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Abstract

Descriptional complexity studies the complexity measures of languages and their oper-

ations. These studies are motivated by the need to have good estimates of the amount

of resources required to manipulate a given language. In general, having succinct

objects will improve our software, which may consequently become smaller and more

efficient.

The descriptional complexity of regular languages has recently been extensively in-

vestigated. Usually, the authors consider worst-case analysis, but this is not enough

to a complete description of the objects and algorithms. Normally, the worst-case

complexity does not reflect the real life algorithm performance, and this stimulates

the study of the average-case complexity of these algorithms.

We study several properties of regular languages, improving or developing new sim-

ulation methods, and identifying which methods have better practical performance.

We start to analyse the descriptional complexity of several operations over regular

languages, considering incomplete deterministic finite automata. Then, we present

some simulation methods of regular expressions by finite automata, and study their

complexity. In both cases, we do not only focus on the worst-case analysis, but we

also study some aspects of its average-case complexity.
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Resumo

A complexidade descritiva estuda as medidas de complexidade das linguagens e das

suas operações. Estes estudos devem-se à necessidade de ter boas estimativas da

quantidade de recursos necessária para manipular uma dada linguagem. Em geral, ter

objectos sucintos melhora o nosso software, que se torna menor e mais eficiente.

A complexidade descritiva das linguagens regulares tem sido muito estudada nos últi-

mos tempos. Normalmente, os autores consideram a análise no pior caso, mas isto não

é suficiente para uma completa descrição dos objectos e dos algoritmos. Geralmente,

a complexidade no pior caso não reflecte o desempenho real dos algoritmos, o que

estimula o estudo da complexidade no caso médio.

Neste trabalho, estudámos várias propriedades das linguagens regulares, melhorando

ou desenvolvendo novos métodos de simulação, e identificando quais os métodos com

melhor desempenho. Começámos por analisar a complexidade descritiva de várias

operações nas linguagens regulares, considerando autómatos finitos determinísticos

incompletos. Depois, apresentámos alguns métodos de simulação de expressões regu-

lares em autómatos finitos, e estudámos a sua complexidade. Em ambos os casos, não

nos focamos apenas na análise no pior caso, estudamos também alguns aspectos da

complexidade no caso médio.
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Résumé

La complexité des descriptions des langages formels étudie les mesures de la complexité

des langages et de leurs opérations. Ces études sont motivées par la nécessité de avoir

bonnes estimations de la quantité de ressources nécessaires pour manipuler un langage

donnée. En général, ayant objets succincts permettront d’améliorer notre logiciel, qui

peut par conséquent devenir plus petit et plus efficace.

La complexité des langages rationnels a récemment été largement étudiée. Générale-

ment, les auteurs envisage la analyse dans le pire des cas, mais cela ne suffit pas à

une description complète des objets et des algorithmes. Normalement, la complexité

dans le pire des cas, ne reflète pas le comportement pratique des algorithmes, et ça

fait l’importance de l’étude de la complexité en moyenne.

Nous étudions plusieurs propriétés de langages rationnels, l’amélioration ou le développe-

ment de nouvelles méthodes, et l’identification des méthodes qui ont un meilleur

comportement pratique. Nous commençons pour analyser la complexité de plusieurs

opérations sur les langages rationnels, considérant automates finis déterministes non

complets. En suite, nous présentons certaines méthodes de simulation de expressions

rationnelles par automates finis, et nos étudions leur complexité. Dans les deux cas,

nous ne nous concentrons pas uniquement sur l’analyse dans le pire des cas, mais nous

étudions aussi certains aspects de sa complexité en moyenne.
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Chapter 1

Introduction

Regular languages and finite automata are one of the oldest topics in formal language

theory: its formal study has been done for more than 60 years [Kle56]. Many have

believed that everything of interest about regular languages is already known, however

a lot of new and interesting results have been coming out recently. This is due to

the application of regular languages and finite automata in areas such as software

engineering, programming languages, parallel programming, network security, formal

verification, natural language and speech processing.

In recent years, a number of software systems that manipulate automata, regular

expressions, grammars, and related structures have been developed. Examples of such

systems are AGL [Kam], AMoRE [Emi], FAdo [MR], Grail+ [oPEI], JFLAP [RFL],

MONA [DoCS], Unitex [lV], Vaucanson [SL] and GAP [Gro].

The increasing number of practical applications and implementations of regular lan-

guages motivates the study of two kinds of complexity issues. On the one hand it is

important to study the time and space needed for the execution of the processes. On

the other hand, the succinctness of the model representations (descriptional complex-

ity) is crucial, because having smaller objects permit us to improve the efficiency and

the reliability of the software.
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2 CHAPTER 1. INTRODUCTION

The studies on descriptional complexity can be divided into two different approaches.

The representational complexity, which studies the complexity of simulations between

models by comparing the sizes of different representations of the same formal lan-

guages; and the operational complexity, which studies the complexity of operations

on languages. Authors typically present the worst-case complexity analysis, but that

does not provide enough information on the practical behaviour. Despite its evident

practical importance, the average-case complexity is not widely studied.

In this work we use the two above mentioned approaches for the study of descriptional

complexity. First, we study the descriptional complexity of several operations on

incomplete deterministic finite automata. Then, we present some simulation methods

of regular expressions by finite automata and study their complexity. In both cases,

we do not limit ourselves to the worst case analysis, studying some aspects of the

average-case complexity.

All the source code developed was integrated on the FAdo project, and it is freely

available from http://fado.dcc.fc.up.pt/.

1.1 Structure of this Dissertation

Chapter 2 presents some basic notions and definitions of language theory. We also in-

troduce deterministic (DFA) and nondeterministic finite automata (NFA). The notion

of regular expressions (REs) is exposed as well as their relation with finite automata.

In particular, we consider a new method to convert REs to NFAs: the Previous

Automaton.

In Chapter 3 we introduce the descriptional complexity of formal languages. First of

all, we review the state and transition complexities of some individual regularity pre-

serving language operations on regular languages, considering the worst-case analysis.

Then, we refer a few results known on the average-case state complexity. We also

review some analytic combinatorics methods which are useful to study the asymptotic
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average size of models.

In Chapter 4 we study the state and transition complexity of some operations on

regular languages based on non necessarily complete DFAs. This work was started by

Gao et al. [GSY11], considering the worst-case analysis. We extend the analysis to

the concatenation, the Kleene star and the reversal operations [MMR13b]. For these

operations tight upper bounds were found. We also found a tight upper bound for the

transition complexity of the union, which refutes the conjecture presented by Gao et

al.. Then, we extend this line of research by considering the class of finite languages,

finding tight upper bounds for all basic operations that preserve regularity [MMR13a].

We correct the upper bound for the state complexity of concatenation presented by

Câmpeanu et al. [CCSY01], and show that if the right operand automaton is larger

than the left one, the upper bound is only reached using an alphabet of variable

size, contrary to what was stated by the same authors. We also performed some

experimental tests in order to understand how significant are the wort-case results.

Chapter 5 presents a study of the partial derivative automaton, APD, and several of its

properties. For regular expressions without Kleene star we characterise this automaton

and we prove that it is isomorphic to the bisimilarity of the position automaton, under

certain conditions [MMR14]. It is also shown that, in general, a partial derivative

automaton A cannot be converted to a regular expression that is linear in the size

of A. Still in this chapter, we present the right derivatives, with which we construct

the right derivative automaton, and show its relation with Brzozowski’s automaton.

Using the notion of right-partial derivatives, we define the right-partial derivative

automaton
←−
APD, and we characterise its relation with APD and position automaton,

APos. We also present a new construction method of the APre automaton, introduced

by Yamamoto [Yam14], and show that it also is a quotient of the APos automaton.

Considering the framework of analytic combinatorics we study the average size of
←−
APD

and APre automata [MMR15b].

We finally conclude with some final remarks and possible future work on Chapter 6.
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Chapter 2

Preliminaries

In this chapter we present some basic notions and definitions of language theory that

we will use throughout this thesis. For more details, we refer the reader to the standard

literature [HU79, Yu97, Sha08, Sak09]. We also define a new automaton, the Previous

automaton, that does not appear in the literature.

2.1 Formal Languages

In the context of formal languages, an alphabet is a finite non-empty set of symbols,

or letters, e.g. {a, b, c} or {1, 2}. In this work we denote any alphabet by Σ. A

finite sequence of symbols from an alphabet Σ is called a word . For example, with

Σ = {a, b, c}, a or aba are words over Σ. The length of a word w, denoted by |w|,

is the number of symbols or letters in w. For instance |aba| = 3. To represent the

empty word, i.e., a word without any symbol or letter, we use the symbol ε. Naturally

|ε| = 0.

The set of all words over an alphabet Σ is denoted by Σ?. Note that this is an infinite

set with words of finite length.

The concatenation of two words w = w1 · · ·wk and w′ = w′1 · · ·w′k′ , both with alphabet

5
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Σ, denoted by w · w′ or ww′, is the word w1 · · ·wkw′1 · · ·w′k′ . The empty string is

the identity for the concatenation operation: wε = εw = w. The concatenation is

associative: (w1w2)w3 = w1(w2w3). Thus, the set Σ? with word concatenation is a

monoid.

We denote wn as the word obtained by concatenating n copies of w:

w0 = ε,

wn+1 = wnw.

For instance, (ab)2 = abab and (ab)0 = ε.

Given a word w = w1w2 we say that w1 is a prefix and w2 is a suffix of w. For instance,

considering the word w = abbbac, ab is a prefix and c is a suffix of w. Note that ε is a

prefix and suffix of every word, and every word is a prefix or a suffix of itself. A prefix

w1 of w is a proper prefix if w1 6= ε and w1 6= w. If w2 6= ε and w2 6= w then w2 is a

proper suffix of w.

The reversal of a word w = σ1σ2 · · ·σn is the word written backwards, i.e. wR =

σn · · ·σ2σ1. It is inductively defined by:

εR = ε,

(σw)R = wRσ,

for σ ∈ Σ, and w ∈ Σ?.

A language L over an alphabet Σ is a set of words over Σ, i.e. a set L ⊆ Σ?. Its

cardinality is denoted by |L|. The empty language, ∅, is the language without words.

The set of all words over Σ, Σ?, is called the universal language.

Beyond the usual operations on sets, as the union, intersection and complement, two

operations that are specific to languages are considered: the concatenation and Kleene

closure operations. Given two languages L1 ⊆ Σ? and L2 ⊆ Σ?, its concatenation
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L1 · L2 or L1L2 is defined by:

L1L2 = {w1w2 | w1 ∈ L1, w2 ∈ L2}.

Concatenation is associative as an operation on languages, i.e., for all languages L1,

L2 and L3 we have that L1(L2L3) = (L1L2)L3. As {ε}L1 = L1{ε} = L1 the set of all

languages over some alphabet Σ, 2Σ? , is a monoid with respect to concatenation.

We can define the power Ln of a language L ⊆ Σ? inductively by:

L0 = ε,

Ln+1 = LLn,

for a non-negative integer n.

The star (or Kleene closure) of a language L, denoted by L?, is the set of all finite

powers of L:

L? = L0 ∪ L1 ∪ L2 ∪ · · ·

=
∞⋃
i=0

Li.

Similarly we define L+ =
∞⋃
i=1

Li. For any language L the following results hold:

L?L? = L?,

(L?)? = L?,

L? = {ε} ∪ LL? = {ε} ∪ L?L,

∅? = ε.

The reversal of a language L, denoted by LR, is the set of words whose reversal is on

L, LR = {wR | w ∈ L}.
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Given a language L ⊆ Σ? and a word w ∈ Σ?, the left-quotient of L w.r.t. w is the

language w−1L = {x | wx ∈ L}.

We will consider the class of regular languages which can be built from ∅, {ε} and {σ}

for every σ ∈ Σ, using union, concatenation and star operations.

2.2 Finite Automata

Finite automata are the main model to represent regular languages. It is one of the

simplest and most fundamental computing models with applications, for example in

pattern matching, in lexical analysis, in discrete event systems and in XML processing.

Automata can be recognisers, i.e., they are used to recognise words of a language:

the word is "processed" and, after finishing the recognising process, the automaton

"decides" if the word belongs to the language or not.

In this section we will define two types of finite automata: deterministic and non-

deterministic, both capable of recognising the same class of languages. We will also

describe a method to convert a nondeterministic into a deterministic automaton.

2.2.1 Deterministic Finite Automata

A deterministic finite automaton (DFA) is a five-tuple A = 〈Q,Σ, δ, q0, F 〉 where

• Q is the finite set of states;

• Σ is the alphabet;

• δ is the transition function, δ : Q× Σ→ Q;

• q0 ∈ Q is the initial state;

• F ⊆ Q is the set of final states.

The size of a DFA A = 〈Q,Σ, δ, q0, F 〉, denoted by |A|, is its number of states, |A| =

|Q|.
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Two DFAs A1 = 〈Q1,Σ, δ1, q1, F1〉 and A2 = 〈Q2,Σ, δ2, q2, F2〉 are isomorphic, repre-

sented by A1 ' A2, if there exists a bijection f : Q1 → Q2 such that,

f(q1) = q2,

f(δ1(q, a)) = δ2(f(q), a), ∀q ∈ Q1, a ∈ Σ,

q ∈ F1 ⇔ f(q) ∈ F2, ∀q ∈ Q1.

A DFA can be represented by a transition diagram, which is a digraph with labelled

arcs and nodes where:

• each node represents a state;

• a transition δ(p, a) = q is represented by an arc from the node p to the node q
labelled by a;

• the initial state is signalled by an unlabelled incoming arrow with no starting
node;

• final states are represented by a double circle or having an outgoing arc with no
destination node.

Let us consider the DFA E = 〈{q0, q1, q2}, {a, b}, δ, q0, {q0, q2}〉, where the transition

function is defined as follows:

δ(q0, a) = q1,

δ(q1, a) = q1,

δ(q1, b) = q2,

δ(q2, b) = q0.

The transition diagram of DFA E is represented in Figure 2.1.

A DFA is complete if the transition function δ is total, otherwise it is called an

incomplete DFA. Any incomplete DFA can be completed by adding a state, called

sink state or dead state, for which all missing transitions go. Figure 2.2 represents the

complete version of the DFA E previously defined, where q3 is the sink state.
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q0 q1

q2

a

b

a

b

Figure 2.1: Transition diagram of an incomplete DFA.

q0 q1

q2

q3
a

b

b

a

b a

a, b

Figure 2.2: Transition diagram of a complete DFA.

For q ∈ Q and σ ∈ Σ, if δ(q, σ) is defined we write δ(q, σ) ↓, and δ(q, σ) ↑, otherwise,

and, when defining a DFA, an assignment δ(q, σ) = ↑ means that the transition is

undefined.

A transition labeled by σ ∈ Σ is called a σ-transition and the number of σ-transitions

of a DFA A is denoted by tσ(A). If tσ(A) = |Q| we say that A is σ-complete, and

σ-incomplete, otherwise.

In order to process, not only symbols, but also words we need to extend the transition

function δ to Q× Σ? → Q, such that

δ(q, ε) = q,

δ(q, σw) = δ(δ(q, σ), w),

where σ ∈ Σ and w ∈ Σ?. We say that a word w is recognised from q if δ(q, w) ∈ F .

The words w such that δ(q0, w) ∈ F are the ones accepted or recognised by the DFA.

Given a state q ∈ Q, the right language of q is L(A, q) = {w ∈ Σ? | δ(q, w) ∈ F},

and the left language is
←−
L (A, q) = {w ∈ Σ? | δ(q0, w) = q}. The language accepted

by a DFA A is L(A) = L(A, q0). Two DFAs are equivalent if they accept the same
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language.

For any states q, q′ ∈ Q, if there exists a word w ∈ Σ? such that δ(q, w) = q′, then

q′ is a successor of q, and q is a predecessor of q′. An accessible state q is a state

that is reachable from the initial state q0 by some sequence of transitions, i.e., ∃w ∈

Σ? δ(q0, w) = q. A state is useful if it reaches a final state. Note that the dead state

is an accessible state but it is not useful. If all states of a DFA are accessible then it is

said to be initially connected (ICDFA). In this work, unless explicitly stated otherwise,

all DFAs are initially connected. If all states of an ICDFA are useful it is said to be

trim.

A DFA is minimal if there is no equivalent DFA with fewer states. The minimal DFA

of a language has also the minimal number of transitions.

The Myhill-Nerode theorem has, among other consequences, the implication that

minimal DFAs are unique up to isomorphism. Recall that an equivalence relation

R on strings is right invariant if and only if for all strings u, v, and w, we have that

uRv implies uwRvw.

Theorem 2.1 (Myhill-Nerode Theorem). Let L ⊆ Σ?. The following statements are

equivalent:

(a) L is regular;

(b) L is the union of some of the equivalence classes of a right invariant equivalence

relation of finite index;

(c) Let ≡L be an equivalence relation on Σ? such that w1 ≡L w2 ⇔ ∀w3 ∈ Σ?(w1w3 ∈

L⇔ w2w3 ∈ L). The relation ≡L is of finite index.

Proof. The proof presented follows the one in [HU79], which shows that (a)⇒ (b)⇒

(c)⇒ (a).

(a)⇒(b). Since L is a regular language, there exits a DFA A = 〈Q,Σ, δ, q0, F 〉 that

recognises L. Let ≡A be the equivalence relation on Σ? such that w1 ≡A w2 if and
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only if δ(q0, w1) = δ(q0, w2). It is obvious that ≡A is right invariant, since for any w3,

if δ(q0, w1) = δ(q0, w2) then δ(q0, w1w3) = δ(q0, w2w3). The index of ≡A is finite, since

the index is at most |Q|. Furthermore, L is the union of those equivalence classes that

include a word w such that δ(q0, w) ∈ F , i.e., the equivalence classes corresponding to

final states.

(b)⇒(c). We show that any equivalence relation ≡ satisfying (b) is a refinement of

≡L, i.e., every equivalence class of ≡ is entirely contained in some equivalence class of

≡L. Thus, the index of ≡L cannot be greater than the index of ≡ and so it is finite.

Since ≡ is right invariant, we have that for every pair w1, w2 ∈ Σ? such that w1 ≡ w2,

it must hold that ∀w3 w1w3 ≡ w2w3. Moreover, we have that L is the union of some

equivalence classes of ≡, so if w1 ≡ w2, then w1 ∈ L ⇔ w2 ∈ L. Combining these

implications gives us

w1 ≡ w2 ⇒ ∀w3 w1w3 ≡ w2w3 ⇒ ∀w3 (w1w3 ∈ L⇔ w2w3 ∈ L)⇒ w1 ≡L w2.

Thus ≡ is a refinement of ≡L.

(c)⇒(a). We must first show that ≡L is a right invariant relation. Suppose w1 ≡L w2,

and let w be in Σ?. We must prove that w1w ≡L w2w, i.e., for any w3, w1ww3 ∈ L

exactly when w2ww3 ∈ L. But, since w1 ≡L w2, we know, by definition of ≡L, that

for any w4, w1w4 ∈ L exactly when w2w4 ∈ L. Letting w4 = ww3 we conclude that

≡L is right invariant.

To prove that if ≡L is of finite index, then L is regular, it suffices to construct, for an

arbitrary ≡L, a DFA A which recognises L. The idea that underlies the construction

is to use the equivalence classes of ≡L as states in A. First, we choose x1, · · · , xk
as representatives for the k equivalence classes of ≡L, and then assemble the DFA

AL = 〈QL,Σ, δL, q0, FL〉, where

• QL = {[x1], · · · , [xk]},

• δL([x], a) = [xa],
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• q0 = [ε], and

• FL = {[x]|x ∈ L}.

The definition of the transition function is well-defined, since ≡L is right invariant.

Had we chosen y instead of x from the equivalence class [x], we would have obtained

δ([x], a) = [ya]. But x ≡L y, so xz ∈ L exactly when yz ∈ L. In particular, if z = az′,

xaz′ ∈ L exactly when yaz′ ∈ L, so xa ≡L ya and [xa] = [ya]. The finite automaton

A accepts L, since δ(q0, x) = [x], and thus x ∈ L(A) if and only if [x] ∈ F .

Theorem 2.2. The minimal DFA accepting L is unique up to an isomorphism and is

given by the DFA AL defined in the proof of Theorem 2.1.

Proof. The proof is a transcription of the proof of Lemma 3.10 in [HU79]. In the

proof of Theorem 2.1 we saw that any DFA M = 〈Q,Σ, δ, q0, F 〉 accepting L defines

an equivalence relation that is a refinement of ≡L. Thus the number of states of M

is not smaller than the number of states of AL of Theorem 2.1. If both DFAs have

the same number of states, then each of the states of M can be identified with one

state of A. That is, let q be a state of M . There must be some w ∈ Σ?, such that

δ(q0, w) = q. Identify q with the state δL(qL, w) of AL. If δ(q0, w) = δ(q0, w
′) = q,

then, by the proof of the Theorem 2.1, w and w′ are in the same equivalence class of

≡L. Thus, δL(qL, w) = δL(qL, w
′) = q′ ∈ QL.

Following the Myhill-Nerode theorem, we can say that two states q1 and q2, such that

δ(q0, w1) = q1 and δ(q0, w2) = q2, are equivalent or indistinguishable, q1 ∼ q2, if and

only if w1 ≡L w2 or, in other words, if for all w ∈ Σ? (δ(q1, w) ∈ F ) = (δ(q2, w) ∈ F ).

If there exists a word w ∈ Σ? such that (δ(q1, w) ∈ F ) 6= (δ(q2, w) ∈ F ) we say that q1

is distinguishable from q2 (q1 6∼ q2). Formally, we define the relation ∼ on the states

of Q by ∀q1, q2 ∈ Q q1 ∼ q2 ⇔ ∀w ∈ Σ?(δ(q1, w) ∈ F )⇔ (δ(q2, w) ∈ F ). This relation

is obviously an equivalence relation. An equivalence relation R is right invariant on Q

if and only if: R ⊆ (Q−F )2∪F 2 and ∀p, q ∈ Q, σ ∈ Σ, if pRq, then δ(p, σ) R δ(q, σ).
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Given a right invariant relation R, the quotient automaton A�R can be constructed by

A�R = 〈Q�R,Σ,
δ�R, [q0], F�R〉,

where

S�R = {[q] | q ∈ S}, with S ⊆ Q;

δ�R = {([p], σ, [q]) | (p, σ, q) ∈ δ}.

Note that each state of A�R corresponds to an equivalence class of R. It is easy to see

that L(A�R) = L(A).

Therefore, in any DFA A = (Q,Σ, δ, q0, F ) the equivalent states can be merged without

change the language accepted by A. The resulting automaton is the DFA A�∼, which

can not be collapsed further. Thus, it is not difficult to conclude that:

Theorem 2.3. Let A be a DFA. The DFA A�∼ is the minimal DFA equivalent to A.

Proof. The proof is a transcription of the proof of Lemma 3.11 in [HU79]. Let A =

〈Q,Σ, δ, q0, F 〉. We must show that A�∼ has no more states than ≡L has equivalence

classes. Suppose it had; then there are two accessible states q, p ∈ Q such that [q] 6= [p],

yet there are w1, w2 such that δ(q0, w1) = q and δ(q0, w2) = p, and w1 ≡L w2. We

claim that p ∼ q, for if not, then some w ∈ Σ? distinguishes p from q. But then

w1w ≡L w2w is false, for we may let z = ε and observe that exactly one of w1wz and

w2wz is in L. But since ≡L is right invariant, w1w ≡L w2w is true. Hence q and p do

not exist, and A�∼ has no more states than the index of ≡L. Thus A�∼ is the minimal

DFA equivalent to A.

A process to minimize DFAs consists in collapsing all the equivalent states. Thus, to

prove that a DFA is minimal it is enough to show that for each state q of that DFA

there is a word which is recognised only from q. This word distinguishes q from any

other state. Using this approach we can check that the DFA in Figure 2.2 is minimal.
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We can conclude that a regular language can be univocally identified, up to automata

isomorphism, by the minimal DFA that accepts it.

2.2.2 Nondeterministic Finite Automata

Nondeterministic finite automata (NFA) are a generalisation of DFAs where, for a

given state and an input symbol, the number of possible transitions can be greater

than one. So, an NFA can be thought of as a DFA that can be in many states at once,

i.e., an NFA can try any number of options in parallel. This parallelism is important

because it allows for an increased generative power or higher efficiency, such as faster

processing time or less (dynamic) space consumption. However, deterministic and

nondeterministic automata both accept the class of regular languages, and are thus

equal in generative power. In fact, any language that can be described by some NFA

can also be described by a DFA.

Formally, an NFA is also a five-tuple A = 〈Q,Σ, δ, S, F 〉, where Q, Σ and F are

defined in the same way as for DFAs, S ⊆ Q is the set of initial states and the

transition function is defined by δ : Q×Σ→ 2Q. Sometimes, we only want to consider

NFAs with a single initial state. In that case, the NFA can be denoted by a five-tuple

A = 〈Q,Σ, δ, q0, F 〉, where q0 ∈ Q is the initial state. In this work, when S = {q0}, we

use S = q0. Normally, if for some q ∈ Q and σ ∈ Σ, δ(q, σ) = ∅, we omit this in the

definition of δ.

As it happens for DFAs, we need to extend the transition function to words:

δ : Q× Σ? → 2Q

δ(q, ε) = {q},

δ(q, σw) =
⋃

q′∈δ(q,σ)

δ(q′, w),

where σ ∈ Σ and w ∈ Σ?.
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q0 q1

q2

q3
a

a

b
b

b
a

a
a

a, b

Figure 2.3: Transition diagram of an NFA.

It is also useful to extend the transition function to sets of states:

δ : 2Q × Σ→ 2Q

δ(P, a) =
⋃
p∈P

δ(p, a).

The size of an NFA A, |A|, is its number of states plus its number of transitions. The

reversal of an automaton A is the automaton AR, where the initial and final states

are interchanged and all transitions are reversed.

Given a state q ∈ Q, the right language of q is L(A, q) = {w ∈ Σ? | δ(q, w) ∩ F 6= ∅},

and the left language is
←−
L (A, q) = {w ∈ Σ? | q ∈ δ(q0, w)}. The language accepted

by an NFA A is L(A) =
⋃
q∈S

L(A, q). Two NFAs are equivalent if they accept the same

language. If two NFAs A and B are isomorphic, we write A ' B. We can also

represent NFAs using transition diagrams (Figure 2.3).

An ε-NFA, a special kind of NFA that can have transitions labelled by the empty word,

is a five tuple Aε = 〈Q,Σ, δ, q0, F 〉 as defined above, but the domain of the transition

function is now δ : Q× (Σ ∪ {ε})→ 2Q. This extension permits that a transition can

be taken without reading any input. The ε-NFA model does not add any expressive

power to NFAs, but it can be useful to simplify the construction of some automata.

Contrary to what happens for DFAs, minimisation of NFAs is a hard problem (PSPACE-

complete) and minimal NFAs are not unique up to isomorphism [MS72]. Nevertheless,

there are several algorithms with a practical performance, that permit to reduce the

size of the NFAs, even though there is no guarantee that the obtained NFA is the
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smallest possible one.

Intuitively, two states are bisimilar if they can simulate each other, so the presence

of bisimilar states in an NFA indicates redundancy. Thus, identifying bisimilar states

permits a reduction of the NFA size.

Bisimulations are an attractive alternative for reducing the size of NFAs. A binary

equivalence relation R on Q is a bisimulation if ∀p, q ∈ Q and ∀σ ∈ Σ if pRq then

• p ∈ F if and only if q ∈ F ;

• ∀p′ ∈ δ(p, σ) ∃q′ ∈ δ(q, σ) such that p′Rq′.

The set of bisimulations on Q is closed under finite union. Note that the notion of

bisimulation coincides to the notion of right-invariance for NFAs. R is a left invariant

relation w.r.t. A if and only if it is a right invariant relation w.r.t. AR.

The largest bisimulation, i.e., the union of all bisimulation relations on Q, is called

bisimilarity (≡b), and it can be computed in almost linear time using the Paige and

Tarjan algorithm [PT87].

Given a right invariant relation R and an NFA A = 〈Q,Σ, δ, S, F 〉, the quotient

automaton A�R can be constructed by

A�R = 〈Q�R,Σ,
δ�R,

S�R,
F�R〉,

where δ�R ([q], a) = [δ(q, a)]. It is easy to see that L(A�R) = L(A).

The quotient automaton A�≡b is the minimal automaton among all quotient automata
A�R, where R is a bisimulation on Q, and it is unique up to isomorphism. By abuse

of language, we will call A�≡b the bisimilarity of automaton A. If A is a DFA, A�≡b
is the minimal DFA equivalent to A, although if A is an NFA there is no guarantee

that A�≡b is the minimal NFA.
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2.2.3 Conversion between Nondeterministic and Deterministic

Finite Automata

In many situations it is easier and more succinct to construct an NFA than a DFA

that represents a given language. But, as we already mentioned, the expressive power

of both models is the same, and there exists an algorithm to convert an NFA into an

equivalent DFA. This conversion, usually called determinization and denoted by D,

uses the subset construction which, in the worst case, constructs all the subsets of the

set of states of the NFA.

Given an NFA N = 〈Q,Σ, δ, S, F 〉 using the subset construction we construct a DFA

D(N) = 〈Q′,Σ, δ′, q′0, F 〉, such that:

Q′ = 2Q;

δ′(q, a) = δ(q, a), for q ∈ Q′, a ∈ Σ;

q′0 = S;

F = {p ∈ Q′ | p ∩ F 6= ∅}.

It is not difficult to conclude that the DFA resulting from this construction has 2n

states, where n = |Q|. Although this method can produce a huge and possibly

not initially connected DFA, in some situations all states are connected. Figure 2.4

represents the DFA obtained by the conversion of the NFA of Figure 2.3. Note that

only the useful states are represented. We can prove that:

Proposition 2.4. For any NFA A = 〈Q,Σ, δ, q0, F 〉 and any right invariant equiva-

lence relation ≡ on Q, extended in the usual way to 2Q, D(A�≡) = D(A)�≡.

Proof. We know thatD(A�≡) = 〈2Q�≡,Σ, δ≡, {[q0]}, {p | p ∩F�≡ 6= ∅}〉 andD(A)�≡ =

〈2
Q
�≡, δ

′
�≡, [{q0}], {p | p ∩ F 6= ∅}�≡〉. We also know that for any q ∈ Q δ≡([q], σ) =

δ(q, σ)�≡. To prove that the equality holds we only need to prove that for any Si =

{r1, . . . , rn} and Si�≡ = {[q1], . . . , [qm]}, δ
′(Si, σ)�≡ = δ≡(Si�≡, σ), because the other
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{q0}

{q1, q3}

{q2}

{q1, q2}

{q2, q3}

{q0, q3}

{q0, q2, q3}

{q0, q1, q2, q3}

{q0, q1, q3}
{q1, q2, q3}a

b

a

b

a

a b

a

b

a

b

a
b

b

a

a

b
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Figure 2.4: DFA obtained from the NFA represented in the Figure 2.3.

equalities are obvious. It is easy to see that,

δ′(Si, σ)�≡ = (δ(r1, σ) ∪ · · · ∪ δ(rn, σ))�≡

= δ(r1, σ)�≡ ∪ · · · ∪ δ(rn, σ)�≡

= δ≡([q1], σ) ∪ · · · ∪ δ≡([qm], σ)

because if ri ≡ rj then δ(ri, σ) ≡ δ(rj, σ)

= δ≡(Si�≡, σ).

2.3 Regular Expressions

Regular expressions (REs) are a more succinct and readable representation of regular

languages. Let Σ be an alphabet such that ∅, ε, (, ),+, ·, ? do not belong to Σ. A

regular expression over Σ is inductively defined by the following rules:

• the constants ∅ and ε are regular expressions;

• any symbol a ∈ Σ is a regular expression;
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• if α and β are regular expressions, the disjunction or union (α+ β) is a regular
expression;

• if α and β are regular expressions, the concatenation (α·β) is a regular expression;

• if α is a regular expressions, the Kleene closure or star α? is also a regular
expression.

Thus, given an alphabet Σ = {σ1, σ2, . . . , σk} of size k, we can say that the set RE of

regular expressions α over Σ is defined by the following grammar:

α := ∅ | ε | σ | (α + α) | (α · α) | α?. (2.1)

Usually we omit the non-necessary parenthesis and the concatenation operator, ac-
cording to the following conventions:

• the star operator is of highest precedence;

• the concatenation operator comes next in precedence and is left-associative;

• the disjunction operator has the lowest precedence and is also left-associative.

The language recognised by a regular expression α, L(α), is defined by the following

rules, where α1 and α2 are arbitrary regular expressions:

• L(∅) = ∅;

• L(ε) = ε;

• L(σ) = {σ}, for σ ∈ Σ;

• L(α1 + α2) = L(α1) ∪ L(α2);

• L(α1α2) = L(α1)L(α2);

• L(α?1) = L(α1)?.

If two regular expressions α1 and α2 are syntactically equal, we write α1 ≡ α2. Two

regular expressions α1 and α2 are equivalent, α1 = α2, if they accept the same language.

The length of a regular expression α, denoted by |α|, is the total number of symbols
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in α including operators and excluding parentheses. The alphabetic size of α, |α|Σ,

counts only the number of alphabetic symbols in α. The number of occurrences of ε

in α is denoted by |α|ε. We represent by Σα the set of alphabetic symbols in α.

We define ε : RE → {∅, ε} such that ε(α) = ε if ε ∈ L(α) and ε(α) = ∅, otherwise.

We can inductively define ε(α) as follows:

ε(σ) = ε(∅) = ∅,

ε(ε) = ε,

ε(α∗) = ε,

ε(α1 + α2) =

ε if (ε(α1) = ε) or (ε(α2) = ε),

∅ otherwise,

ε(α1α2) =

ε if (ε(α1) = ε) and (ε(α2) = ε),

∅ otherwise.

Given a set of regular expressions S, we define ε(S) = {ε(α) | α ∈ S}. The algebraic

structure (RE,+, ·, ∅, ε) constitutes an idempotent semiring, and with the Kleene star

operator ?, a Kleene algebra. There are several well-known complete axiomatisations

of Kleene algebras [Koz97, Sal66]. Following Kozen we can consider the axiomatic

system below:

α1 + (α2 + α3) = (α1 + α2) + α3, (2.2)

α1 + α2 = α2 + α1, (2.3)

α + α = α, (2.4)

α + ∅ = α, (2.5)

αε = εα = α, (2.6)

α∅ = ∅α = ∅, (2.7)

α1(α2α3) = (α1α2)α3, (2.8)

α1(α2 + α3) = α1α2 + α1α3, (2.9)

(α1 + α2)α3 = α1α3 + α2α3, (2.10)

ε+ αα? = α?, (2.11)

ε+ α?α = α?, (2.12)
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α1 + α2α3 ≤ α3 ⇒α?2α1 ≤ α3, (2.13)

α1 + α2α3 ≤ α2 ⇒α1α
?
3 ≤ α2. (2.14)

Axioms (2.2) through (2.10) follow from the fact that the structure is an idempotent

semiring. The remaining axioms refer the properties of the ? operator. In (2.13) and

(2.14) α ≤ β means α + β = β. It follows from the axioms that ≤ is a partial order,

i.e., it is reflexive, transitive, and antisymmetric. From these axioms we can derive

some typical theorems of Kleene algebra:

α?α? = α?,

α?? = α?,

(α?1α2)?α?1 = (α1 + α2)?, (2.15)

α1(α2α1)? = (α1α2)?α1, (2.16)

α? = (αα)? + α(αα)?.

Equations (2.15) and (2.16) are very useful to simplify regular expressions.

We say that two regular expressions are similar if one can be transformed into the

other using only the Axioms (2.2) through (2.7). Otherwise the regular expressions

are called dissimilar .

We denote by ACI the set of axioms that includes the associativity (Axiom (2.2)), com-

mutativity (Axiom (2.3)) and idempotence (Axiom (2.4)) of the disjunction operation.

Along this work we only consider regular expressions reduced by the Axioms (2.5),

(2.6), (2.7), by the rule ∅+ α = α and without superfluous parentheses (we adopt the

usual operator precedence conventions and omit outer parentheses).

The reversal of a regular expression α ∈ RE, αR can be inductively define by the

following rules [HU79]:

σR = σ, (α + β)R = αR + βR,
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∅R = ∅, (αβ)R = βRαR, (2.17)

εR = ε, (α?)R = (αR)?.

Given a set of regular expressions S, we define SR = {αr | α ∈ S}.

A regular expression α is in star normal form (snf) [BK93] if for all subexpressions α?1
of α, ε(α1) = ∅.

2.3.1 Conversion to Finite Automata

Simulation (or conversion) methods of regular expressions into equivalent finite au-

tomata have been widely studied in the last decades. The resulting automata can

be deterministic or nondeterministic. As the direct conversion to a DFA can be

both time and space consuming, usually we do the conversion to an equivalent NFA

and thereafter, if necessary, we convert it into an equivalent DFA using the subset

construction.

The NFAs resulting from the simulation of an equivalent regular expression can have

ε-transitions or not. The standard conversion with ε-transitions is the Thompson

automaton (AT) [Tho68] and the standard conversion without ε-transitions is the

Glushkov (or position) automaton (APos) [Glu61]. In the following, we give a brief

description of these two methods. We also introduce the previous automaton (APrev),

which is another conversion method without ε-transitions.

2.3.1.1 Thompson Automaton

The following algorithm due to Thompson converts any regular expression into an

ε-NFA that recognises the same language. It proceeds by induction on the structure

of the regular expression. The basis rules are:

• AT(∅) = 〈{q0, f},Σ, δ, q0, {f}〉, where δ is empty.
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• AT(ε) = 〈{q0, f},Σ, δ, q0, {f}〉, where δ(q0, ε) = {f} is the only transition.

• AT(σ) = 〈{q0, f},Σ, δ, q0, {f}〉, where δ(q0, σ) = {f} is the only transition.

Let AT(α1) = 〈Q1,Σ, δ1, q1, F1〉 and AT(α2) = 〈Q2,Σ, δ2, q2, F2〉, such that Q1 ∩ Q2 =

∅. Thus the inductive rules are:

• AT(α1 + α2) = 〈Q,Σ, δ, q0, {f0}〉 where q0 and f0 are new states, and

Q = {q0, f0} ∪Q1 ∪Q2;

δ(q0, ε) = {q1, q2};

δ(q, ε) = {f0}, for all q ∈ F1 ∪ F2;

δ(q, σ) =

δ1(q, σ) if q ∈ Q1

δ2(q, σ) if q ∈ Q2

, for σ ∈ Σ.

• AT(α1α2) = 〈Q,Σ, δ, q1, {f2}〉 where

Q = Q1 ∪Q2;

δ(q, ε) = {q2}, for all q ∈ F1;

δ(q, σ) =

δ1(q, σ) if q ∈ Q1

δ2(q, σ) if q ∈ Q2

, for σ ∈ Σ.

• AT(α?1) = 〈Q,Σ, δ, q0, {f0}〉 where q0 and f0 are new states, and

Q = {q0, f0} ∪Q1;

δ(q0, ε) = {q1, f0};

δ(q, ε) = {q1, f0}, for all q ∈ F1;

δ(q, σ) = δ1(q, σ), for all q ∈ Q1 and σ ∈ Σ.

By this construction, which is also depicted in Fig. 2.5, we observe that the Thompson
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AT(∅) :
q0 f

AT(ε) :
q0 f

ε
AT(σ) :

q0 f
σ

AT(α + β) :

q0

q2

q1

f2

f1

f0

ε

ε ε

ε

AT(αβ) :
q1 f1 q2 f2

ε

AT(α?) :

q0 q1 f1 f0
ε

ε

ε
ε

Figure 2.5: Inductive construction of AT.

automaton of a given regular expression presents the following properties:

• there is exactly one final state;

• there are no arcs returning into the initial state;

• there are no arcs leaving the final state.

It can be computed in linear time.

2.3.1.2 Position Automaton

The position automaton, introduced by Glushkov [Glu61], permits us to convert a

regular expression into an equivalent NFA without ε-transitions. The states in the

position automaton (APos) correspond to the positions of letters in α plus an additional

initial state. McNaughton & Yamada [MY60] also use the positions of a regular

expression to define an automaton, however they computed directly a deterministic

version of the position automaton.
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We can modify the grammar (2.1) in order to define the set PO of linear regular

expressions α over Σ:

α := ∅ | ε | (n, σ) | (α + α) | (α · α) | (α)?, (2.18)

where n is an integer. In the following we restrict this set PO to a set of linear

regular expressions α ∈ PO, where for any (n, σ) occurring in α, 1 ≤ n ≤ |α|Σ and σ

occurs in α in position n. We also use σn instead of use (n, σ), i.e., L(α) ∈ Σ
? where

Σ = {σi | σ ∈ Σ, 1 ≤ i ≤ |α|Σ}. For example, the marked version of the regular

expression τ = (ab? + b)?a is τ = (a1b
?
2 + b3)?a4. The same notation is used to remove

the markings, i.e., α = α. Let pos(α) = {1, 2, . . . , |α|Σ}, and pos0(α) = pos(α) ∪ {0}.

To define the APos(α) we consider the following sets:

First(α) = {i|σiw ∈ L(α)},

Last(α) = {i|wσi ∈ L(α))},

Follow(α, i) = {j|uσiσjv ∈ L(α))}.

It is necessary to extend Follow(α, 0) = First(α) and define that Last0(α) is Last(α) if

ε(α) = ∅, or Last(α)∪{0} otherwise. These sets can also be inductively defined in the

structure of α as follows:

First(ε) = First(∅) = ∅, Last(ε) = Last(∅) = ∅,

First(σi) = {i}, Last(σi) = {i},

First(α1α2) = First(α1) ∪ ε(α1)First(α2), Last(α?1) = Last(α1), (2.19)

First(α1 + α2) = First(α1) ∪ First(α2), Last(α1 + α2) = Last(α1) ∪ Last(α2),

First(α?1) = First(α1), Last(α1α2) = Last(α2) ∪ ε(α2)Last(α1).

Follow(ε, i) = Follow(∅, i) = ∅,

Follow(σi, i) = Follow(σi, j) = ∅, j 6= i,
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Follow(α1 + α2, i) =

Follow(α1, i) If i ∈ pos(α1),

Follow(α2, i) If i ∈ pos(α2),

Follow(α1α2, i) =


Follow(α1, i) If i ∈ pos(α1) \ Last(α1),

Follow(α1, i) ∪ First(α2) If i ∈ Last(α1),

Follow(α2, i) If i ∈ pos(α2),

(2.20)

Follow(α?1, i) =

Follow(α1, i) If i ∈ pos(α1) \ Last(α1),

Follow(α1, i) ∪ First(α1) If i ∈ Last(α1).

The following result relates the functions First and Last of a regular expression α and

its reversal αR.

Proposition 2.5. For any regular expression α, First(αR) = Last(α) and Last(αR) =

First(α).

The position automaton for α is

APos(α) = 〈pos0(α),Σ, δpos, 0, Last0(α)〉

where δpos(i, σ) = {j|j ∈ Follow(α, i), σ = σj}. Considering τ = (ab? + b)?a and

τ = (a1b
?
2 + b3)?a4, we can compute the sets:

First(τ) = {1, 3, 4}, Last(τ) = {4},

Follow(τ, 1) = {1, 2, 3, 4}, Follow(τ, 2) = {1, 2, 3, 4},

Follow(τ, 3) = {1, 3, 4}, Follow(τ, 4) = ∅.

Then, we can construct the APos(τ), which is represented in Figure 2.6.

From the construction of the APos we can infer the following properties:

• the initial state has no incoming transitions;
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Figure 2.6: APos((ab
? + b)?a).
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Figure 2.7: AMY ((ab? + b)?a).

• for a given state, all incoming transitions are labelled by the same symbol;

• given a regular expression α, the number of states of the resulting NFA is always
|α|Σ + 1.

The position automaton can be computed in quadratic time. Brüggemann-Klein and

Wood [BKW97] showed that Thompson automata can be transformed into position

automata by eliminating the ε-transitions.

If we determinize the APos automaton, we obtain the McNaughton and Yamada DFA,

AMY (α) = D(APos) = 〈2pos(α) ∪ {0},Σ, δMY , 0, FMY 〉

where for S ∈ 2pos(α), δMY (S, σ) = {j|j ∈ Follow(α, i), i ∈ S, σ = σj}, δMY (0, σ) =

{j|j ∈ First(α), σ = σj}, and FMY = {S ∈ 2pos(α)|S ∩ Last(α) 6= ∅} ∪ ε(α){0}. In

Figure 2.7 is represented AMY ((ab? + b)?a).
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2.3.1.3 Previous Automaton

Maintaining the idea of using the positions of the letters in a RE α, we introduce an

automaton with an unique final state f , and a state for each position i ∈ pos(α). To

define the transition function, given a state i ∈ pos(α) we compute the set of positions

which precede σi, instead of the set of positions which follow σi, in L(α) words. Thus,

as we defined the set Follow(α, j) to construct the APos automaton, we define the set

Previous(α, j) = {i | uσiσjv ∈ L(α)} to construct this new automaton.

The set Previous(α, j) can be inductively defined in the structure of α, as follows:

Previous(ε, i) = Previous(∅, i) = ∅,

Previous(σi, i) = Previous(σi, j) = ∅,

Previous(α1 + α2, i) =

Previous(α1, i) If i ∈ pos(α1),

Previous(α2, i) If i ∈ pos(α2),

Previous(α1α2, i) =


Previous(α2, i) If i ∈ pos(α2) \ First(α2),

Previous(α2, i) ∪ Last(α1) If i ∈ First(α2),

Previous(α1, i) If i ∈ pos(α1),

Previous(α?1, i) =

Previous(α1, i) If i ∈ pos(α1) \ First(α1),

Previous(α1, i) ∪ Last(α1) If i ∈ First(α1).

The previous automaton for α is

APrev(α) = 〈QPrev,Σ, δPrev,First(α) ∪ ε(α){f}, {f})〉.

where QPrev = pos(α) ∪ {f}, δPrev = {(i, σi, j) | i ∈ Previous(α, j), j ∈ pos(α)} ∪

{(i, σi, f) | i ∈ Last(α)}. Note that the APrev automaton can have many initial states

but has only one final state. Whereas each state i in the APos only has in-transitions

by an σ = σi, in the APrev each state i only has out-transitions by an σ = σi.
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Figure 2.8: APrev((ab? + b)?a).

Let τ = (ab? + b)?a, then we can compute the sets:

First(τ) = {1, 3, 4}, Last(τ) = {4},

Previous(τ, 1) = {1, 2, 3}, Previous(τ, 2) = {1, 2},

Previous(τ, 3) = {1, 2, 3}, Previous(τ, 4) = {1, 2, 3}.

The APrev(τ) is represented in Figure 2.8.

It is not difficult to see that:

∀j ∈ Previous(α, i), i ∈ Follow(α, j);

∀j ∈ Follow(α, i), i ∈ Previous(α, j).

Moreover, we can relate these two sets considering a regular expression (α) and its

reverse (αR):

Proposition 2.6. For any regular expression α and i ∈ pos(α),

Follow(αR, i) = Previous(α, i).

Proof. Let us prove the result by induction on the structure of α. For α ≡ ε, α ≡ ∅

and α ≡ σ the result is obvious.
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Let α ≡ α1 + α2 then

Follow((α1 + α2)R, i) = Follow(αR1 + αR2 , i) =

Follow(αR1 , i) If i ∈ pos(αR1 )

Follow(αR2 , i) If i ∈ pos(αR2 )

=

Previous(α1, i) If i ∈ pos(α1)

Previous(α2, i) If i ∈ pos(α2)

= Previous(α1 + α2, i).

If α ≡ α1α2 then, as (α1α2)R ≡ αR2 α
R
1 ,

Follow(αR2 α
R
1 , i) =


Follow(αR2 , i) If i ∈ pos(αR2 ) \ Last(αR2 )

Follow(αR2 , i) ∪ First(αR1 ) If i ∈ Last(αR2 )

Follow(αR1 , i) If i ∈ pos(αR1 )

=


Previous(α2, i) If i ∈ pos(α2) \ First(α2)

Previous(α2, i) ∪ Last(α1) If i ∈ First(α2)

Previous(α1, i) If i ∈ pos(α1)

= Previous(α1α2, i).

Finally if α ≡ α?1 then

Follow((αR1 )?, i) =

Follow(αR1 , i) If i ∈ pos(αR1 ) \ Last(αR1 )

Follow(αR1 , i) ∪ First(αR1 ) If i ∈ Last(αR1 )

=

Previous(α1, i) If i ∈ pos(α1) \ First(α1)

Previous(α1, i) ∪ Last(α1) If i ∈ First(α1)

= Previous(α?1, i).

Thus the equality holds.
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Figure 2.9: AdPrev((ab? + b)?a).

Using this relation one can conclude that:

Proposition 2.7. For any regular expression α, APrev(α) ' (APos(α
R))R.

Proof. The automaton (APos(α
R))R is defined by

〈pos0(αR),Σ, δRpos, Last(α
R) ∪ ε(α){0}, {0}〉,

where δRpos = {(i, σi, j) | i ∈ Follow(αR, j)}∪{(i, σi, 0) | i ∈ First(αR)}, and δRpos(s, σ) =

{0}, if s ∈ First(αR). Let ϕ(i) = i for i ∈ pos(α) and ϕ(0) = f . It is obvious that

ϕ is an isomorphism between (APos(α
R))R and APrev, because Last(αR) = First(α),

First(αR) = Last(α) and Proposition 2.6.

If we determinize APrev, we obtain

AdPrev(α) = 〈QdPrev,Σ, δdPrev,First(α) ∪ ε(α){f}, FdPrev〉

where QdPrev = 2pos(α)∪{f}, δdPrev(P, σ) = {j | i ∈ Previous(α, j), i ∈ P, j ∈ pos(α), σ =

σi} ∪ {f}, if Last(α) ∩ P 6= ∅ or δdPrev(P, σ) = {j | i ∈ Previous(α, j), i ∈ P, j ∈

pos(α), σ = σi}, otherwise; and FdPrev = {S ∈ QdPrev | f ∈ S}.

2.3.2 Derivatives

The derivative of a regular expression α with respect to a symbol σ ∈ Σ [Brz64] is a

regular expression, denoted by σ−1α, and can be defined recursively on the structure

of α as follows:
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σ−1∅ = σ−1ε = ∅,

σ−1σ′ =


ε if σ′ = σ,

∅ otherwise,

σ−1(α1 + α2) = σ−1α1 + σ−1α2,

σ−1(α?) = (σ−1α)α?,

σ−1(α1α2) =


(σ−1α1)α2 if ε(α1) 6= ε,

(σ−1α1)α2 + σ−1α2 otherwise.

(2.21)

This notion can be naturally extended to words: ε−1α = α, and (σw)−1α = w−1(σ−1α),

where w ∈ Σ?; or, more generally, (ps)−1α = s−1(p−1α) for every factorisation w =

ps, p, s ∈ Σ?.

Brzozowski proved that for any w ∈ Σ?, L(w−1α) = w−1L(α). Let D(α) be the

quotient of the set of all derivatives of a regular expression α w.r.t. a word, modulo

the ACI-equivalence relation. Brzozowski also proved that the set D(α) is finite. Using

this result it is possible to define the Brzozowski’s automaton:

AB(α) = 〈D(α),Σ, δ, [α], F 〉,

where F = {[d] ∈ D(α) | ε(d) = ε}, and δ([q], σ) = [σ−1q], for all [q] ∈ D(α), σ ∈ Σ.

From what has been said above and from the left-quotient definition it follows that

this automaton recognises L(α).

2.3.2.1 c-Continuations

Berry & Sethi [BS86] characterised the Brzozowski’s derivatives of a linear regular

expression. Champarnaud & Ziadi [CZ02] extended their study introducing the no-

tion of canonical derivative of a regular expression, in order to compute a canonical

representative of the set of the ACI-similar derivatives of a linear regular expression

computed by Berry and Sethi.

Given a regular expression α and a symbol σ, the c-derivative of α w.r.t. σ, denoted

by dσα, is defined by



34 CHAPTER 2. PRELIMINARIES

dσ(∅) = dσ(ε) = ∅,

dσ(σ′) =

ε if σ′ = σ,

∅ otherwise,

dσ(α?) = dσ(α)α?,

dσ(α + β) =

dσ(α), if dσ(α) 6= ∅,

ε(α)dσ(β), otherwise,

dσ(αβ) =

dσ(α)β, if dσ(α) 6= ∅,

dσ(β), otherwise.

(2.22)

The extension to a word follows the equations: dε(α) = α and dσw(α) = dw(dσ(α)).

If α is a linear regular expression, for every symbol σ ∈ Σ and every word w ∈ Σ
?,

dwσ(α) is either ∅ or unique modulo ACI [BS86]. If dwσ(α) is different from ∅, it is

named c-continuation of α w.r.t. σ ∈ Σ, denoted by cσ(α), and it is defined as follows:

cσ(σ′) =

ε if σ′ = σ,

∅ otherwise,

cσ(α?) = cσ(α)α?,

cσ(α + β) =

cσ(α), if cσ(α) ↓,

cσ(β), otherwise,

cσ(αβ) =

cσ(α)β, if cσ(α) ↓,

cσ(β), otherwise,

(2.23)

where cσ(α) ↓ means that cσ(α) is defined. Let c0(α) = dε(α) = α. This means that

we can associate to each position i ∈ pos0(α), a unique c-continuation. For example,

given τ = (a1b
?
2 + b3)?a4 we have ca1(τ) = b?2τ , cb2(τ) = b?2τ , cb3(τ) = τ , and ca4(τ) = ε.

The c-continuation automaton for α is

Ac(α) = 〈Qc,Σ, δc, q0, Fc〉

where Qc = {q0} ∪ {(i, cσi(α)) | i ∈ pos(α)}, q0 = (0, c0(α)), Fc = {(i, cσi(α)) |

ε(cσi(α)) = ε}, δc = {((i, cσi(α)), b, (j, cσj(α))) | σj = b ∧ dσj(cσi(α)) 6= ∅}. The Ac(τ)

is represented in Figure 2.10.

Note that if we ignore the c-continuations in the label of each state, we obtain the

position automaton.
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(0, τ) (3, τ)

(1, b?2τ)

(4, ε)

(2, b?2τ)

b

a

a

a

a

b

b

b

a

a

a

b
a

b

Figure 2.10: Ac((a1b
?
2 + b3)?a4).

Proposition 2.8 (Champarnaud & Ziadi). ∀α ∈ RE, APos(α) ' Ac(α).

The following proposition establishes a relation between the sets First, Follow and Last

and the c-continuations.

Proposition 2.9 (Champarnaud & Ziadi). For all α ∈ RE, the following equalities

hold

First(α) = {σ ∈ Σ|da(α) 6= ∅},

Last(α) = {σ ∈ Σ|ε(cσ(α)) 6= ∅},

Follow(α, i) = {σj ∈ Σ|dσj(cσi(α)) 6= ∅}.

The c-continuation automaton can be computed in quadratic time.

2.3.2.2 Partial Derivatives

Partial derivatives, presented by Antimirov [Ant96], are a generalisation to the non-

deterministic case of the notion of derivative. For a RE α and a symbol σ ∈ Σ, the

set of partial derivatives of α w.r.t. σ can be inductively defined as follows:



36 CHAPTER 2. PRELIMINARIES

τ b?τ ε

a

a

b

ab

a, b

Figure 2.11: APD((ab? + b)?a).

∂σ(∅) = ∂σ(ε) = ∅,

∂σ(σ′) =

{ε} if σ′ = σ,

∅ otherwise,

∂σ(α + β) = ∂σ(α) ∪ ∂σ(β),

∂σ(αβ) = ∂σ(α)β ∪ ε(α)∂σ(β),

∂σ(α?) = ∂σ(α)α?,

(2.24)

where for any S ⊆ RE, β ∈ RE, S∅ = ∅S = ∅, Sε = εS = S, Sβ = {αβ|α ∈ S}

and βS = {βα|α ∈ S} if β 6= ∅, and β 6= ε. The definition of partial derivative

can be extended to sets of regular expressions, words, and languages. Given α ∈

RE and σ ∈ Σ, ∂σ(S) =
⋃
α∈S ∂σ(α) for S ⊆ RE, ∂ε(α) = {α} and ∂wσ(α) =

∂σ(∂w(α)), for any w ∈ Σ?, σ ∈ Σ, and ∂L(α) =
⋃
w∈L ∂w(α) for L ⊆ Σ?. We know that⋃

τ∈∂w(α) L(τ) = w−1L(α) and also that
∑
∂w(α) = w−1α, where for S = {α1 · · ·αn},∑

S = α1 + · · ·+αn. The set of all partial derivatives of α w.r.t. words is denoted by

PD(α) =
⋃
w∈Σ? ∂w(α). The set PD(α) is always finite [Ant96]. We also define the set

PD+(α) =
⋃
w∈Σ+ ∂w(α). Note that PD(α) = PD+(α) ∪ {α}.

The partial derivative automaton of a regular expression was introduced independently

by Mirkin [Mir66] and Antimirov [Ant96]. Champarnaud & Ziadi [CZ01] proved that

the two formulations are equivalent. It is defined by

APD(α) = 〈PD(α),Σ, δpd, α, Fpd〉,

where δpd = {(τ, σ, τ ′) | τ ∈ PD(α) and τ ′ ∈ ∂σ(τ)} and Fpd = {τ ∈ PD(α) | ε(τ) = ε}.

Considering τ = (ab? + b)?a, Figure 2.11 shows APD(τ).

Given the c-continuation automaton Ac(α), let ≡c be the right invariant equivalence
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relation on Qc defined by (i, cσi(α)) ≡c (j, cσj(α)) if cσi(α) ≡ cσj(α). The fact that

the APD is isomorphic to the resulting quotient automaton, follows from the following

proposition.

Proposition 2.10 (Champarnaud & Ziadi). ∀α ∈ RE, APD(α) ' Ac(α)�≡c.

For our running example, we have (0, cε) ≡c (3, cb3) and (1, ca1) ≡c (2, cb2). In

Figure 2.11, we can see the merged states, and that the corresponding REs are

unmarked.

The partial derivative automaton can be computed in quadratic time.

2.3.2.3 Related Constructions

In [IY03a], Ilie & Yu proposed a new method to construct NFAs from regular expres-

sions. First, the authors construct an NFA with ε-transitions – Aεf (α). Then they use

an ε-elimination method to build the follow automaton – Af (α). The authors also

proved that the follow automaton is a quotient of the position automaton.

Proposition 2.11 (Ilie & Yu). For all α ∈ RE, Af (α) ' APos(α)�≡f , where i ≡f j

iff both i, j or none belong to Last(α) and Follow(α, i) = Follow(α, j).

Recently, Garcia et al. also proposed a new method to construct NFAs from regular

expressions [GLRA11]. The size of the resulting automaton is bounded above by the

size of the smallest automata obtained by the follow and partial derivatives methods.

Let the equivalence ≡∨ be the join of the relations ≡c and ≡f , where the join relation

between two equivalence relations E1 and E2 is the smallest equivalence relation that

contains E1 and E2. The Garcia et al. automaton, Au(α), is a quotient of the position

automaton by that relation – Au(α) ' APos(α)�≡∨.

Both automata can be computed in quadratic time.

If we consider any regular expression α in snf, the size of APD(α) is equal to the size

of Au(α), and not greater than the size of Af (α).
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Chapter 3

Descriptional Complexity

Over the last two decades and motivated by the increasing number of new practical

applications, the descriptional complexity of formal languages has become a major

topic of research. Given a complexity measure and a model of computation, the

descriptional complexity of a language w.r.t. that measure and model is the size of its

smallest representation.

Given a formal language, it can be represented by several models, e.g. nondeter-

ministic finite automata, deterministic finite automata, regular expressions, etc.. All

these models are equally powerful, in the sense that they represent exactly the same

language. In the same way, the proofs of the same mathematical theorem can differ

greatly in length and complexity, but all of them have the same purpose. So, it is

important to study computational models not only with respect to their expressive

power, but also taking into account its size according to a specific measure. A typical

example is the exponential trade-off between the number of states of a nondeterministic

and a deterministic automaton for the same regular language.

The descriptional complexity of formal languages is concerned with questions like:

• How efficiently can a model describe a formal language w.r.t. other models?

39
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• What is the cost of a conversion from one model to another? What are the upper

and lower bounds of such costs and can they be attained?

The same questions can be posed when applying operations on models. It is important

to know how the size varies when several such models are combined, since this has a

direct influence on the amount of resources required by the applications. In general,

having succinct objects will improve our software, which may then become smaller,

more efficient and reliable.

Regular languages, despite their limited expressive power, have many applications in

almost all Computer Science areas. In general, regular languages properties are decid-

able and the computational complexity of associated problems is known, which is also

attractive for this class of languages, mainly, when compared with the undecidability

world of context-free languages. However, many descriptional complexity aspects of

regular languages are still open problems, and are directly related with a more refined

analysis of the performance of a particular algorithm. So, it is essential that the

structural properties of regular language representations are further researched.

The descriptional complexity aspects can be study in two different approaches: in

the worst case [Yu01] and in the average case [Nic99]. Although its evident practical

importance, there is still very few research on average-case complexity, contrary to

what happens for the worst-case complexity for which a lot of results are known.

In Section 3.1, we review the state and transition complexities of individual regular-

ity preserving language operations like Boolean operations, concatenation, star and

reversal, considering the worst-case analysis.

In Section 3.2 we introduce a few results known on average-case descriptional com-

plexity. We also present some analytic tools, which will be used in Section 5.5 to

analyse the asymptotic average size of some conversions between regular expressions

and NFAs. For a more extensive study on analytic combinatorics we refer the reader

to Flajolet & Sedgewick [FS08].
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3.1 Operational State and Transition Complexities

on Regular Languages

Concerning the DFAs, there are many ways to measure their size: the number of

states, the number of transitions or the sum of the number of states and transitions.

In the case of a complete DFA the number of transitions is totally determined by the

number of states and the alphabet size, i.e., the number of transitions is equal to the

product of the alphabet size by the number of states. Therefore, the number of states

is the key measure on the size of a complete DFA.

As we have already seen, a regular language is accepted by infinitely many different

DFAs. The usual complexity measure is the number of states of the complete minimal

DFA that accepts L, which is called state complexity of the regular language L,

and it is denoted by sc(L) [Yu05, Yu06, BHK09, HK09a, YG11]. This is the most

studied descriptional measure for regular languages. First results concerning the

state complexity of regular languages and their operations date from the 1960’s and

1970’s [Mas70, Moo71, Lup66]. In 1994, the work [YZS94] on the state complexity

of the languages resulting from basic operations (Boolean, concatenation, star and

reversal), revived the interest of the community on this topic. The proliferous research

gave origin to a few hundred of papers which were surveyed, for example, in [Yu97,

Yu01, Yu05, HK09a, HK11].

In many applications where large alphabets need to be considered or, in general,

when very sparse transition functions take place, partial transition functions are very

convenient. Examples include lexical analysers, discrete event systems, or any ap-

plication that uses dictionaries where compact automaton representations are essen-

tial [ORT09, DW11, CL06]. Thus, it makes sense to study complexity measures of

regular languages based on non necessarily complete DFAs. The incomplete state

complexity of a regular language L (isc(L)) is the number of states of the minimal not

necessarily complete DFA that accepts L. Note that isc(L) differs at most by 1 from

sc(L) (isc(L) ∈ {sc(L)− 1, sc(L)}).



42 CHAPTER 3. DESCRIPTIONAL COMPLEXITY

Table 3.1: State complexity, nondeterministic state and transition operational
complexity of basic regularity preserving operations on regular languages.

Operation sc nsc ntc

L1 ∪ L2 mn m+ n+ 1 ntc(L1) + ntc(L2) + s(L1) + s(L2)

L1 ∩ L2 mn mn
∑
σ∈Σ

ntcσ(L1) ntcσ(L2)

LC n 2n
|Σ|2ntc(L)+1

2
ntc(L)

2
−2 − 1

L1L2 m2n − f12n−1 m+ n ntc(L1) + ntc(L2) + fin(L1)

L? 2m−1 + 2m−l−1 m+ 1 ntc(L) + fin(L)

LR 2m m+ 1 ntc(L) + f(L)

Contrary to what happens for complete DFAs, in non necessarily complete DFAs the

study of the number of transitions is relevant, because it is not determined by the

number of states. The incomplete transition complexity, itc(L), of a regular language

L is the minimal number of transitions over all non necessarily complete DFAs that

accept L. Given a σ ∈ Σ, the σ-transition complexity of L, itcσ(L), is the minimal

number of σ-transitions of any DFA recognising L. In [GSY11, Lemma 2.1] it was

proved that the minimal DFA accepting L has the minimal number of σ-transitions,

for every σ ∈ Σ. From this it follows that itc(L) =
∑

σ∈Σ itcσ(L). The incomplete

transition complexity has not been much studied. Recently, Gao et al. [GSY11] study

this measure for the boolean operations for the first time. In this work (Section 4.1) we

extend their analysis to the concatenation, the Kleene star and the reversal operations.

The nondeterministic state complexity of a regular language L, nsc(L), is the number of

states of a minimal NFA that accepts L; and similarly the nondeterministic transition

complexity of a regular language L, ntc(L), is the number of transitions of a minimal

NFA that accepts L. We can refine this last measure using the σ-nondeterministic

transition complexity of L, ntcσ(L), which is the minimal number of σ-transitions of

any transition-minimal NFA recognising L. Note that ntc(L) =
∑

σ∈Σ ntcσ(L). Both

measures, nsc(L) and ntc(L), were thoroughly studied [DS07, Sal07, HK03, HK09b,

HK09a].

The complexity of an operation on regular languages is the (worst-case) complexity of
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a language resulting from the operation, considered as a function of the complexities

of the operands. Following the formulation from Holzer & Kutrib [HK09b], given a

binary operation � on languages that preserves regularity, the �-language operation

state complexity problem for DFAs (NFAs) is defined as follows:

• Given an n-state DFA (NFA) A1 and an m-state DFA (NFA) A2.

• How many states are sufficient and necessary, in the worst case, to accept the

language L(A1) � L(A2) by a DFA (NFA).

This formulation can be generalised for other operation arities, complexity measures,

automata and classes of languages.

Usually an upper bound is obtained by providing an algorithm which, given represen-

tations of the operands (e.g. DFAs), constructs a model (e.g. DFA) that accepts the

language resulting from the referred operation. The number of states or transitions

of the resulting representation (e.g. DFA) is an upper bound for the state or the

transition complexity of the operation, respectively. To prove that an upper bound is

tight , for each operand we give a family of languages (parametrised by the complexity

measures), called witnesses , such that the complexity of the resulting language achieves

that upper bound.

Consider L1 and L2 such that sc(L1) = m (nsc(L1) = m) and sc(L2) = n (nsc(L2) =

n). Table 3.1 summarises the results for state complexity, nondeterministic state and

nondeterministic transition complexity of basic regularity preserving operations on

regular languages. The parameter s(L) is the minimal number of transitions leaving

the initial state of any transition-minimal NFA accepting L, fi(Li) is the minimal

number of final states of any transition-minimal NFA accepting Li, and fin(L) is the

number of transitions entering the final states of any transition-minimal NFA accepting

L.

Yu et al. [YZS94] studied the state complexity of concatenation, star, reversal, union,

and intersection. However, some of these results had already been presented by
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0 1 · · · n− 1
a

b
a, b a, b

a, b

Figure 3.1: Witness DFA for the state complexity of the star for m > 2.

(A) 0 1 2 · · · n− 1

b, c

a

a, c
b

a
b, c

a
b, c

a

Figure 3.2: Witness DFA for the state complexity of the reversal.

Maslov [Mas70] and Rabin & Scott [RS59] earlier. The families of languages which

witness the tightness for intersection are {x ∈ {a, b} | #a(x) = 0 (mod m)} and

{x ∈ {a, b} | #b(x) = 0 (mod n)}. Their complements are witnesses for union. For

concatenation, the authors also present binary languages tight bound witnesses for

m ≥ 1, n = 1 and m = 1, n ≥ 2, but ternary languages tight bound witnesses for

m > 1, n ≥ 2. Considering the star operation, the upper bound is achieved for the

languages {w ∈ {a, b}? | #a(w) is odd}, if m = 2; if m > 2 it is achieved for the family

of binary languages accepted by the DFAs presented in Figure 3.1. The authors also

proved the tightness of the bound of the reversal operation for a family of ternary

languages (see Figure 3.2). A family of binary languages for which the upper bound

for reversal is tight was given by Jirásková & Sěbej [Seb10, JS11]. Complementation

for DFAs is trivial and it is obvious that the state complexity of the complement is

the same one of the original language.

Concerning the unary languages, the state complexity for several operations is much

lower than what is predicted by the results for the general case. The main state

complexity results for this class of languages are presented in Table 3.2. For union and

intersection operations, the state complexity coincides asymptotically with the one

for general regular languages. Yu [Yu01] showed that the bound for these operations

was tight if m and n are coprimes and the witness languages are (am)? and (an)?.

In [YZS94] is also shown the tightness of the upper bound for the concatenation,
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Table 3.2: State complexity and nondeterministic state complexity of basic regularity
preserving operations on unary regular languages. The symbol ∼ means that the
complexities are asymptotically equal to the given values. The upper bounds of state
complexity for union, intersection and concatenation are exact ifm and n are coprimes.

Operation sc nsc

L1 ∪ L2 ∼ mn m+ n+ 1

L1 ∩ L2 ∼ mn mn

LC m eθ(
√
n lnn)

L1L2 ∼ mn [m+ n− 1,m+ n] if m,n > 1

L? (m− 1)2 + 1 if m > 1 m+ 1 if m > 2

LR m m

again just if m and n are coprimes. The languages (am)?am−1 and (an)?an−1 are the

witnesses of tightness. In the same paper the authors proved that the upper bound

for the star operation is tight and the witnesses of tightness are (aa)? if m = 2, and

(am)?am−1 if m > 2. The state complexity of the reversal of a unary language L is

trivially equal to the state complexity of L.

The state complexity of basic operations on NFAs was first studied by Holzer &

Kutrib [HK03], and also by Ellul [Ell02]. For the union operation, the idea is to

construct an NFA that starts with a new initial state and guesses which of the operands

should be simulate. Considering the families (am)? and (bn)? over a binary alphabet

we observe that the upper bound (m+ n+ 1) is tight. For intersection, the operands

have to be simulated in parallel, thus a product construction is needed. The languages

{w ∈ {a, b}? | #a(w) ≡ 0 (mod m)} and {w ∈ {a, b}? | #b(w) ≡ 0 (mod n)}, where

m and n are the respective nondeterministic state complexity, witness the tightness of

the bound for this operation. Since the complementation operation on DFAs neither

increases nor decreases the number of states of the referred DFA, the upper bound

for the nondeterministic state complexity of this operation on NFAs is obtained by

determinization. Jirásková [Jir05] proved that this upper bound is tight even for binary

languages. The same families considered for union operation, (am)? and (bn)?, permit

that the upper bound for the concatenation is reached. For the star operation, the

upper bound is achieved for the languages {w ∈ {a, b}? | #a(w) ≡ n−1 (mod n)}, for
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any n > 2. The languages ak(ak+1)?(b? + c?) for k ≥ 1, presented by Holzer & Kutrib,

serve as example for the fact that the upper bound for reversal operation is reached.

However, the referred bound is also tight for a family of binary languages [Jir05]. The

comparison between the upper bounds of this operation for DFAs and NFAs shows

how powerful the nondeterminism concept can be.

The nondeterministic state complexity of basic operations on unary regular languages

was studied by Holzer & Kutrib [HK02], and also by Ellul [Ell02]. For union and

intersection, the upper bound coincides with the one for general regular languages.

The upper bound for the union operation is only achievable if m is not a divisor or

multiple of n. The witness languages are the same of the deterministic case: (am)?

and (an)?. The same witnesses are used to prove the tightness of the upper bound

for the nondeterministic state complexity of intersection, which only occurs if m and

n are coprimes. Considering the concatenation, it is not known the tightness of the

upper bound m + n. However, considering the languages {al | l = m − 1 (mod m)}

and {al | l = (n − 1) (mod n)}, the lower bound m + n − 1 is achieved. The same

languages can be used to show the tightness of the bound for the star operation. Holzer

& Kutrib also proved that the upper bound for the nondeterministic state complexity

of the complement is tight.

Concerning the nondeterministic transition complexity, the results in Table 3.1 were

provided by Domaratzki & Salomaa [DS07] and they used a refined number of transi-

tions (ntcσ) for a more precise computation of the operational transition complexity.

For union, intersection and concatenation the families of languages which reach the

upper bound for the nondeterministic transition complexity are the same families

we presented for the nondeterministic state complexity. The languages (a + b)?a(a +

bm−3a(a+b)? for m ≥ 3 witness that the upper bound for complement is reached. This

family was presented by Holzer & Kutrib to show that for any integer n > 2 there

exists an n-state NFA A such that any NFA that accepts the complement of L(A)

needs at least 2n−2 states. For the star operation, the upper bound is achieved for

the languages ak−1b(akb)?. Considering the reversal, the languages (ak)?((b2)+ +(c2)+)
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Table 3.3: State complexity and nondeterministic state complexity of basic regularity
preserving operations on finite languages.

Operation sc nsc

L1 ∪ L2 mn− (m+ n) m+ n− 2

L1 ∩ L2 mn− 3(m+ n) + 12 mn

LC m θ(k
m

1+log(k) )

L1L2

m−2∑
i=0

min

{
ki,

f(A,i)∑
j=0

(n−2
j

)}
+

f(A)∑
j=0

(n−2
j

) m+ n− 1

L? 2m−f(A)−2 + 2m−3 m− 1

LR
∑l−1
i=0 k

i + 2m−l−1 m

witness the tightness of this operation.

Finite languages, that are the languages accepted by acyclic finite automata, are an

important subset of regular languages. Câmpeanu et al. [CCSY01] presented the first

formal study of state complexity of operations on finite languages. They studied the

operational state complexity of concatenation, star, and reversal. Yu [Yu01] presented

upper bounds for the union and the intersection, but the tight upper bounds were given

by Han & Salomaa [HS08] using growing size alphabets. In this work (Section 4.2) we

study the state and transition complexity of basic regularity preserving operations, for

incomplete DFAs representing finite languages. Nondeterministic state complexity of

basic operations on finite languages were studied by Holzer & Kutrib [HK03].

Let L1 and L2 such that sc(L1) = m (nsc(L1) = m) and sc(L2) = n (nsc(L2) = n),

and let A be the complete minimal DFA (NFA) such that L1 = L(A) and B be the

complete minimal DFA (NFA) such that L2 = L(B). Table 3.3 presents some results

on deterministic and nondeterministic state complexity of basic regularity preserving

operations on finite languages, where f(A) is the number of final states of DFA A,

and f(A, i) is the larger number of final states of any path from the initial state to the

state i in DFA A.

Câmpeanu et al. gave tight upper bounds for the state complexity of concatenation,

star and reversal operations. For concatenation the DFAs of the witness languages are
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presented in Figure 3.3. The upper bound for the star operation is achieved for the

(A) 0 1 · · · m− 2 m− 1
a, b a, b a, b a, b

a, b

(B) 0 1 · · · n− 2 n− 1
b

a

a, b a, b a, b
a, b

Figure 3.3: Witness DFAs for the state complexity of concatenation on finite languages.

family of languages accepted by the DFAs presented in Figure 3.4. Concerning the

reversal operation the Figure 3.5 present binary languages tight bound witnesses.

(1) 0 1 2 3 · · · m− 3 m− 2 m− 1
a, c

b

a, b

c

a, b, c a, b

c

a, b a, b, c a, b, c
a, b, c

(2) 0 1 2 3 · · · m− 3 m− 2 m− 1
a

b

c

a, b, c a, b

c

a, b, c a, b a, b, c a, b, c
a, b, c

Figure 3.4: Witness DFA for the state complexity of star on finite languages, with m
even (1) and odd (2).

Nondeterministic state complexity of basic operations on finite languages were studied

by Holzer & Kutrib [HK03]. The authors show that the finite languages am and bn

are witnesses for the necessity of the number of states for the union in the worst

case. For the intersection, the upper bound and the witness of tightness coincides

with the general case. The tight bound for complement is reached for alphabets

Σ = {a1, · · · , ak} of size k ≥ 2, and the languages Σja1Σiy, where i ≥ 0, 0 ≥ j ≥ i,
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(1) 0 1 · · · p− 2 p− 1 · · · 2p− 2 2p− 1
a, b a, b a, b b

a

a, b a, b a, b
a, b

(2) 0 1 · · · p− 2 p− 1 · · · 2p− 3 2p− 2
a, b a, b a, b b

a

a, b a, b a, b
a, b

Figure 3.5: Witness DFA for the state complexity of reversal on finite languages, with
2p− 1 states (1) and with 2p− 2 (2).

Table 3.4: State complexity and nondeterministic state complexity of basic regularity
preserving operations on finite unary languages.

Operation sc nsc

L1 ∪ L2 max(m,n) max(m,n)

L1 ∩ L2 min(m,n) min(m,n)

LC m m+ 1

L1L2 m+ n− 2 m+ n− 1

L? m2 − 7m+ 13 for m > 4 m− 1

LR m m

y ∈ Σ \ {a1}, and m > 2. For concatenation, the witness languages can be the ones

used for union. The languages am witness that the upper bound for the star operation

is achieved. Witness languages for reversal operation are (a+ b)m−1.

The results in Table 3.3 show that the (nondeterministic) state complexity of opera-

tions on finite languages are, in general, lower than in the general case.

Table 3.4 summarises the state complexity and nondeterministic state complexity

results of some basic operations on finite unary languages [CCSY01, Yu01, HK02].

State complexity of union, intersection, and concatenation on finite unary languages

are linear, while they are quadratic for general unary languages. The tightness of the

bounds are not difficult to prove, even considering the nondeterminism.
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3.2 Average-case Descriptional Complexity

Usually, studies on descriptional complexity consider worst-case analysis, for which

well established methods are known. However, study the worst-case complexity is

not enough for a complete description of the objects and algorithms. A worst-case

behaviour seldom occurs, and a worst-case upper bound can be of little use in prac-

tical applications. Normally, the worst-case complexity does not reflect the real life

algorithm performance. So, for practical purposes, an estimate for the average case

constitutes a much more useful information.

Average-case complexity turns out to be much harder to determine than worst-case

complexity. Most known results on average-case complexity were obtained using

generating functions and complex analysis. The analytic combinatorics framework

provides a tool for asymptotic average-case analysis, by relating the enumeration of

combinatorial objects to the algebraic and complex analytic properties of generating

functions. Another approach used to study the average complexity is to perform

statistically significant experiments, considering uniform random generators. However,

with this approach only small ranges of object sizes can be considered. Usually, both

in experimental and analytic results, a uniform distribution is considered.

Although its evident practical importance, there is still very few research on average-

case complexity. Concerning average state complexity, Nicaud [Nic99] proved that

the state complexity of union, intersection and concatenation on two unary languages

L1 and L2 is asymptotically equivalent to mn, where m = sc(L1) and n = sc(L2).

The average operational state complexity on finite languages is studied by Gruber &

Holzer [GH07] and by Bassino et al. [BGN10]. Felice & Nicaud [FN13, FN14] study

the average-case computational complexity of the Brzozowski minimisation algorithm

which provide some characterisations of the state complexity of reversal.

Regarding the asymptotic average size of NFAs equivalent to a given regular expression,

Nicaud [Nic09] proved that the average size of the Glushkov automata is linear on the

size of the original regular expression, which is quadratic in the worst-case. Broda et
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al. [BMMR11, BMMR12] proved that the size of partial derivative automaton is on

average half of the size of the Glushkov automaton.

3.2.1 Generating Functions and Analytic methods

In this section we introduce some of the results on analytic combinatorics which will

be used during this work. For a gentle introduction to the basic analytical tools of

this theory, with some illustrative examples using regular expressions, one points the

reader to [BMMR14].

The symbolic method is a general way to count families of combinatorial objects,

since it permits to directly and almost automatically build the generating functions

associated to combinatorial classes families.

A combinatorial class C is a set of objects on which a non-negative integer size function

| · | is defined, and such that for each n ≥ 0, the number of objects of size n in C, cn,

is finite. The sequence c0, c1, c2, · · · is called the counting sequence of the class C.

The generating function C(z) of a combinatorial class C is the formal series

G(C) = C(z) =
∑
c∈C

z|c| =
∞∑
n=0

cnz
n.

We denote by [zn]C(z) the coefficient cn of zn in C(z).

The symbolic method allows the construction of a combinatorial class C in terms of

simpler ones, B1, . . . , Bn, such that the generating function of C (C(z)) is a function of

the generating functions of Bi, for 1 ≤ i ≤ n. For example, if A and B are two disjoint

combinatorial classes, with generating functions A(z) and B(z), respectively, then

A∪B is a combinatorial class whose generating function is A(z) +B(z). Moreover, if

we consider the combinatorial class A×B its generating function is given by A(z)B(z).

The Kleene closure is other usual admissible operation.

Following Flajolet, let C be a combinatorial class of generating function C(z) and let
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f : C → R be a mapping from this class to R. The cost generating function F (z) of

C associated to f is

F (z) =
∑
c∈C

f(c)z|c| =
∑
n≥0

fnz
n, with fn =

∑
c∈C,|c|=n

f(c).

For a given n, the average value of f for the uniform distribution on the elements of

size n of C is, obviously,

µn(C, f) =
[zn]F (z)

[zn]C(z)
.

Once a generating function is known, we can compute asymptotic estimations of

its coefficients, using the theory of complex analysis, seeing generating functions as

analytic complex functions in C. Studying the generating function around its dominant

singularities we obtain the asymptotics of its coefficients.

Theorem 3.1. The coefficients of the function f(z) = (1 − z)−α where α ∈ C \ Z−0 ,

have the following asymptotic approximation:

[zn]f(z) =
nα−1

Γ(α)
+ o(nα−1)

where Γ is Euler’s gamma function.

For R ≥ 1, ξ ∈ C and 0 ≥ φ ≥ π/2, the domain ∆(ξ, φ,R) at z = ξ is the open set

∆(ξ, φ,R) = {z ∈ C | |z| < R, z 6= ξ and |Arg(z − ξ)| > φ}

where Arg(z) denotes the argument of z ∈ C. A domain is a ∆-domain at ξ if it is of

the form ∆(ξ, φ,R) for some ξ, φ and R.

We will consider that the generating functions have always a unique dominant singu-

larity and satisfy one of the two conditions of the following proposition.

Proposition 3.2. Let f(z) be a function that is analytic in some ∆-domain at ρ ∈

R+.
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1) If on the intersection of a neighbourhood of ρ and its ∆-domain,

f(z) = a− b
√

1− z/ρ+ o(
√

1− z/ρ), with a, b ∈ R, b 6= 0

then [zn]f(z) ∼ b
2
√
π
ρ−nn−3/2.

2) If on the intersection of a neighbourhood of ρ and its ∆-domain,

f(z) =
a√

1− z/ρ
+ o(

1√
1− z/ρ

), with a ∈ R, a 6= 0,

then [zn]f(z) ∼ a√
π
ρ−nn−1/2.

The following lemma it is useful in some analytic computations.

Lemma 3.3. If f(z) is an entire function with limz→ρ f(z) = a and r ∈ R, then

f(z)(1− z/ρ)r = a(1− z/ρ)r + o((1− z/ρ)r).

In the following section we present a simple example that illustrates the use of the

symbolic method to compute the generating function corresponding to the regular

expressions given by a particular grammar. We also estimate the number of letters in

regular expressions of a given size.

3.2.1.1 From a Grammar to a Generating Function

Let Rk be the set of regular expressions defined by the following grammar:

α := ε | σ1 | · · · | σk | (α + α) | (α · α) | α?.

Consider that the size of a regular expression is its number of symbols (letters and

operators) not counting parentheses, as we already referred. Equipped with this size

function, Rk is a combinatorial class.
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Using the recursive definition of Rk given by the grammar, we will compute the

associated generating function Rk(z) =
∑

n≥0 rnz
n. Note that the values of rn are

the number of regular expressions α of size n. The regular expression α can be either

a letter σi or one of the forms α + α, α · α or α?. Since these are disjoint cases, they

have to be counted separately using the symbolic method already presented:

Rk(z) = (k + 1)z + G(Rk × {+} ×Rk) + G(Rk × {·} ×Rk) + G(Rk × {?})

= (k + 1)z + zRk(z)2 + zRk(z)2 + zRk(z)

= (k + 1)z + 2zRk(z)2 + zRk(z)

Solving this equation for Rk(z), we obtain two possible solutions:

Rk(z) =
1− z ±

√
∆k(z)

4z
, where ∆k(z) = 1− 2z − (7 + 8k)z2.

As Rk(0) = r0 = 0, one must have lim
z→0

Rk(z) = 0, which is satisfied only by

Rk(z) =
1− z −

√
∆k(z)

4z
.

The zeros of ∆k(z) are

ρk =
1

1 + 2
√

2 + 2k
and ρk =

1

1− 2
√

2 + 2k
.

The coefficients of the series R̃k(z) = 4zRk(z) + z = 1 −
√

∆k(z), have the same

asymptotical behaviour of the ones of Rk(z).

We know that

∆k(z) = (7 + 8k)(z − ρk)(zρk)

= (7 + 8k)(z − ρk)ρk(1− z/ρk)
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and

(7 + 8k)(ρk − ρk) = 4
√

2 + 2kρk.

Thus by Lemma 3.3,

√
∆k(z) =

√
4
√

2 + 2kρk
√

(1− z/ρk) + o(
√

(1− z/ρk))

= 2
4
√

2 + 2k
√
ρk
√

(1− z/ρk) + o(
√

(1− z/ρk)).

Therefore,

R̃k(z) = 4zRk(z) + z = 1− 2
4
√

2 + 2k
√
ρk
√

(1− z/ρk) + o(
√

(1− z/ρk)

By Proposition 3.2, one obtains

[zn](4zRk(z) + z) ∼
4
√

2 + 2k
√
ρk√

π
ρ−nk n−3/2,

[zn]Rk(z) ∼
4
√

2 + 2k
√
ρk

4
√
π

ρ
−(n+1)
k (n+ 1)−3/2

where [zn]Rk(z) is the number of regular expressions α with size n.

Nicaud showed that the cost generating function for the number of letters in a regular

expressions α is

Lk(z) =
kz√
∆k(z)

,

and satisfies

[zn]Lk(z) ∼ kρk√
π(2− 2ρk)

ρ−nk n−1/2.

From this we can deduce that for a given n, the average number of letters in a regular

expression of size n is given by

[zn]Lk(z)

[zn]Rk(z)
∼ 4kρ2

k

1− ρk
n.
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It is easy to see that

lim
k→∞

4kρ2
k

1− ρk
↗ 1

2
,

which means that, for large alphabets, the average number of letters in a regular

expression grows to about half of its size.



Chapter 4

Operational Complexity on

Incomplete DFAs

The descriptional complexity of regular languages has been extensively investigated

in the last years, as we already saw in the previous chapter. The complexity measure

usually studied for DFAs is the state complexity. However for NFAs and incomplete

DFAs the transition complexity is generally considered a more interesting measure.

In this chapter we study the incomplete operational transition complexity of several

operations on regular and finite languages. To be comprehensive we also analyse

the state complexity of the resulting languages. In general, transition complexity

bounds depend not only on the complexities of the operands but also on other refined

measures, as the number of undefined transitions or the number of transitions that

leave the initial state. For both families of languages we performed some experimental

tests in order to have an idea of the average-case complexity of those operations. This

study was presented by Maia et al. [MMR15a], and it expands the contributions in

two extended abstracts from the same authors [MMR13b, MMR13a].

In Section 4.1, we study the state and transition complexity for the union, con-

catenation, Kleene star and reversal operations on regular languages. For all these

operations tight upper bounds are given. The tight upper bound presented for the

57
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Table 4.1: Incomplete transition complexity for regular and finite languages, where
m and n are the (incomplete) state complexities of the operands, f1(m,n) = (m −
1)(n−1)+1 and f2(m,n) = (m−2)(n−2)+1. The column |Σ| indicates the minimal
alphabet size for which the upper bound is reached.

Operation Regular |Σ| Finite |Σ|

L1 ∪ L2 2n(m+ 1) 2 3(mn− n−m) + 2 f1(m,n)

L1 ∩ L2 nm 1 (m − 2)(n − 2)(2 +∑min(m,n)−3
i=1 (m−

2− i)(n− 2− i)) + 2

f2(m,n)

LC m+ 2 1 m+ 1 1

L1L2

2n−1(6m+ 3)− 5,
3

2n(m− n+ 3)− 8, if m+ 1 ≥ n 2

if m,n ≥ 2 See Theorem 4.18(4.7) n− 1

L? 3.2m−1 − 2, if m ≥ 2 2
9 · 2m−3 − 2m/2 − 2, if m
is odd 3

9 · 2m−3 − 2(m−2)/2 − 2, if m is even

LR 2(2m − 1) 2
2p+2 − 7, if m = 2p

2
3 · 2p − 8, if m = 2p− 1

transition complexity of the union operation refutes the conjecture presented by Gao

et al. [GSY11]. We also present the same study for unary regular languages. In

Subsection 4.1.6 we analyse some experimental results. In the Section 4.2 we continue

the line of research of Section 4.1 considering finite languages. For the concatenation,

we correct the upper bound for the state complexity of complete DFAs [CCSY01],

and show that if the right operand is larger than the left one, the upper bound is

only reached using an alphabet of variable size. We also present some experimental

results for finite languages. The algorithms and the witness language families used,

although new, are based on the ones of Yu et al. [YZS94]; several proofs required new

techniques.

Table 4.1 presents a summary and a comparison of the obtained results for transition

complexity on general and finite languages. Note that the values in the table are

obtained using languages for which the upper bounds are reached.
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To express the transition complexity of a language operation, we also use the following

measures and refined numbers of transitions. Let A = 〈Q,Σ, δ, 0, F 〉 be a DFA, with

Q = [0, n[ , σ ∈ Σ, and i ∈ Q, we define

• f(A) = |F |;

• tσ(A, i) =

1, if there exists a σ-transition leaving i;

0, otherwise;

• tσ(A, i) is the complement of tσ(A, i);

• sσ(A) = tσ(A, 0);

• tσ(A) =
∑

i∈Q tσ(A, i);

• uσ(A) = |Q| − tσ(A); and

• ũσ(A) is the number of non-final states without σ-transitions.

Whenever there is no ambiguity we omit A from the above definitions. All the above

measures can be defined, for a regular language L, considering the measure values for

its minimal DFA. Thus we can use following notation, f(L), sσ(L), tσ(L), uσ(L), and

ũσ(L), respectively.

4.1 Regular Languages

Gao et al. [GSY11] were the first to study the transition complexity of Boolean

operations on regular languages based on incomplete DFAs. For the intersection and

the complement, tight bounds were presented, but for the union operation the upper

and lower bounds differ by a factor of two. Nevertheless, they conjectured a tight

upper bound for this operation.

In this section, we continue this study by extending the analysis to the concatenation,

the Kleene star and the reversal operations. For these operations tight upper bounds
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Table 4.2: State complexity of basic regularity preserving operations on regular
languages.

Operation sc isc nsc

L1 ∪ L2 mn mn + m + n m+ n+ 1

L1 ∩ L2 mn mn mn

LC n n+ 1 2n

L1L2 m2n − f12n−1 (m + 1)2n − f12n−1 − 1 m+ n

L? 2m−1 + 2m−l−1 2m−1 + 2m−l−1 m+ 1

LR 2m 2m − 1 m+ 1

are given. We also give a tight upper bound for the transition complexity of the union,

which refutes the conjecture presented by Gao et al., as we already mentioned. We

also prove that the upper bounds are maximal when f(L) is minimal. This study is

also done for unary regular languages.

In Tables 4.2 and 4.3 we summarise the results of this section (in bold) as well as

some known results for other descriptional complexity measures: state complexity,

and nondeterministic transition complexity, already referred in Section 3.1.

At the end of the section, we present some experimental results in order to analyse the

descriptional complexity measures when the referred operations are performed with

uniformly random generated DFAs as operands. These experiments allow the reader

to make an approximate prediction of the average-case complexity of the operations.

4.1.1 Union

It was shown by Gao et al. [GSY11] that

itc(L1 ∪ L2) ≤ 2(itc(L1) itc(L2) + itc(L1) + itc(L2)).

The lower bound itc(L1) itc(L2)+ itc(L1)+ itc(L2)−1 was given for particular ternary

language families which state complexities are relatively prime. The authors conjec-
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Table 4.3: Transition complexity of basic regularity preserving operations on regular
languages.

Operation itc ntc

L1 ∪ L2 itc(L1)(1 + n) + itc(L2)(1 + m)−∑
σ∈Σ itcσ(L2) itcσ(L1)

ntc(L1)+ntc(L2)+s(L1)+s(L2)

L1 ∩ L2 itc(L1) itc(L2)
∑
σ∈Σ

ntcσ(L1) ntcσ(L2)

LC |Σ|(itc(L) + 2)
|Σ|2ntc(L)+1

2
ntc(L)

2 −2 − 1

L1L2 |Σ|(m + 1)2n − |ΣL2
c |(f 2n−1 + 1)−

∑
σ∈Σ

L2
i

(2uσ + f 2itcσ(L2))−
∑

σ∈Σii

ũσ2uσ −
∑

σ∈Σic

ũσ

ntc(L1) + ntc(L2) + fin(L1)

L? |Σ|(2m−l−1 + 2m−1) +
∑
σ∈Σi

(sσ − 2ũσ ) ntc(L) + fin(L)

LR |Σ|(2m − 1) ntc(L) + f(L)

tured, also, that

itc(L1 ∪ L2) ≤ itc(L1) itc(L2) + itc(L1) + itc(L2),

when itc(Li) ≥ 2, i = 1, 2.

We will present an upper bound for the state complexity and we give a new upper

bound for the transition complexity of the union of two regular languages. We also

present families of languages for which these upper bounds are reached, witnessing,

thus, that these bounds are tight.

Following, we describe the algorithm for the union of two DFAs, based on the usual

product construction, that was presented by Gao et al. [GSY11, Lemma 3.1.]. Given

two incomplete DFAs A = 〈[0,m[,Σ, δA, 0, FA〉 and B = 〈[0, n[,Σ, δB, 0, FB〉, and con-

sidering ΩA and ΩB as the dead states ofA andB, respectively, let C = 〈([0,m[∪{ΩA})×

([0, n[∪{ΩB})),Σ, δC , (0, 0), (FA × ([0, n[∪{ΩB})) ∪ (([0,m[∪{ΩA}) × FB)〉 be a new

DFA where for σ ∈ Σ, i ∈ [0,m[∪{ΩA}, and j ∈ [0, n[∪{ΩB},
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δC((i, j), σ) =



(δA(i, σ), δB(j, σ)), if δA(i, σ) ↓ ∧ δB(j, σ) ↓;

(δA(i, σ),ΩB), if δA(i, σ) ↓ ∧ δB(j, σ) ↑;

(ΩA, δB(j, σ)), if δA(i, σ) ↑ ∧ δB(j, σ) ↓;

↑, otherwise.

Note that δA(ΩA, σ) and δB(ΩB, σ) are always undefined, and the pair (ΩA,ΩB) never

occurs in the image of δC . It is easy to see that DFA C accepts the language L(A) ∪

L(B). The number of states and transitions which are sufficient for any DFA C are

obtained in the following theorem.

Theorem 4.1. For any two regular languages L1 and L2 with isc(L1) = m and

isc(L2) = n, one has isc(L1 ∪ L2) ≤ mn+m+ n and

itc(L1 ∪ L2) ≤ itc(L1)(1 + n) + itc(L2)(1 +m)−
∑
σ∈Σ

itcσ(L1) itcσ(L2).

Proof. Let A and B be the minimal DFAs that recognise L1 and L2, respectively.

Consider the DFA C such that L(C) = L(A) ∪ L(B) and C is constructed using the

algorithm described above. The result for the isc(L1 ∪ L2) is given by Gao et al. in

[GSY11]. Let us prove the result for the itc(L1 ∪ L2). Consider the σ-transitions of

A named by αi (i ∈ [1, tσ(A)]) and the undefined σ-transitions of A named by ᾱl

(l ∈ [1, uσ(A) + 1]). Consider also the σ-transitions of B named by βj (j ∈ [1, tσ(B)])

and the undefined σ-transitions named by β̄z (z ∈ [1, uσ(B)+1]). We need to consider

one more undefined transition in each DFA which corresponds to ΩA and ΩB. The

σ-transitions of the DFA C accepting LA∪LB can only have one of the following three

forms: (αi, βj), (ᾱl, βj), and (αi, β̄z). Thus the DFA C has tσ(A)tσ(B) σ-transitions

of the form (αi, βj); tσ(A)(uσ(B) + 1) σ-transitions of the form (ᾱl, βj); and (uσ(A) +

1)tσ(B) σ-transitions of the form (αi, β̄z). As we know that uσ(A) = m − tσ(A) and

uσ(B) = n− tσ(B), the number of σ-transitions is

tσ(A)tσ(B) + tσ(A)(n− tσ(B) + 1) + tσ(B)(m− tσ(A) + 1).
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Therefore, with itcσ(L(A)) = tσ(A) and itcσ(L(B)) = tσ(B) the inequality holds.

4.1.1.1 Worst-case Witnesses

In this section, we show that the upper bounds established in Theorem 4.1 are tight.

We need to consider two cases, parametrised by the state complexities of the language

operands: m ≥ 2 and n ≥ 2; and m = 1 and n ≥ 2 (or vice versa). Note that, in this

section, we consider automaton families over a binary alphabet, Σ = {a, b}.

Case 1: m ≥ 2 and n ≥ 2. Let A = 〈[0,m[,Σ, δA, 0, {0}〉 with δA(m − 1, a) = 0,

and δA(i, b) = i + 1, 1 ∈ [0,m− 1[; and B = 〈[0, n[,Σ, δB, 0, {n− 1}〉 with δB(i, a) =

i + 1, i ∈ [0, n− 1[, and δB(i, b) = i, i ∈ [0, n[. These minimal DFAs are represented

in Figure 4.1 and Figure 4.2, respectively.

0 1 · · · m− 1
b b b

a

Figure 4.1: DFA A with m states.

0 1 · · · n− 1
a

b
a

b
a

b

Figure 4.2: DFA B with n states.

Theorem 4.2. For any integers m ≥ 2 and n ≥ 2, there exist an m-state DFA A

with r = m transitions and an n-state DFA B with s = 2n − 1 transitions such that

any DFA accepting L(A)∪L(B) needs, at least, mn+m+ n states and (r+ 1)(s+ 1)

transitions.

Proof. Let us count the number of states of the DFA C accepting L(A) ∪ L(B),

constructed by the previous algorithm. Consider the pairs (i, j) representing states of

that DFA C. Then for each (i, j) where i ∈ ([0,m[∪ΩA) and j ∈ ([0, n[∪ΩB) except

the case when (i, j) = (ΩA,ΩB), there exists a word
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w =


(bm−1a)jbi, if i 6= ΩA ∧ j 6= ΩB;

(bm−1a)nbi, if i 6= ΩA ∧ j = ΩB;

bmaj, if i = ΩA ∧ j 6= ΩB;

which represents each state, i.e., a different left quotient. Thus there are at least

mn+m+ n distinct left quotients (states of C).

Let us consider the number of transitions of DFA C. If we name the defined and

undefined transitions of the DFAs A and B as in the proof of the Theorem 4.1 then

C has:

• mn+ n−m+ 1 a-transitions because there exist n− 1 a-transitions of the form

(αi, βj); 2 a-transitions of the form (αi, β̄j); and m(n − 1) a-transitions of the

form (ᾱi, βj);

• mn + m + n − 1 b-transitions because there exist (m − 1)n b-transitions of the

form (αi, βj); m− 1 b-transitions of the form (αi, β̄j); and 2n b-transitions of the

form (ᾱi, βj).

As r = m and s = 2n− 1, DFA C has (r + 1)(s+ 1) transitions.

The referred conjecture itc(L1 ∪L2) ≤ itc(L1) itc(L2) + itc(L1) + itc(L2) fails for these

families because, as we prove in the previous theorem, itc(L1 ∪ L2) = (r + 1)(s + 1),

where r = itc(L1) and s = itc(L2), then itc(L1 ∪ L2) = itc(L1) itc(L2) + itc(L1) +

itc(L2) + 1.

Case 2: m = 1 and n ≥ 2. Let A = 〈{0},Σ, δA, 0, {0}〉 with δA(0, a) = 0, and

consider the DFA B defined in the previous case.

Theorem 4.3. For any integer n ≥ 2, there exists an 1-state DFA A with one

transition and an n-state DFA B with s = 2n − 1 transitions such that any DFA
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accepting L(A) ∪ L(B) has, at least, 2n+ 1 states and 2(s+ 1) transitions.

Proof. Consider the DFA C, accepting L(A) ∪ L(B), constructed by the previous

algorithm. As in the proof of Theorem 4.2, let us see the states of DFA C as pairs

(i, j) where i ∈ ({0}∪ΩA) and j ∈ ([0, n[∪ΩB) except the case when (i, j) = (ΩA,ΩB).

For each of those pairs, there exists a word,

w =


aj, if i 6= ΩA ∧ j 6= ΩB;

baj, if i = ΩA ∧ j 6= ΩB;

an, if i 6= ΩA ∧ j = ΩB;

which represents a state of C, i.e., a different left quotient. Thus there are at least

2n+ 1 distinct left quotients.

Let us consider the transitions named as in the proof of the Theorem 4.1, then DFA

C has:

• 2n a-transitions because there exist n − 1 a-transitions of the form (αi, βj); 2

a-transitions of the form (αi, β̄j); and n− 1 a-transitions of the form (ᾱi, βj);

• 2n b-transitions because by this symbol there are only transitions of the form

(ᾱ, βj).

Thus, the DFA C has 4n transitions. As r = 1 and s = 2n−1, the DFA C has 2(s+1)

transitions. Note that r = 1 and, thus, 2(s+ 1) = (r + 1)(s+ 1).

4.1.2 Concatenation

In this section we deal with the incomplete descriptional complexity of the concatena-

tion of two regular languages.

The construction used is as follows. Given two incomplete DFAs, A = 〈[0,m[,Σ, δA, 0, FA〉

and B = 〈[0, n[,Σ, δB, 0, FB〉, a DFA accepting L(A)L(B) is C = 〈R,Σ, δC , r0, FC〉
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where for σ ∈ Σ, i ∈ [0,m[ , and P ⊆ [0, n[ , R ⊂ ([0,m[∪{ΩA}) × 2[0,n[ (precisely

defined in the proof of Theorem 4.4); r0 is (0, ∅) if 0 /∈ FA, and is (0, {0}) otherwise;

FC = {(i, P ) ∈ R | P ∩ FB 6= ∅}; and

δC((q, T ), σ) =



(δA(q, σ), δB(T, σ) ∪ {0}), if δA(q, σ) ↓ ∧ δA(q, σ) ∈ FA;

(δA(q, σ), δB(T, σ)), if δA(q, σ) ↓ ∧ δA(q, σ) /∈ FA;

(ΩA, δB(T, σ)). if δA(q, σ) ↑ ∧ δB(T, σ) 6= ∅;

↑, otherwise.

In the following, we determine the number of states and transitions that are sufficient

for any DFA C resulting from the previous construction.

Given an automaton A, its alphabet can be partitioned in two sets, ΣA
c and ΣA

i , such

that σ ∈ ΣA
c if A is σ-complete, and σ ∈ ΣA

i otherwise. In the same way, considering

two automata A and B, the alphabet can be divided into four disjoint sets Σci, Σcc, Σii

and Σic. As before, these notations can be extended to regular languages considering

their minimal DFAs.

Theorem 4.4. For any regular languages L1 and L2 with isc(L1) = m, isc(L2) = n,

uσ = uσ(L2), f = f(L1) and ũσ = ũσ(L1), one has isc(L1L2) ≤ (m+ 1)2n− f2n−1− 1,

and

itc(L1L2) ≤ |Σ|(m+ 1)2n − |Σic ∪ Σcc|(f2n−1 + 1)−

−
∑

σ∈(Σci∪Σii)

(2uσ + f2itcσ(L2))−
∑
σ∈Σii

ũσ2uσ −
∑
σ∈Σic

ũσ.

Proof. Let A and B be the minimal DFAs that recognise L1 and L2, respectively.

Consider the DFA C such that L(C) = L(A)L(B), constructed using the algorithm

described above. First, let us consider the problem of isc(L1L2). The set R is a set

of pairs (s, P ) where s ∈ ([0,m[∪ΩA), and P ⊆ [0, n[ . There exist (m + 1)2n such

pairs. However, we know that R does not contain the pairs in which s is a final state

of A and the set P does not contain the initial state of B. Thus, we need to remove
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f(A)2n−1 pairs from the first counting. As the pair (ΩA, ∅) is not in R, we can also

remove it. The resulting number of states is, thus, (m+ 1)2n − f(A)2n−1 − 1.

Now, let us consider the problem of estimating itc(L1L2). We name the σ-transitions

of A and B as in the proof of the Theorem 4.1 with a slight modification: z ∈ [1, uσ(B)].

The σ-transitions of C are pairs (θ, γ) where θ is either an αi or an ᾱl, and γ is a set

of βj or β̄z. By construction, C cannot have transitions where θ is an ᾱl, and γ is

a set with only β̄k, because these pairs would correspond to undefined transitions. If

σ ∈ Σci, the number of C σ-transitions is (tσ(A) + 1)2tσ(B)+uσ(B)− 2uσ(B)− f(A)2tσ(B),

because the number of θs is tσ(A) + 1 and the number of γs is 2tσ(B)+uσ(B). We need

to remove the 2uσ(B) sets of transitions of the form (v, ∅) where v corresponds to the

undefined σ-transition leaving the state ΩA. If θ corresponds to a transition that leaves

a final state of A, then γ needs to include the initial state of B. Thus we also remove

f(A)2tσ(B) pairs. If σ ∈ Σcc, C has (tσ(A) + 1)2tσ(B) − 1− f(A)2tσ(B)−1 σ-transitions.

In this case, uσ(B) = 0. The only pair we need to remove is (v, ∅) where v corresponds

to the undefined σ-transition leaving the state ΩA. Analogously, if σ ∈ Σii, C has

(tσ(A) +uσ(A) + 1)2tσ(B)+uσ(B)− (ũσ(A) + 1)2uσ(B)− f(A)2tσ(B) σ-transitions. Finally,

if σ ∈ Σic, C has (tσ(A) + uσ(A) + 1)2tσ(B)− (ũσ(A) + 1)− f(A)2tσ(B)−1 σ-transitions.

Thus, after some simplifications, the right side of the inequality in the proposition

holds.

Corollary 4.5. The isc(L1L2) in the Theorem 4.4 is maximal when f(L1) = 1.

4.1.2.1 Worst-case Witnesses

In the following we show that the complexity upper bounds found in Theorem 4.4

are tight. As in Section 4.1.1.1, we need to consider three different cases, according

to the state and transition complexities of the operands. Although the tight bound

for (complete) state complexity can be reached over a binary alphabet [Jir05], all

automaton families used in this section have an alphabet Σ = {a, b, c}.
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Case 1: m ≥ 2 and n ≥ 2. Let A = 〈[0,m[,Σ, δA, 0, {m − 1}〉 with δA(i, a) =

i + 1 mod m, if i ∈ [0,m[, δA(i, b) = 0, if i ∈ [1,m[, and δA(i, c) = i if i ∈ [0,m[; and

B = 〈[0, n[,Σ, δB, 0, {n − 1}〉 with δB(i, a) = i if i ∈ [0, n[, δB(i, b) = i + 1 mod n, if

i ∈ [0, n[, and δB(i, c) = 1, i ∈ [1, n[. These automata are simple modifications of

the ones presented in the proof of the Theorem 2.1 in [YZS94]: a b-transition from

the state 0 to itself on DFA A, and a c-transition from the state 0 to the state 1 were

eliminated. Both automata are represented in Figure 4.3.

(A) 0 1 2 · · · m− 1
ac

a

b

c
a

c

b

a
c

a, b

(B) 0 1 2 · · · n− 1
b

a ba, c
b

a
c b

a

c
b

Figure 4.3: DFA A with m states and DFA B with n states.

Theorem 4.6. For any integers m ≥ 2 and n ≥ 2, there exist an m-state DFA A

with r = 3m − 1 transitions and an n-state DFA B with s = 3n − 1 transitions such

that any DFA accepting L(A)L(B) has, at least, (m + 1)2n − 2n−1 − 1 states and

(r + 1)2
s+1

3 + 3.2
s−2

3 − 5 transitions.

Proof. Consider the DFA C such that L(C) = L(A)L(B) and C is constructed using

the concatenation algorithm described above. First we prove the result for the number

of states, following the proof of the Theorem 2.1 in [YZS94]. From each w ∈ {a, b}?, let

S(w) = { i | w = w′w′′ such that w′ ∈ L(A) and i = |w′′|b mod n }, where |w|b denotes

the number of occurrences of the symbol b in the word w. Consider w,w′ ∈ {a, b}?

such that S(w) 6= S(w′). Let k ∈ S(w) \ S(w′) (or S(w′) \ S(w)). It is clear that

wbn−1−k ∈ L(A)L(B) but w′bn−1−k /∈ L(A)L(B).

For each w ∈ {a, b}?, define T (w) = max{ |w′′| | w = w′w′′ and w′′ ∈ a? }. Consider

w,w′ ∈ {a, b}? such that S(w) = S(w′) and T (w) > T (w′) mod m. Let i = T (w) mod
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m and w′′ = am−1−ibn−1. Therefore ww′′ ∈ L(A)L(B), but w′w′′ /∈ L(A)L(B) because

it has at least less one a than ww′′.

For each subset s = {i1, . . . , it} ⊆ [0, n[ , where i1 > · · · > it, and an integer j ∈

[0, . . . ,m[∪{ΩA} except the cases where 0 6∈ s and j = m− 1, and s = ∅ and j = ΩB,

there exists a word

w =

a
m−1bi1 · · · am−1bitaj, if j 6= ΩA;

am−1bi1 · · · am−1bitbn, if j = ΩA;

such that S(w) = s and T (w) = j, which represents a different left quotient induced

by L(A)L(B) . Thus, C is minimal and has (m+ 1)2n − 2n−1 − 1 states.

Considering, now, the number of transitions. As in the proof of Theorem 4.4, the

transitions of C are pairs (θ, γ). Then, C has:

• (m + 1)2n − 2n−1 − 1, a-transitions. There are m + 1 θs and 2n γs, from which

we need to remove the transition (ΩA, ∅). If θ is a transition which leaves a final

state of A, γ needs to include the transition that leaves the initial state of B.

Thus, 2n−1 pairs are removed.

• (m+ 1)2n − 2n−1 − 2, b-transitions. Here, the transition (θ̄, ∅) is removed.

• (m+ 1)2n − 2n−1 − 2, c-transitions. This is analogous to the previous case.

As m = r+1
3

and n = s+1
3
, the DFA C has (r + 1)2

s+1
3 + 3.2

s−2
3 − 5 transitions.

Case 2: m = 1 and n ≥ 2. Let A = 〈{0},Σ, δA, 0, {0}〉 with δA(0, b) = δA(0, c) = 0;

and B = 〈[0, n[,Σ, δB, 0, {n− 1}〉 with δB(i, a) = i if i ∈ [0, n[, δB(i, b) = i + 1 mod n

if i ∈ [0, n[, and δB(i, c) = i + 1 mod n, if i ∈ [1, n[. The automata A and B are

represented in Figure 4.4.

Theorem 4.7. For any integer n ≥ 2, there exist a 1-state DFA A with 2 transitions

and an n-state DFA B with s = 3n − 1 transitions such that any DFA accepting
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(A) (B) 0

b, c
(B) 0 1 · · · n− 1

b
a

b, c
a

b, c
a

b, c

Figure 4.4: DFA A with 1 state and DFA B with n states.

L(A)L(B) has, at least, 2n+1 − 2n−1 − 1 states and 3(2
s+4

3 − 2
s−2

3 )− 4 transitions.

Proof. Consider the DFA C = 〈R,Σ, δ, 0, F 〉, constructed by the concatenation al-

gorithm previously defined, such that L(C) = L(A)L(B). One needs to prove that

C is minimal, i.e. all states are reachable from the initial state and are pairwise

distinguishable. The automaton C has states (q, P ) with q ∈ {ΩA, 0}, P = {i1, . . . , ik},

1 ≤ k ≤ n, and i1 < · · · < ik. There are two kinds of states: final states where

ik = n− 1; and non-final states where ik 6= n− 1. Note that, whenever q = 0, we have

i1 = 0.

Let f be a final state of the form (q, P ), where P = {i1, . . . , ik−1, n − 1} and P̄ =

[0, n[ \P . Let us construct a word w of size n, such that δ(0, w) = f . We will count

the positions (starting with zero) of the word w from the last to the first. If f has

q = ΩA, w has an a in the position i1; c’s in the positions j ∈ P̄ \ {i1− 1} if i1 6= 0, or

j ∈ P̄ otherwise; all the other positions are b’s. For example, if n = 5, P = {4} and

P̄ = {0, 1, 2, 3} then w = abccc. If f has q = 0 the word has c’s in all positions ij − 1,

ij ∈ P̄ ; all the other positions are b′s. For example, if P = {0, 4}, P̄ = {1, 2, 3} and

n = 5 then w = bbccc. Now, consider the non-final states p which have the same form

(q, P ), but ik 6= n − 1 and P̄ = {0, . . . , n − 2} \ P . The word w for these non-final

states is constructed with the same rules described above for final states. This proves

that all states are reachable from initial state.

Now let us prove that all states are pairwise distinguishable. Final states are trivially

distinguishable from non-final states. We need to prove that states of the same kind

are distinguishable. Consider w,w′ ∈ Σ? such that δ(0, w) = q and δ(0, w′) = p,

q 6= p. Suppose that q and p are final. There are three cases to consider. Let

q = (0, {0, i2, . . . , ik, n− 1}) and p = (0, {0, j2, . . . , jk′ , n− 1}). Suppose k ≥ k′ and i ∈



4.1. REGULAR LANGUAGES 71

{0, i2, . . . , ik, n−1}\{0, j2, . . . , jk′ , n−1}. Then wcn−1−i ∈ L(C) but w′cn−1−i /∈ L(C).

If q = (ΩA, {i1, . . . , ik, n−1}) and p = (ΩA, {j1, . . . , jk′ , n−1}), we can take i as before

and then wbn−1−i ∈ L(C) but w′bn−1−i /∈ L(C). If q = (0, {0, i2, . . . , ik, n − 1}) and

p = (ΩA, {j1, . . . , jk′ , n−1}), then wcnbn−1 ∈ L(C) but w′cnbn−1 /∈ L(C). Now suppose

that q and p are non-final. Let q = (0, {0, i2, . . . , ik}) and p = (0, {0, j2, . . . , jk′}).

Consider, without loss of generality, k ≥ k′ and i ∈ {0, i2, . . . , ik} \ {0, j2, . . . , jk′}. It

is clear that wcn−1−i ∈ L(C) but w′cn−1−i /∈ L(C). If q = (ΩA, {i1, . . . , ik}) and p =

(ΩA, {j1, . . . , jk′}), we can take i ∈ {i1, . . . , ik}\{j1, . . . , jk′} and then wbn−1−i ∈ L(C)

but w′bn−1−i /∈ L(C ′). Finally, if q = (0, {0, i2, . . . , ik}) and p = (ΩA, {j1, . . . , jk′}),

clearly wcnbn−1 ∈ L(C) but w′cnbn−1 /∈ L(C). Thus C is minimal and has 2n−2 + 2n−1

final states and 2n−2 + 2n−1 − 1 non-final states. Therefore, it has 2n+1 − 2n−1 − 1

states.

The proof for the number of transitions is similar to the proof for the number of

transitions of Theorem 4.6.

(A) 0 1 2 · · · m− 1 (B) 0
b, c

a
b

a
b, c

a
b, c

a

b, c

b, c

Figure 4.5: DFA A with m states and DFA B with 1 state.

Case 3: m ≥ 2 and n = 1. Let A = 〈[0,m[,Σ, δA, 0, {m − 1}〉 with δA(i, a) = i, if

i ∈ [0,m[, δA(i, b) = i+ 1 mod m, if i ∈ [0,m[, δA(i, c) = i+ 1 mod m if i ∈ [0,m[\[1];

and B = 〈{0},Σ, δB, 0, {0}〉 with δB(0, b) = δB(0, c) = 0. A representation of these

DFAs can be seen in Figure 4.5.

Theorem 4.8. For any integer m ≥ 2, there exist an m-state DFA A with r = 3m−1

transitions and an 1-state DFA B with 2 transitions such that any DFA accepting

L(A)L(B) has at least 2m states and 2r transitions.

Proof. Consider the DFA C = 〈Q,Σ, δ, 0, F 〉, such that L(C) = L(A)L(B), con-
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structed with the previous algorithm. We only present the proof for the number

of states because the proof for the number of transitions is similar to the proof of

Theorem 4.6. By construction we know that C has two kinds of p states:

• final states, which are of the form (x, {0}) where x ∈ [0,m[∪{ΩA}.

• non-final states, which are of the form (x, ∅) where x ∈ [0,m− 2].

For any state p we can find a word w for which δ(0, w) = p. If p is a final state of

the form (x, {0}) where x ∈ [0,m[ then w = bm+x. In case x = ΩA then w = bm+1c.

Finally, if p is a non-final state then w = bx. Thus, all states are reachable from the

initial state. Let us prove that the final states are distinguishable:

• The final states where x ∈ [0,m[ are not equivalent because they correspond to

the states of the DFA A which is minimal.

• The final state where x = ΩA is not equivalent to the other final state because

it is the only final state which is σ-incomplete.

Let (i, ∅) and (j, ∅) be two distinct non-final states. Consider wi, wj ∈ Σ? such that

δC(r0, wi) = (i, ∅) and δC(r0, wj) = (j, ∅). It is clear that wiai+1bm−1−iai+1 belongs

to L(A)L(B) but wjai+1bm−1−iai+1 does not. Then wi and wj are in different left

quotients induced by L(A)L(B). Hence, the DFA C is minimal and has 2m states.

4.1.3 Kleene Star

In this section we give a tight upper bound for the incomplete transition complexity of

the star operation. The incomplete state complexity of this operation coincides with

the one for the complete case.

Let A = 〈[0, n[ ,Σ, δ, 0, F 〉 be a DFA. Consider F0 = F \ {0} and suppose that l =

|F0| ≥ 1. If F = {0}, then L(A)? = L(A). The following algorithm constructs a DFA
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for the Kleene star of A. Let A′ = 〈Q′,Σ, δ′, q′0, F ′〉 be a new DFA where q′0 /∈ Q is a new

initial state, Q′ = {q′0}∪{P | P ⊆ (Q\F0)∧P 6= ∅}∪{P | P ⊆ Q∧0 ∈ P∧P∩F0 6= ∅},

F ′ = {q′0} ∪ {R | R ⊆ Q ∧R ∩ F 6= ∅}, and for σ ∈ Σ,

δ′(q′0, σ) =


{δ(0, σ)}, if δ(0, σ) ↓ ∧ δ(0, σ) /∈ F0;

{δ(0, σ), 0}, if δ(0, σ) ↓ ∧ δ(0, σ) ∈ F0;

∅, if δ(0, σ) ↑;

and

δ′(R, σ) =


δ(R, σ), if δ(R, σ) ∩ F0 = ∅;

δ(R, σ) ∪ {0}, if δ(R, σ) ∩ F0 6= ∅;

∅, if δ(R, σ) = ∅.

It is easy to verify that A′ recognises the language L(A)?. In the following we present

the upper bounds for the number of states and transitions for any DFA A′ resulting

from the algorithm described above.

Theorem 4.9. For any regular language L, with isc(L) = n, sσ = sσ(L), one has

isc(L?) ≤ 2n−1 + 2n−l−1 and itc(L?) ≤ |Σ|(2n−1 + 2n−l−1) +
∑
σ∈Σi

(sσ − 2ũσ).

Proof. Let A be the minimal DFA that recognises L. Consider the DFA A′ such that

L(A′) = L(A?) and A′ is constructed using the algorithm defined above. Let us prove

the result for the isc(L?). Note that Q′ is defined as the union of three different sets.

The first set contains only the initial state. The states generated by the second set of

Q′ are the non-empty parts of Q disjoint from F0. So in this set we have 2n−l−1 states

(we also remove the empty set). The states in the third set of Q′ are the parts of Q

that contains the initial state of A and are non-disjoint from F0. Those are at most

(2l − 1)2n−l−1. Therefore the number of states is lesser or equal than 2n−1 + 2n−l−1.

Let us consider the itc(L?). Following the analysis done for the states, the number of

σ-transitions of A′ is the summation of:
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1. sσ σ-transitions leaving the initial state of A.

2. the number of sets of σ-transitions leaving only non-final states of A:

(a) (2tσ−l)−1, if A is σ-complete, because we have tσ− l σ-transitions of this kind,

and we remove the empty set;

(b) 2tσ−l+uσ − 2ũσ , if A is σ-incomplete because we have tσ − l + uσ of this kind,

and we subtract the number of sets with only undefined σ-transitions of A.

3. the number of sets of σ-transitions leaving final and non-final states of A. We do

not count the transition leaving the initial state of A because, by construction, if a

transition of A′ contains a transition leaving a final state of A then it also contains

the one leaving the initial state of A. Thus, we have

(a) (2l − 1)2tσ−l−1, if A is σ-complete;

(b) (2l − 1)2tσ−l−1+uσ , if A is σ-incomplete.

Thus, the inequality in the proposition holds.

Corollary 4.10. The isc(L?) presented in Theorem 4.9 is maximal when l = 1.

4.1.3.1 Worst-case Witnesses

Let us present an automaton family, with Σ = {a, b}, for which the upper bounds in

Theorem 4.9 are reached.

Define A = ([0, n[,Σ, δA, 0, {n − 1}) with δA(i, a) = i + 1 mod n for i ∈ [0, n[, and

δA(i, b) = i+ 1 mod n for i ∈ [1, n[. This DFA is depicted in Figure4.6.

0 1 · · · n− 1
a a, b a, b

a, b

Figure 4.6: DFA A with n states.
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Theorem 4.11. For any integer n ≥ 2, there exist an n-state DFA A with r = 2n− 1

transitions such that any DFA accepting L(A)? has, at least, 2n−1 + 2n−2 states and

2
r+1

2 + 2
r−1

2 − 2 transitions.

Proof. For n = 2 it is clear that L = {w ∈ {a, b}? | |w|a is odd} is accepted by a

two-state DFA, and L? = {ε} ∩ {w ∈ {a, b}? | |w|a ≥ 1} cannot be accepted with

less than 3 states. For n > 2, we consider the automaton family A which is shown in

Figure 4.6. Consider the DFA A′ such that L(A′) = L(A?). First we prove the result

for the number of states, following the proof of the Theorem 3.3 in [YZS94]. In order

to prove that A′ is minimal, thus we need to prove the following.

• Every state is reachable from the start state. As each state of A′ is a subset of

states of A, we proceed by induction on the size of these states. If |q| = 1 we

have:

q =


{1} = δ′(q′0, a); (4.1)

{i} = δ′({i− 1}, a), for 1 < i < n− 1; (4.2)

{0} = δ′({n− 1, 0}, b). (4.3)

Note that we reach q = {0} from a state with size two, but we reach the state

{n − 1, 0} by δ′({n − 2}, a) and {n − 2} is already considered in (4.2). Thus

we can reach all states such that |q| = 1. Now, assume that, for every state

q, if |q| < m then q is reachable. Let us prove that if |q| = m then it is also

reachable. Consider q = {i1, i2, . . . , im} such that 0 ≤ i1 < i2 < · · · < im < n− 1

if n − 1 /∈ q, 0 = i1 < i2 < · · · < im−1 < im = n − 1 otherwise. There are three

cases to consider:

(i) {n − 1, 0, i3, . . . , im} = δ′({n − 2, i3 − 1, . . . , im − 1}, a) where the state

{n− 2, i3 − 1, . . . , im − 1} contains m− 1 states.

(ii) {0, 1, i3, . . . , im} = δ′({n− 1, 0, i3 − 1, . . . , im − 1}, a) where the state {n−

1, 0, i3 − 1, . . . , im − 1} is considered in case (i).
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(iii) {t, i2, . . . , im} = δ′({0, i2− t, . . . , im− t}, at), t > 0, where the state {0, i2−

t, . . . , im − t} is considered in case (ii).

• Each state defines a different left quotient induced by L(A′). Consider p, q ∈ Q′,

p 6= q and i ∈ p \ q. Then δ′(p, an−1−i) ∈ F ′ but δ′(q, an−1−i) /∈ F ′.

Let us consider, now, the problem of the number of transitions. The DFA A′ has:

• 2n−1 + 2n−2 a–transitions because it has one a–transition which corresponds to

sa, 2n−1− 1 a–transitions which corresponds to case 2. of Theorem 4.9 and 2n−2

a–transitions which corresponds to case 3. of Theorem 4.9.

• 2n−1 − 2 + 2n−2 b–transitions because it has 2n−2+1 − 2 b–transitions which cor-

responds to case 2. of Theorem 4.9, and 2n−3+1 b–transitions which corresponds

to case 3. of Theorem 4.9.

As n = r+1
2
, A′ has 2

r+1
2 + 2

r−1
2 − 2 transitions.

4.1.4 Reversal

It is known that when considering complete DFAs the state complexity of the reversal

operation reaches the upper bound 2n, where n is the state complexity of the operand

language. By the subset construction, a (complete) DFA resulting from the reversal

has a state which corresponds to ∅, which is a dead state. Therefore, if we remove that

state the resulting automaton is not complete and the incomplete state complexity is

2n − 1. Consequently the transition complexity is |Σ|(2n − 1). It is easy to see that

the worst case of the reversal operation is reached when the operand is complete.

4.1.5 Unary Languages

In the case of unary languages, if a DFA is not complete it represents a finite language.

Thus, the worst-case state complexity of operations occurs when the operand DFAs are
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complete. For these languages the (incomplete) transition complexity coincide with

the (incomplete) state complexity. The study for union and intersection was made

by Y. Gao et al. [GSY11], and using similar methods, it is not difficult to obtain the

corresponding results for the other operations addressed in this article.

4.1.6 Experimental Results

Hitherto we studied the descriptional complexity of several operations considering the

worst-case analysis. However, for practical applications, it is important to know how

significant are these worst-case results, i.e. if these upper bounds are reached for a

significant number of cases or, on the contrary, only rarely occur. To evaluate this, we

performed some experimental tests in order to analyse how often the upper bounds

were, in practice, achieved. Although we fixed the size of the alphabet and considered

small values of n and m, the experiments are statistically significant and provide

valuable information about the average case behaviour of these operations.

Almeida et al. [AMR07] presented an uniform random generator for complete DFAs.

We can use this generator to obtain incomplete DFAs, if we consider the existence

of a dead state. However, in this case, the probability that a state has a transition

to the dead state is 1
n+1

, where n is the number of useful states of the generated

incomplete DFA. Although this corresponds to a uniform distribution, for very large

values of n, the referred probability is very low, and thus the generated DFAs are

almost always complete. Therefore, in order to generate random incomplete DFAs,

we can increase the number of void transitions in the generated DFAs to change the

referred probability. For that, the generator accepts a parameter b that defines the

multiplicity of dead states. Using b (0 < b < 1), we compute the integer part of

m = b×n
1−b , which indicates the number of dead states in the generated DFA. Note that

the generated DFA becomes “more incomplete” when b tends to 1.

All the tests were performed using the random generator described above. The tests
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and the generator were implemented in Python1 using the FAdo system, and are both

publicly available2. In the following experiments (Table 4.4) we consider b = 0.7.

As the DFAs were obtained with a uniform random generator, the size of each sam-

ple (20000 elements) is sufficient to ensure a 95% confidence level within a 1% er-

ror margin. Table 4.4 shows the results of experimental tests with 20000 pairs of

incomplete DFAs as operands. We present the results for operands with m,n ∈

{2, 4, 6, 8, 10, 12, 14, 16, 18} states, such that m + n = 20, over an alphabet of k =

5 symbols. As union and intersection are symmetric operations, we only present

the results for m ∈ {10, 12, 14, 16, 18} and n ∈ {10, 8, 6, 4, 2}. We considered the

following measures for the DFA resulting from the operation: the state and transition

complexity, sc and tc, respectively; the upper bounds for these measures, ubsc and

ubtc, respectively; its transition density d = tc
k·sc ; and the ratios rs = sc

ubsc
and rt = tc

ubtc
.

Note that the results presented in this table are averages, i.e. we calculate all the

referred measures for each pair of operands and then we compute the average of each

measure. The columns labeledm1, m2, m3 andm4 give the maximal values of sc, ubsc,

tc and ubtc, respectively. For example, considering m = 10 and n = 10 we calculate

the ubsc for the concatenation of each pair of random incomplete DFAs. Then we do

the average of the 20000 obtained values and the result is 8557.90, as we can see in

the table. We need to do this because every measure depends of parameters that can

be different in each pair of generated DFAs.

As it was expected, for the complement operation, the upper bound for the state

complexity was always reached on the experiments. For all the other operations the

number of states of the DFA obtained during the experimentation (sc) was much lower

than the upper bounds. For example, for m = 10 and n = 10 the upper bound was 150

times larger than the number of states of the DFA resulting from the concatenation in

the experiment. Even the largest DFA obtained during the experimentation has less

1http://www.python.org
2The code used to performed the tests is available at http://khilas.dcc.fc.up.pt/∼eva/ and

the necessary library to perform the tests, including the referred DFA generator, can be obtained at
http://fado.dcc.fc.up.pt.
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Table 4.4: Experimental results for regular languages with b = 0.7.

b=0.7
Concatenation

m n sc ubsc rs m1 m2 tc ubtc rt m3 m4 d
2 18 54.2 604404.76 0.00009 416 655359 182.90 3141223.07 0.00006 1929 3792832 0.62
4 16 55.85 253077.73 0.0002 430 294911 190.69 1316341.55 0.0001 1962 1533056 0.64
6 14 59.81 88087.17 0.0007 303 106495 210.30 468266.14 0.0004 1377 537856 0.67
8 12 59.11 28115.99 0.002 431 34815 210.50 151521.51 0.001 1928 173280 0.68
10 10 54.79 8557.90 0.01 295 10751 194.56 46208.83 0.004 1378 53300 0.68
12 8 50.72 2523.72 0.02 219 3199 180.17 13481.26 0.01 1001 15568 0.69
14 6 44.73 725.28 0.06 179 927 156.79 3760.56 0.04 750 4336 0.68
16 4 36.35 204.44 0.18 117 263 121.18 1002.60 0.12 481 1171 0.65
18 2 28.16 56.31 0.50 54 71 88.10 250.02 0.35 231 289 0.62

Union
10 10 33.08 120 0.28 89 120 90.46 378.97 0.24 346 480 0.53
12 8 33.33 116 0.29 89 116 91.87 367.46 0.25 323 463 0.53
14 6 32.38 104 0.31 90 104 88.74 326.77 0.27 336 414 0.53
16 4 29.96 84 0.36 73 84 79.87 255.68 0.31 283 340 0.52
18 2 27.84 56 0.50 55 56 73.23 162.12 0.45 209 225 0.51

Intersection
10 10 7.98 100 0.08 59 100 9.74 46208.83 0.0002 120 53300 0.19
12 8 8.18 96 0.09 60 96 10.09 445.26 0.02 109 825 0.19
14 6 7.78 84 0.09 56 84 9.58 389.08 0.02 101 722 0.18
16 4 6.61 64 0.10 52 64 7.93 283.61 0.03 99 624 0.17
18 2 6.03 36 0.17 34 36 7.45 155.84 0.05 70 396 0.17

Star
2 2.07 3.23 0.64 3 4 5.22 8.73 0.60 15 19 0.50
4 4.64 10.72 0.43 12 16 13.96 40.72 0.34 51 74 0.55
6 8.79 38.20 0.23 31 64 30.55 170.63 0.18 136 302 0.68
8 14.39 141.73 0.10 74 256 53.93 676.34 0.08 333 1219 0.73
10 21.61 542.92 0.040 113 1024 85.40 2662.98 0.03 493 4987 0.77
12 30.98 2118.42 0.015 156 4096 127.16 10510.73 0.01 723 19620 0.80
14 41.10 8346.26 0.005 226 12288 173.13 41603.90 0.004 1115 60981 0.83
16 53.20 33113.56 0.002 263 49152 228.74 165364.25 0.001 1209 244731 0.85
18 68.04 131851.28 0.001 304 196608 298.15 658938.51 0.0004 1466 974212 0.87

Reversal
2 2.43 3 0.81 3 3 5.28 15 0.35 13 15 0.42
4 6.46 15 0.43 15 15 16.48 75 0.22 63 75 0.49
6 12.18 63 0.19 48 63 34.63 315 0.11 181 315 0.54
8 18.72 255 0.07 105 255 55.43 1275 0.043 468 1275 0.56
10 26.46 1023 0.0259 129 1023 80.79 5115 0.0158 536 5115 0.58
12 36.08 4095 0.0088 187 4095 113.74 20475 0.0056 804 20475 0.60
14 45.94 16383 0.0028 224 16383 146.93 81915 0.0018 989 81915 0.61
16 57.05 65535 0.0009 353 65535 185.02 327675 0.0006 1504 327675 0.62
18 70.55 262143 0.0003 337 262143 232.92 1310715 0.0002 1476 1310715 0.63

Complement
2 3 3 1 3 3 9.62 29.79 0.32 15 55 0.64
4 5 5 1 5 5 22.11 50.81 0.44 25 85 0.88
6 7 8 1 7 7 33.91 73.84 0.46 35 120 0.97
8 9 9 1 9 9 44.61 95.35 0.47 45 155 0.99
10 11 11 1 11 11 54.87 116.90 0.47 55 175 1.00
12 13 13 1 13 13 64.94 140.16 0.46 65 205 1.00
14 15 15 1 15 15 74.99 162.05 0.46 75 235 1.00
16 17 17 1 17 17 85 183.96 0.46 85 265 1.00
18 19 19 1 19 19 95 207.13 0.46 95 280 1.00
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states than what was expected in the worst case. Considering the same example, the

largest DFA has 295 states and the upper bound is 8557.90. Nevertheless, for binary

operations, whenever the difference between m and n increase, the number of states

of the DFA resulting from the operations, in the experiment, was closer to the upper

bound. For Kleene star and reversal operations, the upper bound was far from being

reached. For m = 18 the upper bound for Kleene star was 1900 times larger than

the number of states of the resulting DFA. Note that the DFAs resulting from all the

operations in the experimentation (excluding the complement) were also incomplete.

The experimental results for the transition complexity were very similar to the previous

ones. For the union, the difference was not so notorious, but for all the other operations

it was very high, mainly for the Kleene star and the reversal operations. For example,

considering m = 10 and n = 10, for union, the upper bound was only 4 times larger

than the number of transitions of the resulting DFA. However, for the concatenation,

the upper bound was 1300 times larger. For m = 18 the upper bound for reversal

was 5600 times larger than the number of transitions of the resulting DFA. Note that,

although the DFA resulting from the complement was complete, the upper bound for

the transition complexity was much higher than the number of transitions of that DFA.

This happens because Gao et al. chose to give an upper bound as a function of the

transition complexity of the operand, and because of this the upper bound, in some

situations, is greater than the |Σ|(m+ 1), which is the maximal number of transitions

of any DFA with m+ 1 states.

Although this sample was made for few values of n and m, we expect that the

experimental results for other cases would be very similar. Thus, we can conjecture

that the upper bounds for all operations studied are excessively pessimistic, when

considering practical applications.
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Table 4.5: State complexity of basic regularity preserving operations on finite
languages.

Operation isc sc

L1 ∪ L2 mn− 2 mn− (m+ n)

L1 ∩ L2 mn− 2m− 2n+ 6 mn− 3(m+ n) + 12

LC m+ 1 m

L1L2

m−1∑
i=0

min

{
ki,

f(A,i)∑
j=0

(
n−1
j

)}
+

f(A)∑
j=0

(
n−1
j

)
− 1

m−2∑
i=0

min

{
ki,

f(A,i)∑
j=0

(
n−2
j

)}
+

f(A)∑
j=0

(
n−2
j

)
L? 2m−f(A)−1 + 2m−2 − 1 2m−f(A)−2 + 2m−3

LR
∑l−1
i=0 k

i + 2m−l − 1
∑l−1
i=0 k

i + 2m−l−1

4.2 Finite Languages

In this section we give tight upper bounds for the state and transition complexity of all

the operations considered in the last section, for incomplete DFAs representing finite

languages, with an alphabet size greater than 1. Note that, for unary finite languages

the incomplete transition complexity is equal to the incomplete state complexity of

that language, which is always equal to the state complexity of the language minus

one. For the concatenation, we correct the upper bound for the state complexity of

complete DFAs [CCSY01], and show that if the right automaton is larger than the

left one, the upper bound is only reached using an alphabet of variable size. In the

Tables 4.5 and 4.6 we summarise the results of these section and the tight upper

bounds for the state complexity on complete DFAs. As in the previous section, we

also present some experimental results in order to compare the worst case with the

average case for these operations.

Let A be a minimal DFA with n states accepting a finite language, where the states

are assumed to be topologically ordered, i.e., p′ = δ(p, σ) implies that p′ > p. We

will denote by inσ(A, i) the number of transitions reaching i, and omit argument A

whenever there is no ambiguity. Then,
∑

σ∈Σ inσ(0) = 0 and there is exactly one

final state which, because of the topological order is n− 1, called pre-dead , such that
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Table 4.6: Transition complexity of basic regularity preserving operations on finite
languages.

Operation itc

L1 ∪ L2

∑
σ∈Σ (sσ(L1) � sσ(L2)− (itcσ(L1)− sσ(L1))(itcσ(L2)− sσ(L2))) +

n(itc(L1)− s(L1)) +m(itc(L2)− s(L2))

L1 ∩ L2

∑
σ∈Σ (sσ(L1)sσ(L2) + (itcσ(L1)− sσ(L1)

− aσ(L1))(itcσ(L2)− sσ(L2)− aσ(L2)) + aσ(L1)aσ(L2))

LC |Σ|(m+ 1)

L1L2

k
∑m−2
i=0 min

{
ki,
∑f(L1,i)
j=0

(
n−1
j

)}
+

+
∑
σ∈Σ

(
min

{
km−1 − sσ(L2),

∑f(L1)−1
j=0 ∆j

}
+
∑f(L1)
j=0 Λj

)
L?

2m−f(L)−1
(
k +

∑
σ∈Σ 2eσ(L)

)
−
∑
σ∈Σ 2tσ(L)−sσ(L)−eσ(L)

−
∑
σ∈X 2tσ(L)−sσ(L)−eσ(L)

LR
∑l
i=0 k

i − 1 + k2m−l −
∑
σ∈Σ 2

∑l−1
i=0 tσ(L,i)+1, m even∑l

i=0 k
i − 1 + k2m−l −

∑
σ∈Σ

(
2
∑l−2
i=0 tσ(L,i)+1 − cσ(l)

)
, m odd

∑
σ∈Σ tσ(n− 1) = 0. The level of a state i is the length of the shortest path from the

initial state to i which never exceeds n− 1. The level of A is the level of its pre-dead

state. A DFA is called linear if its level is n− 1.

4.2.1 Union

Consider the algorithm for the union operation based on the usual product construction

already defined in the Section 4.1.1. Let tσ([k, l]) =
∑

i∈[k,l] tσ(i). The following

theorem presents the upper bounds for the number of states and transitions of any

DFA accepting the union of two finite languages. Note that the result for the number

of states is similar to the one for the complete case, omitting the dead state.

Theorem 4.12. For any two finite languages L1 and L2 with isc(L1) = m and

isc(L2) = n, one has isc(L1 ∪ L2) ≤ mn− 2 and

itc(L1 ∪ L2) ≤
∑
σ∈Σ

(sσ(L1) � sσ(L2)− (itcσ(L1)− sσ(L1))(itcσ(L2)− sσ(L2)))

+ n(itc(L1)− s(L1)) +m(itc(L2)− s(L2)),
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where for x, y Boolean values, x� y = min(x+ y, 1).

Proof. Let A = 〈[0,m[,Σ, δA, 0, FA〉 and B = 〈[0, n[,Σ, δB, 0, FB〉 be the minimal

DFAs that recognise L1 and L2, respectively. Let us consider, first, the counting

of the number of states. In the product automaton, the set of states is a subset of

([0,m[∪{ΩA})× ([0, n[∪{ΩB}). The states of the form (0, i), where i ∈ [ 1, n[∪{ΩB},

and of the form (j, 0), where j ∈ [1,m[∪{ΩA}, are not reachable from (0, 0) because

the operands represent finite languages; the states (m − 1, n − 1), (m − 1,ΩB) and

(ΩA, n− 1) are equivalent because they are final and they do not have out-transitions;

the state (ΩA,ΩB) is the dead state and because we are dealing with incomplete DFAs

we can ignore it. Therefore the number of states of the union of two incomplete DFAs

accepting finite languages is at most (m+ 1)(n+ 1)− (m+ n)− 2− 1 = mn− 2.

Consider the number of transitions. In the product automaton, the σ-transitions

can be represented as pairs (αi, βj) where αi ( respectively βj) is 0 if there exists

a σ-transition leaving the state i (respectively j) of DFA A (respectively B), or −1

otherwise. The resulting DFA can have neither transitions of the form (−1,−1),

nor of the form (α0, βj), where j ∈ [ 1, n[∪{ΩB}, nor of the form (αi, β0), where

i ∈ [ 1,m[∪{ΩA}, as happened in the case of states. Thus, the number of σ-transitions

for σ ∈ Σ are:

sσ(A) � sσ(B)+tσ(A, [1,m[ )tσ(B, [1, n[ ) + tσ(A, [1,m[ )(tσ(B, [1, n[ ) + 1)

+(tσ(A, [1,m[ ) + 1)tσ(B, [1, n[ ) =

sσ(A) � sσ(B)+ntσ(A, [1,m[ ) +mtσ(B, [1, n[ )− tσ(A, [1,m[ )tσ(B, [1, n[ ).

Because the DFAs are minimal,
∑

σ∈Σ tσ(A, [1,m[ ) corresponds to itc(L1)−s(L1), and

analogously for B. Therefore the theorem holds.

4.2.1.1 Worst-case Witnesses

In the following we show that the upper bounds described above are tight. Han &

Salomaa proved [HS08, Lemma 3] that the upper bound for the number of states
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can not be reached for any alphabet with a fixed size. The witness families for the

incomplete complexities coincide with the ones that these authors presented for the

state complexity. As we are not including the dead state, our representation is slightly

different. Let m,n ≥ 1 and Σ = {b, c}∪{aij | i ∈ [ 1,m[, j ∈ [1, n[, (i, j) 6= (m−1, n−

1)}. Let A = 〈[0,m[,Σ, δA, 0, {m − 1}〉 where δA(i, b) = i + 1 for i ∈ [0,m − 2] and

δA(0, aij) = i for j ∈ [1, n[, (i, j) 6= (m− 1, n− 1). Let B = 〈[0, n[,Σ, δB, 0, {n− 1}〉,

where δB(i, c) = i+ 1 for i ∈ [0, n[ and δB(0, ai,j) = j for j ∈ [1, n[, i ∈ [1,m[, (i, j) 6=

(m− 1, n− 1). See Figure 4.7 for the case m = 5 and n = 4.

(A) 0 1 2 3 4
a11, a12, a13, b

a21, a22, a23

a31, a32, a33

a41, a42, a43

b b b

(B) 0 1 2 3
a11, a21, a31, a41, c

a12, a22, a32, a42

a13, a23, a33

c c

Figure 4.7: DFA A with m = 5 and DFA B with n = 4.

Theorem 4.13. For any two integers m ≥ 2 and n ≥ 2, there exist an m-state DFA

A and an n-state DFA B, both accepting finite languages, such that any DFA accepting

L(A)∪L(B) needs at least mn− 2 states and 3(mn− n−m) + 2 transitions, with an

alphabet of size depending on m and n.

Proof. The proof for the number of states is the same as the proof of [HS08, Lemma

2], considering the language families above. Let us prove the result for the number

of transitions. The DFA A has m − 1 b-transitions and one aij-transition, for each

aij. The DFA B has n− 1 c-transitions and the same number of aij-transitions as A.

Thus, the DFA resulting for the union operation has:

• mn− 2n+ 1 b-transitions;

• mn− 2n+ 1 c-transitions;
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• one aij-transitions for each aij and there are mn− n−m different aij.

Thus, the total number of transitions is 3(mn − n −m) + 2. It is easy to prove that

the resulting DFA is minimal.

4.2.2 Intersection

Given two DFAs A = 〈[0,m[,Σ, δA, 0, FA〉 and B = 〈[0, n[,Σ, δB, 0, FB〉, a DFA accept-

ing L(A) ∩ L(B) can be also obtained by the product construction. Once more, the

result for the state complexity is similar to the one for the complete case, omitting the

dead state. Let aσ(A) =
∑

i∈F inσ(A, i), and a(L) =
∑

σ∈Σ aσ(L).

Theorem 4.14. For any two finite languages L1 and L2 with isc(L1) = m and

isc(L2) = n, one has isc(L1 ∩ L2) ≤ mn− 2m− 2n+ 6 and

itc(L1 ∩ L2) ≤
∑
σ∈Σ

(sσ(L1)sσ(L2) + (itcσ(L1)− sσ(L1) −

aσ(L1))(itcσ(L2)− sσ(L2)− aσ(L2)) + aσ(L1)aσ(L2)) .

Proof. Let A and B be the minimal DFAs that recognise L1 and L2, respectively.

Consider the DFA accepting L(A) ∩ L(B) obtained by the product construction. Let

us prove the result for isc(L1 ∩ L2). For the same reasons as in Theorem 4.12, we can

eliminate the states of the form (0, j), where j ∈ [ 1, n[∪{ΩB}, and of the form (i, 0),

where i ∈ [ 1,m[∪{ΩA}; the states of the form (m− 1, j), where j ∈ [1, n− 2], and of

the form (i, n − 1), where i ∈ [1,m − 2] are equivalent to the state (m − 1, n − 1) or

to the state (ΩA,ΩB); the states of the form (ΩA, j), where j ∈ [1, n[∪{ΩB}, and of

the form (i,ΩB), where i ∈ [1,m[∪{ΩA} are equivalent to the state (ΩA,ΩB) which is

the dead state of the DFA resulting from the intersection, and thus can be removed.

Therefore, the number of states is at most (m+1)(n+1)−3((m+1)(n+1))+12−1 =

mn− 2(m+ n) + 6.

Let us consider the itc(L1 ∩ L2). Using the same technique as in Theorem 4.12

and considering that in the intersection we only have pairs of transitions where both
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elements are different from −1, the number of σ-transitions is as follows, which proves

the theorem,

sσ(A)sσ(B) + (tσ(A, [1,m[ ) \ inσ(A,FA))(tσ(B, [1, n[ ) \ inσ(B,FB)) + aσ(A)aσ(B).

4.2.2.1 Worst-case Witnesses

The next result shows that the complexity upper bounds found above are reachable.

The witness languages for the tightness of the bounds for this operation are different

from the families given by Han & Salomaa, because those families are not tight for

the transition complexity. For m ≥ 2 and n ≥ 2, let Σ = {aij | i ∈ [1,m − 2], j ∈

[1, n − 2]} ∪ {aij | i = m − 1, j = n − 1}. Let A = 〈[0,m[,Σ, δA, 0, {m − 1}〉

where δA(x, aij) = x + i for x ∈ [ 0,m[, i ∈ [1,m − 2], and j ∈ [1, n − 2], and let

B = 〈[0, n[,Σ, δB, 0, {n− 1}〉 where δB(x, aij) = x+ j for x ∈ [0, n[, i ∈ [1,m− 2], and

j ∈ [1, n− 2]. The new families are presented in Figure 4.8 for m = 5 and n = 4.

(A) 0 1 2 3 4
a11, a12

a21, a22

a31, a32
a43

a11, a12

a21, a22

a31, a32

a11, a12

a21, a22

a11, a12

(B) 0 1 2 3
a11, a21, a31

a12, a22, a32

a43

a11, a21, a31

a12, a22, a32

a11, a21, a31

Figure 4.8: DFA A with m = 5 and DFA B with n = 4.
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Theorem 4.15. For any two integers m ≥ 2 and n ≥ 2, there exist an m-state

DFA A and an n-state DFA B, both accepting finite languages, such that any DFA

accepting L(A)∩L(B) needs at least mn− 2(m+n) + 6 states and (m− 2)(n− 2)(2 +∑min(m,n)−3
i=1 (m− 2− i)(n− 2− i)) + 2 transitions, with an alphabet of size depending

on m and n.

Proof. To prove that the minimal DFA accepting L(A)∩L(B) needs mn−2m−2n+6

states we can use the same technique which is used in the proof of [HS08, Lemma 6].

For that, we define a set R of words which are not equivalent under ≡L(A)∩L(B). Let

ε be the null string. We choose R = R1 ∪ R2 ∪ R3, where R1 = {ε}, R2 = {aij | i =

m− 1, j = n− 1}, and R3 = {aij | i ∈ [1,m− 2] and j ∈ [1, n− 2]}. It is easy to see

that all words of each set are not equivalent to each other. As |R1| = |R2| = 1 and

|R3| = (m− 2)(n− 2), we have that |R| = mn− 2m− 2n+ 6. Thus the result for the

number of states holds.

Let us consider the number of transitions. The DFA A has (n−2)
∑m−3

i=0 (m−1− i)+1

aij- transitions. The DFA B has (m − 2)
∑n−3

i=0 (n − 1 − i) + 1 aij- transitions. Let

k = (m − 2)(n − 2) + 1. As in proof of Theorem 4.14, the DFA resulting from the

intersection operation has the following number of transitions:

• k, corresponding to the pairs of transitions leaving the initial states of the

operands;

•
∑min(m,n)−3

i=1 (n− 2)(m− 2 − i)(m− 2)(n − 2− i), corresponding to the pairs of

transitions formed by transitions leaving non-final and non-initial states of the

operands;

• k, corresponding to the pairs of transitions leaving the final states of the operands.

Thus the total number of transitions is 2k+ (m−2)(n−2)
∑min(m,n)−3

i=1 (m−2− i)(n−

2− i).
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4.2.3 Complement

The state and transition complexity for this operation on finite languages are similar

to the ones on regular languages [GSY11]. This happens because the DFA must be

completed. Let A = 〈[0,m[,Σ, δA, 0, FA〉 be a DFA accepting the language L. The com-

plement of L, Lc, is recognised by the DFA C = 〈[0,m[∪{ΩA},Σ, δC , 0, ([0,m[ \FA) ∪

{ΩA}〉, where for σ ∈ Σ and i ∈ [0,m[ , δC(i, σ) = δA(i, σ) if δA(i, σ) ↑; δA(i, σ) = ΩA

otherwise. Therefore one has,

Theorem 4.16. For any finite language L with isc(L) = m one has isc(LC) ≤ m+ 1

and itc(LC) ≤ |Σ|(m+ 1).

Proof. Concerning the isc(LC), it is only necessary to add a dead state to the operand

DFA. The maximal number of σ-transitions is m + 1, because this is the number of

states. Thus, the maximal number of transitions is |Σ|(m+ 1).

Gao et al. [GSY11] gave the value |Σ|(itc(L) + 2) for the transition complexity of the

complement. In some situations, this bound is higher than the bound here presented,

but contrasting to that one, it gives the transition complexity of the operation as a

function of the transition complexity of the operand.

The witness family for this operation is exactly the same presented in [GSY11], i.e.

{bm}, for m ≥ 1. It is easy to see that the bounds are tight for this family.

4.2.4 Concatenation

Câmpeanu et al. [CCSY01] studied the state complexity of the concatenation of an

m-state complete DFA A with an n-state complete DFA B over an alphabet of size k

and proposed the upper bound

m−2∑
i=0

min

ki,
f(A,i)∑
j=0

(
n− 2

j

)+ min

km−1,

f(A)∑
j=0

(
n− 2

j

) , (4.4)
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where f(A, i) is the larger number of final states of any path from the initial state to

the state i. They proved that this upper bound is tight for m > n−1. It is easy to see

that the second term of (4.4) is
f(A)∑
j=0

(
n− 2

j

)
if m > n− 1, and km−1, otherwise. The

value km−1 indicates that the DFA resulting from the concatenation has states with

level at most m − 1. But that is not always the case, as we can see by the example3

in Figure 4.9. This implies that (4.4) is not an upper bound if m < n. Thus, we have

Theorem 4.17. For any two finite languages L1 and L2 with sc(L1) = m and sc(L2) =

n over an alphabet of size k ≥ 2, one has

sc(L1L2) ≤
m−2∑
i=0

min

ki,
f(L1,i)∑
j=0

(
n− 2

j

)+

f(L1)∑
j=0

(
n− 2

j

)
. (4.5)

Proof. The proof follows the one in [CCSY01] considering the changes described above.

0

1

2

3

4

5

6

7

8

9

11

10

15

13

12

14

16

17

a

b

a

b

a

b

b

a

b

a
b

a

b

a, b
a, b

a, b

a, b

a, b
a, b

a, b

a, b
a, b

a, b

Figure 4.9: DFA resulting from the concatenation of DFA A with m = 3 and DFA B
with n = 5, of Figure 4.11. The states with dashed lines have level > 3 and are not
accounted by formula (4.4).

Consider the algorithm for the concatenation presented in the Section 4.1.2, and let

sσ(A) = tσ(A, 0). The next theorem presents the upper bounds for the number of states

3Note that we are omitting the dead state in the figures.
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and transitions of any DFA accepting L1L2. Note that the result for the number of

states is similar to the Theorem 4.17, omitting the dead state.

Theorem 4.18. For any two finite languages L1 and L2 with isc(L1) = m and

isc(L2) = n over an alphabet of size k ≥ 2, and making Λj =
(
n−1
j

)
−
(
tσ(L2)−sσ(L2)

j

)
,

∆j =
(
n−1
j

)
−
((

tσ(L2)−sσ(L2)
j

)
∗ sσ(L2)

)
one has

isc(L1L2) ≤
m−1∑
i=0

min

ki,
f(L1,i)∑
j=0

(
n− 1

j

)+

f(L1)∑
j=0

(
n− 1

j

)
− 1 (4.6)

and

itc(L1L2) ≤ k
m−2∑
i=0

min

ki,
f(L1,i)∑
j=0

(
n− 1

j

)+

+
∑
σ∈Σ

min

km−1 − sσ(L2),

f(L1)−1∑
j=0

∆j

+

f(L1)∑
j=0

Λj

 . (4.7)

Proof. Let A = 〈[0,m[,Σ, δA, 0, FA〉 and B = 〈[0, n[,Σ, δB, 0, FB〉 be the minimal DFAs

that recognise L1 and L2. Consider the DFA C accepting L(A)L(B). Let us prove

the result for isc(L1L2). Each state of the DFA C has the form (x, P ) where x ∈

[0,m[∪{ΩA} and P ⊆ [0, n[ . The first term of (4.6) corresponds to the maximal

number of states of the form (i, P ) with i ∈ [0,m[ . Such a state (i, P ) is at a level

≤ i, which has at most ki−1 predecessors. Thus, the level i has at most ki states. The

maximal size of the set P is f(A, i). For a fixed i, the initial state of the DFA B either

belongs to all sets P (if i ∈ FA) or it is not in any of them. Thus, the number of

distinct sets P is at most
f(A,i)∑
j=0

(
n−1
j

)
. The number of states of the form (i, P ) is the

minimal of these two values. The second term of (4.6) corresponds to the maximal

number of states where the first component is ΩA. In this case, the size of P is at

most f(A). Lastly, we remove the dead state.

Consider now the result for itc(L1L2). The σ-transitions of the DFA C have three

forms: (i, β) where i represents the transition leaving the state i ∈ [0,m[ ; (−1, β)
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where −1 represents the absence of the transition from state m − 1 to ΩA; and

(−2, β) where −2 represents any transition leaving ΩA. In all forms, β is a set of

transitions of DFA B. The number of σ-transitions of the form (i, β) is at most∑m−2
i=0 min{ki,

∑f(L1,i)
j=0

(
n−1
j

)
} which corresponds to the number of states of the form

(i, P ), for i ∈ [0,m[ and P ⊆ [0, n[ . The number of σ-transitions of the form

(−1, β) is min{km−1 − sσ(L2),
∑f(L1)−1

j=0 ∆j}. We have at most km−1 states in this

level. However, if sσ(B, 0) = 0 we need to remove the transition (−1, ∅) which leaves

the state (m− 1, {0}). On the other hand, the size of β is at most f(L1)− 1 and we

know that β has always the transition leaving the initial state by σ, if it exists. If

this transition does not exist, i.e. sσ(B, 0) = 1, we need to remove the sets with only

non-defined transitions, because they originate transitions of the form (−1, ∅). The

number of σ-transitions of the form (−2, β) is
∑f(L1)

j=0 Λj and this case is similar to the

previous one.

4.2.4.1 Worst-case Witnesses

To prove that the bounds are reachable, we consider two cases depending whether

m+ 1 ≥ n or not.

Case 1: m+ 1 ≥ n. The witness languages are the ones presented by Câmpeanu et

al. (see Figure 4.10).

(A) 0 1 · · · m− 1
a, b a, b a, b

(B) 0 1 · · · n− 1
b a, b a, b

Figure 4.10: DFA A with m states and DFA B with n states.

Theorem 4.19. For any two integers m ≥ 2 and n ≥ 2 such that m + 1 ≥ n, there

exist an m-state DFA A and an n-state DFA B, both accepting finite languages, such

that any DFA accepting L(A)L(B) needs at least (m − n + 3)2n−1 − 2 states and

2n(m− n+ 3)− 8 transitions.
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Proof. The proof for the number of states is similar to the proof of [CCSY01, Theorem

4]. Let us consider the number of transitions. The DFA A has m− 1 σ-transitions for

each σ ∈ {a, b}. The number of final states in the DFA A is m. The DFA B has n− 2

a-transitions and n−1 b-transitions. Consider m ≥ n. If we analyse the transitions as

we did in the proof of the Theorem 4.18 we have 2n−1(m−n+ 1)−1 a-transitions and

2n−1(m− n+ 1)− 1 b-transitions that correspond to the transitions of the form (i, β);

2n−1 − 2 a-transitions and 2n−1 b-transitions that correspond to the transitions of the

form (−1, β); and 2n−1 − 2 a-transitions and 2n−1 − 2 b-transitions that correspond

to the transitions of the form (−2, β). Thus, we calculate that the total number of

transitions is

2(2n−1(m− n+ 1)− 1) + 2n−1 − 2 + 2n−1 − 2 + 2n−1 + 2n−1 − 2

= 2n(m− n+ 3)− 8.

Case 2: m+1 < n. Let Σ = {b}∪{ai | i ∈ [1, n−2]}. Let A = 〈[0,m[,Σ, δA, 0, [0,m[ 〉

where δA(i, σ) = i + 1, for any σ ∈ Σ. Let B = 〈[0, n[,Σ, δB, 0, {n − 1}〉 where

δB(i, b) = i + 1, for i ∈ [0, n − 2], δB(i, aj) = i + j, for i, j ∈ [1, n − 2], i + j ∈ [2, n[ ,

and δB(0, aj) = j, for j ∈ [2, n− 2].

(A) 0 1 2
b, a1, a2, a3 b, a1, a2, a3

(B)

0 1 2 3 4
b

a2

a3

a1, b

a2

a3

a1, b

a2

a1, b

Figure 4.11: DFA A with m = 3 states and DFA B with n = 5 states.

Theorem 4.20. For any two integers m ≥ 2 and n ≥ 2, with m + 1 < n, there exist

an m-state DFA A and an n-state DFA B, both accepting finite languages over an
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alphabet of size depending on m and n, such that the number of states and transitions

of any DFA accepting L(A)L(B) reaches the upper bounds.

Proof. We need to show that the DFA C, resulting from the concatenation algorithm

already defined and accepting L(A)L(B), is minimal, i.e. (i) every state of C is

reachable from the initial state; (ii) each state of C defines a distinct equivalence class.

To prove (i), we first show that all states (i, P ) ⊆ R with i ∈ [1,m[ are reachable.

The following facts hold for the automaton C:

1. every state of the form (i + 1, P ′) is reached by a transition from a state (i, P )

(by the construction of A) and |P ′| ≤ |P |+ 1, for i ∈ [1,m− 2];

2. every state of the form (ΩA, P
′) is reached by a transition from a state (m−1, P )

(by the construction of A) and |P ′| ≤ |P |+ 1;

3. for each state (i, P ), P ⊆ [0, n[ , |P | ≤ i+ 1 and 0 ∈ P , i ∈ [1,m[ ;

4. for each state (ΩA, P ), ∅ 6= P ⊆ [0, n[ , |P | ≤ m and 0 /∈ P .

Suppose that for a i ∈ [1,m− 2], all states (i, P ) are reachable. The number of states

of the form (1, P ) is m − 1 and of the form (i, P ) with i ∈ [2,m − 2] is
∑i

j=0

(
n−1
j

)
.

Let us consider the states (i + 1, P ′). If P ′ = {0}, then δC((i, {0}), a1) = (i + 1, P ′).

Otherwise, let l = min(P ′ \ {0}) and Sl = {s− l | s ∈ P ′ \ {0}}. Then,

δC((i, Sl), al) = (i+ 1, P ′) if 2 ≤ l ≤ n− 2,

δC((i, {0} ∪ S1), a1) = (i+ 1, P ′) if l = n− 1,

δC((i, S1), b) = (i+ 1, P ′) if l = 1.

Thus, all
∑i+1

j=0

(
n−1
j

)
states of the form (i + 1, P ′) are reachable. Let us consider the

states (ΩA, P
′). P ′ is always a non-empty set by construction of C. Let l = min(P ′)
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and Sl = {s− l | s ∈ P ′}. Thus,

δC((m− 1, Sl), al) = (ΩA, P
′) if 2 ≤ l ≤ n− 2,

δC((m− 1, {0} ∪ S1), a1) = (ΩA, P
′) if l = n− 1,

δC((m− 1, S1), b) = (ΩA, P
′) if l = 1.

Thus, all
∑m

j=0

(
n−1
j

)
− 1 states of the form (ΩA, P

′) are reachable.

To prove (ii), consider two distinct states (i, P1), (j, P2) ∈ R. If i 6= j, then δC((i, P1),

bn+m−2−i) ∈ FC but δC((j, P2), bn+m−2−i) /∈ FC . If i = j, suppose that P1 6= P2

and both are final or non-final. Let P ′1 = P1 \ P2 and P ′2 = P2 \ P1. Without loss

of generality, let P ′1 be the set which has the minimal value, let us say l. Thus

δC((i, P1), an−1−l
1 ) ∈ FC but δC((i, P2), an−1−l

1 ) /∈ FC . Thus C is minimal.

Let us consider the number of transitions. The DFA A has m − 1 σ-transitions, for

σ ∈ Σ. The DFA B has n − 1 b-transitions, n − 2 a1-transitions, and n − i ai-

transitions, with i ∈ [2, n − 2]. Thus DFA A has |Σ|(m − 1) transitions, DFA B has

2n− 3 +
∑n−2

i=2 (n− i) transitions and |Σ| = n− 1. The proof is similar to the proof of

Theorem 4.18.

Theorem 4.21. The upper bounds for state and transition complexity of concatenation

presented in Theorem 4.18 cannot be reached for any alphabet with a fixed size for

m ≥ 0, n > m+ 1.

Proof. Consider the construction for the concatenation presented in the Section 4.1.2.

Let us define the subset S = {(ΩA, P ) | 1 ∈ P} of R. In order for a state (ΩA, P ) to

belong to S it has to satisfy the following condition:

∃i ∈ FA∃P ′ ⊆ 2[0,n[∃σ ∈ Σ : δC((i, P ′ ∪ {0}), σ) = (ΩA, P ).

The maximal size of S is
∑f(A)−1

j=0

(
n−2
j

)
, because by construction 1 ∈ P and 0 /∈ P .

Assume that Σ has a fixed size k = |Σ|. Then, the maximal number of words that
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reach states of S from r0 is
∑f(A)

i=0 ki+1 since the words that reach a state s ∈ S are

of the form wAσ, where wA ∈ L(A) and σ ∈ Σ. As n > m, for some l ≥ 0 we have

n = m + l. Thus for an l sufficiently large
∑f(A)

i=0 ki+1 �
∑f(A)−1

j=0

(
m+l−2

j

)
, which is

absurd and resulted from supposing that k is fixed.

4.2.5 Kleene Star

Consider the algorithm for the Kleene star operation presented in the Section 4.1.3.

If f(A) = 1 then L(A)? = L(A). Thus, we will consider DFAs with at least two final

states. Let eσ(A) =
∑

i∈F tσ(A, i) and eσ(A) =
∑

i∈F tσ(A, i). The following results

give the number of states and transitions which are sufficient for any DFA B accepting

L(A)?.

Theorem 4.22. For any finite language L with isc(L) = m and f(L) ≥ 2, one has

isc(L?) ≤ 2m−f(L)−1 + 2m−2 − 1 and

itc(L?) ≤ 2m−f(L)−1

(
k +

∑
σ∈Σ

2eσ(L)

)
−
∑
σ∈Σ

2nσ −
∑
σ∈X

2nσ ,

where nσ = tσ(L)− sσ(L)− eσ(L) and X = {σ ∈ Σ | sσ(L) = 0}.

Proof. The proof for the states is similar to the proof presented by Câmpeanu et

al. [CCSY01]. Let A = 〈[0,m[,Σ, δA, 0, FA〉 be the minimal DFA that recognise L.

Note that in the star operation the states of the resulting DFA are sets of states of the

DFA A. The minimal DFA B accepting L(A)?, obtained by the referred algorithm,

has at most the following states:

(i) the initial state 0B which corresponds to the initial state of A: 1 state;

(ii) all P ⊆ [1,m[ \FA and P 6= ∅: 2m−f(A)−1 − 1 states;

(iii) all P ⊆ [0,m−2] such that P ∩FA 6= ∅ and 0 ∈ P : 2m−f(A)−1(2f(A)−1−1) states;

(iv) all P = P ′ ∪ {m− 1, 0} where P ′ ⊆ [1,m[ \FA and P ′ 6= ∅: 2m−f(A)−1 − 1 states.
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Therefore, the number of states of the DFA B is at most 2m−f(A)−1 + 2m−2 − 1. As

in [CCSY01, Theorem 1], in the above description we are considering that 0 /∈ FA.

If 0 ∈ FA the values suffer a few changes but the formula which is obtained, when

reaches its maximum, is the same.

The proof for the itc(L?) is similar to the one for the isc(L?). Enumerating the σ-

transitions as done for the states, we have that:

(i) the presence or the absence of the transition leaving the initial state: sσ(L)

σ-transitions;

(ii) the set of transitions leaving non-initial and non-final states: 2m−f(L)−1−2tσ(L)−sσ(L)−eσ(L);

(iii) the set of transitions leaving the final states (excluding the pre-dead): 2m−f(L)−1(2eσ(L)−

1) σ-transitions;

(iv) the set of transitions leaving the pre-dead state: 2m−f(L)−1 − 1 σ-transitions if

there exists a σ-transition leaving the initial state, 2m−f(L)−1 − 2nσ σ-transitions

otherwise, where nσ = tσ(L)− sσ(L)− eσ(L).

Thus, the upper bound for itc(L?) holds.

4.2.5.1 Worst-case Witnesses

The theorem below shows that the previous upper bounds are reachable. The witness

family for this operation is the same as the one presented by Câmpeanu et al., but we

have to exclude the dead state.

Let A = 〈[0,m[, {a, b, c}, δA, 0, {m−2,m−1}〉, m ≥ 4, be a incomplete DFA accepting

a finite language (see Figure 4.12) where:

δ(i, a) = i+ 1, for i ∈ [0,m[,

δ(i, b) = i+ 1, for i ∈ [ 1,m[, and δ(0, b) = m− 1,

δ(i, c) = i+ 1, for i ∈ [ 0,m[ and m− i is even.
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(1) 0 1 2 3 · · · m− 2 m− 1
a, c

b

a, b a, b, c a, b a, b a, b, c

(2) 0 1 2 3 · · · m− 2 m− 1
a

b

a, b, c a, b a, b, c a, b a, b, c

Figure 4.12: DFA A with m states, with m even (1) and odd (2).

Theorem 4.23. For any integer m ≥ 4, there exist an m-state DFA A accepting a

finite language, such that any DFA accepting L(A)? needs at least 2m−2 + 2m−3 − 1

states and 9·2m−3−2m/2−2 transitions if m is odd, or 9·2m−3−2(m−2)/2−2 transitions,

otherwise.

Proof. The proof for the states is the same as presented by Câmpeanu et al.. Note

that we do not count the dead states, and because of this we have one state less in A

and in the resulting DFA. Considering the transitions as in the proof of Theorem 4.22,

the DFA resulting for the star operation has: 3 · 2m−3− 1 a-transitions, 3 · 2m−3− 1 b-

transitions, and 3·2m−3−2m/2 c-transitions ifm is odd, or 3·2m−3−2(m−2)/2 transitions

otherwise. Therefore the resulting DFA has 9 · 2m−3− 2m/2− 2 transitions if m is odd,

or 9 · 2m−3 − 2(m−2)/2 − 2 transitions, otherwise.

4.2.6 Reversal

Given an incomplete DFA A = 〈[0,m[,Σ, δA, 0, FA〉, to obtain a DFA B that accepts

L(A)R, we first reverse all transitions of A and then determinize the resulting NFA.

Let cσ(A, i) = 0 if inσ(A, i) > 0 and 1 otherwise. In the following result we present

upper bounds for the number of states and transitions of B.

Theorem 4.24. For any finite languages L with isc(L) = m, m ≥ 3, and over an

alphabet of size k ≥ 2, , where l is the smallest integer such that 2m−l ≤ kl, one has
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isc(LR) ≤
∑l−1

i=0 k
i + 2m−l − 1 and if m is odd,

itc(LR) ≤
l∑

i=0

ki − 1 + k2m−l −
∑
σ∈Σ

2
∑l−1
i=0 tσ(L,i)+1,

or, if m is even,

itc(LR) ≤
l∑

i=0

ki − 1 + k2m−l −
∑
σ∈Σ

(
2
∑l−2
i=0 tσ(L,i)+1 − cσ(L, l)

)
.

Proof. Let A be the minimal DFA accepting L. The proof for isc(LR) is similar to the

proof of [CCSY01, Theorem 5]. We only need to remove the dead state.

Let us prove the result for itc(LR). The smallest l that satisfies 2m−l ≤ kl is the same

for m and m+ 1, and because of that we have to consider whether m is even or odd.

Suppose m odd. Let T1 be the set of transitions corresponding to the first
∑l−1

i=0 k
i

states and T2 be the set corresponding to the other 2m−l − 1 states. We have that

|T1| =
∑l−1

i=0 k
i − 1, because the initial state has no transition reaching it. As the

states of DFA B are sets of states of DFA A, we also consider each σ-transition of B

as a set of σ-transitions of A. If all σ-transitions were defined in A, T2 would have

2m−l σ-transitions. But, as not all σ-transitions are defined, we remove from 2m−l the

sets which only have undefined σ-transitions of A. As the initial state of A has no

transitions reaching it, we need to add one to the number of undefined σ-transitions.

Thus, |T2| =
∑

σ∈Σ 2m−l − 2(
∑l−1
i=0(tσ(i)))+1.

Let us consider m even. In this case we also need to consider the set of transitions

that connect the states with the highest level in the first set (T1) with the states with

the lowest level in the second set (T2). As the highest level is l− 1, we have to remove

the possible transitions that reach the state l in DFA A.
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(1) 0 1 · · · p− 2 p− 1 · · · 2p− 2
a, b a, b a, b b a, b a, b

(2) 0 1 · · · p− 2 p− 1 · · · 2p− 3
a, b a, b a, b b a, b a, b

Figure 4.13: DFA A with m = 2p− 1 states (1) and with m = 2p− 2 (2).

4.2.6.1 Worst-case Witnesses

The following result proves that the upper bounds presented above are tight. The

witness family for this operation is the one presented by Câmpeanu et al. but we omit

the dead state. It is depicted in Figure 4.13.

Theorem 4.25. For any integer m ≥ 4, there exist an m-state DFA A accepting a

finite language, such that any DFA accepting L(A)R needs at least 3 · 2p−1 + 2 states

and 3 · 2p − 8 transitions if m = 2p− 1 or 2p+1 − 2 states and 2p+2 − 7 transitions if

m = 2p.

Proof. The proof for the states is the same as the one presented by Câmpeanu et

al. [CCSY01]. Considering the transitions as in the proof of Theorem 4.24, the DFA

resulting for the reversal operation, in case m = 2p− 1, has:

• (
∑p−1

i=0 2i)− 1 transitions in T1;

• 2p − 22 a-transitions in T2;

• 2p − 2 b-transitions in T2.

Thus, the resulting DFA has 3 ·2p−8 transitions. In the other case, the resulting DFA

has:

• (
∑p−1

i=0 2i)− 1 transitions in T1;

• 2p − 2 a-transitions in T2;

• 2p−1 − 1 a-transitions in the intermediate set;
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• 2p − 2 b-transitions in T2;

• 2p−1 b-transitions in the intermediate set.

Therefore the resulting DFA has 2p+2 − 7 transitions.

4.2.7 Experimental Results

Similarly to the previous section, we performed some experimental tests in order to

analyse the practical behaviour of the operations over finite languages. All the tests

were performed with uniformly random generated acyclic DFAs.

Table 4.7 shows the results of 20000 experimental tests. The number of states of the

operands and the measures are the same as used in Section 4.1.6.

The results obtained were similar to the ones for regular languages. However, for finite

languages, the difference between the worst and the average case was not as high as

for regular languages. For example, for reversal operation, considering m = 18 and

regular languages, the upper bound for the number of states was 3700 times larger

than the number of states observed and the upper bound for the number of transitions

was 5600 times larger than the number of transitions, whereas for finite languages the

upper bound for states was only 43 times larger and for transitions 53 times larger.

As for regular languages, the DFAs resulting from all the operations (excluding the

complement) were also incomplete.

Thus, as what happened for regular languages, we can conjecture that the upper

bounds are seldom reached in practical applications.
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Table 4.7: Experimental results for finite languages.
Concatenation

m n sc ubsc rs m1 m2 tc ubtc rt m3 m4 d
2 18 37.11 88.64 0.42 108 159 163.43 417.57 0.39 530 786 0.85
4 16 63.26 634.06 0.1 236 2096 289.27 2913.99 0.10 1147 10471 0.89
6 14 76.09 2480.07 0.03 268 7256 350.93 8249.58 0.04 1305 36267 0.91
8 12 78.28 3803.77 0.02 252 7024 360.60 11050.80 0.03 1236 35105 0.91
10 10 73.52 2670.73 0.03 260 3296 336.23 8314.19 0.04 1285 16463 0.91
12 8 63.8 1158.59 0.06 170 1208 287.97 4143.13 0.07 837 6031 0.90
14 6 51.2 396.78 0.13 123 398 226.61 1615.26 0.14 600 1981 0.88
16 4 37.69 122.99 0.31 75 123 162.18 540.69 0.30 363 610 0.86
18 2 25.09 36 0.70 33 36 104.01 165.38 0.63 152 175 0.83

Union
10 10 30.95 98 0.32 57 98 125.41 8314.19 0.02 260 16463 0.81
12 8 29.86 94 0.32 52 94 120.75 416.94 0.29 225 455 0.81
14 6 26.55 82 0.32 47 82 106.98 360.17 0.30 203 395 0.80
16 4 21.84 62 0.35 36 62 88.5 267.03 0.33 151 297 0.81
18 2 18.8 34 0.55 22 34 77.06 142.41 0.54 97 163 0.82

Intersection
10 10 12.93 66 0.20 33 66 29.54 110.7 0.27 106 256 0.44
12 8 11.91 62 0.19 33 62 26.71 102.39 0.26 92 239 0.43
14 6 9.02 50 0.18 25 50 18.96 79.85 0.24 79 168 0.40
16 4 5.02 30 0.17 14 30 8.76 43.92 0.20 39 114 0.33
18 2 1.78 2 0.89 2 2 1.29 2.47 0.52 5 5 0.13

Star
2 1 0.75 1.33 1 1 2.59 1.94 1.33 5 5 0.52
4 3.05 4.67 0.65 5 7 11.81 15.07 0.78 25 35 0.78
6 7.43 18.82 0.40 23 31 32.86 65.17 0.50 112 154 0.88
8 14.59 71.46 0.20 73 127 68.05 241.79 0.28 362 631 0.93
10 25.11 274.14 0.092 121 511 120.19 888.33 0.135 598 2549 0.955
12 38.75 1066.12 0.036 192 2047 188.05 3297.08 0.057 949 10226 0.969
14 57.18 4190.58 0.014 416 8191 279.82 12436.48 0.023 2078 40896 0.977
16 79.35 16599.54 0.005 481 32767 390.42 47644.04 0.008 2400 163810 0.982
18 108.37 66019.6 0.002 751 98303 535.28 184747.27 0.003 3745 491492 0.986

Reversal
2 2 2 1 2 2 2.59 2.59 1 5 5 0.26
4 5.58 7.99 0.70 8 8 12.93 31.72 0.41 29 35 0.46
6 11.87 20.10 0.57 20 21 33.96 96.08 0.35 76 100 0.57
8 21.99 62.00 0.35 44 62 70.66 298.14 0.24 182 305 0.63
10 37.35 158 0.24 94 158 129.88 779.05 0.17 401 785 0.69
12 59.34 411 0.14 144 411 217.31 2042.01 0.11 640 2050 0.72
14 89.91 1179 0.08 247 1179 342.91 5882.71 0.06 1115 5890 0.75
16 130.19 2828 0.05 355 2828 511.46 14126.25 0.04 1629 14135 0.78
18 184.32 8001 0.02 460 8001 742.56 39989.92 0.02 2057 40000 0.80

Complement
2 3 3 1 3 3 7.77 8 1 8 8 1
4 5 5 1 5 5 24.12 25 1 25 25 1
6 7 7 1 7 7 34.97 35 1 35 35 1
8 9 9 1 9 9 45 45 1 45 45 1
10 11 11 1 11 11 55 55 1 55 55 1
12 13 13 1 13 13 65 65 1 65 6s5 1
14 15 15 1 15 15 75 75 1 75 75 1
16 17 17 1 17 17 85 85 1 85 85 1
18 19 19 1 19 19 95 95 1 95 95 1
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Chapter 5

Simulation Complexity of Regular

Expressions by Non-Deterministic

Finite Automata

The development and analysis of algorithms to simulate regular expressions using finite

automata is a problem that has been widely studied. The solution to this problem

allows the efficient implementation of useful tools in fields like text processing, such as

scanner generators (as lex), editors (as emacs), or API’s of programming languages

(as Java or Python).

One of the first simulation methods is due to Thompson. Given a regular expression

α, it is defined an inductive tool which construct an ε-NFA for the basic regular

expressions together with rules to construct the ε-NFA for the different operators in

α, as we illustrated in Section 2.3.1.1.

Another classical simulation method is the position (or Glushkov) automaton which

consider a linearised version of the given regular expression α and construct an NFA

without transitions labelled by the empty word, as we described in Section 2.3.1.2.

Other simulations, such as partial derivative automata (see Section 2.3.2.2), follow

103
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automata (Af ) [IY03a], or the construction given by Garcia et al. (Au) [GLRA11],

were proved to be quotients of the position automata, by specific right-equivalence

relations [CZ02, IY03a].

Recently, Yamamoto [Yam14] presented a new simulation method based on Thompson

automaton (AT). Given a AT, two automata are constructed by merging AT states:

in one, the suffix automaton (ASuf), states with the same right languages are merged

and in the other, the prefix automaton (APre), states with the same left languages

are merged. ASuf corresponds to APD, which is not a surprise because, as we already

referred, it is known that the APos is obtained if ε-transitions are eliminated from AT.

APre is a quotient of AT by a left-invariant relation.

In this chapter we start by studying several properties of APD automaton (Section 5.1).

We also introduce the right derivatives, with which we construct the right derivative

automaton, and show its relation with Brzozowski’s automaton (Section 5.2). Us-

ing the notion of right-partial derivatives, in Section 5.3 we define the right-partial

derivative automaton
←−
APD, characterise its relation with APD and APos, and study

its average size. In Section 5.4, we construct the APre automaton directly from the

regular expression without use the AT automaton, and show that it also is a quotient

of the APos automaton. However, experimental results suggest that, on average, the

reduction on the size of the APos is not large. Considering the framework of analytic

combinatorics we study this reduction (Section 5.5).

The work presented in Section 5.1 was partially published in an extended abstract

from Maia et al. [MMR14]. Another paper from the same authors [MMR15b] expands

the work presented in Section 5.3 and Section 5.4.

5.1 Partial Derivative automaton

The partial derivative automaton (Section 2.3.2.2) is a widely studied method of

conversion from REs to equivalent NFAs. It is known that the automaton resulting
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from this simulation (or conversion) method is a quotient of the position automata,

by a specific bisimulation. When REs are in (normalised) star normal form, i.e. when

subexpressions of the star operator do not accept the empty word, the resulting APD

automaton is a quotient of the follow automaton [COZ04].

The bisimilarity of APos was studied by Ilie & Yu [IY03b], and of course it is always

not larger than all other quotients by bisimulations. Nevertheless, experimental results

with uniform random generated REs suggested that, for REs in (normalised) star

normal form, the bisimilarity of APos automata almost always coincide with the APD

automata [GMR10].

Our goal is to have a better characterization of the APD automata and their relation

with the bisimilarity of APos. This may help to obtain an algorithm that computes,

directly from a regular expression, the bisimilarity of APos. For that, we analyse how

close the APD is to the bisimilarity of APos.

In this section, we present an inductive construction of APD and study several of

its properties. For regular expressions without Kleene star we characterise the APD

automata and we prove that the APD automaton is isomorphic to the bisimilarity of

APos, under certain conditions. Thus, for these special regular expressions, we conclude

that the APD is an optimal conversion method using right-invariant relations. We

close by considering the difficulties of relating the two automata for general regular

expressions.

5.1.1 Inductive Characterization of APD

Mirkin’s construction of the APD(α) is based in a system of equations αi = σ1αi1 +

· · · + σkαik + ε(αi), with α0 ≡ α and αij, 1 ≤ j ≤ k, linear combinations of αi,

0 ≤ i ≤ n, n ≥ 0. A solution π(α) = {α1, . . . , αn} can be obtained inductively on the

structure of α as follows:

π(∅) = ∅, π(α + β) = π(α) ∪ π(β),
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π(ε) = ∅, π(αβ) = π(α)β ∪ π(β), (5.1)

π(σ) = {ε}, π(α?) = π(α)α?.

Champarnaud & Ziadi [CZ01] proved that PD(α) = π(α) ∪ {α} and that the two

constructions lead to the same automaton.

As noted by Broda et al. [BMMR12], Mirkin’s algorithm to compute π(α) also provides

an inductive definition of the set of transitions of APD(α). Let ϕ(α) = {(σ, γ) | γ ∈

∂σ(α), σ ∈ Σ} and λ(α) = {α′ | α′ ∈ π(α), ε(α′) = ε}, where both sets can be

inductively defined as follows:

ϕ(∅) = ∅, ϕ(α + β) = ϕ(α) ∪ ϕ(β),

ϕ(ε) = ∅, ϕ(αβ) = ϕ(α)β ∪ ε(α)ϕ(β),

ϕ(σ) = {(σ, ε)}, σ ∈ Σ, ϕ(α?) = ϕ(α)α?;

λ(∅) = ∅, λ(α + β) = λ(α) ∪ λ(β),

λ(ε) = ∅, λ(αβ) = λ(β) ∪ ε(β)λ(α)β,

λ(σ) = {ε}, σ ∈ Σ, λ(α?) = λ(α)α?.

(5.2)

We have, δpd = {α}×ϕ(α)∪F (α) where the result of the × operation is seen as a set

of triples (α′, σ, β′) and the set F is defined inductively by:

F (∅) = F (ε) = F (σ) = ∅, σ ∈ Σ,

F (α + β) = F (α) ∪ F (β),

F (αβ) = F (α)β ∪ F (β) ∪ λ(α)β × ϕ(β),

F (α?) = F (α)α? ∪ (λ(α)× ϕ(α))α?.

(5.3)

Note that the concatenation of a transition (α, σ, β) with a regular expression γ is

defined by (α, σ, β)γ = (αγ, σ, βγ). Then, we can inductively construct the partial

derivative automaton of α using the following results.
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Proposition 5.1. For all α ∈ RE, F (α) = {(τ, σ, τ ′) | τ ∈ PD+(α) ∧ τ ′ ∈ ∂σ(τ)}.

Proof. As we know that PD(α) = π(α) ∪ {α} and PD(α) = PD+(α) ∪ {α} we can

conclude that PD+(α) = π(α). Thus we want to prove that F (α) = {(τ, σ, τ ′) | τ ∈

π(α) ∧ τ ′ ∈ ∂σ(τ)}. Let us proceed by induction on the structure of α. For the base

cases the equality is obvious.

If α ≡ α1 + α2 then

{(τ, σ, τ ′) | τ ∈ π(α1 + α2) ∧ τ ′ ∈ ∂σ(τ)}

= {(τ, σ, τ ′) | τ ∈ π(α1) ∪ π(α2) ∧ τ ′ ∈ ∂σ(τ)}

= {(τ, σ, τ ′) | τ ∈ π(α1) ∧ τ ′ ∈ ∂σ(τ)} ∪ {(τ, σ, τ ′) | τ ∈ π(α2) ∧ τ ′ ∈ ∂σ(τ)}

= F (α1) ∪ F (α2) = F (α1 + α2).

Let α ≡ α1α2 then

{(τ, σ, τ ′) | τ ∈ π(α1α2) ∧ τ ′ ∈ ∂σ(τ)} = {(τ, σ, τ ′) | τ ∈ π(α1)α2 ∪ π(α2) ∧ τ ′ ∈ ∂σ(τ)}

= {(τ, σ, τ ′) | τ ∈ π(α1)α2 ∧ τ ′ ∈ ∂σ(τ)} ∪ {(τ, σ, τ ′) | τ ∈ π(α2) ∧ τ ′ ∈ ∂σ(τ)}

If τ ∈ π(α1)α2, then τ = α′1α2, where α′1 ∈ π(α1), and τ ′ ∈ ∂σ(α′1α2).

Thus τ ′ ∈ ∂σ(α′1)α2, or τ ′ ∈ ∂σ(α2) if ε(α′1) = ε.

Then (τ, σ, τ ′) ∈ F (α1)α2 or (τ, σ, τ ′) ∈ λ(α1)α2 × ϕ(α2).

Thus, we have {(τ, σ, τ ′) | τ ∈ π(α1 + α2) ∧ τ ′ ∈ ∂σ(τ)} = F (α1α2).

Considering α ≡ α?1 then

{(τ, σ, τ ′) | τ ∈ π(α?1) ∧ τ ′ ∈ ∂σ(τ)} = {(τ, σ, τ ′) | τ ∈ π(α1)α?1 ∧ τ ′ ∈ ∂σ(τ)}

If τ ∈ π(α1)α?1, then τ = α′1α
?
1, where α

′
1 ∈ π(α1).

As before, τ ′ ∈ ∂σ(α′1)α?1 or τ ′ ∈ ∂σ(α?1) if ε(α′1) = ε.

Thus (τ, σ, τ ′) ∈ F (α1)α?1 or (τ, σ, τ ′) ∈ (λ(α1)× ϕ(α1))α?1.

Then {(τ, σ, τ ′) | τ ∈ π(α?1) ∧ τ ′ ∈ ∂σ(τ)} = F (α?1).
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Proposition 5.2. For all α ∈ RE, and λ′(α) = λ(α) ∪ ε(α){α},

APD(α) = 〈π(α) ∪ {α},Σ, {α} × ϕ(α) ∪ F (α), α, λ′(α)〉.

Proof. We want to prove that the right-hand side of this equality corresponds to the

definition of APD previously presented in Section 2.3.2.2 on page 36. The set of states

of both automata is obviously the same, because we know that PD(α) = π(α) ∪ {α}.

The same happens for initial and final states. The transition function δpd = {(τ, σ, τ ′) |

τ ∈ PD(α) ∧ τ ′ ∈ ∂σ(τ)} can be written as the following union:

{(α, σ, τ ′) | τ ′ ∈ ∂σ(α)} ∪ {(τ, σ, τ ′) | τ ∈ PD+(α) ∧ τ ′ ∈ ∂σ(τ)}.

The set {(α, σ, τ ′) | τ ′ ∈ ∂σ(α)} is clearly equal to {α}×ϕ(α), and by Proposition 5.1

{(τ, σ, τ ′) | τ ∈ PD+(α) ∧ τ ′ ∈ ∂σ(τ)} = F (α). Therefore, the automaton here defined

is the previous one.

Figure 5.1 illustrates this inductive construction, where we assume that states are

merged whenever they correspond to equal REs.

We can relate the function π and the states of Ac automaton. Let π′ be a function that

coincides with π except that π′(σ) = {(σ, ε)} and, in the two last rules, the regular

expression, either β or α?, is concatenated to the second component of each pair in π′,

i.e.,

π′(∅) = ∅, π′(α + β) = π′(α) ∪ π′(β),

π′(ε) = ∅, π′(αβ) = π′(α)β ∪ π′(β), (5.4)

π′(σ) = {(σ, ε)}, π′(α?) = π′(α)α?.

Proposition 5.3. Let α be a linear regular expression,

π′(α) = {(σi, cσi(α))|i ∈ pos(α)}.
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APD(∅) :

∅
APD(ε) :

ε
APD(σ) :

σ ε
σ

APD(α + β) :

α+ β

∂σ(β)

∂σ(α)

λ(β)

λ(α)
σ

σ

F (α)

F (β)

APD(αβ) :

αβ ∂σ(α)β λ(α)β ∂σ′(β) λ(β)
σ σ′F (α)β F (β)

σ′

APD(α?) :

α? ∂σ(α)α? λ(α)α?
σ

σ′

F (α)α?

Figure 5.1: Inductive construction of APD. The initial states are final if ε belongs to
the language of its label. Note that only if ε(β) = ε the dotted arrow in APD(αβ)
exists and the state λ(α)β is final.
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Proof. Let us proceed by induction on α. For α ≡ ∅ and α ≡ ε it is easy to prove that

the proposition holds. Considering α = σi, we have that {(σi, cσi(σi))} = {(σi, ε)} =

π′(σi). Suppose that the proposition holds for γ and β. If α ≡ γ + β, then

{(σi, cσi(α)) | i ∈ pos(α)} = {(σi, cσi(γ + β) | i ∈ pos(γ + β)}

by the rules in (2.23)

= {(σi, cσi(γ)) | i ∈ pos(γ))} ∪ {(σi, cσi(β)) | i ∈ pos(β)}

= π′(γ) ∪ π′(β) = π′(γ + β).

If α ≡ γβ, then

{(σi, cσi(α)) | i ∈ pos(α)} = {(σi, cσi(γβ)) | i ∈ pos(γβ)}

by the rules in (2.23)

= {(σi, cσi(γ)β) | i ∈ pos(γ)} ∪ {(σi, cσi(β)) | i ∈ pos(β)}

= {(σi, cσi(γ)) | i ∈ pos(γ)}β ∪ {(σi, cσi(β)) | i ∈ pos(β)}

= π′(γ)β ∪ π′(β) = π′(γβ).

If α ≡ γ?, then

{(σi, cσi(α)) | i ∈ pos(α)} = {(σi, cσi(γ?)) | i ∈ pos(γ?)}

by the rules in (2.23)

= {(σi, cσi(γ)γ?) | i ∈ pos(γ?)}

= {(σi, cσi(γ)) | i ∈ pos(γ)}γ?

= π′(γ)γ? = π′(γ?).

Thus, the proposition holds.

By Proposition 5.3, we can conclude that if we compute π′(α) we obtain exactly1 the

set of states Qc \ {(0, cε)} of the c-continuation automaton Ac(α). Then it is easy
1Considering, for each position i, the marked letter σi.
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(a) N (b) C (c) CR (d) Q

Figure 5.2: Set of digraphs F .

to see that π(α) is obtained by unmarking the c-continuations and removing the first

component of each pair, and thus Qc�≡c = π(α) ∪ {α}.

Considering τ = (a1b
?
2 + b3)?a4, π′(τ) = {(a1, b

?
2τ), (b2, b

?
2τ), (b3, τ), (a4, ε)}, which

corresponds exactly to the set of states (excluding the initial) of Ac(τ), presented

in Figure 2.10 on page 35. The set π(τ) is {b?τ, τ, ε}.

5.1.2 APD Minors

As we have already seen, there are several polynomial-time algorithms to transform

regular expression into finite automaton with linear size in the size of the input. The

dual conversion is, however more difficult: an exponential blowup in size can not be

avoided, in general.

Gulan [Gul13] characterise finite automata that can be converted to an expression

that is linear in the size of the automata. For that, he studied the interrelations

between the size of regular expressions and the digraph structures of the corresponding

automata. A similar work was already done for Glushkov automaton [CZ00] and for

series-parallel automata [MR09]. Gulan shows that an automaton that require regular

expressions of superlinear size to represent it after the conversion, must contain some

of the seven substructures (minors) represented in Figure 5.2 and in Figure 5.3. In

this section we will show examples for which the partial derivative automaton contains

these substructures.

First, let us introduce some notation following Gulan. Formally, a digraph is a 4-tuple

G = (VG, AG, tG, hG) where V and A are finite disjoint sets, called the vertices and the
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(a) φ (b) ψ (c) ψR

Figure 5.3: Set of digraphs K.

arcs of G, and t and h are maps from A to V . The image of a ∈ AG under tG (hG) is

called the tail (head) of a in G. If t(a) = x and h(a) = y, we say that a leaves x and

enters y, or that a is an xy-arc.

The digraphs G and GR arise from the other by arc-reversal. A digraph F is a subgraph

of a digraph G if the removal of vertices and arcs from G yields F .

An (x, y)-walk W of length n in G is a sequenceW = a1, . . . , an ∈ AG, where t(a1) = x,

h(ai) = t(ai+1), for 1 ≤ i < n, and h(an) = y. The vertices x and y are the endpoints

of W , and every h(ai) for 1 ≤ i < n is an internal vertex of W .

An (x, y)-path in a digraph G is an (x, y)-walk such that neither x nor y is an

internal vertex and every internal vertex occurs exactly only once. Two paths P1 =

a1, . . . , an, P2 = b1, . . . , bm ⊆ G are internally disjoint if {a1, . . . , an} ∩ {b1, . . . , bm}

contains no internal vertex of either path.

An embedding of F in G is an injection e : VF → VG satisfying that if a = xy ∈ AF ,

then G contains an e(x)e(y)-path Pa, and that Pa and Pa′ are internally disjoint for

distinct a, a′ ∈ AF . If an embedding of F in G exists, we call F a minor of G realised

by the embedding.

The digraph underlying an automaton A = 〈Q,Σ, δ, I, F 〉 is G(A) = (Q, δ, t, h), where

t(p, σ, q) = p and h(p, σ, q) = q.

A useful acyclic NFA with one final state is series parallel if N (see Figure 5.2) is a

minor of its underlying digraph.

As we already refered, Gulan proved that, given an automaton A, an exponential

blowup cannot be avoided in the size of an regular expression equivalent to A, if at
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least one of the digraphs from F (Figure 5.2) or K (Figure 5.3) is a minor of the

underlying digraph of A.

In Figure 5.4 and Figure 5.5 we present some examples of partial derivative automata

for which the digraphs from F andK are minors of its underlying digraph. We consider

partial derivative automata constructed from linear regular expressions (Figure 5.4)

and from general regular expressions (Figure 5.5).

Given a regular expression α for which we know that a certain minor X occurs in

the underlying digraph of APD(α), to find a family of regular expression αn for which

that minor still occurs in the underlying digraph of APD(αn) it is sufficient to add

disjunctions to α with new alphabet symbols, i.e., symbols which do not appear in

α. For example, we know that the minor N occurs in the underlying digraph of

APD(a(ac+ b) + bc). Thus it also occurs in the underlying digraph of APD(a(ac+ b) +

bc+
∑k

i=1 ai) for any k ≥ 1.

Following Gulan and considering these examples we can conclude that, in general, a

partial derivative automaton A cannot be converted to a regular expression that is

linear in the size of A.

5.1.3 APD Characterisations

We want to characterise the APD automaton and determine when it coincides with the

bisimilarity of APos. In this section and in the following one (Section 5.1.4), we only

consider REs normalised under the following conditions:

• The expression α is reduced according to:

– the equations ∅+ α = α + ∅ = α, ε · α = α · ε = α, ∅ · α = α · ∅ = ∅;
– and the rule, for all subexpressions β of α, β = γ + ε =⇒ ε(γ) = ∅.

• The expression α is in star normal form (snf).

Every regular expression can be converted into an equivalent normalised RE in linear

time.



114 CHAPTER 5. SIMULATION COMPLEXITY OF RES BY NFAS

α

α1

α2

α3

c

d

a

a

d

c

a

c

d

b
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(b) C. α = (c?(ab + d?))?,
α1 = (c?(ab + d?))α, α2 =
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(c) CR. α = (c?(ab + d))?,
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(d) Q. α = (c?(ab + d?))?,
α1 = (c?(ab + d?))α, α2 =
d?α, α3 = bα
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(e) φ. α = (c?(ab + d?))?,
α1 = (c?(ab + d?))α, α2 =
d?α, α3 = bα
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(f) ψ. α = (c((ab)? + d))?, α1 =
((ab)? + d)α, α2 = b(ab)?α, α3 =
(ab)?α
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(g) ψR. α = (c((ab)? + d))?, α1 =
((ab)? + d)α, α2 = b(ab)?α, α3 =
(ab)?α

Figure 5.4: APD for which minors from F and K occur (linear REs).
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(d) Q. α = a(ab + ac) + (bb + bc), α1 =
(ab)+(ac), α2 = (bb)+(bc), α3 = b, α4 = c,
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a?(bb+ c)α1 α2 = bα1

α α1

α2

α3
a

a a

b

c

(f) ψ. α = aα1 α1 = aα2, α2 = (a(b +
ca))?, α3 = (b+ ca)α2
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(g) ψR. α = (a(b + (ca)?))?, α1 = (b +
(ca)?)α, α2 = (a(ca)?)α, α3 = (ca)?α

Figure 5.5: APD for which minors from F and K occur.



116 CHAPTER 5. SIMULATION COMPLEXITY OF RES BY NFAS

It is known that if α is a normalised regular expression, the APD(α) is a quotient

of the Follow automaton of α, and so APD(α) is the smaller known direct ε-free

automaton construction from a regular expression. As we discuss in Subsection 5.1.4.2,

to solve the problem in the general case it is difficult, mainly because the lack of unique

normal forms. Here, we give some partial solutions. First, we consider linear regular

expressions and, in Subsection 5.1.3.2, we solve the problem for regular expressions

representing finite languages.

5.1.3.1 Linear Regular Expressions

Given a linear regular expression α, it is obvious that the APos(α) is deterministic.

In this case, all positions correspond to distinct letters and transitions from a same

state have distinct labels. Thus, APD(α) is also deterministic. The following result is

proved by Champarnaud & Ziadi [COZ04].

Proposition 5.4. Let σi and σj be two distinct letters of a normalised linear regular

expression α. Then the following equivalence holds:

cσi(α) ≡ cσj(α)⇔ ∀σ ∈ Σ, dσ(cσi(α)) ≡ dσ(cσj(α)).

Proposition 5.5. If α is a normalised linear regular expression, APD(α) is minimal.

Proof. By Proposition 5.4 we know that

cσi(α) 6≡ cσj(α)⇔ {σ | dσ(cσi(α)) 6= ∅} 6= {σ | dσ(cσj(α)) 6= ∅}

where α is a normalised linear regular expression and σi and σj are two distinct

letters. Recall that APD(α) ' Ac(α)�≡c. We want to prove that any two states

cσi(α) and cσj(α) of Ac(α)�≡c are distinguishable. We know that cσi(α) 6≡ cσj(α),

because cσi(α) and cσj(α) are different states of Ac(α)�≡c. Consider σ′ ∈ Σ such

that σ′ ∈ {σ | dσ(cσi(α)) 6= ∅} but σ′ /∈ {σ | dσ(cσj(α)) 6= ∅}. Let δ represent
δc�≡c. Then δ(cσi(α), σ′) = cσ′(α). By construction, we know that ∃w ∈ Σ? such that
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δ(cσ′(α), w) ∈ Fc�≡c. Let w′ = σ′w. Therefore δ(cσi(α), w′) = δ(cσ′(α), w) ∈ Fc�≡c
and either δ is not defined for (cσj(α), w′) or δ(cσj(α), w′) is a non final dead state.

Thus, the two states are distinguishable.

5.1.3.2 Finite Languages

In this section, we consider normalised regular expressions without the Kleene star

operator, i.e., that represent finite languages. These regular expressions are named

finite regular expressions.

The following results present some properties of APD automaton.

Proposition 5.6. The APD(α) = 〈PD(α),Σ, δα, α, Fα〉 automaton of any finite regular

expression α 6≡ ∅ has the following properties:

1. The state labeled by ε always exists and is a final state;

2. The state labeled by ε is reachable from any other state;

3. |Fα| ≤ |α|ε + 1;

4. The size of each element of PD(α) is not greater than |α|.

Proof. We use the inductive construction of APD(α).

1. The state labeled by ε is a final state by definition. Let us prove that it always

exists. For the base cases this is obviously true. If α ≡ γ + β, then π(α) =

π(γ) ∪ π(β). As ε ∈ π(γ) and ε ∈ π(β), by inductive hypothesis, then ε ∈ π(α).

If α ≡ γβ, then π(α) = π(γ)β ∪ π(β). As ε ∈ π(β), ε ∈ π(α).

2. Recall that any state β is reachable if ∃w ∈ Σ? ε ∈ ∂w(β). If α is ε or σ

the proposition is obviously true. Let α be γ + β. The states of APD(α) are

{α} ∪ π(γ) ∪ π(β). By construction, there exists at least a transition from

the state α to a (distinct) state in π(γ) ∪ π(β). Let α be γβ. The states
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of APD(α) are {α} ∪ π(γ)β ∪ π(β). For β′ ∈ {β} ∪ π(β), ∃wβ ε ∈ ∂wβ(β′).

In the same way, for γ′ ∈ {γ} ∪ π(γ), ∃wγ ε ∈ ∂wγ (γ′). Thus, for α′ = γ′β ∈

π(γ)β, we can conclude that ε ∈ ∂wγwβ(α′), because ∂wγwβ(α′) = ∂wβ(∂wγ (γ
′β)) ⊇

∂wβ(∂wγ (γ
′)β) ⊇ ∂wβ(β). From the state α we can reach the state ε because the

transitions leaving it go to states in π(γ)β ∪ π(β) which reach the state ε.

3. For the base cases it is obviously true. Let α be γ + β. We know that |α|ε =

|γ|ε+|β|ε, because ε(α) = ε if either ε(γ) or ε(β) are ε, and |Fα| ≤ |Fγ|+|Fβ|−1,

because ε ∈ Fγ ∩ Fβ. Then |Fα| ≤ |γ|ε + |β|ε + 1 = |α|ε + 1. If α is γβ we also

know that |α|ε = |γ|ε+ |β|ε and that ε(α) = ε if ε(γ) and ε(β) are ε. If ε(β) = ε,

then |Fα| ≤ |Fγ|+ |Fβ| − 1. Otherwise, |Fα| = |Fβ|. We have, in the both cases,

|Fα| ≤ |γ|ε + |β|ε + 1 ≤ |α|ε + 1.

4. If α ≡ ε or σ the proposition is obviously true. Let α be γ + β. For all αi ∈

π(α) = π(γ)∪ π(β), |αi| ≤ |γ| or |αi| ≤ |β|, and thus |αi| ≤ |α|. If α is γβ, then

π(α) = π(γ)β ∪ π(β). For γi ∈ π(γ), |γi| ≤ |γ|. If αi ∈ π(γ)β, αi = γiβ. Then,

|αi| ≤ |γ| + |β| = |α| if γi 6= ε, or |αi| = |β| ≤ |α| otherwise . If αi ∈ π(β),

|αi| ≤ |β| ≤ |α|.

Caron & Ziadi [CZ00] characterised the position automaton in terms of the properties

of the underlying digraph. We consider a similar approach to characterise the APD for

finite languages. We will restrict the analysis to acyclic NFAs. We first observe that

APos are series-parallel automata (see page 112) which is not the case for all APD, as

can be seen considering APD(a(ac+ b) + bc) (see Figure 5.6).

Let A = 〈Q,Σ, δ, q0, F 〉 be an acyclic NFA. A is an hammock if it has the following

properties. If |Q| = 1, A has no transitions. Otherwise, there exists an unique f ∈ F

such that for any state q ∈ Q one can find a path from q0 to f going through q. The

state q0 is called the root and f the anti-root. The rank of a state q ∈ Q, named rk(q),

is the length of the longest word w ∈ Σ? such that δ(q, w) ∈ F . In an hammock, the
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a(ac+ b) + bc

ac+ b

c

ε

a

b
a

b

c

Figure 5.6: APD(a(ac+ b) + bc).

anti-root has rank 0. Each state q of rank r ≥ 1, has only transitions to states in

smaller ranks and at least one transition for a state in rank r − 1.

Proposition 5.7. For every finite regular expression α, APD(α) is an hammock.

Proof. If the partial derivative automaton has a unique state then it is the Apd(ε) or

Apd(∅) which has no transitions. Otherwise, for all q ∈ PD(α) there exists at least one

path from q0 = α to q because APD(α) is initially connected; also, there exists at least

one path from q to ε, the anti-root, by Proposition 5.6, item 2.

Proposition 5.8. An acyclic NFA A = 〈Q,Σ, δ, q0, F 〉 is a partial derivative automa-

ton of some finite regular expression α, if the following conditions holds:

1. A is an hammock;

2. ∀q, q′ ∈ Q rk(q) = rk(q′) =⇒ ∃σ ∈ Σ δ(q, σ) 6= δ(q′, σ).

Proof. First we give an algorithm that allows to associate to each state of an hammock

A a regular expression. Then, we show that if the second condition holds, A is the

APD(α) where α is the RE associated to the initial state.

We label each state q with a regular expression RE(q), considering the states by

increasing rank order. We define for the anti-root f , RE(f) = ε. Suppose that all

states of ranks smaller than n are already labelled. Let q ∈ Q with rk(q) = n. For

σ ∈ Σ, with δ(q, σ) = {q1, . . . , qm} and RE(qi) = βi we construct the regular expression

σ(β1 + · · ·+ βm). Then,

RE(q) =
∑
σ∈Σ

σ(β1 + · · ·+ βm)
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where we omit all σ ∈ Σ such that δ(q, σ) = ∅. We have, RE(q0) = α

To show that if A satisfies condition 2. then A ' APD(α), we need to prove that

RE(q) 6≡ RE(q′) for all q, q′ ∈ Q with q 6= q′. We proceed by induction on the

rank. For rank 0, it is obvious. Suppose that all states with rank m < n are labelled

by different regular expressions. Let q ∈ Q, with rk(q) = n. We must prove that

RE(q) 6≡ RE(q′) for all q′ with rk(q′) ≤ n. Suppose that rk(q) = rk(q′), RE(q) =

σ1(α1 + · · · + αn) + · · · + σi(β1 + · · · + βm), and RE(q′) = σ′1(α′1 + · · · + α′n′) + · · · +

σ′j(β
′
1 + · · · + β′m′). We know that ∃σδ(q, σ) 6= δ(q′, σ). Suppose that σ = σ1 = σ′1.

Then we know that ∃t, t′ αt 6= α′t′ , thus RE(q) 6≡ RE(q′). If rk(q) > rk(q′), then there

exists a w ∈ Σ? with |w| = n such that δ(q, w) ∩ F 6= ∅ and δ(q′, w) ∩ F = ∅. Thus

RE(q) 6≡ RE(q′).

5.1.4 Comparing APD and APos�≡b

As we already mentioned, there are many (normalised) regular expressions α for which

APD(α) ' APos(α)�≡b. Moreover, if we consider linear regular expressions α, it follows

from the Proposition 5.5 that APD(α) ' APos(α)�≡b, because if A is a DFA then
A�≡b is the minimal DFA equivalent to A. However, even for REs representing finite

languages this is not always true. Taking, for example, τ1 = a(a + b)c + b(ac + bc) +

a(c + c), the corresponding APD(τ1) is the one represented in Figure 5.7. The states

that are bisimilar are equivalent modulo the + idempotence and left-distributivity.

It is also easy to see that two states are bisimilar if they are equivalent modulo +

associativity or + commutativity.

5.1.4.1 Finite Languages

In this section we establish some conditions for which the APD automaton of a finite

regular expression α is isomorphic to the bisimilarity of APos(α).

Considering an order < on Σ and assuming that · < +, we can extend < to REs.
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τ1 ac+ bc
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(a) APD(τ1).
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a
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(b) APos(τ1)�≡b.

Figure 5.7: τ1 = a(a+ b)c+ b(ac+ bc) + a(c+ c).

Then, the following rewriting system is confluent and terminating:

α + (β + γ)→ (α + β) + γ (+ Associativity),

α + β → β + α if β < α (+ Commutativity),

α + α→ α (+ Idempotence),

(αβ)γ → α(βγ) (. Associativity),

(α + γ)β → αβ + γβ (Left distributivity).

A (normalised) regular expression α that can not be rewritten anymore by this system

is called an irreducible regular expression modulo ACIAL.

Remark 1. An irreducible regular expression modulo ACIAL α is of the form:

n∑
i=1

wi +
m∑
j=1

w′jαj (5.5)

where wi, w′j are words for 1 ≤ i ≤ n, 1 ≤ j ≤ m, and αj are expressions of the same

form of α, for 1 ≤ j ≤ m. For each normalised RE without the Kleene star operator,

there exits a unique normal form.

For example, considering a < b < c, the normal form for the RE τ1 given above is

τ2 = ac+ a(ac+ bc) + b(ac+ bc) and APD(τ2) ' APos(τ2)�≡b. As we will see next, for

normal forms this isomorphism always holds.

The following lemmas are needed to prove the main result.
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Lemma 5.9. For σ ∈ Σ, the function ∂σ is closed modulo ACIAL.

Proof. We know that α has the form w1 + · · · + wn + w′1α1 + · · · + w′mαm, where

wi = σivi, vi ∈ Σ?, w′j = σjv
′
j, v
′
j ∈ Σ?, i ∈ {1, · · · , n}, j ∈ {1, · · · ,m}. Thus,

∀σ ∈ Σ ∂σ(α) = ∂σ(w1)∪ · · · ∪ ∂σ(wn)∪ ∂σ(w′1)α1 ∪ · · · ∪ ∂σ(w′i)αm, where ∂σ(wi) = vi

if σi = σ or ∂σ(wi) = ∅ otherwise; and ∂σ(w′j)αj = v′jαj, if σj = σ or ∂σ(w′j)αj = ∅

otherwise. Then it is obvious that the possible results are irreducible modulo ACIAL,

and the proposition holds.

Lemma 5.10. For w,w′ ∈ Σ?,

1. (∀σ ∈ Σ) |∂σ(w)| ≤ 1.

2. w 6= w′ =⇒ (∀σ ∈ Σ) (∂σ(w) 6= ∂σ(w′) ∨ ∂σ(w) = ∂σ(w′) = ∅).

3. (∀σ ∈ Σ)∂σ(wα) = ∂σ(w)α = {w′α}, if w = σw′.

Proposition 5.11. Given α and β irreducible finite regular expressions modulo ACIAL,

α 6≡ β =⇒ ∃σ ∈ Σ ∂σ(α) 6= ∂σ(β).

Proof. Let α 6≡ β. We know that α =
∑n

i=1wi +
∑m

i=1 w
′
iαi and β =

∑n′

i=1 xi +∑m′

i=1 x
′
iβi. The sets of partial derivatives of α and β w.r.t a σ ∈ Σ can be written as:

∂σ(α) = A ∪
j⋃
t=1

∂σ(wit) ∪
v⋃
t=1

∂σ(w′lt)αlt ,

∂σ(β) = A ∪
j′⋃
t=1

∂σ(xi′t) ∪
v′⋃
t=1

∂σ(x′l′t)αl
′
t
,

where A is the set of all partial derivatives ϕ such that ϕ ∈ ∂σ(γ) if, and only if, γ is

a common summand of α and β, i.e. if γ ≡ wi ≡ xj or γ ≡ w′lαl ≡ x′kβk for some i, j,

l, and k. Without loss of generality, consider the following three cases:

1. If j 6= 0 and j′ 6= 0, we know that for k ∈ {i′1, . . . , i′j′}, wi1 6= xk and, by
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Lemma 5.10, ∂σ(wi1) 6= ∂σ(xk), and ∂σ(wi1) 6= ∂σ(x′k)βk, for k ∈ {l′1, . . . , l′v′}.

Thus, ∂σ(w1) ∩ ∂σ(β) = ∅.

2. If j 6= 0 and j′ = 0, this case corresponds to the second part of the previous one.

3. If j = j′ = 0, for k ∈ {l′1, . . . , l′v′}, we have w′l1αl1 6= x′kαk and then either w′l1 6= x′k

or αl1 6= βk. If w′l1 6= x′k then ∂σ(w′l1) 6= ∂σ(x′k) and thus ∂σ(w′l1)αl1 6= ∂σ(x′k)αk.

If αl1 6= βk it is obvious that ∂σ(w′l)αl 6= ∂σ(x′k)αk. Thus, ∂σ(w′l1)αl1 ∩∂σ(β) = ∅.

Theorem 5.12. Let α be a irreducible finite regular expression modulo ACIAL. Then,

APD(α) ' APos(α)�≡b.

Proof. Let APD(α) = 〈PD(α),Σ, δpd, α, Fpd〉. We want to prove that no pair of states

of APD(α) is bisimilar. As in Proposition 5.8, we proceed by induction on the rank of

the states. The only state in rank 0 is ε, for which the proposition is obvious. Suppose

that all pair of states with rank m < n are not bisimilar. Let γ, β ∈ PD(α) with

n = rk(γ) ≥ rk(β). Then, there exists γ′ ∈ ∂σ(γ) that is distinct of every β′ ∈ ∂σ(β),

by Proposition 5.11. Because rk(β′) < n and rk(γ′) < n, by inductive hypothesis,

γ′ 6≡b β′. Thus γ 6≡b β.

Despite APD(α) ' APos(α)�≡b, for irreducible REs modulo ACIAL, these NFAs are not

necessarily minimal. For example, if τ3 = ba(a+b)+c(aa+ab), both NFAs have seven

states, as can be seen in Figure 5.8, and a minimal equivalent NFA has four states.

Finally, note that for regular expressions representing finite languages, in general,

the automaton APos(α)�≡b can be arbitrarily more succinct than APD. For example,

considering the family of REs

αn =
n∑
i=1

a

i∑
j=1

a,

the APD(αn) has n + 2 states, and APos(α)�≡b has three states independently of n.

Considering n = 3, APD(α3) and APos(α3)�≡b are represented in Figure 5.9.



124 CHAPTER 5. SIMULATION COMPLEXITY OF RES BY NFAS

ba(a+ b) + c(aa+ ab)

(aa) + (ab)

a(a+ b)

b

a

a+ b

ε
c

b

a

a

a

b

a

a, b

Figure 5.8: APD(ba(a+ b) + c(aa+ ab)) ' APos(ba(a+ b) + c(aa+ ab)�≡b.

τ

a

a+ a+ a

a+ a

ε

a

a
a

a

a
a

(a) APD(α3).

0 1 2
a a

(b) APos(α3)�≡b.

Figure 5.9: α3 = aa+ a(a+ a) + a(a+ a+ a).

5.1.4.2 Regular Languages

If we consider regular expressions with the Kleene star operator, it is easy to find REs

α such that APD(α) 6' APos(α)�≡b. This is true even if APos(α) is a DFA, i.e., if α is

one-unambiguous [BK93]. For example, for α = aa? + b(ε+ aa?) the APD(α) has one

more state than APos(α)�≡b. Ilie & Yu [IY03b] presented a family of REs

αn = (a+ b+ ε)(a+ b+ ε) · · · (a+ b+ ε)(a+ b)?,

where (a+b+ε) is repeated n times, for whichAPD(αn) has n+1 states andAPos(αn)�≡b
has one state independently of n. Considering n = 3 the APD(α3) are represented in

Figure 5.10.

In concurrency theory, the characterization of regular expressions for which equivalent

NFAs are bisimilar has been extensively studied. Baeten et al. [BCG07] defined a

normal form that corresponds to the normal form (5.5), in the finite case. For regular

expressions with Kleene star operator the normal form defined by those authors is
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α3

α2

α0α1

a, b

a, b

a, b

a, b a, b

a, b

a, b

Figure 5.10: APD((a+ b+ ε)(a+ b+ ε)(a+ b+ ε)(a+ b)?).

q0 q1
a

a, b

Figure 5.11: APos((ab
? + b)?)�≡b.

neither irreducible nor unique. In that case, we can find regular expressions α in

normal form such that APD(α) 6' APos(α)�≡b. For example, for τ = (ab? + b)? the

APD(τ) has three states, as seen before in Figure 2.11, while APos(τ)�≡b has two states,

as shown in Figure 5.11. Other example is τ4 = a(ε+ aa?) + ba?, where |PD(τ4)| = 3,

and in APos(τ4)�≡b a state is saved because (ε + aa?) ≡b a?. This corresponds to an

instance of one of the axioms of Kleene algebra (for the star operator).

As no confluent or even terminating rewrite system modulo these axioms is known,

for general REs it will be difficult to obtain a characterization similar to the one of

Theorem 5.12.

5.2 Right Derivative Automaton

Brzozowski proposed a conversion method from regular expressions to DFAs, based

on derivatives of regular expressions, as we refer on Section 2.3.2. These derivatives

can be named left derivatives because they denote a left quotient of a language. In

this section we present the notion of right derivative and its relation with the left

derivatives.
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The right derivative of a regular expression α with respect to a symbol σ ∈ Σ, denoted

ασ−1, is defined recursively on the structure of α as follows:

∅σ−1 = (ε)σ−1 = ∅,

σ′σ−1 =


{ε} if σ′ = σ,

∅ otherwise,

(α+ β)σ−1 = (α)σ−1 + (β)σ−1,

(αβ)σ−1 =


α(βσ−1) if ε(β) 6= ε,

α(βσ−1) + ασ−1 otherwise,

(α?)σ−1 = α?(ασ−1).

(5.6)

This definition can be naturally extended to words in the following way, where w ∈ Σ?:

αε−1 = α,

α(wσ)−1 = (ασ−1)w−1.

More generally we can use: α(ps)−1 = (αs−1)p−1, for every factorisation w = ps, p, s ∈

Σ?.

The two following results establish a relationship between the right and the left

derivatives, w.r.t. letters and words.

Proposition 5.13. For any regular expression α ∈ RE and any σ ∈ Σ,

ασ−1 = (σ−1αR)R.

Proof. Let us prove the result by induction on α. For the base cases the result is

obviously true. Assume that the equality holds for α1, α2 ∈ RE.

Let α ≡ α1 + α2, then:

(α1 + α2)σ−1 = α1σ
−1 + α2σ

−1 by (5.6)

= (σ−1αR1 )R + (σ−1αR2 )R by inductive hypothesis

= (σ−1αR1 + σ−1αR2 )R by (2.3)

= (σ−1(αR1 + αR2 ))R by (2.21)
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= (σ−1(α1 + α2)R)R by (2.3).

If α ≡ α1α2, then we have:

(α1α2)σ−1 =

α1(α2σ
−1) If ε(α2) 6= ε

α1(α2σ
−1) + α1σ

−1 otherwise
by (5.6)

=

α1(σ−1αR2 )R If ε(α2) 6= ε

α1(σ−1αR2 )R + (σ−1αR1 )R otherwise
by inductive hypothesis

=

((σ−1αR2 )αR1 )R If ε(α2) 6= ε

((σ−1αR2 )αR1 + σ−1αR1 )R otherwise
by (2.3)

= (σ−1(αR2 α
R
1 ))R = (σ−1(α1α2)R)R by (2.21) and (2.3), respectively.

Finally, if α ≡ α?1, then:

α?1σ
−1 = α?1(α1σ

−1) by (5.6)

= α?1(σ−1αR1 )R by inductive hypothesis

= (σ−1(αR1 )(αR1 )?)R by (2.3)

= (σ−1(αR1 )?)R by (2.21)

= (σ−1(α?1)R)R by (2.3).

Proposition 5.14. For any regular expression α ∈ RE and any w ∈ Σ+, αw−1 =

((wR)−1αR)R.

Proof. Let us prove the result by induction on |w|. If |w| = 1, then w = σ. Thus, in

this case, the equality is true by Proposition 5.13. Assuming that the equality holds

for some w ∈ Σ+, let us prove it for w′ = σw:

α(σw)−1 = (αw−1)σ−1

= ((wR)−1αR)Rσ−1 by inductive hypothesis
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= (σ−1(((wR)−1αR)R)R)R by Proposition 5.13

= (σ−1((wR)−1αR))R

= ((wRσ)−1αR)R by definition of derivatives

= (((σw)R)−1αR)R by (2.3).

Using these relations is not difficult to prove that:

Proposition 5.15. For any regular expression α ∈ RE and any word w ∈ Σ?,

L(αw−1) = L(α)w−1.

Proof. It is known that L(w−1α) = w−1L(α). Thus, we have:

L(αw−1) = L(((wR)−1αR)R), because αw−1 = ((wR)−1αR)R

= (L((wR)−1αR))R

= ((wR)−1L(αR))R, because L(w−1α) = w−1L(α)

= L(α)w−1, because Lw−1 = (wR)−1LR.

Let
←−
D (α) be the quotient of the set of all right derivatives of a regular expression α

modulo the ACI-equivalence relation. Using the Proposition 5.13 and Proposition 5.14

we can easily conclude that:

Corollary 5.16. For any regular expression α ∈ RE,
←−
D (α) = (D(αR))R.

As we know that the set D(α) of derivatives, modulo ACI-equivalence, is finite, by the

Corollary 5.16 we can conclude that the set
←−
D (α) is also finite.

The right derivative automaton of a regular expression α is defined by

←−
AB(α) = 〈

←−
D (α),Σ, δ, I, {[α]}〉,

where I = {[d] ∈
←−
D (α) | ε(d) = ε}, and δ([q], σ) = {[q′] ∈

←−
D (α) | [q′σ−1] = [q]}.

Using the previous relations it is obvious that:
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ε ab? ab? + ε ab? + b (ab? + b)a
a

a
a

b
b

b a

Figure 5.12:
←−
AB((ab? + b)a).

Corollary 5.17. For any regular expression α ∈ RE,
←−
AB(α) ' (AB(αR))R and

L(
←−
AB(α)) = L(α).

An NFA A is disjoint [Sen92] or a partial átomaton [BT14] if and only if AR is

deterministic. As (
←−
AB(α))R = AB(αR) and AB(αR) is deterministic, for any regular

expression α ∈ RE,
←−
AB is a disjoint NFA or a partial átomaton. In Figure 5.12 is

represented
←−
AB((ab? + b)a).

5.3 Right Partial Derivate Automaton

In the same way as for derivatives, the partial derivatives (defined in Section 2.3.2.2)

can be called left-partial derivatives.

The concept of right-partial derivative was introduced by Champarnaud et. al [CDJM13].

For a regular expression α ∈ RE and a symbol σ ∈ Σ, the set of right-partial

derivatives of α w.r.t. σ,
←−
∂ σ(α), is defined inductively as follows:

←−
∂ σ(∅), =

←−
∂ σ(ε) = ∅,

←−
∂ σ(σ′) =

{ε} if σ′ = σ,

∅ otherwise,

←−
∂ σ(α + β) =

←−
∂ σ(α) ∪

←−
∂ σ(β),

←−
∂ σ(αβ) = α

←−
∂ σ(β) ∪ ε(β)

←−
∂ σ(α),

←−
∂ σ(α?) = α?

←−
∂ σ(α).

(5.7)

The definition of right-partial derivative can be extended in a natural way to sets of

regular expressions, words, and languages. The set of all right-partial derivatives of α
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w.r.t. words is denoted by
←−
PD(α) =

⋃
w∈Σ?

←−
∂ w(α).

The next results relate the left and the right-partial derivatives.

Proposition 5.18. For any regular expression α and any symbol σ ∈ Σ,

(∂σ(αR))R =
←−
∂ σ(α).

Proof. Let us prove the result by induction on the structure of α. For the base cases

the equality is obvious.

Let α ≡ α1 + α2, then

(∂σ((α1 + α2)R))R = (∂σ(αR1 ) ∪ ∂σ(αR2 ))R

= (∂σ(αR1 ))R ∪ (∂σ(αR2 ))R

=
←−
∂ σ(α1) ∪

←−
∂ σ(α2) =

←−
∂ σ(α).

Let α ≡ α1α2, then

(∂σ((α1α2)R))R = (∂σ(αR2 α
R
1 ))R

= (∂σ(αR2 )αR1 ∪ ε(αR2 )∂σ(αR1 ))R

= (∂σ(αR2 )αR1 )R ∪ (ε(αR2 )∂σ(αR1 ))R

= α1

←−
∂ σ(α2) ∪ ε(α2)

←−
∂ σ(α1) =

←−
∂ σ(α).

Let α ≡ α?1

(∂σ((α?1)R))R = (∂σ((αR1 )?))R = (∂σ(αR1 )(αR1 )?)R

= α?1(∂σ(αR1 ))R = α?1
←−
∂ σ(α1) =

←−
∂ σ(α).

Thus the equality in the proposition holds.

Proposition 5.19. For any regular expression α and any word w ∈ Σ?, (∂wR(αR))R =
←−
∂ w(α).
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q0

q1

q2 q3

b

a, b

a, b
a

a

b

Figure 5.13:
←−
APD(α) : q0 = (a?b + a?ba + a?)?a?, q1 = (a?b + a?ba + a?)?a?b, q2 =

(a?b+ a?ba+ a?)?, q3 = (a?b+ a?ba+ a?)?b.

Proof. Let us proceed by induction on the size of w. If w = ε the result is obviously

true. If w = σ the result is true by Proposition 5.18. Assuming that the result is true

for w, let us prove it for w′ = σw:

←−
∂ σw(α) =

←−
∂ σ(
←−
∂ w(α)) =

←−
∂ σ((∂wR(αR))R)

= (∂σ(((∂wR(αR))R)R))R = (∂σ(∂wR(αR)))R

= (∂wRσ(αR))R = (∂(σw)R(αR))R.

Corollary 5.20. For any regular expression α,
←−
PD(α) = (PD(αR))R.

Using the last result is not difficult to conclude that
←−
PD is finite. The right partial

derivative automaton of α is

←−
APD(α) = 〈

←−
PD(α),Σ,

←−
δ pd,
←−
F pd(α), α〉,

where
←−
δ pd = {(q′, σ, q) | q ∈

←−
PD(α), q′ ∈

←−
∂ σ(q), and σ ∈ Σ},

←−
F pd = {q ∈

←−
PD(α) |

ε(q) = ε}. Note that
←−
APD(α) has always just one final state although it can have

more than one initial state. In Fig. 5.13 is represented the
←−
APD(a?b+ a?ba+ a?)?b).

It is important to observe the two following propositions.

Lemma 5.21. For any α ∈ RE and w ∈ Σ?, the following holds: L(
←−
∂ w(α)) =

L(α)w−1.

Proof. We know that L(∂w(α)) = w−1L(α). Thus,

L(
←−
∂ w(α)) = L((∂wR(αR))R) = (L(∂wR(αR)))R = ((wR)−1L(αR))R = L(α)w−1.
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Lemma 5.22. For any α ∈ RE and w ∈ Σ?, the following holds: αw−1 =
∑←−

∂ w(α).

Proof. It is known that w−1α =
∑
∂w(α). Thus,

∑←−
∂ w(α) =

∑(
(∂wR(αR))R

)
= (
∑

∂wR(αR))R

= ((wR)−1αR)R = αw−1.

As what happens for APD, the
←−
APD(α) can also be defined inductively by a left

system of expression equations, αi = αi1σ1 + · · · + αikσk + ε(αi), i ∈ [0, n], α0 ≡ α,

αij ≡
∑

l∈I⊆[1,n] αl is a linear combination of αl, l ∈ [1, n] and j ∈ [1, k].

Proposition 5.23. The set of regular expressions ←−π (α) is a solution of a left system

of expression equations,

←−π (∅) = ∅, ←−π (α + β) =←−π (α) ∪←−π (β),

←−π (ε) = ∅, ←−π (αβ) = α←−π (β) ∪←−π (α),

←−π (σ) = {ε}, ←−π (α?) = α?←−π (α).

(5.8)

Proof. As αi = αi1σ1 + · · · + αikσk + ε(αi) and αRi = σ1α
R
i1 + · · · + σkα

R
ik + ε(αRi ) the

definition of ←−π follows directly from the definition of π.

The following result states a relation between the sets π and ←−π .

Proposition 5.24. Let α be a regular expression. Then (π(αR))R =←−π (α).

Proof. Let us proceed by induction on the structure of α. For α ≡ ε, α ≡ ∅ and

α ≡ σ ∈ Σ it is obvious. Suppose that the equality is true for any subexpression of α,

and let us prove that it is also true for α.
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If α ≡ α1 + α2, then

(π(αR))R = (π(αR1 ) ∪ π(αR2 ))R

= (π(αR1 ))R ∪ (π(αR2 ))R

=←−π (α1) ∪←−π (α2) =←−π (α1 + α2).

If α ≡ α1α2, then

(π((α1α2)R))R = (π(αR2 α
R
1 ))R

= (π(αR2 )αR1 ∪ π(αR1 ))R

= (π(αR2 )αR1 )R ∪ (π(αR1 ))R

= (αR1 )R(π(αR2 ))R ∪←−π (α1)

= α1
←−π (α2) ∪←−π (α1) =←−π (α1α2).

If α ≡ α?1, then

(π((α?1)R))R = (π((αR1 )?))R

= (π(αR1 )(αR1 )?)R

= ((α?1)R)R(π(αR1 ))R = α?1
←−π (α1) =←−π (α?1).

Note that the sizes of π(α) and ←−π (α) are not comparable in general. For example, if

α = (a?b+a?ba+a?)?b then |π(α)| > |←−π (α)|, but if we consider β = b(ba?+aba?+a?)?

then |π(β)| < |←−π (β)|.

Corollary 5.25. For any regular expression α,
←−
PD(α) =←−π (α) ∪ {α}.

Proof. For any regular expression α ∈ RE we know that

PD(α) = π(α) ∪ {α}

⇔ PD(αR) = π(αR) ∪ {αR}
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⇔ (
←−
PD(α))R = (←−π (α))R ∪ {αR} by Corollary 5.20 and Proposition 5.24

⇔
←−
PD(α) =←−π (α) ∪ {α}.

The solution of the system of equations also allows to inductively define the transition

function. Let ←−ϕ (α) = {(γ, σ) | γ ∈
←−
∂ σ(α), σ ∈ Σ} and

←−
λ (α) = {α′ | α′ ∈

←−π (α), ε(α′) = ε}, where both sets can be inductively defined as follows:

←−ϕ (∅) = ∅, ←−ϕ (α + β) =←−ϕ (α) ∪←−ϕ (β),

←−ϕ (ε) = ∅, ←−ϕ (αβ) = α←−ϕ (β) ∪ ε(β)←−ϕ (α),

←−ϕ (σ) = {(ε, σ)}, σ ∈ Σ, ←−ϕ (α?) = α?←−ϕ (α);

←−
λ (∅) = ∅,

←−
λ (α + β) =

←−
λ (α) ∪

←−
λ (β),

←−
λ (ε) = ∅,

←−
λ (αβ) = ε(α)α

←−
λ (β) ∪

←−
λ (α),

←−
λ (σ) = {ε}, σ ∈ Σ,

←−
λ (α?) = α?

←−
λ (α).

(5.9)

The set of transitions is ←−ϕ (α) × {α} ∪
←−
F (α) where the set

←−
F is defined inductively

by:

←−
F (∅) =

←−
F (ε) =

←−
F (σ) = ∅, σ ∈ Σ,

←−
F (α + β) =

←−
F (α) ∪

←−
F (β), (5.10)

←−
F (αβ) = α

←−
F (β) ∪

←−
F (α) ∪ ϕ(α)× (α

←−
λ (β)),

←−
F (α?) = α?

←−
F (α) ∪ α?(←−ϕ (α)×

←−
λ (α)).

Note that the concatenation of a regular expression γ with a transition (α, σ, β) is

defined by γ(α, σ, β) = (γα, σ, γβ), if γ 6∈ {∅, ε}, ∅(α, σ, β) = ∅ and ε(α, σ, β) =

(α, σ, β).

Proposition 5.26. For all α ∈ RE, we can also define the right-partial derivative
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automaton of α as

←−
APD(α) = 〈←−π (α) ∪ {α},Σ,←−ϕ (α)× {α} ∪

←−
F (α),

←−
λ (α) ∪ ε(α){α}, α〉.

Proof. Similar to the proof of Proposition 5.2.

As we already mentioned, in Fig. 5.13 is represented the
←−
APD(a?b+ a?ba+ a?)?b).

Let us define that ∀α ∈ RE, σ ∈ Σ, {(σ, α)}R = {(αR, σ)}. The following results

establish a relationship between the functions λ and
←−
λ , ϕ and ←−ϕ , and F and

←−
F .

Lemma 5.27. Let α be a regular expression, (λ(αR))R =
←−
λ (α), (ϕ(αR))R = ←−ϕ (α)

and (F (αR))R =
←−
F (α).

Note that, while λ(α) defines the set of final states of APD(α),
←−
λ (α) defines the set

of initial states of
←−
APD(α).

Using the previous results we can relate APD with
←−
APD.

Proposition 5.28. Let α be a regular expression. Then (APD(αR))R '
←−
APD(α).

Proof. Follows from the Proposition 5.24 and Lemma 5.27.

Using the above result is not difficult to prove that:

Proposition 5.29. Let α be a regular expression. Then L(
←−
APD(α)) = L(α).

Proof. We know that L(α) = L(APD(α)). Thus,

L(α) = L(APD(α)) ⇔ L(αR) = L(APD(αR))

⇔ L((αR)R) = L((APD(αR))R)

⇔ L(α) = L(
←−
APD(α)).

As we know that APD(α) ' APos(α)�≡c and APrev(α) ' (APos(α
R))R we can conclude

that:
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Corollary 5.30. For any α ∈ RE,
←−
APD(α) ' APrev(α)�≡c.

It is also not difficult to see that:

Proposition 5.31. For any α ∈ RE the following hold:

|←−π (α)| ≤ |α|Σ, (5.11)

|
←−
PD(α)| ≤ |α|Σ + 1. (5.12)

Proof. Since
←−
PD(α) =←−π (α)∪{α}, the first inequality implies the second one, thus we

only need to prove (5.11). We proceed by induction on α. The base cases are obvious.

Let us suppose that the inequality (5.11) holds for some α1, α2 ∈ RE and consider

three subcases. First, consider α ≡ α1 + α2. Then, we have:

|←−π (α1 + α2)| = |←−π (α1) ∪←−π (α2)| = |←−π (α1)|+ |←−π (α2)| ≤ |α1 + α2|Σ.

For the second case, consider α ≡ α1α2, then

|←−π (α1α2)| = |α1
←−π (α2) ∪←−π (α1)| = |α1

←−π (α2)|+ |←−π (α1)|

≤ |α2|Σ + |α1|Σ = |α1α2|Σ.

Finally, consider α ≡ α?1, thus we have that

|←−π (α?1)| = |α?1←−π (α1)| ≤ |α1|Σ = |α?1|Σ.

5.4 Prefix Automaton (APre)

Yamamoto [Yam14] presented an algorithm for converting a regular expression into

an equivalent NFA AY . First, a labeled version of the usual Thompson NFA (AT),

M = 〈Q,Σ, δ, q0, {f}, LP, LS〉, is obtained, where each state q ∈ Q is labeled with

two regular expressions, one that corresponds to its left language, LP (q), and the
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q0

q1

q2

a

b

(a) APos(α)

q0

q1

q2

a

b

(b) (APos(α
R))R

ε

a

b

a

b

(c) APre(α)

ε a+ b
a, b

(d) ←−APD(α)

Figure 5.14: α = a+ b.

other to its right language, LS(q). The states for which the in-transitions are labeled

with a letter are called sym-states. The equivalence relations ≡pre and ≡suf are

defined on the set of sym-states: for two states p, q, p ≡pre q if and only if LP (p) =

LP (q); and p ≡suf q if and only if LS(p) = LS(q). The prefix automaton APre and

the suffix automaton ASuf are the quotient automata of AT by these relations. The

final automaton AY is a combination of these two. The author also shows that ASuf

automaton coincides with APD. This is no surprise, since it is known that the result

of the elimination of all ε-transitions of AT is the APos.

In what follows we construct the APre automaton directly from the regular expression

without the need to use the AT automaton. The relation between APD and ASuf could

lead us to think that
←−
APD coincides with APre, but this is not the case. For instance,

for α = a + b, the
←−
APD(α) has 2 states and the APre(α) has 3 states (see Fig. 5.14).

Note that both automata are obtained from another automaton by merging the states

with the same left language: while the
←−
APD(α) is obtained from (APos(α

R))R, we are

going to see that the APre(α) is obtained from APos(α).

Consider a system of left equations αi = αi1σ1 + · · · + αikσk, i ∈ [1, n], where α =∑
i∈I⊆[0,n] αi, αij ≡

∑
l∈Iij⊆[0,n] αl and α0 ≡ ε. Note that α0 in αik for some i ∈ [1, n],

but α0 is not in the solution set of the system of equations.
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Proposition 5.32. The set Pre(α) inductively defined as:

Pre(∅) = ∅, Pre(α + β) = Pre(α) ∪ Pre(β),

Pre(ε) = ∅, Pre(αβ) = αPre(β) ∪ Pre(α),

Pre(σ) = {σ}, Pre(α?) = α?Pre(α),

(5.13)

is a solution (left support) of the system of left equations defined above.

Proof. For α ≡ ∅ or α ≡ ε is obvious that the solution is ∅. For α ≡ σ,

α = α1,

α1 = α0σ,

α0 ≡ ε.

Thus Pre(α) = {σ}.

Let us suppose that

β =
∑

i∈I⊆[0,n]

βi,

βi = βi1σ1 + · · ·+ βikσk,

with Pre(β) = {β1, . . . , βn} and

γ =
∑

i∈I′⊆[0,m]

γi,

γi = γi1σ1 + · · ·+ γikσk,

with Pre(γ) = {γ1, . . . , γm}.
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Consider α ≡ β + γ, then

β + γ =
∑

i∈I⊆[1,n]

βi +
∑

i∈I′⊆[1,m]

γi.

As we need all βi, i ∈ [1, n] to define β, and all γi, i ∈ [1,m] to define γ, Pre(α) =

{β1, . . . , βn} ∪ {γ1, . . . , γm}. Consider α ≡ βγ then

βγ = β(
∑

i∈I⊆[0,m]

γi),

=

β(
∑

i∈I′⊆[1,m] γi) If 0 6∈ I ′,

β(
∑

i∈I′⊆[1,m] γi) +
∑

i∈I⊆[0,n] βi If 0 ∈ I ′,

and βγi = β(γi1σ1 + . . . + γikσk). As we know that γ0 ≡ ε occurs in γik for some

i ∈ [0,m], the solution set is Pre(α) = {βγ1, . . . , βγm} ∪ {β1, . . . , βn}.

Consider α ≡ β? then

β? = β?β + ε,

= β?(
∑

i∈I⊆[1,n]

βi) + ε.

Thus, Pre(α) = {β?β1, . . . , β
?βn}.

The definition of Pre can be extended to sets of regular expressions: Pre(S) =
⋃
α∈S Pre(α)

for S ⊆ RE.

The LP labelling scheme proposed by Yamamoto corresponds to the set Pre, i.e., con-

sidering that 〈Q,Σ, δ, q0, {f}, LP, LS〉 is the labeled version ofAT(α),
⋃
q∈Q

LP (q) = Pre(α).

Remark 2. For any α ∈ RE, either Pre(α) is ∅ or its elements are always of the

form α′σ, where α′ is a subexpression of α, a concatenation of subexpressions of α or

ε, and σ ∈ Σα.
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Using the above system of equations, we can define the prefix automaton of a regular

expression α as

APre(α) = 〈Pre0(α),Σ, {ε} × ψ(α) ∪ T(α), ε,Pr′(α) ∪ ε(α)〉,

where Pre0(α) = Pre(α) ∪ {ε}, Pr′(α) = {αi | i ∈ I ⊆ [0, n]}, ψ(α) = {(σj, αi) | ε ∈

αij, j ∈ [i, k]}, and T(α) = {(αi, σl, αj) | αi ∈ αjl, l ∈ [1, k]}.

The sets Pr′(α), ψ(α) and T(α) can also be inductively defined, respectively, as follows

Pr′(∅) = ∅, Pr′(αβ) = αPr′(β) ∪ ε(β)Pr′(α),

Pr′(ε) = ε, Pr′(α + β) = Pr′(α) ∪ Pr′(β),

Pr′(σ) = {σ}, Pr′(α?) = α?Pr′(α);

(5.14)

ψ(∅) = ∅, ψ(α + β) = ψ(α) ∪ ψ(β),

ψ(ε) = ∅, ψ(αβ) = ψ(α) ∪ ε(α) α ψ(β),

ψ(σ) = {(σ, σ)}, ψ(α?) = α?ψ(α);

(5.15)

T(∅) = T(ε) = T(σ) = ∅, σ ∈ Σ,

T(α + β) = T(α) ∪ T(β), (5.16)

T(αβ) = T(α) ∪ αT(β) ∪ Pr′(α)× (αψ(β)),

T(α?) = α?T(α) ∪ α?(Pr′(α)× ψ(α)).

Similarly to what happens for Pre, Pr′ can be extended to sets of regular expressions:

Pr′(S) =
⋃
α∈S Pr

′(α) for S ⊆ RE. Note that L(α) = L(Pr′(α))∪ ε(α). In Figure 5.15

we can see the APre((a
?b+ a?ba+ a?)?b).

By Remark 2, we know that the state labels of APre automaton have always the form

ασ, σ or ε, which correspond to the left language of each state, by the construction of

APre. Thus, it is obvious that given a state α and a symbol σ the following function
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q0 q1

q2

q3

q4

a

b

b

a

b

b

ba

b
a

b
bb

Figure 5.15: APre((a
?b + a?ba + a?)?b) : q0 = ε, q1 = (a?b + a?ba + a?)?(a?a), q2 =

(a?b+ a?ba+ a?)?(a?b), q3 = (a?b+ a?ba+ a?)?((a?b)a), q4 = (a?b+ a?ba+ a?)?b.

calculates the predecessors of α by σ:

Prσ(∅) = Prσ(ε) = ∅,

Prσ(σ′) =

{ε}, if σ′ = σ,

∅, otherwise,

Prσ(α′σ′) =

Pr′(α′) ∪ ε(α′), if σ′ = σ,

∅, otherwise.

(5.17)

The definition of Prσ can be naturally extended to sets of regular expressions, words,

and languages. Given α ∈ RE and σ ∈ Σ, Prσ(S) =
⋃
α∈S Prσ(α) for S ⊆ RE,

Prε(α) = Pr′(α) and Prσw(α) = Prσ(Prw(α)), for any w ∈ Σ?, σ ∈ Σ. Therefore, is not

difficult to conclude that the automaton APre can also be inductively defined by

APre(α) = 〈Pre0(α),Σ, δpre, ε,Pr
′(α) ∪ ε(α)〉,

where δpre = {(s′, σ, s) | s ∈ Pre(α), s′ ∈ Prσ(s), σ ∈ Σ}.

5.4.1 APre as APos Quotient

In the following we show that the APre(α) is a quotient of APos(α). If α is a linear

regular expression, APos(α) is deterministic and thus all its states have distinct left

languages. Therefore, in this case, APre(α) coincides with APos(α).



142 CHAPTER 5. SIMULATION COMPLEXITY OF RES BY NFAS

Proposition 5.33. For any linear regular expression α, |Pre(α)| = |α|Σ.

Proof. The proof proceeds by induction on α. For the base cases the result is obviously

true. Assuming that the result holds for α1, α2 ∈ PO, we prove it for the operations.

Note that Σα1 ∩ Σα2 = ∅, and because of that Pre(α1) ∩ Pre(α2) = ∅. If α ≡ α1 + α2,

then |Pre(α1 + α2)| = |Pre(α1) ∪ Pre(α2)|. As Pre(α1) ∩ Pre(α2) = ∅, |Pre(α1) ∪

Pre(α2)| = |α1|Σ+|α2|Σ = |α1+α2|Σ. Considering α ≡ α1α2 we have that |Pre(α1α2)| =

|α1Pre(α2)∪Pre(α1)|. By the same reason of the previous case, |α1Pre(α2)∪Pre(α1)| =

|α2|Σ + |α1|Σ = |α1α2|Σ. Finally, if α ≡ α?1, then |Pre(α?1)| = |α?1Pre(α1)| = |α1|Σ =

|α?1|Σ.

Corollary 5.34. For an arbitrary RE α, APre(α) ' APos(α).

The following results show that the functions ψ, T and Pr′ are related with the

functions First, Follow and Last, respectively.

Proposition 5.35. For any linear regular expression α,
⋃

(σ,α′)∈ψ(α)

Last(α′) = First(α).

Proof. Let us prove this result proceeding by induction on the structure of α. For

α ≡ ∅ and α ≡ ε the equality is obvious.

Considering α ≡ σi, ψ(α) = {(σi, σi)}. Thus,
⋃

(σ,α′)∈ψ(σi)

Last(α′) = Last(σi) = First(σi).

If α ≡ α1 + α2, ψ(α1 + α2) = ψ(α1) ∪ ψ(α2). Then

⋃
(σ,α′)∈ψ(α1+α2)

Last(α′) =
⋃

(σ,α′)∈ψ(α1)

Last(α′) ∪
⋃

(σ,α′)∈ψ(α2)

Last(α′)

= First(α1) ∪ First(α2) = First(α1 + α2).
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For α ≡ α1α2, ψ(α2α2) = ψ(α1) ∪ ε(α1)α1ψ(α2). Thus,

⋃
(σ,α′)∈ψ(α1α2)

Last(α′) =
⋃

(σ,α′)∈ψ(α1)

Last(α′) ∪ ε(α1)
⋃

(σ,α′)∈α1ψ(α2)

Last(α′)

as by definition ∀(σ, β′) ∈ ψ(α2) ε(β′) 6= ε

= First(α1) ∪ ε(α1)
⋃

(σ,α′)∈ψ(α2)

Last(α′)

= First(α1) ∪ ε(α1)First(α2) = First(α1α2).

If α ≡ α?1, ψ(α?1) = α?1ψ(α1). Then

⋃
(σ,α′)∈ψ(α?1)

Last(α′) =
⋃

(σ,α′)∈α?1ψ(α1)

Last(α′)

=
⋃

(σ,α′)∈ψ(α1)

Last(α′) = First(α1) = First(α?1).

Proposition 5.36. For any linear regular expression α,
⋃

α′∈Pr′(α)

Last(α′) = Last(α).

Proof. The proof proceed by induction on the structure of α. For α ≡ ∅ and α ≡ ε

the equality is obvious. Considering α ≡ σi, Pr′(α) = {σi}. Thus,
⋃

α′∈Pr′(σi)

Last(α′) =

Last(σi) = Last(σi).

If α ≡ α1 + α2, Pr′(α1 + α2) = Pr′(α1) ∪ Pr′(α2). Then

⋃
α′∈Pr′(α1+α2)

Last(α′) =
⋃

α′∈Pr′(α1)

Last(α′) ∪
⋃

α′∈Pr′(α2)

Last(α′)

= Last(α1) ∪ Last(α2) = Last(α1 + α2).

For α ≡ α1α2, Pr′(α2α2) = α1Pr
′(α2) ∪ ε(α2)Pr′(α1). Thus,

⋃
α′∈Pr′(α1α2)

Last(α′) =
⋃

α′∈α1Pr′(α2)

Last(α′) ∪ ε(α2)
⋃

α′∈Pr′(α1)

Last(α′)

as by definition, if ε ∈ Pr′(α2) then ε(α2) = ε
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=
⋃

α′∈Pr′(α2)

Last(α′) ∪ ε(α2)
⋃

α′∈Pr′(α1)

Last(α′)

= Last(α2) ∪ ε(α2)Last(α1) = Last(α1α2).

If α ≡ α?1, Pr′(α?1) = α?1Pr
′(α1). Then

⋃
(α′∈Pr′(α?1)

Last(α′) =
⋃

α′∈α?1Pr′(α1)

Last(α′)

=
⋃

α′∈Pr′(α1)

Last(α′) ∪ ε(α1)
⋃

α′∈Pr′(α?1)

Last(α′)

= Last(α1) ∪ ε(α1)Last(α?1)

= Last(α1) = Last(α?1).

Thus the equality holds.

Proposition 5.37. For any linear regular expression α, and αi, αj ∈ Pre(α),

(αi, σ, αj) ∈ T(α)⇔ (Last(αi), Last(αj)) ∈ Follow(α).

Proof. Note that as αi, αj ∈ Pre(α), by Remark 2, |Last(αi)| = |Last(αj)| = 1. Let us

define the function Follow (see (2.20) in page 27) in a different way:

Follow(∅) = Follow(ε) = Follow(σj) = ∅

Follow(α + β) = Follow(α) ∪ Follow(β)

Follow(αβ) = Follow(α) ∪ Follow(β) ∪ Last(α)× First(β)

Follow(α?) = Follow(α) ∪ Last(α)× First(α).

Notice that the difference between this definition from [BMMR11] and the one in (2.20)

is in the type of the functions ( RE → Σ× pos0, in this case, and RE ×Σ→ pos0, in

the other one). Using this Follow definition, the position automaton for α is APos(α) =

〈pos0(α),Σ, δpos, 0, Last0(α)〉, with δpos = {(0, σj, j) | j ∈ First(α)} ∪ {(i, σj, j) | (i, j) ∈

Follow(α)}.
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The result follows directly from this definition of Follow and the definition of T, and

from the two previous propositions.

Let APre(α) be equal to APre(α), but with the letters in the transitions unmarked,

then the following result holds.

Proposition 5.38. Let α be a regular expression. Then APre(α) ' APos(α).

Proof. To prove that these automata are isomorphic it is sufficient to consider the

bijection κ : Pre0 → pos0 such that for any γ ∈ Pre0(α), κ(ε) = 0, and κ(γ) =

Last(γ), if γ 6≡ ε. Note that by Remark 2 we can conclude that |Last(γ)| ≤ 1, for any

γ ∈ Pre0(α). For initial and final states the isomorphism is obvious. Considering the

transitions the isomorphism also holds by the Proposition 5.35 and Proposition 5.37.

Let us define the equivalence relation ≡l such that for any regular expression α,

∀s1, s2 ∈ Pre(α), s1 ≡l s2 ⇔ s1 ≡ s2.

Lemma 5.39. The relation ≡l is left-invariant.

Proof. Follows directly from the construction of APre automaton.

From the previous results it is not difficult to conclude that APre automaton is a

quotient of APos.

Theorem 5.40. Let α be a regular expression. Then APre(α) ' APre(α)�≡l, and

because of this APre(α) ' APos(α)�≡l.

Proof. The first isomorphism is obvious by the system of equations. The second one

is evident by Proposition 5.38.

By construction, APos is homogeneous, i.e. the transitions reaching each state are all

labelled by the same letter. By Theorem 5.40 this also holds for APre.
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Table 5.1: Experimental results for uniform random generated regular expressions:
conversion methods.

k |α| |pos0| |δpos| |PD| |δπ| |π|
|pos| |

←−
PD| |δ←−π | |←−π |

|pos| |Pre0| |δpre| |Pre|
|pos| 1− ηk

2 100 28.9 167.5 15.7 56.0 0.55 15.9 56.4 0.55 20.1 73.7 0.71 0.90
500 139.9 1486.5 71.6 389.8 0.51 71.5 393.1 0.51 91.9 530.8 0.66

10
100 42.5 159.4 23.8 73.7 0.56 23.8 72.9 0.56 38.5 130.4 0.91

0.99500 207.1 1019.1 113.2 423.8 0.55 112.4 425.6 0.54 186 807.1 0.90

1000 412.1 2182.1 223.7 884.1 0.54 223.1 884.5 0.54 369.5 1717.6 0.90

5.5 APos, APD,
←−
APD and APre Automata: an Average-

case Analysis

We conducted some experimental tests in order to compare the sizes of APos, APD,
←−
APD and APre automata in practice. We used the FAdo library that includes imple-

mentations of those NFA conversions, and several tools for uniformly random generate

regular expressions. In order to obtain regular expressions uniformly generated in the

size of the syntactic tree, we used a prefix notation version of the grammar. For each

alphabet size, k, and |α|, samples of 10 000 REs were generated, which is sufficient

to ensure a 95% confidence level within a 1% error margin. Table 5.1 presents the

average values obtained for |α| ∈ {100, 500, 1000} and k ∈ {2, 10}.

These experiments suggest that, on average, the
←−
APD and the APD have the same size

and the APre is not significantly smaller than the APos.

Broda et al. [BMMR11] studied the average size of APD and concluded that, on average

and asymptotically, the APD has at most half the number of transitions of the APos. By

Proposition 5.28, |αR|Σ = |α|Σ and by the fact that ε ∈ π(α) if and only if ε ∈ ←−π (α),

this analysis of the average size of APD(α) still holds for
←−
APD(α). Thus the average

sizes of APD and
←−
APD are asymptotically the same. However,

←−
APD(α) has only one

final state and its number of initial states is the number of final states of APD(αR).

Again following the ideas in Broda et al., we estimate the number of mergings of states
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that arise when computing APre from APos. The APre has at most |α|Σ + 1 states and

this only occurs when all unions in Pre(α) are disjoint. However for some cases this

does not happen. For instance, when σ ∈ Pre(β) ∩ Pre(γ),

|Pre(β + γ)| = |Pre(β) ∪ Pre(γ)| ≤ |Pre(β)|+ |Pre(γ)| − 1,

|Pre(β?γ)| = |β?Pre(γ) ∪ β?Pre(β)| ≤ |Pre(β)|+ |Pre(γ)| − 1.
(5.18)

In what follows, we estimate the number of these non-disjoint unions, which corre-

sponds to a lower bound for the number of states merged in the APos automaton. This

is done by the use of the methods of analytic combinatorics that was introduced in

Section 3.2.1.

The regular expressions ασ for which σ ∈ Pre(ασ), σ ∈ Σ are generated by following

grammar

ασ := σ | ασ + α | ασ + ασ | ασ · α | ε · ασ.

The regular expressions that are not generated by ασ are denoted by ασ. The gener-

ating function for ασ, Rσ,k(z), satisfies

Rσ,k(z) = z + zRσ,k(z)Rk(z) + z(Rk(z)−Rσ,k(z))Rσ,k(z) + zRσ,k(z)Rk(z) + z2Rσ,k(z)

that is equivalent to

zRσ,k(z)2 − (3zRk(z) + z2 − 1)Rσ,k(z)− z = 0. (5.19)

From this one gets

Rσ,k(z) =
(z2 + 3zRk(z)− 1) +

√
(z2 + 3zRk(z)− 1)2 + 4z2

2z
. (5.20)

As we know that Rk(z) =
1−z−
√

∆k(z)

4z
, which is the generating function for REs given
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by grammar (2.1) (omitting the ∅), one has

8zRσ,k(z) = −b(z)− 3
√

∆k(z) +

√
a(z) + 6b(z)

√
∆k(z) + 9∆k(z), (5.21)

where a(z) = 16z4 − 24z3 + 65z2 + 6z + 1, b(z) = −4z2 + 3z + 1, and ∆k(z) =

1− 2z − (7 + 8k)z2. Using the binomial theorem, we know that

√
a(z) + 6b(z)

√
∆k(z) + 9∆k(z) =

√
a(z) + 3

b(z)√
a(z)

√
∆k(z) + o(∆k(z)

1
2 ).

Thus,

8zRσ,k(z) = −b(z) +
√
a(z) + 3

(
b(z)√
a(z)

− 1

)√
∆k(z) + o(∆k(z)

1
2 ). (5.22)

As we know that the following equalities are true:

√
∆k(z) =

√
(7 + 8k)ρk(z − ρk)

√
1− z/ρk,

√
(7 + 8k)ρk(ρk − ρk) =

√
2− 2ρk,

and using the Proposition 3.2 and Lemma 3.3 (Section 3.2.1),

[zn]Rσ,k(z) ∼ 3

16
√
π

(
1− b(ρk)√

a(ρk)

)√
2(1− ρk)ρ−(n+1)

k n−
3
2 . (5.23)

Thus, the asymptotic ratio of regular expressions with σ ∈ Pre(α) is:

[zn]Rσ,k(z)

[zn]Rk(z)
∼ 3

2

(
1− b(ρk)√

a(ρk)

)
. (5.24)

As lim
k→∞

ρk = 0, lim
k→∞

a(ρk) = 1, and lim
k→∞

b(ρk) = 1, the asymptotic ratio of regular
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expressions with σ ∈ Pre approaches 0 when k →∞.

Let i(α) be the number of non-disjoint unions appearing during the computation of

Pre(α), α ∈ RE originated by the two cases described in (5.18). Then i(α) verifies

the following equations

i(ε) = i(σ) = 0,

i(ασ + ασ) = i(ασ) + i(ασ) + 1,

i(ασ + ασ) = i(ασ) + i(ασ),

i(ασ + α) = i(ασ) + i(α),

i(α?σασ) = i(α?σ) + i(ασ) + 1,

i(α?σασ) = i(α?σ) + i(ασ),

i(αασ) = i(α) + i(ασ),

i(α?) = i(α).

From these equations we can obtain the cost generating function of the mergings,

Ia(z), by adding the contributions of each one of them. For example, the contribution

of the regular expressions of the form ασ + ασ can be computed as follows:

∑
ασ+ασ

i(ασ + ασ)z|(ασ+ασ)| = z
∑
ασ

∑
ασ

(i(ασ) + i(ασ) + 1)z|ασ |z|ασ |

= z
∑
ασ

∑
ασ

(i(ασ) + i(ασ))z|ασ |z|ασ | + z
∑
ασ

∑
ασ

z|ασ |z|ασ |

= 2zIασ ,k(z)Rσ,k(z) + zRσ,k(z)2

where Iασ ,k(z) is the generating function for the mergings coming from ασ. Applying

this technique to the remaining cases, we obtain

Ia(z) =
(z + z2)Rσ,k(z)2√

∆k(z)
. (5.25)

Using again the same Proposition 3.2, we conclude that:

[zn]Ia(z) ∼ 1 + ρk
64

(
a(ρk) + b(ρk)

2 − 2b(ρk)
√
a(ρk)

)
√
π
√

2− 2ρk
ρ
−(n+1)
k n−

1
2 . (5.26)

Recall that the number of states of APos(α) is equal to the number of letters in α.

Thus, in order to obtain a lower bound for the reduction in the number of states of
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the APre automaton, as compared to the ones of the APos automaton, it is enough to

compare the number of mergings for an expression α, with the number of letters in α.

Therefore, the asymptotic estimate for the average number of mergings is given by:

[zn]Iσ(z)

[zn]Lk(z)
∼ 1− ρk

4ρ2
k

λk = ηk, (5.27)

where λk = (1+ρk)
16(1−ρk)

(
a(ρk) + b(ρk)

2 − 2b(ρk)
√
a(ρk)

)
. It is not difficult to conclude

that lim
k→∞

λk = 0, therefore lim
k→∞

ηk = 0. In other words, the average number of states

of the APre automaton is equal to the number of states of the APos automaton.

As it is evident from the last two columns of Table 5.1, for small values of k, the lower

bound ηk does not capture all the mergings that occur in APre. However, it seems that

for larger values of k, the average number of states of the APre automaton approaches

the number of states of the APos automaton.

5.6 APos, APD, APrev and
←−
APD Determinization

Despite the fact that the DFAs obtained from regular expressions can be exponentially

larger in size, sometimes we want to avoid the nondeterminism. We performed some

experimental tests in order to compare the sizes of the DFAs obtained from the

determinization of APos, APD, APrev and
←−
APD automata in practice. Recall that the

determinization of APos is the McNaughton & Yamada automaton (Section 2.3.1.2),

and the determinization of APrev is the AdPrev automaton (Section 2.3.1.3).

As in the previous section, we used the FAdo library, and for each alphabet size, k,

and |α|, samples of 10 000 uniformly random REs were generated. Table 5.2 presents

the average values obtained for the number of states with |α| ∈ {300, 500} and k ∈

{2, 5, 10}. The measures |QdAPos
|, |QAdPrev |, |QdPD| and |Qd

←−
PD
| represent the number

of states of D(APos), D(APrev), D(APD) and D(
←−
APD), respectively.

The results suggest that APrev and APos automata have the same size on average, as
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Table 5.2: Experimental results for uniform random generated regular expressions:
determinizations.

k |α| |pos0| |QPrev| |PD| |
←−
PD| |QdAPos | |QAdPrev | |QdPD| |Q

d
←−
PD
|

2 300 84.41 84.41 43.74 43.75 85.10 61.27 72.26 60.88

500 139.82 139.82 71.60 71.61 202.91 146.58 172.33 146.21

5 300 110.75 110.75 60.49 60.49 312.35 244.38 276.86 243.43

10 300 124.70 124.70 68.20 68.20 162.98 120.55 127.59 119.55

500 206.76 206.76 112.70 112.70 330.58 253.57 270.24 252.58

we expected because of Proposition 2.7. We can also observe that D(APos) is greater

than D(APrev). The automaton which results from the determinization of partial

derivative automaton D(APD) is smaller than D(APos), but greater than D(APrev).

The automaton D(
←−
APD) is the smallest one.

It is importante to note that there exist regular expressions for which all these DFAs

have exponential size. For example, the family (a?(ab?)l−1a)?, where |α|Σ = 2l,

presented by Ellul et al. [EKSW04] as the worst-case lower bound from the conversion

from RE to equivalent DFA, is a witness of that exponential growing.
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Chapter 6

Conclusion

Descriptional complexity focus on the succinctness of the model representations. Over

the last two decades, the study of the descriptional complexity of regular languages

has become a major topic of research. In this work, we studied the descriptional

complexity of some operations and simulations of regular models.

First of all, we presented tight upper bounds for the incomplete state and transition

complexities for union, concatenation, Kleene star, complement and reversal on general

and finite regular languages. Transition complexity bounds were expressed as functions

of several more fine-grained measures of the operands, such as the number of final

states, the number of undefined transitions or the number of transitions that leave the

initial state. Table 4.1 summarises the results for incomplete transition complexity,

using the witnesses parameters. Tables 4.2 and 4.3 summarise some of the results

on state complexity and transition complexity of basic operations on general regular

languages, respectively. In Table 4.2 we present the state complexity (sc), based

on complete DFAs [YZS94]; the incomplete state complexity (isc), the new results

here presented, and the ones from Gao et al. [GSY11]; and also, the results for

state complexity for NFAs (nsc) [HK03]. The upper bound for the nondeterministic

transition complexity of the complement is not tight, and thus, in Table 4.3, we inscribe

the corresponding lower and upper bounds. Table 4.5 and Table 4.6 have the formulae
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for the upper bounds of state and transition complexity for all the studied operations

on finite regular languages.

The experimental results for both cases show that the upper bounds for state and

transition complexities are much higher than the observed number of states and

transitions of the DFAs resulting from the operations, with uniform random generated

operands. Thus, although the study of the descriptional complexities considering the

worst-case analysis is fundamental, in order to have good estimates of the amount

of resources required to manipulate representations of a given language in practical

applications, average-case complexity results need to be considered.

Posteriorly, we studied several methods of simulation of regular expressions by finite

automata. Some of them were already known (APD, APos, AMY automata), other

were introduced by us (
←−
APD, APre, APrev automata). We wanted to characterise direct

constructions of small finite automaton from regular expressions. For that, we started

to obtain a better characterisation of the APD automaton, which is a quotient of the

APos automaton. Considering finite languages, we presented a sufficient condition

that specify the NFAs that are the partial derivative automaton of some finite regular

expression. The APos bisimilarity is always not larger than all other quotients. We

proved that, for regular expressions without Kleene star and under certain conditions,

the APD is an optimal conversion method, since the it is isomorphic to the position

bisimilarity automaton.

The right-partial derivative automaton (
←−
APD) was introduced using the notion of right-

partial derivatives, and we studied its relation with APD and APos. We also presented a

new construction of the APre automaton directly from the regular expression, without

the use of an intermediary automaton. We showed that this automaton is also a

quotient of APos. The size of APos and APD automata have already been studied,

in both approaches, worst and average-case. As APD,
←−
APD and APre are quotients of

APos we know that, in the worst case, they have the same size of APos. We showed that

the average sizes of
←−
APD and APD automata are asymptotically the same. We also

showed that the average number of states of APre automaton approaches the number
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of states of the APos automaton. Thus, it seems that APD and
←−
APD are, on average,

the better methods of conversion from REs to NFAs w.r.t. the size of the resulting

NFA. However, if we determinize the resulting NFA, D(
←−
APD) seems to be the smallest

automaton obtained from the referred conversion methods.

There are several methods of conversion from REs to DFAs, for instance the Brzozowski

automaton. As future work, it would be important to compare the size of the DFAs

resulting from these methods, with the ones resulting from the determinization ofAPos,

APrev, APD and
←−
APD, in order to analyse the better method of conversion from REs

to DFAs w.r.t. the size of the resulting automaton. An interesting approach would be

to study the average-case complexity of these conversion methods using the analytic

combinatorics framework.
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