s0, (hC, si c
=) hC 0, s0i)! within(R,G,C, s)! within(R,G,C 0, s0)

and
8s s0, (s, s0) 2 R! 8C, within(R,G,C, s)! within(R,G,C, s0).

The previous properties are naturally extended to a finite set of reductions under interference
starting from a configuration hC, si. Formally,

8s s0, (hC, si R?

=) hC 0, s0i)! within(R,G,C, s)! within(R,G,C 0, s0). (5.8)

Another property of interest and that we will need for the soundness proof of the parallel
statement is that if within(R,G,C, s) holds and if the hC, si reduces to hC 0, s0i then this
reduction can be interpreted as a finite series of intermediate steps, where each step is
captured either by R – meaning that the environment has interveen – or by G – meaning
that a program reduction occurred. Formally, this notion is expressed as follows:

8s s0, (hC, si R?

=) hC 0, s0i)! within(R,G,C, s)! (s, s0) 2 (R [G)?. (5.9)

Soundness Proof

The soundness of HL-RG requires the notion of Hoare validity. In classic Hoare logic we
state this condition as follows: if a program C starts its computation in a state where the
precondition P holds then, if C terminates, it terminates in a state where the postcondition
Q holds. In the case of parallel programs, this notion must be extended to comply with
the rely and guarantee conditions. Thus, the validity of a specification {R,P} C {Q,G},
which we write |= {R,P} C {Q,G}, has the following reading: if a program C starts
its computation in a state where the precondition P holds and if the interference of the

5.5. SOUNDNESS OF RG-HL 125

environment is captured by the rely condition R then, if C terminates, it terminates in a
state where the postcondition Q holds, and also all the intermediate program reduction steps
satisfy the guarantee condition G. Formally, the definition of Hoare validity for HL-RG is
defined as

|= {R,P} C {Q,G}
def
=

8C s, P (s)! 8s0, (hC, si R?

=) hskip, s0i)! Q(s0) ^ within(R,G,C, s).

(5.10)

The soundness of the proof system goes by induction on the size of the proof tree, and by
case analysis on the last rule applied. Since the proof system is encoded the inductive typ
tripleRG, a proof obligation is generated for each of its constructors. For each constructor
Ci in the definition of type tripleRG a proof obligation of the form

` {R,P} Ci {Q,G} ! |= {R,P} Ci {Q,G},

is generated. This means that we have to prove

` {R,P} Ci {Q,G}! 8s, P (s)! 8s0, hCi, si
R?

=) hskip, s0i ! Q(s0) (5.11)

and also

` {R,P} Ci {Q,G}! (8s, P (s)! 8s0, hCi, si
R?

=) hskip, s0i ! within(R,G,Ci, s)).

(5.12)
We call to (5.11) the Hoare part of the proof, and we call to (5.12) the Guarantee part of
the proof, respectively.

Skip

The statement skip produces no reduction. Therefore, the only transition available to reason
with is the environment, which satisfies the rely relation.

Hoare part. From hskip, si R?

=) hskip, s0i we know that (s, s0) 2 R? and, from the stability
of Q with respect to R, we obtain Q(s) from Q(s0). The rest of the proof trivially follows
from the hypothesis P ! Q.

Guarantee part. From the definition of within and from P (s) for some state s, we know
that hskip, si R?

=) hskip, s0i and hskip, si c
=) hC, s0i for some state s0. This is, however, an

absurd since no reduction hskip, si c
=) hC, s0i exists in the definition of c

=).

126 CHAPTER 5. MECHANISED RELY-GUARANTEE IN COQ

Assignment

The assignment is an indivisible operation which updates the current state with a variable
x containing a value given by an expression e. The precondition P and the postcondition
Q can be streched by the interference of the environment R due to the stability conditions.
This only happens right before, or right after the execution of the assignment.

Hoare part. By induction on the length of the reduction hx ::= e, si R?

=) hskip, s0i we
obtain hskip, si c

=) hskip, s[e/x]i and hskip, s[e/x]i R?

=) hskip, s0i. Since skip implies the
impossibility of reductions, we are able to infer that (s[e/x], s0) 2 R?. By the stability of
the postcondition, we obtain Q(s[e/x]) from Q(s0).

In what concerns the case where the environment causes interference, we prove by induction
on the length of hx ::= e, si R?

=) hskip, s0i that exists s00 2 ⌃ such that (s, s00) 2 R and
hx ::= e, s00i R?

=) hskip, s0i. By the stability of the precondition P (s), we conclude P (s00).
From the induction hypothesis, we conclude that Q(s0).

Guarantee part. For proving the guarantee satisfaction, i.e., to prove within(R,G,x ::= e,s),
we first obtain that if hx ::= e, si R?

=) hC 0, s0i then both C 0 = skip and s0 = s[e/x] must
hold. Hence, we conclude (s, s[e/x]) 2 G by the hypotheses.

Sequence

For the conditional statement, the proof follows closely the proof that is constructed to prove
the soundness of the inference rule in the case of sequential Hoare logic, for both the cases
of the Hoare part and the guarantee part.

Hoare part. The proof goes by showing that since we have the reduction

hC1;C2, s i
R?

=) h skip, s0 i

for s, s0 2 ⌃, then there exists intermediate state s00 2 ⌃ such that hC1, s i
R?

=) h skip, s00 i
and hC2, s00 i

R?

=) h skip, s0 i hold. Using hC1, s i
R?

=) h skip, s00 i and the induction hypothe-
ses, we show that the postcondition of C1 is the precondition of C2, and by hC2, s00 i

R?

=)
h skip, s0 i we obtain the postcondition of C2, which finishes the proof.

Guarantee part. For proving within(R,G,C1;C2,s) we need the following intermediate

5.5. SOUNDNESS OF RG-HL 127

lemma:

within(R,G,C1, s)

!
(8s0 2 ⌃, hC1, si

R?

=) hskip, s0i ! within(R,G,C2, s0))! within(R,G,C1;C2, s).
(5.13)

By applying (5.13) to within(R,G,C1;C2,s), we are left to prove first that within(R,G,C1, s),
that is immediate from the hypothesis |= {R,P} C1 {Q0, G}. From the same inductive
hypothesis, we obtain Q0(s0), where s0 2 ⌃ is the state where C1 finishes its execution. For
the second part of the proof, which corresponds to prove that

8s0 2 ⌃, hC1, si
R?

=) hskip, s0i ! within(R,G,C2, s
0),

we obtain Q0(s0), and from Q0(s0) and |= {R,Q0} C2 {Q,G} we obtain within(R,G,C2, s0),
which closes the proof.

Conditional

For the conditional statement, the proof follows closely the proof that is constructed to prove
the soundness of the inference rule in the case of sequential Hoare logic, for both the cases
of the Hoare part and the guarantee part.

Hoare part. The proof goes by induction on the structure of the reduction

h if b thenC1 elseC2 fi, s i
R?

=) h skip, s0 i

and by case analysis in the value of the guard b. For the cases where no interference occurs,
the proof follows immediately from the hypothesis. When interference occurs, we use the
stability of the rely condition R with respect to the value of guard b, which keeps its value
unchanged. Once this is proved, the rest of the proof follows also from the hypotheses.

Guarantee part. In order to prove

within(R,G, if b then C1 else C2 fi, s),

we require the following auxiliary lemmas:

within(R,G,C1, s)! JbKB(s)! 8C2, within(R,G, if b then C1 else C2 fi, s) (5.14)

and

within(R,G,C2, s)! JbKB(s)! 8C1, within(R,G, if b then C1 else C2 fi, s). (5.15)

Since within(R,G,C1, s) and within(R,G,C2, s) are already in the hypotheses, we just
perform a case analysis on the value of the guard b, and directly apply (5.14) and (5.15)
for each of the cases, which finishes the proof.

128 CHAPTER 5. MECHANISED RELY-GUARANTEE IN COQ

While Loop

The proof of the soundness of the rule for the while is obtained using adequate elimination
scheme because the induction on the length of the derivation is not enough to ensure that
the loop amounts to a fixpoint. The same principle needs to be used for both the Hoare part
and the guarantee part of the proof.

Hoare part. To prove the soundness for the Hoare part, we first prove the validity of the
following (generic) elimination scheme:

8x : A, 8P : A! A! Prop, (x, x) 2 P !
(8nx y z, (x, y) 2 R! (y, z) 2 Rn !
(8y1 k, k n! (y1, z) 2 Rk ! (y1, z) 2 P)! (x, z) 2 P)!
8x y, (x, y) 2 R! (x, y) 2 P.

This inductive argument states that for a predicate P to hold along a reduction defined by
the closure of the relation R, then it must hold for the case (x, x) and, if after n reductions
it satisfies (y, z), then for all reductions carried in less that n steps P must hold. The idea
is to instantiate this elimination scheme to the case of the while loop. In order to correctly
apply this predicate, we first need to transform the validity condition

8 s, P (s) !
8 s0, star _ (prog_red R) (while b do c end, s) (skip,s0) !

([?]b)[^]P)(s0).

into its equivalent form

8 s, P s !
(8 s’, star _ (prog_red R) (while b do c end, s) (skip,s’) !
8 p p’,

star _ (prog_red R) p p’ !
fst p = (while b do c end) !
fst p’ = skip !
P (snd p) ! ([?]b)[^]P) (snd p’)).

Once we apply the elimination principle to our goal, we are left with two subgoals: the
first goal considers the case where the number of reductions is zero, so we are asked to
prove that while b do c end = skip. This goal is trivially proved by the injectivity of
the constructors.

The second goal states that the current state of the program results from a positive number
of reductions. Hence, we perform case analysis on the last reduction, which originates two
new subgoals: one for the case when the reduction is the result of the program execution;

5.5. SOUNDNESS OF RG-HL 129

and another when the reduction is due to the interference of the environment. In the former
case, we know that the loop has reduced to a conditional instruction, which leaves us with
two cases:

• if the Boolean guard is false, we are left with a reduction h skip, s i Rn

=) h skip, s0 i,
which implies that (s, s0) 2 Rn. We use the latter fact and the stability of the guard
with respect to the rely condition to move the postcondition P^JbKB(s0) to P^JbKB(s),
which is available from the hypotheses;

• if the Boolean guard evaluates to a true, we know that the loop reduces to

hC;while b doC end, s i Rn

=) h skip, s0 i,

which we decompose into
hC, s i Rm

=) h skip, s00 i,

and hwhile b doC end, s00 i R(n�m)

=) h skip, s0 i, for some m 2 N such that m < n. The
rest of the proof follows from simple logical reasoning with the hypotheses.

For the case where the last reduction has been performed by the interference of the envi-
ronment, we first move the precondition to the state resulting from the action of the rely
condition and end the proof by the same kind of reasoning used above.

Guarantee part. The proof of the satisfaction of the guarantee relation goes in a similar
way as the Hoare part. Since, by the hypotheses, we know that all the program reductions
of C are constrained by the guarantee condition G, then a finite composition of C is also
constrained by G, which allows us to conclude that the loop satisfies the guarantee condition.

Unfortunately, we were not able to complete this proof within the COQ formalisation. Here
we give the partial proof that we have obtained and show the point where we are stuck. The
goal is to prove that

within(R,G,C, s) ! within(R,G,while b doC end, s),

regarding that we already know that {R,P}C {Q,G} holds. From this last hypothesis
and because we know that hwhile b doC end, s i R?

=) h skip, s0 i, we also know that the
postcondition (P ^ JbK)(s0) holds. Next, we perform case analysis on the value of the
Boolean guard b, that is:

• if JbKB(s) = false then we know that within(R,G,while b doC end, s) can be re-
placed by

within(R,G, if b then (while b doC end) else skip fi, s)

130 CHAPTER 5. MECHANISED RELY-GUARANTEE IN COQ

and from the latter statement we are able to conclude within(R,G, skip, s) holds and
that is true, as we have showed before.

• if JbKB(s) = true, then we know that within(R,G,while b doC end, s) can be replaced
by

within(R,G, if b then (while b doC end) else skip fi, s)

, which in turn is equivalent to within(R,G,C;while b doC end, s). By the properties
of the within predicate on sequential execution, we reduce the following goal to a
proof that within(R,G,C, s) (which is immediate from the hypotheses) and to a proof
that

8n 2 N, 8s00 2 ⌃, (hC, s i Rn

=) h skip, s00 i)! within(R,G,while b doC end, s00).

At this point we got stuck in the proof, since we were not able to find an appropriate
logical condition that allow us to prove it.

Consequence

Proving both the Hoare part and the guarantee part for the inference rule is pretty straight-
forward. The proof goes by induction on the length of hC, s i R?

=) h skip, s0 i, and by
the properties of the implication on the preconditions and postconditions, and also by the
properties of the implication on the rely and the guarantee conditions.

Atomic Execution

For proving the soundness of the inference rule for the atomic execution of programs, we
must show that the environment causes interference either right before, or right after the
execution of program given as argument for the atomic statement. Moreover, we have to
show that if hC, s i ?

=) h skip, s0 i then Q(s0) and (s, s0) 2 G? hold.

Hoare part. First we obtain the hypotheses gives the possible interference of the environ-
ment, and the atomic execution of C. Considering that we have

h atomic(C), s i R?

=) h skip, s0 i,

those hypothesis are the following:

(s, t) 2 R?, (5.16)

(t0, s0) 2 R?, (5.17)

5.5. SOUNDNESS OF RG-HL 131

hC, ti ID?

=) hskip, t0i, (5.18)

considering that t, t0 2 ⌃. Next, we prove that P (t) can be inferred from P (s) by the
stability condition on (5.16). Moreover, we use the soundness of sequential Hoare logic to
prove that from hypothesis {P}C {Q} and from P (t) we have hC, t i ?

=) h skip, t0 i. From
the previous reduction we conclude that Q(t0) holds, and by (5.17) we also conclude that
Q(s0) also holds, which finishes the proof.

Guarantee part. Considering the hypotheses (5.16), (5.17) and (5.18), we deduce (t, t0) 2
G? using the same reasoning that we employed to obtain Q(t0). By the transitivity of the
guarantee condition we know that (t, t0) 2 G, wich allows us to conclude that the atomic
execution of C respects its guarantee condition.

Parallel Execution

To prove of the soundness of the inference rule (HG-PAR) we are required to build the
proofs that show that the program C1 satisfies its commitments when executing under the
interference of C2, and the other way around.

Hoare part. The proof of the Hoare validity for a statement concerning the parallel compu-
tation of two programs C1 and C2 is carried in two steps. First we prove that starting with C1

leads to an intermediate configuration where C1 finishes and also that in that configuration,
the original program C2 has reduced to C 0

2. We then prove that C 0
2 terminates and, by the

stability condition, we stretch the postcondition of C1to the same state where C2 finished.
The second phase consists in an equivalent reasoning, but starting with the execution of C2

and using a similar approach.

The first part requires the reasoning that follows. We start the proof by obtaining a new set
of hypotheses that allows us to conclude Q1(s0). From the hypothesis

hpar C1 with C2 end, si
(R1^R2)?
=) hskip, s0i, (5.19)

and from the hypotheses {R1, P} C1 {Q1, G1}, {R2, P} C2 {Q2, G2}, and P (s) we obtain

within(R1, G1, C1, s), (5.20)

within(R2, G2, C2, s), (5.21)

(hC1, si
R?

=) hskip, s0i)! Q1(s
0), (5.22)

(hC2, si
R?

=) hskip, s0i)! Q2(s
0). (5.23)

132 CHAPTER 5. MECHANISED RELY-GUARANTEE IN COQ

From (5.19), (5.20) and (5.21) we can conclude that there exists state s00 such that the
program C1 finishes executing in s00, and such that the program C 0

2 stars its execution in
s00, where C 0

2 is the result of the execution of C2 under the interference of the environment,
which also contains the interference caused by C1. Hence, the following properties hold:

hC1, si
R?

1=) hskip, s00i, (5.24)

hC2, si
R?

2=) hC 0
2, s

00i, (5.25)

hpar skip with C 0
2 end, s

00i (R1^R2)?
=) hskip, s0i. (5.26)

Since both (5.21) and (5.25) hold, then by (5.8) we conclude within(R2, G2, C 0
2, s

00). More-
over, from within(R2, G2, C 0

2, s
00) and (5.26) we also conclude

within(R2, G2, par skip with C 0
2 end, s

00). (5.27)

To conclude this part of the proof, we need to show that Q1(s0) ^ Q2(s0). For that, we split
Q1(s0)^Q2(s0) and show that Q1(s0) holds by the stability conditions. To prove Q2(s0), we
reason as before, but considering that the command C2 ends its execution first that C1.

Guarantee part. The proof goes by applying the following property of within with respect
to parallel computation:

within(R _G2, G1, C1, s)! within(R _G1, G2, C2, s)!
within(R,G, par C1 with C2 end, s).

(5.28)

Using (5.28) we are left to prove within(R _G2, G1, C1, s) and within(R _G1, G2, C2, s).
Here we present only the proof of the former, since the proof of the later is obtained by
similar reasoning.

From the hypotheses we know that within(R _G2, G1, C1, s) is equivalent to

within((R1 ^R2) _G2, G1, C1, s).

From the hypotheses, we know that within(R1, G1, C1, s) and that (R1 ^R2) _G2 ! R1.
By the properties of the implication and the predicate within we conclude the proof.

5.6 Related Work

In this chapter we have described a formalisation, within the COQ proof assistant, of a proof
system for RG, following the concepts introduced by Coleman and Jones in [28]. Related

5.6. RELATED WORK 133

work includes the work of these authors, and also the work of Prensa Nieto [82, 91] in the
Isabelle proof assistant.

Our formalisation essentially confirms most of the work introduced by Coleman and Jones
[28], but extended with atomic execution of programs. Thus, our development shows that
the ideas forwarded by these authors seem to be correct, dispite an incorrect rule they use to
decompose sequential composition of programs, and also assuming that we were not able to
finish the guarantee part for the inference rule for loops not because it is unsound, but just
beacuse we did not yet found the correct way of doing it. Therefore, we consider that our
development effort can serve as a guide for future formalisations within COQ that address
other approaches to RG, or to some of its extensions.

In what concerns to the comparison of our work with the one of Prensa Nieto, the main
diferences are the following: Nieto formalises a notion of parameterised parallelisms, where
a parallel program is seen as a list of sequential programs. Therefore, it cannot handle nested
parallelism. Nevertheless, the author was able to prove more useful than us, mainly because
her notion of RG is more flexible than ours.

5.6.1 Discussion and Conclusion

We will now analyse the effectiveness of our development of HL-RG in the verification of
simple parallel programs. We start by the following example.

Example 39. This example is a classic one in the realm of the verification of concurrency.
The idea is to do a parallel assignment to a variable x initialised beforehand with some
value greater of equal to 0. The corresponding IMPp program code is the following:

C
def
= par x ::= x+ 1 with x ::= x+ 2 end.

The rely condition states that the value of the variable x after a reduction is greater or equal
than before the reduction occurs. The guarantee is defined in the exact same way, that is,

R
def
= G

def
= �s�s0.JxKN(s) JxKN(s0).

Finally, the precondition states that initially the value of x is greater or equal to 0, and the
postcondition states that the final value of x is greater or equal to 2, that is,.

P
def
= �x.JxKN(s) � 0,

Q
def
= �x.JxKN(s) � 2.

Nelma Moreira

Nelma Moreira

Nelma Moreira
não se entende

Nelma Moreira
used

134 CHAPTER 5. MECHANISED RELY-GUARANTEE IN COQ

The full specification corresponds to {R,P} C {Q,G} and the first thing we do to prove
this specification valid is to apply the inference rule HG-PAR. The application of HG-
PAR requires us to provide the COQ proof assistant with the missing value, namely, the rely
conditions R1 and R2 such that R1 ^ R2 ! R; the two guarantee conditions G1 and G2

such that G1_G2 ! G and the postconditions C1 and C2 such that their conjuntion implies
C. We instantiate these new variables with

R1
def
= R R2

def
= R

G1
def
= G G2

def
= G

C1
def
= x � 1 C2

def
= x � 2.

The goal associated with the stability conditions are proved in a straightforward way. Next,
we prove

{R1, P} x := x+ 1{Q1, G1}

and
{R2, P} x := x+ 2{Q2, G2}

correct by applying the inference rule (HG-ASSGN), and by simple arithmetic reasoning.

One of the main difficulties of using RG is the definition of the rely and guarantee condi-
tions. This dues to the fact that rely and guarantee conditions must describe the state of
computation as a whole, which is not always easy. In order to cope with such difficulties,
rules for adding "ghost" variables into the programs under consideration were introduced
[]. In the case of our reference work, such rules are not accounter for, and neither did we.
Unfortunatelly, the absence of such rule is a strong constraint to the set of parallel programs
that we can address with our development. Moreover, our proof system is more restricted
than the our reference work. This means that, in the future, we have to rethink the choices
we have made to the work presented here, and find ways to improve it in some way.

5.7 Conclusions

In this chapter we have described the mechanisation of an Hoare-like inference system
for proving the partial correctness of simple, shared-variable parallel programs. The work
presented follows very closely the work of Jones and Coleman [], but ended up in a proof
system more restricted that this one. This is manly the consequence of the set of hypothesis
that are required to show that the parallel execution rule is sound with respect to the small-
step semantics that we have decided to use.

Nelma Moreira

Nelma Moreira

Nelma Moreira
?

Nelma Moreira

Nelma Moreira

5.7. CONCLUSIONS 135

Still, the main goal of the work we have presented is achieved: we have decided to go
through this line in order to get a better knowledge of the difficulties that arise when formal-
izing a proof system for the certification of shared-variable parallel programs based on the
RG principle. In particular we have understood how the definition of the rely and guarantee
conditions can be a hard job, even for very simple programs.

These programs are written in the IMPp language, that extends IMP, introduce in chapter ??
with instructions for atomic and parallel execution of programs. We mechanise a small-step
operational semantics that captures a fine-grained notion of computation under interference
of the environment. We have also proved the soundness of the inference system HG, which
is an extension of the inference system proposed by Coleman and Jones in [28] with a
command for the atomic execution of programs.

Although RG has become a mature theory and is a well-known method for verification of
shared-variable parallel programs, it is usually difficult to define in it rely and guarantee
conditions that specify the behaviours of parallel programs over the whole execution state.
Nevertheless, we believe that our formalisation that can serve as a starting step to develop
more modern and suited models [101, 38, 37] that handle parallelism and concurrency in a
more adequate and flexible way. It is included in our list of future research topics to extend
our formalisation in that way.

Another important outcome of this work is our increase in the knowledge of RG that will
allow us to have a stronger base to address our next goal, which is to investigate CKA,
an algebraic framework for reasoning about concurrent programs. In particular, we are
interested in the way it handles RG reasoning, and how we can devise an extension of
the ideas of derivation that were studied in chapters 3 and 4 and, with them, try do define
decision procedures for RG reasoning within the context of CKA.

Nelma Moreira

Nelma Moreira

Nelma Moreira

Nelma Moreira

136 CHAPTER 5. MECHANISED RELY-GUARANTEE IN COQ

Chapter 6

Conclusions

Along this dissertation we have described three contributions that we believe that can be
useful in tasks of verification of imperative programs using the COQ proof assistant. With
these contributions, we broaden the set of mechanically verified theories that have direct
application to the verification of sequential programs – in the cases of regular expression
and KAT terms – and of shared variable parallel programs – in the case of the RG proof
system.

Our first contribution is a library of regular expressions that provides a correct and efficient
algorithm for deciding their (in-)equivalence. Since regular expressions can be regarded
also as a program logic for programs with non-deterministic choice and loops, we can
use the decision procedure to reason about the execution of program traces. This has
application, for instance, in run-time verification, where monitors analyse the order of
events and deliberates if such order is tolerable, or if it is erroneous. The formalisation
of regular expressions contains also a proof tactic that automates reasoning about equations
involving binary relations. Since binary relations are one of the core concepts for reasoning
about programs, our formalisation can be useful for assisting users in build proofs about
programs represented as relations, like it is usually done in a point-free approach. Finally,
the development can be extracted into functional code of one of the languages supported by
the extraction mechanism of COQ, and that code can be integrated in developments require
the treatment of regular expressions.

We also implemented a correct algorithm for deciding the equivalence of KAT terms. KAT
terms have the expressivity to specify propositional programs, i.e., programs with no as-
signments. The assignments, and other possible first order constructs can be encoded as
either Boolean tests or primitive program symbols. Programs following these encodings are

137

Nelma Moreira

Nelma Moreira
s

Nelma Moreira

Nelma Moreira
as

138 CHAPTER 6. CONCLUSIONS

expressive enough to capture several problems related to program verification, that can be
solved equationally through KAT. The usage of KAT as a way to encode Hoare specifica-
tions allows for the automatic generation of proof of correctness for some programs.

Our last contribution is a sound inference system for reasoning about shared-variable paral-
lel programs following the RG approach. The support language is simple, but it allows us
to capture and verify some of the essencial properties of parallel programs. It is also, for
the best of our knowledge, the first formalisation of and RG inference system developed in
COQ. Our main objective with this contribution is to define a simple system carrying the
foundational properties for reasoning about parallel programs, and that can be progressively
extended with other concepts that will allow us, somewhere in the future, to conduct more
realistic verification tasks using the COQ proof assistant.

6.1 Future Research Directions

In what concerns the development of regular expressions, we are interested in extending
the development to address regular expressions with intersection and complement, possibly
following along the de lines of []. We are also interested in making the development
more robust, by developing proof tactics that automate proof steps that are commun to
a considerable fragment of the development such as, for instance, tactics to normalise
expressions modulo some set of axioms, and also to automate tractable fragments of the
underlying model of regular languages. Finally, we would like to investigate ways to
improve the efficiency of the decision procedure. One way possible is to use Almeida []
representation of derivatives, which consider less symbols to derivate with as the number of
symbols in the regular expressions start decreasing due to previous derivations.

In the case of the development of KAT terms, an important research line to be followed
is to try to find and equivalent definition of partial derivative that reduces the number of
atoms to be considered. Such results will certainly imply considerable important increases
in the performance of the decision procedure. We are also interested in the mechanisation
of SKAT, which is an extension of KAT that explicitly considers assignments. Wich such
an idealised formalisation, we can use COQ’s extraction mechanism to obtained a trusted
reasoning mechanism that can be the bases of a certified kernel for a proof assistant similar
to KAT-ML that was developed by Aboul-Hosn and Kozen [2].

Finally, we point some research lines to be followed in order to improve our development
of RG. A natural path will be to build on the experience we have gained with the develop-

Nelma Moreira

Nelma Moreira

Nelma Moreira

Nelma Moreira

Nelma Moreira

Nelma Moreira

Nelma Moreira

6.1. FUTURE RESEARCH DIRECTIONS 139

ment, and extend it to handle memory properties along the lines of RGSEP [101] or deny
guarantee [37]. However, we are more interested in the algebraic approach followed by
Hoare et. al. with CKA. We wish to mechanise the developed theory, in particular the
encoding of RG, but also to search for methods that use derivatives and that may lead to
decision procedure that may help, at some point, in the automation of proof construction of
specifications of concurrent and parallel programs.

140 CHAPTER 6. CONCLUSIONS

References

[1] Timed regular expressions. J. ACM, 49(2):172–206, Mar. 2002.

[2] K. Aboul-Hosn and D. Kozen. KAT-ML: An interactive theorem prover for Kleene
algebra with tests. Journal of Applied Non-Classical Logics, 16(1–2):9–33, 2006.

[3] A. Almeida, M. Almeida, J. Alves, N. Moreira, and R. Reis. FAdo and GUItar:
tools for automata manipulation and visualization. In S. Maneth, editor, Proc. 14th
CIAA’09, volume 5642 of LNCS, pages 65–74. SV, 2009.

[4] M. Almeida. Equivalence of regular languages: an algorithmic approach and
complexity analysis. PhD thesis, FCUP, 2011. http://www.dcc.fc.up.pt/

~mfa/thesis.pdf.

[5] M. Almeida, N. Moreira, and R. Reis. Antimirov and Mosses’s rewrite system
revisited. Int. J. Found. Comput. Sci., 20(4):669–684, 2009.

[6] M. Almeida, N. Moreira, and R. Reis. Antimirov and Mosses’s rewrite system
revisited. International Journal Of Foundations Of Computer, 20(04):669 – 684,
2009.

[7] M. Almeida, N. Moreira, and R. Reis. Testing regular languages equivalence. JALC,
15(1/2):7–25, 2010.

[8] R. Almeida. Decision algorithms for Kleene algebra with tests and Hoare logic.
Master’s thesis, Faculdade de Ciências da Universidade do Porto, 2012.

[9] R. Almeida, S. Broda, and N. Moreira. Deciding KAT and Hoare logic with
derivatives. In GandALF, pages 127–140. Electronic Proceedings in Theoretical
Computer Science, September 2012.

[10] V. M. Antimirov. Partial derivatives of regular expressions and finite automaton
constructions. Theor. Comput. Sci., 155(2):291–319, 1996.

141

Nelma Moreira

Nelma Moreira

Nelma Moreira
falta autor

142 REFERENCES

[11] V. M. Antimirov and P. D. Mosses. Rewriting extended regular expressions. In
G. Rozenberg and A. Salomaa, editors, DLT, pages 195 – 209. World Scientific, 1994.

[12] A. Asperti. A compact proof of decidability for regular expression equivalence.
In L. Beringer and A. Felty, editors, Third International Conference, ITP 2012,
Princeton, NJ, USA, August 13-15, 2012., number 7406 in LNCS. Springer-Verlag.

[13] A. Asperti, W. Ricciotti, C. S. Coen, and E. Tassi. The matita interactive theorem
prover. In N. Bjørner and V. Sofronie-Stokkermans, editors, CADE, volume 6803 of
Lecture Notes in Computer Science, pages 64–69. Springer, 2011.

[14] G. Barthe and P. Courtieu. Efficient reasoning about executable specifications in Coq.
In V. Carreño, C. Muñoz, and S. Tahar, editors, TPHOLs, volume 2410 of LNCS,
pages 31–46. Springer, 2002.

[15] Y. Bertot and P. Castéran. Interactive Theorem Proving and Program Development.
Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical Computer
Science. Springer Verlag, 2004.

[16] F. Bobot, J.-C. Filliâtre, C. Marché, G. Melquiond, and A. Paskevich. The Why3
platform, version 0.72. LRI, CNRS & Univ. Paris-Sud & INRIA Saclay, version
0.72 edition, May 2012. https://gforge.inria.fr/docman/view.php/
2990/7919/manual-0.72.pdf.

[17] F. Bobot, J.-C. Filliâtre, C. Marché, and A. Paskevich. Why3: Shepherd your herd of
provers. In Boogie 2011: First International Workshop on Intermediate Verification
Languages, Wrocław, Poland, August 2011.

[18] T. Braibant and D. Pous. An efficient Coq tactic for deciding Kleene algebras. In
Proc. 1st ITP, volume 6172 of LNCS, pages 163–178. Springer, 2010.

[19] T. Braibant and D. Pous. Deciding kleene algebras in coq. Logical Methods in
Computer Science, 8(1), 2012.

[20] S. Briais. Finite automata theory in Coq. http://sbriais.free.fr/tools/
Automata_080708.tar.gz. Online, last accessed August 2011.

[21] S. Broda, A. Machiavelo, N. Moreira, and R. Reis. On the average state complexity of
partial derivative automata: An analytic combinatorics approach. IJFCS, 22(7):1593–
1606, 2011.

[22] N. Bruijn. Automath: A Language for Mathematics. Séminaire de Mathématiques
Supérieures. Les Presses de L’Université de Montréal, 1973.

REFERENCES 143

[23] J. A. Brzozowski. Derivatives of regular expressions. J. ACM, 11(4):481–494, 1964.

[24] P. Caron, J.-M. Champarnaud, and L. Mignot. Partial derivatives of an extended
regular expression. In A. H. Dediu, S. Inenaga, and C. Martín-Vide, editors, LATA,
volume 6638 of Lecture Notes in Computer Science, pages 179–191. Springer, 2011.

[25] J.-M. Champarnaud and D. Ziadi. From Mirkin’s prebases to Antimirov’s word
partial derivatives. Fundam. Inform., 45(3):195–205, 2001.

[26] A. Chlipala. Certified Programming with Dependent Types. MIT Press, 2011. http:
//adam.chlipala.net/cpdt/.

[27] J. Chrzaszcz. Implementing modules in the coq system. In D. A. Basin and B. Wolff,
editors, TPHOLs, volume 2758 of Lecture Notes in Computer Science, pages 270–
286. Springer, 2003.

[28] J. W. Coleman and C. B. Jones. A structural proof of the soundness of rely/guarantee
rules. J. Log. Comput., 17(4):807–841, 2007.

[29] T. Coquand and G. P. Huet. The calculus of constructions. Inf. Comput., 76(2/3):95–
120, 1988.

[30] T. Coquand and V. Siles. A decision procedure for regular expression equivalence
in type theory. In J.-P. Jouannaud and Z. Shao, editors, CPP 2011, Kenting, Taiwan,
December 7-9, 2011., volume 7086 of LNCS, pages 119–134. Springer-Verlag, 2011.

[31] F. S. de Boer, M. M. Bonsangue, S. Graf, and W. P. de Roever, editors. Formal
Methods for Components and Objects, 4th International Symposium, FMCO 2005,
Amsterdam, The Netherlands, November 1-4, 2005, Revised Lectures, volume 4111
of Lecture Notes in Computer Science. Springer, 2006.

[32] R. Deline and Rustan. BoogiePL: A typed procedural language for checking object-
oriented programs. Technical Report MSR-TR-2005-70, Microsoft Research (MSR),
Mar. 2005.

[33] J. Desharnais, B. Möller, and G. Struth. Kleene algebra with domain. CoRR,
cs.LO/0310054, 2003.

[34] J. Desharnais, B. Möller, and G. Struth. Modal kleene algebra and applications – a
survey, 2004.

[35] T. C. development team. Coq reference manual. http://coq.inria.fr/

distrib/V8.3/refman/.

Nelma Moreira

Nelma Moreira

Nelma Moreira
tech report?

144 REFERENCES

[36] E. W. Dijkstra. Guarded commands, nondeterminacy and formal derivation of
programs. Commun. ACM, 18(8):453–457, Aug. 1975.

[37] M. Dodds, X. Feng, M. Parkinson, and V. Vafeiadis. Deny-guarantee reasoning.
In Proceedings of the 18th European Symposium on Programming Languages and
Systems: Held as Part of the Joint European Conferences on Theory and Practice
of Software, ETAPS 2009, ESOP ’09, pages 363–377, Berlin, Heidelberg, 2009.
Springer-Verlag.

[38] X. Feng. Local rely-guarantee reasoning. SIGPLAN Not., 44(1):315–327, Jan. 2009.

[39] J.-C. Filliâtre. Finite Automata Theory in Coq: A constructive proof of Kleene’s
theorem. Research Report 97–04, LIP - ENS Lyon, February 1997.

[40] J.-C. Filliâtre and P. Letouzey. Functors for proofs and programs. In D. A. Schmidt,
editor, ESOP, volume 2986 of Lecture Notes in Computer Science, pages 370–384.
Springer, 2004.

[41] R. W. Floyd. Assigning meaning to programs. In Proceedings of the Symposium on
Applied Maths, volume 19, pages 19–32. AMS, 1967.

[42] M. J. Frade and J. S. Pinto. Verification conditions for source-level imperative
programs. Computer Science Review, 5(3):252 – 277, 2011.

[43] G. Gonthier. Computer mathematics. chapter The Four Colour Theorem: Engineering
of a Formal Proof, pages 333–333. Springer-Verlag, Berlin, Heidelberg, 2008.

[44] G. Gonthier, A. Asperti, J. Avigad, Y. Bertot, C. Cohen, F. Garillot,
S. L. Roux, A. Mahboubi, R. O’Connor, S. O. Biha, I. Pasca, L. Rideau,
A. Solovyev, E. Tassi, and L. Théry. The formalization of the Odd Order the-
orem., September 2012. http://www.msr-inria.inria.fr/Projects/

math-components/feit-thompson.

[45] B. Grégoire and X. Leroy. A compiled implementation of strong reduction. SIGPLAN
Not., 37(9):235–246, Sept. 2002.

[46] C. Hardin. Modularizing the elimination of r=0 in kleene algebra. Logical Methods
in Computer Science, 1(3), 2005.

[47] C. Hardin and D. Kozen. On the elimination of hypotheses in kleene algebra with
tests. Technical report, 2002.

Nelma Moreira

REFERENCES 145

[48] M. Hennessy. Semantics of programming languages - an elementary introduction
using structural operational semantics. Wiley, 1990.

[49] C. A. Hoare, B. Möller, G. Struth, and I. Wehrman. Foundations of concurrent kleene
algebra. In Proceedings of the 11th International Conference on Relational Methods
in Computer Science and 6th International Conference on Applications of Kleene
Algebra: Relations and Kleene Algebra in Computer Science, RelMiCS ’09/AKA
’09, pages 166–186, Berlin, Heidelberg, 2009. Springer-Verlag.

[50] C. A. R. Hoare. An axiomatic basis for computer programming. Commun. ACM,
12(10):576–580, 1969.

[51] C. A. R. Hoare. An axiomatic basis for computer programming. Commun. ACM,
12(10):576–580, Oct. 1969.

[52] T. Hoare, B. Möller, G. Struth, and I. Wehrman. Concurrent kleene algebra and its
foundations. J. Log. Algebr. Program., 80(6):266–296, 2011.

[53] J. Hopcroft and R. M. Karp. A linear algorithm for testing equivalence of finite
automata. Technical Report TR 71 -114, University of California, Berkeley,
California, 1971.

[54] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages, and
Computation. Adison-Wesley Publishing Company, Reading, Massachusets, USA,
1979.

[55] W. Howard. The formulae-as-types notion of construction, pages 479–490.

[56] L. Ilie and S. Yu. Follow automata. Inf. Comput., 186(1):140–162, 2003.

[57] C. B. Jones. Development Methods for Computer Programs including a No- tion of
Interference. PhD thesis, Oxford University, June 1981.

[58] C. B. Jones. Development Methods for Computer Programs including a Notion of
Interference. PhD thesis, Oxford University, June 1981.

[59] D. Kaplan and S. U. C. S. D. A. I. Laboratory. Regular Expressions and the
Equivalence of Programs. Memo (Stanford Artificial Intelligence Project). The
author, 1969.

[60] S. Kleene. Representation of Events in Nerve Nets and Finite Automata, pages 3–42.
Princeton University Press, shannon, C. and McCarthy, J. edition.

Nelma Moreira

Nelma Moreira

Nelma Moreira

Nelma Moreira

146 REFERENCES

[61] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin, D. Elkaduwe,
K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell, H. Tuch, and S. Winwood. sel4:
formal verification of an os kernel. In Proceedings of the ACM SIGOPS 22nd
symposium on Operating systems principles, SOSP ’09, pages 207–220, New York,
NY, USA, 2009. ACM.

[62] D. Kozen. A completeness theorem for Kleene algebras and the algebra of regular
events. Infor. and Comput., 110(2):366–390, May 1994.

[63] D. Kozen. Automata and Computability. Springer-Verlag, New York, 1997.

[64] D. Kozen. Kleene algebra with tests. ACM Trans. Program. Lang. Syst., 19(3):427–
443, 1997.

[65] D. Kozen. On Hoare logic and Kleene algebra with tests. Trans. Computational
Logic, 1(1):60–76, July 2000.

[66] D. Kozen. Automata on guarded strings and applications. Technical report, Cornell
University, Ithaca, NY, USA, 2001.

[67] D. Kozen. On the coalgebraic theory of Kleene algebra with tests. Computing and
information science technical reports, Cornell University, March 2008.

[68] D. Kozen and F. Smith. Kleene algebra with tests: Completeness and decidability. In
CSL, pages 244–259, 1996.

[69] D. Kozen and F. Smith. Kleene algebra with tests: Completeness and decidability. In
Proc. 10th Int. Workshop Computer Science Logic (CSL’96), volume 1258 of Lecture
Notes in Computer Science, pages 244–259. Springer-Verlag, 1996.

[70] D. Kozen and J. Tiuryn. On the completeness of propositional Hoare logic. In
RelMiCS, pages 195–202, 2000.

[71] A. Krauss and T. Nipkow. Proof pearl: Regular expression equivalence and relation
algebra. J. Autom. Reasoning, 49(1):95–106, 2012.

[72] X. Leroy. A formally verified compiler back-end. Journal of Automated Reasoning,
43(4):363–446, 2009.

[73] X. Leroy. Mechanized semantics. In Logics and languages for reliability and
security, volume 25 of NATO Science for Peace and Security Series D: Information
and Communication Security, pages 195–224. IOS Press, 2010.

Nelma Moreira

REFERENCES 147

[74] S. Lescuyer. Containers: a typeclass-based library of finite sets/maps. http://

coq.inria.fr/pylons/contribs/view/Containers/v8.3.

[75] S. Lescuyer. First-class containers in Coq. Studia Informatica Universalis, 9(1):87–
127, 2011.

[76] S. Lescuyer. Formalisation et développement d’une tactique réflexive pour la
démonstration automatique en Coq. Thèse de doctorat, Université Paris-Sud, Jan.
2011.

[77] P. Letouzey. Programmation fonctionnelle certifiée – L’extraction de programmes
dans l’assistant Coq. PhD thesis, Université Paris-Sud, July 2004.

[78] P. Martin-Löf and G. Sambin. Intuitionistic type theory. Studies in proof theory.
Bibliopolis, 1984.

[79] B. Möller and G. Struth. Modal kleene algebra and partial correctness. Technical
report, INSTITUT FÜR INFORMATIK, UNIVERSITÄT AUGSBURG, 2003.

[80] B. Mirkin. An algorithm for constructing a base in a language of regular expressions.
Engineering Cybernetics, 5:110–116, 1966.

[81] H. R. Nielson and F. Nielson. Semantics with applications: a formal introduction.
John Wiley & Sons, Inc., New York, NY, USA, 1992.

[82] L. P. Nieto. Verification of Parallel Programs with the Owicki-Gries and
Rely-Guarantee Methods in Isabelle/HOL. PhD thesis, Technische Universität
München, 2002. Available at http://tumb1.biblio.tu-muenchen.de/
publ/diss/allgemein.html.

[83] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL — A Proof Assistant for
Higher-Order Logic, volume 2283 of LNCS. Springer, 2002.

[84] S. Owens, J. Reppy, and A. Turon. Regular-expression derivatives re-examined. J.
Funct. Program., 19(2):173–190, Mar. 2009.

[85] S. S. Owicki and D. Gries. An axiomatic proof technique for parallel programs i.
Acta Inf., 6:319–340, 1976.

[86] C. Paulin-Mohring. Extracting F!’s programs from proofs in the Calculus of
Constructions. In Sixteenth Annual ACM Symposium on Principles of Prog ramming
Languages, Austin, Jan. 1989. ACM.

Nelma Moreira

Nelma Moreira

148 REFERENCES

[87] C. Paulin-Mohring. Inductive definitions in the system Coq: Rules and properties.
Proceedings of the International Conference on Typed Lambda Calculi and Applica-
tions, 664:328–345, 1993.

[88] C. Paulin-Mohring and B. Werner. Synthesis of ML programs in the system Coq.
Journal of Symbolic Computation, 15:607–640, 1993.

[89] B. C. Pierce, C. Casinghino, M. Greenberg, C. Hriţcu, V. Sjoberg, and B. Yorgey.
Software Foundations. Electronic textbook, 2012. http://www.cis.upenn.

edu/~bcpierce/sf.

[90] G. D. Plotkin. A structural approach to operational semantics. Technical Report
DAIMI FN-19, University of Aarhus, 1981.

[91] L. Prensa Nieto. The Rely-Guarantee method in Isabelle/HOL. In P. Degano, editor,
European Symposium on Programming (ESOP’03), volume 2618 of LNCS, pages
348–362, 2003.

[92] R. Pucella. On equivalences for a class of timed regular expressions. Electron. Notes
Theor. Comput. Sci., 106:315–333, Dec. 2004.

[93] J. C. Reynolds. Separation logic: A logic for shared mutable data structures. In
Proceedings of the 17th Annual IEEE Symposium on Logic in Computer Science,
LICS ’02, pages 55–74, Washington, DC, USA, 2002. IEEE Computer Society.

[94] U. Sammapun, A. Easwaran, I. Lee, and O. Sokolsky. Simulation of simultaneous
events in regular expressions for run-time verification. Electron. Notes Theor.
Comput. Sci., 113:123–143, Jan. 2005.

[95] K. Sen and G. Rosu. Generating optimal monitors for extended regular expressions.
Electr. Notes Theor. Comput. Sci., 89(2):226–245, 2003.

[96] M. Sozeau. Program-ing finger trees in coq. In Proceedings of the 12th ACM
SIGPLAN international conference on Functional programming, ICFP ’07, pages
13–24, New York, NY, USA, 2007. ACM.

[97] M. Sozeau. Subset coercions in coq. In T. Altenkirch and C. McBride, editors, Types
for Proofs and Programs, volume 4502 of Lecture Notes in Computer Science, pages
237–252. Springer Berlin Heidelberg, 2007.

[98] M. Sozeau. A New Look at Generalized Rewriting in Type Theory. Journal of
Formalized Reasoning, 2(1):41–62, Dec. 2009.

Nelma Moreira

Nelma Moreira

Nelma Moreira

REFERENCES 149

[99] M. Sozeau and O. Nicolas. First-Class Type Classes. Lecture notes in computer
science, Aug. 2008.

[100] The Coq Development Team. The Coq proof assistant. http://coq.inria.fr.

[101] V. Vafeiadis and M. Parkinson. A marriage of rely/guarantee and separation logic. In
IN 18TH CONCUR, pages 256–271. Springer, 2007.

[102] G. Winskel. The formal semantics of programming languages: an introduction. MIT
Press, Cambridge, MA, USA, 1993.

[103] J. Worthington. Automatic proof generation in Kleene algebra. In
RelMiCS’08/AKA’08, volume 4988 of LNCS, pages 382–396, Berlin, Heidelberg,
2008. Springer-Verlag.

[104] Q. Xu, W. de Roever, J. He, and J. Hu. Rely-Guarantee Method for Verifying Shared
Variable Concurrent Programs. Kiel Bericht. Christian-Albrechts-Universität, Insti-
tut für Informatik und Praktische Mathematik, 1995.

[105] Q. Xu, W. paul De Roever, and T. P. S. U. C. Archives. The rely-guarantee method
for verifying shared variable concurrent programs. 1997.

